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Abstract

The decisionmaking process applied to the energy sector, particularly to the electricity sector, is complex and frequently

requires the use of optimization models to deal with problems in the scope of electricity planning. The continuous

growth of renewable energy sources (RES) to generate electricity became sustainable over the last years. This growth

is justified by the increasing concerns related to the security of supply, the reduction of external energy dependency

of most European countries, including Portugal, and the reduction of greenhouse gases emissions. Despite of the

RES benefits, their integration is characterized by the difficulties on forecasting and variable electricity output. These

difficulties bring considerable challenges to the electricity system management and to its planning.

This work is focused on the assessment of the RES impacts on the electricity system and on its integration in the

long and short-term electricity planning. The main goals of this work are to analyse in which way the growth of RES

can affect the electricity system and its power plants, and also to propose new optimization models for the strategic

planning of the electricity system, which are able to recognize and include RES impacts. This will provide the decision

maker with tools that will support the design of long-term scenarios for the electricity sector.

According to the outlined goals, four different optimization models were developed. All models were tested for a

mixed hydro-thermal-wind power system, with characteristics close to the Portuguese one. The first one was proposed

for the long-term strategic electricity power planning and a 10 years planning period was considered. Its usefulness

was demonstrated by applying it for the analysis of the wind power integration in the electricity system. The second

one, with a short-term horizon, aimed to solve the problem of the commissioning of power plants based on the available

resources. The implementation of this model showed that modelling the electricity power systems requires a large

set of constraints and a large number of data and information, resulting in significant computational effort to obtain a

optimal solution. The development of a third model, a simplified approach of the short-term model, became therefore

necessary. As previously, both short-term model and its simplified approach were used for the analysis of the impacts
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of wind power in the electricity system and in the operation of the different power plants. The last model resulted

from the combination of the strategic electricity power planning model with the simplified model proposed for the

commissioning of the power plants. The goal of this fourth model is to allow the inclusion of RES impacts in the design

of scenarios for the electricity system, for a 10 years planning period.

The models application demonstrated the need to acknowledge and include the impacts of RES integration,

particularly wind power, on the strategic electricity expansion planning. Throughout the work, the complexity of models

was evidenced along with the difficulties that non-experienced users may face when applying them. A user-friendly

platform enabling researchers and stakeholders to deal with electricity planning problems in a simpler but reliable way

was then proposed, resulting in an important contribution for the effective dissemination and usage of these models.

Keywords: Renewable energy sources (RES); Electricity planning; Energy decision making; Optimization models;

Wind power; Thermal power; Hydropower.
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Resumo

A tomada de decisão no sector da energia, e em particular no sector da eletricidade, é uma atividade complexa, sendo

frequentemente suportada em modelos de otimização, para apoio à resolução de problemas relativos ao planeamento

elétrico. O crescimento da utilização das fontes de energia renováveis para a produção de eletricidade tem sido con-

sistente nos últimos anos, sendo este crescimento justificado pelas preocupações relativas à segurança do abastec-

imento, passando por estratégias de diversificação de tecnologias e fornecedores, pela necessidade de redução da

dependência energética externa de diversos paises Europeus, onde se inclui o caso português, e pelos objetivos de

redução dos gases com efeito de estufa. Apesar dos seus benefícios, a integração das energias renováveis está fre-

quentemente associada à dificuldade de previsão da produção de eletricidade e à produção variável, trazendo assim

desafios consideráveis à gestão do sistema elétrico e ao seu planeamento.

Este trabalho centra-se na avaliação dos impactos das energias renováveis nos sistemas elétricos e na sua

inclusão no planeamento elétrico de curto e longo prazo. Tem assim como objetivos principais analisar de que

modo o crescimento das energias renováveis poderá afetar o sistema elétrico e as diferentes unidades produtoras,

bem como propor novos modelos de otimização para planeamento estratégico para o setor elétrico que permitam

reconhecer e incluir estes impactos, dotando assim o decisor de ferramentas que o possam apoiar da definição de

cenários estratégicos de longo prazo.

De acordo com os objetivos traçados, são apresentados quatro diferentes modelos de otimização. Todos estes

modelos foram testados para um sistema elétrico com caracteristicas próximas do caso português, detacando-se as

componentes hídrica, térmica e eólica. O primeiro modelo visa o planeamento estratégico a longo prazo resultando na

apresentação e caracterização de cenários para o setor elétrico para um período de 10 anos, tendo sido demonstrada

a sua aplicação para a análise da integração da energia eólica no sistema. O segundo modelo utiliza um horizonte

temporal de curto prazo, tendo como objetivo apoiar a resolução do problema de comissionamento das unidades
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de geração eléctrica com base nos recursos disponíveis. A sua implementação demonstrou que a modelação dos

sistemas de geração de energia eléctrica pressupõe um conjunto de restrições e um elevado número de dados e

informações que resultam num esforço computacional significativo. Desta forma, surgiu a necessidade de desenvolver

um terceiro modelo que consiste numa versão simplificada deste modelo de curto-prazo. Ambos os modelos de curto

prazo, foram também utilizados para a análise dos impactos da energia eólica no funcionamento das diferentes

unidades de produção de eletricidade. O último modelo desenvolvido resulta da combinação do modelo estratégico

de expansão do sistema elétrico com o modelo aplicado ao problema do comissionamento das unidades de geração

eléctrica, tendo como objetivo ter em consideração os impactos das energias renováveis na definição de cenários

para o setor elétrico para um período de 10 anos.

Da aplicação dos modelos fica demonstrada a importância de reconhecer e incluir no planeamento elétrico

estratégico de longo prazo os impactos resultantes da integração de fontes renováveis de energia de produção variável,

e em particular da energia eólica, nos sistemas elétricos. Fica ainda evidente, a complexidade dos modelos e a

dificuldade de aplicação por utilizadores menos experientes. Resulta por isso como uma importante contribuição, o

desenvolvimento de uma aplicação gráfica com interface amigável que deverá permitir a ampla disseminação dos

modelos desenvolvidos e sua adaptação a diferentes sistemas elétricos.

Palavras chave: Fontes de energia renováveis; Planeamento elétrico; Tomada de decisão no setor energético;

Modelos de otimização; Energia eólica; Centrais termoelétricas; Centrais hidroelétricas.
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Chapter 1

Introduction and Thesis Overview

1.1 Motivation

High investments and costs are involved when dealing with the strategic expansion of the electricity system and with

problems like unit commitment and economic dispatch. These investments are mainly associated with the construction

of new power plants, and their operation and maintenance, as well as the operation and maintenance of existent ones.

The investment in new power technologies supported on renewable energy resources (RES) is evident in a society that

is increasingly more concerned with the environment. The paradigm of power planning where only economic interests

were taking into account is now overcome. According to Ferreira (2008), decisions in the energy sector have a

key role for a sustainable development, causing a high economic impact, environmental and social welfare of future

generations.

The combination of energy efficiency with RES is a key strategy for a sustainable future, emphasized by European

and Portuguese guiding policies. In fact, Portugal is a good example with respect to the integration of RES in its

electricity system, which contributes to a high diversification of the energy mix. Portugal does not have own fossil fuel

resources and the geographical and climatic conditions allowed the country to strongly rely on the use of technologies

supported on RES for electricity production. To fulfil the RES objectives the construction of new power plants and

the power reinforcing of existing ones is foreseen. Such is the case of hydropower that according to REN (2013) is

expected to increase its installed power by 83% until 2023. The wind power stands also as an essential element

in achieving the RES targets set for the European Union members. In Portugal, both wind and hydropower have a
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significant impact for the management of the operations of the electricity system and it is recognized that RES increase

can encourage the reallocation of capacity and output among different generation options, setting a new equilibrium

under new operating conditions.

Optimization models applied to design and management of electricity systems can bring considerable advantages

to the central decision maker or to the investor, allowing them to recognize the cost and benefits of technologies in an

integrated planning process, rather than by simple comparing projects and technologies. Traditionally, these models

were build under a cost optimization approach. However, social and environmental concerns have been gaining

increasing attention in the last years either translated as objectives or constraints of these models.

To solve optimization problems for strategic electricity expansion planning, average operating conditions of the

power plants are frequently used. However, for electricity systems with high share of RES of variable output the use

of these average values can be misleading, representing a significant oversimplification of the reality. To properly

deal with the impact of RES of variable output, traditional optimization models must be able to integrate the short-

term operational planning and dispatching process with the long range planning models. This new approach creates

additional complexity and must be supported by the development of robust optimization procedures capable of dealing

not only with non linear mixed integer models fully characterizing real scale electricity systems, but also able to combine

optimal decisions in different time frames.

From the aforementioned, it can be concluded that RES integration can bring considerable challenges to the

operation and management of an electricity system. The main motivation of this thesis is precisely to address these

challenges under a strategic decision making perspective, contributing then to:

1. evaluate the impacts of RES in the electricity system;

2. recognize and integrate these impacts on the strategic electricity planning;

3. develop and apply electricity planning models and a graphical user-friendly tool, so these models can be used

by practitioners and researchers;

4. analyze the particular case of Portugal designing and fully characterizing possible future electricity scenarios.

Since the integration of the short-term operational planning and dispatching process with the long range planning

models is far from being fully explored in literature, the relevance and the innovative aspects of this study will be
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strongly related to the model development better combining both short and long-term models, showing its potential

use for supporting strategic electricity planning of the Portuguese electricity system.

1.2 Objectives

This PhD project expects to contribute to support strategic decision making in electricity systems with high RES share.

For this purpose, the development of optimization models for electricity power planning, considering short and long-

term time horizons is envisaged. A combined strategic model will be proposed avoiding the use of average operating

conditions to describe the power plant performance, and integrating short and long-term planning. The objectives to

be accomplished follows.

• To develop new optimization models for electricity planning, based on an approach that integrates multi-periodic

optimization models for generation expansion planning with optimization models for power plants allocation,

based on available resources. The following models will be formulated: (1) a model for unit commitment (UC)

of the electricity systems, also refereed as short-term model, (2) a model for long-term strategic planning of

the electricity system, (3) an integrated model that combines both models.

• To translate the models into computational language for solving the optimization problems by considering

state-of-the art solvers.

• To apply the proposed models to the electricity planning in Portugal, resulting in fully characterized scenarios,

including cost, CO2 emissions, external energy dependence, RES share and installed power per technology.

Through a scenario analysis, the impact of the increasing levels of RES power plants on the operating conditions

of the remaining power plants will be assessed, seeking to establish optimal plans for the future.

• To develop a userfriendly graphical interface that should contribute to the models dissemination and usage by

practitioners and scientific community.
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1.3 Methodology

According to Saunders et al. (2009) the ”research design will be the general plan of how you will go about

answering your research question”. Thus, in order to conduct this research process, it is necessary to identify

approaches, strategies, techniques, and procedures.

The use of optimization models to support the decision making in the electricity sector is a subject that has been

well addressed in literature. One mistake in choosing which technology or which power plants to use in a specific

instant may result in a lost of many million of euros. Furthermore, increasing importance of RES turns more difficult

the task of the decision maker due to the impacts that these technologies, characterized by their variable output, have

in the operating conditions of traditional thermal power plants.

Therefore, the focus of this work is concerned in answering the following questions:

• “Which are the impacts that RES of variable output, specially wind power, have on the electricity system?”

• “Till what extent can the integration of RES of variable output influence long-term strategic planning of the

electricity system?”

The approach followed in this research process is the deductive approach. This approach ”involves the devel-

opment of a theory that is subjected to a rigorous test” (Saunders et al., 2009). According to Robson (2002),

there is five steps in the deductive process namely:

1. Deducing a hypothesis;

2. Express the hypothesis in operational terms;

3. Test the operational hypothesis;

4. Examining the specific outcome;

5. If necessary, modify the theory in the light of the findings.

In what concern to the nature of this research, an explanatory study is considered. This research nature is intended

to study a situation or problem, so that we will be able to illustrate the relationship between variables (Saunders et al.,

2009).
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This research process is an iterative process that follows the schematic presented on Figure 1.1. The methodology

started with a comprehensive literature review whose goal was to understand all the issues related with the electric-

ity planning problems and the state-of-the-art concerning the existent models, planning tools and power technology

characterization.

Secondly, power planning models were developed and described by using optimization procedures, followed by

its translation in computational modeling language (GAMS, 2011). Three main models were proposed and tested:

a model for UC of the electricity systems, a model for long-term strategic planning of the electricity system, and an

integrated model that combines both previous models. The models application required the previous characterization

of the Portuguese electricity system in order to obtain data to be used as input parameters or constraints.

From the models application a set of electricity scenarios were designed and fully characterized, aiming to con-

tribute for the evaluation of the impact of RES in the Portuguese electricity system. The obtained scenarios were

also used for the comparison of the developed models allowing to draw conclusion on their usefulness for electricity

planning.

A userfriendly graphical interface for the electricity systems analysis was also proposed, aiming the models dis-

semination and usage among non experienced users.

1.4 Thesis synopsis

This thesis is composed by 7 main chapters briefly described in the following paragraphs. Aside the first and last

chapter, that consists of introduction and conclusion, chapter 2 to 6 consists in a compilation of works/studies that

sought to accomplish with the research objectives previously described. Each one of these five works/studies were

developed as papers and were presented herein in their final format. The status, published/submitted, of each one

is presented in the beginning of corresponding chapter.

Chapter 1 presents a short introduction and motivation of this work. Furthermore, both objectives and also

the methodology followed to accomplish with these objectives are stated in this chapter. Also, a deeper and overall

overview over the tools to support energy decision making and their importance is conducted. A more specific analysis

over the problems of strategic generation expansion planning and short-term management operation of the electricity

system (UC), is presented in more detail. From the literature review, an analysis over the possible impacts of RES in

the electricity system is presented. Finally the characterization of the Portuguese electricity system is also addressed
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over this chapter.

Chapter 2 refers to the paper named “Optimization modelling to support renewables integration in power sys-

tems”. This work contribution is related to the development of an optimization model for the strategic expansion

planning problem. A mixed integer linear problem (MILP) is presented and applied to a hydro-thermal-wind power sys-

tem close to the Portuguese one. This study analyses in particular the impacts, in terms of costs, energy dependency

and emissions released, of large integration of wind power in the electricity system. The study demonstrates also the

importance of considering other solutions that despite not being Pareto cost optimal may present other considerable

advantages to the electricity system under the decision makers perspective.

Chapter 3 corresponds to the second paper, entitled “Short-term electricity planning with increase wind capac-

ity”. The contribution of this study is concerned to the development of a new optimization model for the short-term

management operation of the electricity system. This problem, also known as UC problem, is a binary mixed integer

non-linear optimization problem (MINLP) with hourly time step. Applied to a system close to the Portuguese one,

this work assumes demand forecasts for the year 2020 with increasing levels of installed wind power. The model

allows to analyze the impact that this incresing amount of installed wind power will have in the operation of electricity

system, specifically in the operation of thermal power plants. For this, the technical restrictions of thermal power

plants operation, the hourly and intra-annual variation of the renewable resources and of the demand are included as

parameters and restrictions of the model.

Recognizing the computational complexity of the model proposed in chapter 3, chapter 4 presents the paper

named “A simplified optimization model to short-term electricity planning”. This chapter contributes with a new model

for the short-term management operations of the electricity system. The large number of variables and restrictions,

necessary for a good andmore accurate representation of any electricity system, require high computational resources,

frequently resulting in high computation times. This new model represents then a simplified approach of the model

presented in chapter 3. A non-linear optimization problem instead of a MINLP is therefore presented, contributing

to a significant reduction of the required computational time. This allows to consider and analyse a large variety of

scenarios with the possibility of proceeding further with in-depth analysis of only a few of these scenarios, resorting to

the model presented in chapter 3.

Chapter 5 is refereed to the paper entitled “Generation expansion planning with high share of renewables of

variable output.” The contribution of this paper is related to the development of a model that combines the generation

expansion planning problem with the optimization model for short-term operation of power plants, based on the
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available resources. Combining both models, the typical hourly data associated to the power plants allocation, can

be used on the analysis of generation expansion planning, avoiding by this way the assumption of average operating

conditions. The model application results then on the proposal of a set of long-term scenarios, whose design and

characterization relies on more realistic assumptions recognizing the technical restrictions of thermal power plants,

and the implications of high RES shares. The model application was demonstrated to a system close to the Portuguese

one and a comparative analysis between this model and the one presented in chapter 2 was performed. The results

allows to validate the usefulness of the integrated model.

Chapter 6 represents the last developed study translated in the paper entitled, “A userfriendly tool for electricity

systems analysis”. This paper describes the development of a new userfriendly graphical tool (coined as ESAM) to

support electricity decision making. This tool aggregates all four models presented and described in chapters 2 to 5

and intends to simplify the way that users can use all models previously described. With a graphical interface, this tool

aims to be userfriendly, avoiding the user need to deal or have in-depth knowledge of programming or mathematics.

Developed in Microsoft Visual Studio, ESAM tool is also a freeware tool.

Finally, Chapter 7 summarizes the performed work, presenting the main conclusions and suggesting possible

outlines for future work.

1.5 State of the art

Optimization models have been applied in a several different sectors over the time. Energy sector, and in particular

electricity generation sector, is not different. According to Foley et al. (2010), electricity systems models are tools

used by electricity analysts such as engineers, economists and planners to manage and plan the electricity system, to

trade electricity and for generation expansion planning purposes. Depending of the intended goal, different technics

and concerns can be taken into account, leading to different and complex problems. Along with this, the diversity of

factors affecting electricity generation makes with that becomes essential the use of mathematical models to support

energy decision making. Therefore, next subsections will present an overview over the existent models presented in

literature with special focus on the problems considered during the present work.
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1.5.1 Energy planning models

The diversity of tools, models, within the reach of the decision makers is increasing over the time. Their technics

and consequently their applications vary according to the set of different constraints and considerations. One of

these optimization models considerations, when applied to electricity generation, is its classification according to their

time horizon and their objectives. According to Hobbs (1995), depending of the problem that is intended to analyze,

different horizon times can usually be considered. Typically applied to Generation expansion planning (GEP) problems,

long-term horizon time comprises a time horizon that ranges from 10 to 40 years. These problems are quite associated

with the strategic decision making, considering long–range forecasts and their main goal is to proposed optimal power

generation mixes that can meet the forecasted demand. For the UC and the economic dispatch problem, the horizon

time ranges from 8 hours to one week, and the objective is to obtain a solution that minimizes operating costs given

the load, the technical characteristics of the available generators and the legal requirements applied to operators.

The difficulty addressed to find a specific tool that aggregates all issues related to energy decision making inte-

gration is evident. In fact, there are no tool capable to consider all issues related for example with renewable energy

integration, instead, the “ideal” tool is highly dependent of the objective that is intended to achieve (Connolly et al.,

2010). Connolly et al. (2010) presented in their study a survey review over 37 different energy tools where the per-

ception of the no existence of “ideal” tool is enhanced by the consideration and analysis of different energy-sectors

and technologies, time parameters, tools availability and previous studies.

Depending on the problem to be analysed and on its objectives, there are tools that are more suitable than others

to be used in a given specific problem. For example, MARKAL (ETSAP, 1976) is a mathematical model of the energy

system that “computes energy balances at all levels of an energy system: primary resources, secondary

fuels, final energy, and energy services” (IEA, 2009). It was developed in a cooperative multinational project

by the Energy Technology Systems Analysis Programme (ETSAP) of the International Energy Agency (IEA) that starts

in 1978 and the main objective is to obtain energy services at minimum global costs. MARKAL has been applied in

several works over the time concerning energy investments (Wright et al., 2010; Cosmi et al., 2003), climate change

control focusing on the emissions reduction (Zwaan and Smekens, 2009; Kannan and Strachan, 2009; Chen, 2011),

and transportation (Gul et al., 2009).

In Wright et al. (2010) study, the authors enhanced the necessity of extensive new generating capacity invest-

ment in Cuban power sector. New capacity builds, investment spending requirements, electricity prices, fuel expendi-
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tures, and carbon dioxide emissions for different scenario were assessed considering least-cost investment strategies.

In Cosmi et al. (2003) the authors evidenced the huge capital investment and major infrastructure changes required

to verify the effectiveness of renewable technologies. An application resorting to MARKAL model is used to investigate

the feasibility of renewables on electricity and thermal energy production taking into account legal issues and physical

limits of the system in Southern Italy.

Zwaan and Smekens (2009) focused their study on the efficiency of carbon capture and storage (CCS). A detailed

sensitivity analysis for a case study in Europe was performed using MARKAL model and considering a large set of

CCS technologies and storage options. Also Chen (2011) adressed possible strategies to climate change control.

Using MARKAL model, and under the support of China-UK Near Zero Emissions Coal initiative the author studied the

perspective of the energy technologies that may be deployed in China until 2050. The author also examined the cost

and impact of integrate CCS technology. In Kannan and Strachan (2009) study, a scenario and modeling assessment

of new targets for CO2 reduction was presented for the UK residential sector, resorting to MARKAL tool.

Gul et al. (2009), dealt with the long-term prospects of alternative fuels in global personal transport. The authors

goal was to access key drivers and key bottlenecks of alternative fuels integration with focus on biofuels and hydrogen

to meet climate policy objectives, once more using MARKAL for the analysis.

More recently, TIMES (integrated MARKAL-EFOM System) (ETSAP, 1976) model generator was developed. It

uses long-term energy scenarios to conduct in-depth energy and environmental analysis. Combining two different,

but complementary, systematic approaches to modeling energy, a technical engineering approach and an economic

approach, TIMES is a bottom-up model generator, which uses linear-programming to produce a least-cost energy

system over medium to long-term time horizons (IEA, 2009). TIMES code is written in GAMS (GAMS, 2011). Moreover

and according to Deane et al. (2012); Kannan and Turton (2013), despite usually applied to the analysis of the entire

energy sector, TIMESmodel may also be applied to study in detail single sectors, as is for example the case of electricity

sector. Example of that are the numerous different works presented in literature. For example, Comodi et al. (2012)

and Cosmi et al. (2009), though in different scale, focused their study in the Italian system. In Comodi et al. (2012),

a case study for a seaside municipality was addressed. Different scenarios were considered and TIMES model was

used to assess the effectiveness of local-scale energy policies in households, transport, and, public sectors. Estimated

costs of implementing a number of energy policies were obtained as result. In Cosmi et al. (2009) a new model for

the Italian energy system was presented and its structure reviewed sector by sector. The obtained results were shown

in terms of the primary energy, finally energy consumption, transportation and CO2 emissions.
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Environmental concerns are not new nowadays and TIMES model has been also applied in several works con-

cerning this issue. Example of that are the works of McCollum et al. (2012) and Føyn et al. (2011). In McCollum et al.

(2012) the authors focused their work in the regulation of greenhouse gas (GHG) emissions, addressing the potential

evolution of the transportation, fuel supply, and electric generation sectors, with the results showing that mitigation

strategies include the management of the growth in energy service demand, the increase investments in efficiency

and low-carbon energy supply technologies, and the promotion of demand technologies. In Føyn et al. (2011) the

possibility of a 100% renewable energy system using data of the existing ETSAP2-TIAM global energy system model

was tested, analysing the global and regional energy consumption of the system and the emission of GHG and thereby,

the potential increase in global mean temperature.

Several other works where TIMES model was applied, as is the case of Jia et al. (2011), Kannan and Turton

(2013), and Forsell et al. (2013) can be seen over the literature. Despite the possibility to analyse the energy sector

as a whole, a significant part of these works address one or more specific energy sector. For example in Kannan

and Turton (2013) a long-term electricity dispatch model was presented. Following the same idea, in Forsell et al.

(2013), a model to study the future of biomass in Sweden and France was presented. Using TIMES model, the authors

evaluated the generation potential derived from domestic biomass sources over the forestry supply.

Developed and maintained by the Sustainable Energy Planning Research Group at Aalborg University since 1999,

the EnergyPLAN (1999) model, is used to study the operation of national systems on an hourly basis. EnergyPLAN

operation analysis includes electricity, heating, cooling, industry, and transport sectors. Programmed in Delphi Pascal,

the model has a user-friendly interface and is freeware (EnergyPLAN, 1999; Connolly et al., 2010). EnergyPLAN is also

used to modeling all thermal, renewable storage/conversion, transports and costs. According to Connolly et al. (2010,

pg. 1068), EnergyPLAN “optimises the operation of a given system as opposed to tools which optimise

the investment in the system”. Another particularity of EnergyPLAN model is that it is capable to analyse sudden

changes in energy systems and, in particular, in systems with high intermittency due to RES integration (Mathiesen

et al., 2011). A large number of works have being resorting to EnergyPLAN to analyse 100% RES systems. In Math-

iesen et al. (2011), the analysis and design of a 100% renewable system for Denmark, including transport, by 2050

was presented. Results showed that energy savings, renewable energy integration and more efficient conversion tech-

nologies can lead to the technical possibility of the implementation of a 100% renewable energy system with positive

socio-economic effects. In Connolly et al. (2011), the authors addressed the high dependency of Ireland on fossil fuels

and analysed the possible achievement of a 100% RES system. In Ćosić et al. (2012), EnergyPLAN model was applied
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to Macedonia energy-system and two scenarios, one for 50% renewable energy system by 2030 and other for 100%

renewable system by 2050, were considered. Results showed that first scenario is much more realistic due to the

system characterization, however, with energy efficiency measures, 100% renewable energy system can be achieved.

In Sáfián (2014), EnergyPLAN model was applied to Hungarian energy-system. Two alternative models were created

and validated using Hungarian and international statistics. Models were tested and executed with the perspective to

obtain optimal results from environmental point of view. Finally, EnergyPLAN was also applied for the analysis of RES

scenarios for the Portuguese electricity system, including the case of a 100% RES scenario (Fernandes and Ferreira,

2014).

Despite the large application in 100% RES studies, EnergyPLAN model is also widely used in a large variety of other

studies with different objectives. For example Franco and Salza (2011), focused their study on the electrical sector

in Italy, more properly in the impact of RES penetration. A set of different scenarios were developed, considering in

each one the maximum RES penetration feasible. Results showed that an integrated development of combined heat

and power (CHP) and electric mobility would help in the integration of wind and photovoltaic energy power in the

system. In Mathiesen et al. (2008), the authors proposed the possibility of integrating transport into energy planning.

In Krajačić et al. (2011), the negative impacts of the hydrocarbons in the environment were enhanced addressing in

particular the importance of energy storage. Other studies as is the case of Øtergaard et al. (2010) and Liu et al.

(2013) focused on the importance of renewable on the energy system as a CO2 mitigation measure and fossil fuels

independency strategy. In the first study, the self-sustainability of Aalborg Municipality’s energy needs was proven to be

achievable, resorting to the use of the local available sources in combination with significant energy saving measures,

reductions in industrial fuel use and savings and fuel-substitutions in the transport sector. In Liu et al. (2013) study,

the impact of wind penetration in the system was analysed for China with focus on the ability of electrical vehicles

balancing the electricity demand and supply.

The importance of RES on energy planning and decision making is also well demonstrated with several models

and tools addressing these RES systems and technologies. This the case of WILMAR Planning tool (WILMAR, 2006).

Developed by an international consortium in the EU funded WILMAR project, WILMAR Planning tool is used to analyse

optimal operation power systems assuming wind power production and load as stochastic parameters and supported

on GAMS language. Works such as Troy et al. (2010), Keane et al. (2011), Tuohy et al. (2008), Meibom et al. (2011)

focused on the impacts of increasing levels of wind power on the operation of base load power plants. Also Keane

et al. (2011) and Meibom et al. (2011) addressed in their study the impacts of wind and load uncertainty on the
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operation of the power system. In the first case, a simulation for the Irish power system over one year in both a

stochastic and deterministic mode was considered. In the second one a stochastic mixed integer linear optimization

scheduling model with the objective of costs minimization was presented. In Tuohy et al. (2008), the impact of wind

power in the Irish electricity system was analysed over different time frames, from seconds to daily planning. The

authors conclude that the most important aspects to be considered for the electricity systemmanagement are the wind

turbine technological characteristics, the provision of reserve to accommodate wind forecasting error and the method

used to plan plants schedules. Other studies using WILMAR Planning tool can be seen for example in Nyamdash and

Denny (2013), Sørensen et al. (2008), and Akmal et al. (2009).

Another tool usually presented in numerous works over the literature is the Long range Energy Alternatives Planning

System (LEAP) model. LEAP (Heaps, 2012) is a software tool for energy policy analysis and climate change mitigation

assessment developed at the Stockholm Environment Institute in 1980. It is an integrated modeling tool that can be

used to track energy consumption, production and resource extraction in all sectors of an economy (Connolly et al.,

2010; Heaps, 2012). LEAP model can be considered as a medium to long-term model and most of it analysis uses

annual time step. According to Shabbir and Ahmad (2010), LEAP model has been successfully used in more than

150 countries worldwide for different purposes. In Shabbir and Ahmad (2010) LEAP model was used to propose

the optimal transport policy that can lead to a reduction in the growth of fuel consumption and consequently, air

pollution in Pakistan. Both Wang et al. (2010) and Huang et al. (2011) addressed in their study the need of energy

demand forecasts for sustainable development planning. In the first case, results indicates that in order to achieve

sustainable development, better technological progress, optimized industrial structure and improved energy efficiency

is necessary. In the second case, LEAPmodel was applied to Taiwan energy system and scenarios compared assessing

future energy demand and supply patterns and GHG emissions.

LEAP model has been used also in works such Jun et al. (2010) and Haydt et al. (2011). While in Jun et al.

(2010) the aim of the work was to study the economic and environmental influence of RES on existing electricity

generation market, in Haydt et al. (2011) different modeling methodologies (LEAP, TIMES, EnergyPLAN) for balancing

the electricity supply sources and the electricity demand in systems with high penetration of intermittent renewable

were analysed.

Along with the tools described above, several others can be found in literature with studies demonstrating their

application and usefulness. Such is the case of PLEXOS (1999), PRIMES (1994), IKARUS (2009) or MESSAGE (IIASA,

1980) among others. PLEXOS is a power systems modeling tool used for electricity market modeling and plan-
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ning worldwide (Deane et al., 2012). PLEXOS is a software that uses cutting-edge mathematical programming and

stochastic optimization techniques and can be applied to a set of different problems such as production cost simu-

lation, capacity expansion planning, renewable generation integration analysis, operational planning with stochastic

optimization (PLEXOS, 1999). Usually PLEXOS resorts to linear or mixed integer linear programming. Some studies

that use PLEXOS software include Curtis et al. (2013), (Deane et al., 2012), Higgins et al. (2014) , Tuohy et al. (2007)

and Deane et al. (2014).

IKARUS is a dynamic bottom-up linear costs optimization scenario tool maintained by the institute of Energy Re-

search at Jülich Research center (Connolly et al., 2010). According Connolly et al. (2010), IKARUS considers all sectors

of the energy system, including a large set of generation, storage/conversion and transport technologies. IKARUS has

been successful used for assessing the impacts of energy prices changes on energy system and emissions (Martinsen

et al., 2007) , political decision processes (Martinsen and Krey, 2008), RES applied to the transportation sector (Mar-

tinsen et al., 2010) and energy systems analysis (Weber and Martinsen, 2013).

Started in 1993, PRIMES model was developed by National Technical University of Athens with the first objective

of analysing and studying the market related mechanisms that can influence energy demand and supply and the

context for technology penetration in the market (Capros; Connolly et al., 2010). Also used for energy policy markets

analysis, PRIMES model was later used for market oriented modeling with the objective of following market liberal-

ization. According Capros et al. (1999), PRIMES model can be used for simulation of the energy systems and their

agents. Nowadays in its second version PRIMES model is a non-linear mixed complementarity model, translated in

GAMS language.

Developed by International Institute for Applied Systems Analysis (IIASA), MESSAGE is a system engineering opti-

mization tool used for planning medium to long-term energy systems. MESSAGE has been applied for the development

of energy scenarios and identification of socioeconomic and technological strategies in response to the energy chal-

lenges analysis (Connolly et al., 2010; IIASA, 1980). Using 5 or 10 years time step with a maximum horizon time of

120 years, MESSAGE model can simulate a large set of thermal generation, renewables, storage/conversion, trans-

port technology, CCS and costs (Connolly et al., 2010). Besides being used in several assessments and scenarios

studies for major international entities such as Panel of Climate Change (IPCC), the World Energy Council (WEC),

and the European Commission, MESSAGE model has been successful used in works such as Messner et al. (1996)

and Keppo and Strubegger (2010) or more recently in Lucena et al. (2015).
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1.5.2 Generation expansion planning

The problem of generation expansion planning (GEP) is extensively addressed over the literature. GEP problem aims

to find the optimal strategy to plan the construction of new generation plants while satisfying technical and economical

constraints (Careri et al., 2011). In line with this, Gitizadeh et al. (2013) details the GEP objectives as finding the

technology type, number of generation power plants, size, and location of candidate plants within the planning horizon.

On the other hand, Sirikum et al. (2007) refers to GEP has a large-scale mixed integer nonlinear programming (MINLP)

problem and one of the most complex optimization problems. Also Karthikeyan et al. (2013) supports that GEP is one

of the most important decision-making activities in electricity generation sector that intends to determine the minimum

cost capacity addition plan that meets forecasted demand within a pre-specified planning horizon. In all the cases,

the main objective of GEP problem is design electricity strategies that minimize the total investment, operating, and

maintenance costs at the end of the planning horizon, subject to a large set of constraints. In fact, since earlier, the

difficulty of decisionmakers to assess the best mix of power plants to generate electricity lead to constant improvements

of technics to deal with this problem. Nowadays, associated to the nonlinearity, large scale, and to the discrete nature

of the variables describing power plants size and allocation, these new improvements frequently aim to deal with the

increasing penetration of RES into the grid, the increasing environmental concerns and the emergence of deregulated

markets (Careri et al., 2011).

However, depending of the case study and where the problem is to be applied, the objective may change. This

can be for example related to the liberalization of electricity markets. While in the traditional power systems the main

objective is costs minimization, from the generation companies point of view, the main objective becomesmaximization

of profits. According Hemmati et al. (2013) and Pereira and Saraiva (2011), in the deregulated electricity market, each

generation company tries to maximize its profit, satisfying the independent system operator criteria such as reliability,

reserve margin and load growth.

For the GEP objectives, important differences exists on the techniques used to solve each problem. Techniques

like linear programming (AlKhal et al., 2006), Bender’s decomposition (Sirikum et al., 2007; Careri et al., 2011;

Kazempour and Conejo, 2012), dynamic programming (Karaki et al., 2002; Jirutitijaroen and Singh, 2006), genetic

algorithms (Pereira and Saraiva, 2010, 2011; Chung et al., 2004; Sirikum and Techanitisawad, 2006), mixed integer

linear programming (MILP) (Zhou et al., 2011; Bakirtzis et al., 2012; Tekiner et al., 2010), multiple objective program-

ming (Antunes et al., 2004; Tekiner-Mogulkoc et al., 2012; Aghaei et al., 2013a; Unsihuay-Vila et al., 2011; Gitizadeh
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et al., 2013), particle swarm optimization (Hassan et al., 2012; Kannan et al., 2004; Zhang et al., 2013; Moghddas-

Tafreshi et al., 2011; Hemmati et al., 2013), stochastic/scenario based programming (Chang, 2014; Wogrin et al.,

2011; Druenne et al., 2011; Feng and Ryan, 2013) and systems dynamics programming (Pereira and Saraiva, 2013)

are widely used in the literature. For example in AlKhal et al. (2006), a mathematical linear programming model was

formulated. The model was tested to evaluate the potential economic benefits for an integrated planning for several

Middle East countries.

According to Kazempour and Conejo (2012), Benders’ decomposition is an effective technic to use in high con-

strained problems and in problems that include a large number of variables. This technique resorts to the problem

decomposition, which results in a problem that is easier to solve than the original one. In their study, the authors

resorted to Benders’ decomposition technic to solve a GEP problem for a specific target year. The author enhanced

the good performance of the respective technic over diverse realistic case studies simulations. In Sirikum et al. (2007),

a methodology called GA-based heuristic method was proposed and presented for the GEP. This technic was used to

evaluate minimum investment costs in new thermal power plants taking into account restrictions on emissions, power

capacity, loss of load probability, and location of the plants.

Other technic widely used in literature is the MINLP. In Bakirtzis et al. (2012) this technic was applied to a GEP

problem with the objective of minimizing total investment, operating and unserved energy costs considering a specific

planning horizon. Considering monthly time-step the authors performed a sensitivity analysis for Greek power system

analysing the effect of demand, fuel prices andCO2 prices uncertainties on the planning decisions. For the analysis,

cost of purchasing emission allowances as well as inclusion of annual renewable quota constraints and penalties were

taken into account in the model.

According to Antunes et al. (2004), as GEP involves multiple, conflicting and incommensurate objectives, instead

of aggregating them in a single objective function, multiple objective functions can be used. This increase significantly

the realism of these models. Furthermore, the use of multiple objective problems will allow to understand the trade-

offs among the different objectives and to achieve compromise solutions. In Aghaei et al. (2013a) the authors have

presented a Multi-period Multi-objective GEP model, considering three objectives, namely, costs, environmental, and

reliability maximization. Pareto optimal solutions were therefore identified and used for the analysis of the tradeoff

between objectives. In Zhang et al. (2013), a bi-level GEP problem considering large-scale wind generation was

presented. The results were obtained by solving a multi-objective particle swarm algorithm. According the authors this

technic allows to accelerate the convergence of optimal solution and guarantee the diversity of Pareto-optimal front.
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Allied to the high complexity of GEP problems, the uncertainty of the respective parameters brings additional

challenges. RES generation, load demand, market prices are some of the parameters addressed in GEP problems that

due to its uncertainty increase significantly the complexity of the problems. To deal with this, stochastic/scenario based

programming technics are used. For example in Chang (2014), a scenario based programming technic was applied to

deal with the uncertainty of power supply system. A mixed integer programming (MIP) model was considered, aiming

to identity the allocations of thermal, renewable, and nuclear power plants, along with the transmission network taking

into account the uncertain factors of the power system. The authors applied their study to Taiwan power system, using

CPLEX solver to achieve the results.

According to Pereira and Saraiva (2013, pg. 42),“systemdynamics is amodeling tool particularly suited

to represent long-term problems that involve a large number of variables and parameters as well as

loops and inter dependencies”. In this study the authors described a long-term GEP model able to evaluate

the evolution of the demand and of the electricity price so generation companies agents can perform their expansion

plans. The study was applied to the Portuguese/Spanish system aiming to identifying the most adequate expansion

plans, considering increasing RES generation.

1.5.3 Short-term scheduling of generation power plants

Along with GEP problem, short-term scheduling of generation power plants is also frequently addressed in the electricity

planning literature. Once more, this becomes evident due to the change of electricity paradigm where only economic

concerns were taken into consideration and due to the emergence of deregulated markets. Also known as UC problem,

short-term scheduling of generation power plants is defined as a decision making problem where the objective is to

determine the hourly ON/OFF schedule and generation level (dispatch) of each generating power plant over a given

time horizon, meeting the predicted load demand, plus the spinning reserve requirement at a specific time interval,

and minimizing the total cost of production (Senjyu et al., 2003; Patra et al., 2009; Qin et al., 2010). With a time

interval ranging between one day to one week (24-168h), besides the necessity of meet demand and spinning reserve,

UC problem needs to have into account a set of generation constraints and also minimum up-time and down-time of

power plants, which increase significantly the complexity of the problem (Kumar and Mohan, 2010; Dhanalakshmi

et al., 2013).

UC plays an important role in the economic operation of the entire power system, either from the point of view of
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the generation companies or of the systemmanager. Thereby, a diversity of studies addressing this problem have been

developed over the time, and several different technics have been applied to obtain the respective results. Optimization

technics such as, Bender’s decomposition (Zhao and Zeng, 2012; Bertsimas et al., 2013; Wang et al., 2013a),

differential evolution (Mandal and Chakraborty, 2009; Lu et al., 2010; Qin et al., 2010), evolutionary algorithms (Jeong

et al., 2009; Georgopoulou and Giannakoglou, 2009), genetic algorithms (Chiang, 2007; Kumar and Mohan, 2010;

Dhanalakshmi et al., 2013), Lagrangian Relaxation (Frangioni et al., 2008, 2011), MILP optimization (Carrión and

Arroyo, 2006; Wu, 2011; Xie et al., 2011; Viana and Pedroso, 2013), particle swarm optimization (Yuan et al., 2009;

Wang and Singh, 2009; Park et al., 2010; Jeong et al., 2010), simulated annealing (Patra et al., 2009; Saraiva et al.,

2011) and stochastic optimization (Siahkali and Vakilian, 2010; Ding et al., 2010; Wang et al., 2013b) are example

of technics associated to UC problem described in the literature.

Bertsimas et al. (2013) shown in their work the difficult task of dealing with the UC problem due to the emergence

of new challenges like supply and demand uncertainty, increase integration of technologies of variable output and

market prices. In Mandal and Chakraborty (2009), both economic and environmental concerns were considered for

the problem of short-term scheduling, resulting in a multi-objective problem. To solve the problem a algorithm based

on differential evolution was used and a price penalty factor was considered, transforming the problem into a single

objective one. The model was applied to a case study considering a cascade of four hydropower plants and three

thermal power plants. Also Georgopoulou and Giannakoglou (2009) presented in their work a multi-objective short-

term scheduling problem with stochastic demand data. However, in this particular case, a evolutionary algorithm

method was considered. Along with costs minimization, the risk of not fulfilling possible demand variations was also

to be minimized. With the objective of reduce the complexity of the problem, a two-level optimization algorithm was

used and results were compared with previous results obtained with traditional evolutionary algorithms.

Proven to be successfully used in other problem, in Dhanalakshmi et al. (2013), a genetic algorithm was used to

solve a generation scheduling problem. A specific method to deal with the minimum up/down time constraints was

considered. Tests were conducted over one day time horizon with ten and twenty six power plants system. Results

were compared with other well known technics.

Highly constrained, short-term scheduling problems are considered large-scale problems. Furthermore, most of

the constraints associated to this problem are nonlinear which, along with the need to define the on/off status of a

specific generation power plants, turns the scheduling problem in a hard to solve MINLP. One way to simplify this

problem is through the use of piecewise linear approximations, transforming the MINLP into a MILP. This simplification
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is usual in literature. For example in Viana and Pedroso (2013), a quadratic programming formulation of a scheduling

problem was proposed. To solve this problem, a simplification was conducted and a new optimization algorithm based

on MILP was presented. For that, the authors resorted to a piecewise linear approximation of the quadratic fuel cost

curve, which allowed to achieve quicker results. This new algorithm also allowed to tackle ramp constraints, neglected

in some previous studies, with results demonstrating both the simplicity and effectiveness of this algorithm. According

to Frangioni et al. (2008), other successful approach to solve scheduling problems is the use of lagrangian relaxation

algorithm since constraints such as minimum up- and down-time and startup costs can be efficiently solved using

dynamic programming techniques. However, in Frangioni et al. (2011), the authors called attention to the difficulties

of previous algorithms to solve schedule problems considering ramp constraints. In their work, the authors proposed

a method that combines lagrangian relaxation and MILP.

According to Saraiva et al. (2011, pg. 1283), simulated annealing “is a very appealingmetaheuristic easily

implemented and providing good results in numerous optimization problems”. In their work, a case study

for generator maintenance schedule, based on a generation system comprising twenty nine generation groups, was

considered. The objective was to minimize the operational cost along the scheduling period and assuming penalty on

energy not supplied. Other different technics were used by Yuan et al. (2009) and Siahkali and Vakilian (2010) to solve

the proposed short-term schedule problem. While in the first case an improved binary particle swarm method was

applied with the objective of comply with the spinning reserve requirements and minimum up/down time constraints,

in the second case, a stochastic model was used to deal with the impacts that demand and wind uncertainty may

inflict on the schedule of power system.

The inclusion of RES in UC problems has been addressed by several authors. Such is the case of works on hydro-

thermal (Chiang, 2007; Mandal and Chakraborty, 2009; Qin et al., 2010) and wind-thermal (Chen, 2008; Khorsand

et al., 2011; Azizipanah-Abarghooee et al., 2012; Aghaei et al., 2013b) generation. For example in Qin et al. (2010),

a multi-objective optimization model, using differential evolution, was presented to solve the optimal hydro-thermal

scheduling problem. On the same way, both economic and emissions objectives were considered in Chiang (2007)

on an improved genetic algorithm for multi-objective short-term scheduling of a hydro-thermal system.

As for wind power integration, Azizipanah-Abarghooee et al. (2012) proposed a multiple objective economic emis-

sion dispatch problem aiming to minimize wind-thermal electrical energy cost and emissions. A stochastic search

algorithm was used to handle system uncertainties. Khorsand et al. (2011), stressed the importance of consider-

ing the emissions objective even in high wind power scenarios, as wind power variability can lead to changes on
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thermal power generation scheduling which can influence the environment performance of the system. Therefore, a

multi-objective mathematical programming model was proposed to solve the wind-thermal scheduling problem.

The issue of RES integration in the electricity systems and its impacts will be addressed in the following sub-chapter

of this thesis, reviewing some of the studies on this topic.

1.6 RES integration in the power system

Electricity planning and decision making today are more complex than were in the past. The greater uncertainty in

load growth, fuel markets, technological developments, government regulation and the increasing reliance on RES,

are the main contributors of this increasing complexity. Environmental issues and global warming in particular are

on the top of the society and most of government countries concerns, which have resulted in the agreement of Kyoto

protocol (Gitizadeh et al., 2013). RES and in particular wind power, are seen as key technologies to achieve these

agreement and therefore, to reach a sustainable power generation system (Goransson and Johnsson, 2009). Following

this, and according to Albadi and El-Saadany (2010) there are three main reasons for the wind power increase. The

first one is the society concerns with emissions, climate change and other environmental issues. The second is related

with fossil fuel reserves depletion and the last one is the wind turbine technology improvement.

However, besides the environmental aspects, other positive aspects can be related to the integration of RES. These

positive aspects include the contribution to the security of energy supply by promoting technological diversification and

reducing energy imports, reduction on the operational costs of the power system by reducing fossil fuel consumption

and avoiding the construction of new transmission lines and large generating plants, resulting in costs effective way

to improve power quality and reliability (Lopes et al., 2007; Holttinen, 2008; Kaldellis and Zafirakis, 2011).

Despite all benefits, wind power growth introduces also some challenges to the power system operation. These

challenges become more relevant as wind power share increases and depend on the flexibility level of the electricity

system (Ackermann, 2005; Albadi and El-Saadany, 2010). According to Ackermann (2005), these impacts can be

divided into short-term, related to balancing the system at the operation time scale, and long-term, related to the need

to providing enough power during peak load moments. Thus, short-term impacts relate to voltage management, pro-

duction efficiency of thermal or hydropower plants, transmission and distribution efficiency, reserve requirements and

discarded energy. On the other hand, long-term impacts relate to the system reliability, with wind power contributing

to system capacity increase but not necessarily contributing in the same amount to meet the peak demand.
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Wind power impacts referred above are well identified in literature. Different study considering these impacts are

addressed in a variety of ways including demand response (Jonghe et al., 2012), emissions (Denny and O’Malley,

2006; Delarue et al., 2009), transmission (Strbac et al., 2007), reserve requirements (Holttinen, 2005; Morales et al.,

2009), UC (Ummels et al., 2007; Goransson and Johnsson, 2009; Tuohy et al., 2009) and voltage control (Lopes

et al., 2007; Chen and Blaabjerg, 2009).

According to Jonghe et al. (2012), demand response is the ability of load to respond to short-term variations in

electricity prices, especially during peak periods and fluctuations due to RES variability. In this work, a cost minimiza-

tion model using linear programming and considering demand response was presented. The authors concluded that

including demand response will smooth system peak load periods, reducing the need to invest in peak generation

capacity. Demand response will also increase system flexibility, facilitating integration of variable wind power.

Wind power technology is known as having very low operational costs and priority access to the grid is frequently

assumed on planning models, either due to its low costs or to RES support regulation. Besides that, wind power

production and therefore its contribution to the mitigation of environmental concerns is recognized in different studies.

In Delarue et al. (2009) a mixed integer linear programming tool that models wind power and its unpredictability was

proposed to access the impacts of wind power in the system costs and emissions released. Zhu et al. (2014) presented

an economic emission dispatch model to evaluate the importance of wind power on emissions mitigation and fossil

fuel dependency. A bi-objective optimization problem was proposed minimizing both costs and emission released.

In Brouwer et al. (2014), the impacts of RES in the electricity system were described. The authors concluded that

with the increasing share of RES, thermal power plants will experience higher number of startups and shutdowns,

ramp moments, and periods of time working at low efficiency leading to the increase of fuel consumption and CO2

emissions released.

Another concern related to wind power integration has to due with the reserve requirements. Electricity generation

must meet the demand at each time interval of the horizon time. However, along with the wind power, demand is also

highly uncertain which turns difficult to determine the amount of reserve needed to face the variability of both wind

power and demand. Thus, it is not too much to say that back up reserves are largely affected by load variations and

by the dispersion of wind power (Albadi and El-Saadany, 2010). For example in Morales et al. (2009), a methodology

to determine the required level of spinning and nonspinning reserves in a power system with a high penetration of

wind power was proposed. Despite the expected operational costs decrease due to wind power output, the authors

concluded that wind power uncertainty has a significant impact on the reserve cost, on the scheduled reserves and on
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generation/demand scheduling. In Wu et al. (2015), the authors proposed a model to evaluate the impacts of wind

power, highly subjected to forecast errors, on the optimal reserve levels for the Chinese electricity system. Tests were

conducted and the usefulness of the model evidenced. In Fernandez-Bernal et al. (2014) the authors evaluated the

maximum share of wind power in system without affecting the reserve levels. A case study applied to the Spanish

electricity system was presented with results showing the possibility of reaching a high share of wind power without

consequences to the reserve levels.

Generation efficiency is highly dependent on wind variability as it affects the commitment of traditional power

plants. This wind variability frequently originates increasing number of startups, ramping and periods of operation at

low load levels, leading to suboptimal operating conditions of the conventional power plants. Therefore, in order to

deal with this uncertainty, the use of accurate wind forecast technics is essential, reducing the risk associated to the

wind uncertainty (Ackermann, 2005; Barth et al., 2006; Kiviluoma et al., 2011). For example in Tuohy et al. (2009),

the impact of wind uncertainty in the unit commitment was assessed. Results showed that peak load technologies

along with the interconnections are the most affected elements of the system. Furthermore, more up to date wind

and load forecasts will result in the reduction of reserve needs.

Additionally, large wind power integration, usually achieved through large wind power plants located far from the

load centers, can originate impacts on transmission, distribution and even on the wind turbine generator manufacture

level can occur (Kabouris and Kanellos, 2010). As a matter of fact, according to Quezada et al. (2006) wind power

can increase or decrease network losses depending on the wind penetration level, on the balancing between wind

production and load profile and on the location of wind power generation. It is also evident that depending on the

wind location generation and of the wind penetration level, congestions on the transmission can occur. Consequently

investments in transmission may be necessary increasing the final electricity system costs (Albadi and El-Saadany,

2010). For example in Strbac et al. (2007) a study considering different levels of wind power generation was conducted

for the UK electricity system. In this study, the authors considered the costs of wind generation, the costs of balancing

the system, and the network connection and reinforcement costs. In what concerns to the possible benefits, fuel

and conventional generation capacity and operation costs reduction were mentioned. An analysis between the costs

and benefits of wind generation was than conducted. Results showed that an increase of wind power generation of

20% could result in an increase of electricity price around 5%, which the authors considered relatively small. Another

conclusion is that, if significant wind power installed capacity is added to the system, significant cost increase is

expected to occur in the system.
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Lastly, another common and significative impact associated to the increase wind power penetration is the voltage

variability. Voltage control in the transmission system is obtaining by controlling the reactive power. Since wind turbines

affects the power flow of the grids (absorbing reactive power), and voltage are highly related with power flows, changes

on voltage usually occurs. This voltage variability is also related with the wind power generation variability (Ackermann,

2005; Albadi and El-Saadany, 2010). Nowadays, new wind turbines started to emerge with technology capable to

control the voltage and so, along with other known voltage control equipments, the mitigation of the voltage rise in the

transmission is already ensured. A more detailed and technical approach the voltage rise effect can be seen in Lopes

et al. (2007) and Chen and Blaabjerg (2009).

1.7 Portuguese electricity sector

Environmental problems have been highlighted over the recent years. This is evident in a world where societies are

more and more concerned with their welfare. Even governments have been committed in both costs reduction and

in fighting climate change, as was proven with the Kyoto protocol. This search for environmentally friendly solutions

has been one of the key drivers for RES development all across the globe. In the past, the higher costs associated to

the RES technologies were seen as an obstacle to its implementation, however, technology development allied with

the energy policies supporting RES integration, gave rise to significant investments in the RES sector. Wind power

generation has been presenting for long a highlighted role in the mitigation of the environmental problems. Indeed,

world wind power installation has been increasing over the years. In the first half of 2014, wind grew 5.5%, more 0.5%

than the same period of 2013. This corresponds to a total installed wind power of around 336 GW (WWEA, 2014).

Figure 1.2 shows the world wind power evolution since 2012. Portugal is not different and the same pattern is noted

in what concerns to wind power evolution. In fact, and according to ENEOP (2015), even occupying the 11º position in

world wind power installed capacity, Portugal has the second higher level of wind power share, just behind Denmark.

The Portuguese electricity sector, presented in 2014 a total installed power equal to 17824 MW divided in two

different regimes, the ordinary regime production (ORP) and the special regime production (SRP). While the ordinary

regime includes the generation of the conventional thermal power plants plus the generation of large hydropower

plants, SRP includes generation of all renewable power plants (excluding large hydro) plus cogeneration. The thermal

power system is divided into coal and combined cycle gas turbines (CCGT) plants. In the end of 2014 coal power plants

represented a total installed power of 1756 MW while CCGT plants have 3829 MW, resulting on a total capacity of
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Figure 1.2: World wind power (Own elaboration (WWEA, 2014), February 2015)

5585 MW. On the other hand, large hydropower plants are divided into large hydropower plants with reservoir (dams)

and run–of–river power plants. In the end of 2014 dams installed power reached 2681 MW while run-of-river plants

reached 2588 MW, resulting on a 5269 MW of total installed large hydropower. In what concerns to the SRP, wind

power is by far the dominant technology, with 4511 MW of installed capacity in 2014. This represented about 64%

of total special regime installed capacity. The remain installed capacity is divided between biomass and cogeneration

(1660 MW), small hydro (415 MW), and photovoltaic (383 MW) plants, resulting on a total installed power of 6969

MW (REN, 2014).

Figure 1.3 demonstrates the importance of wind power in the Portuguese electricity sector. Wind power is the

technology with the higher installed power. Despite all challenges that this high wind power share may bring to the

system, it also contributes to the increase diversity of the technologies mix and therefore, to the security of supply. In

fact, the total electricity consumption in 2014 in Portugal was 48817 GWh (REN, 2014). ORP contributed with 27135

GWh, of which 14664 GWh from hydropower and 12471 GWh from thermal power plants. On the other hand, SRP

regime have contributed with 21858 GWh, of which 11813 from wind power. This allows to verify the importance

of renewable energies in the system, showing that just large hydro and wind power have contributed to 52% of all

electricity generation. In Figure 1.4 is possible to analyse separately the contribution of different technologies to the

24



 

 

 

10% 

21% 

15% 

15% 

25% 

14% 

Coal

CCGT

Dams

Run-of-River

Wind

Other SRP

Figure 1.3: Installed capacity of Portuguese electricity sector (Own elaboration (REN, 2014), February 2015)

electricity generation. 
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Figure 1.4: Electricity consumption in 2014 (Own elaboration (REN, 2014))

Despite not having the higher installed capacity when compared with the other countries (Figure 1.2), analysing

both figures 1.3 and 1.4, is possible to confirm the relevant position of Portugal in what concerns to the wind share in

the electricity system. This results from the Portuguese effort to reduce its high energy dependency, as the country is

a major importer of fossil fuels, and to also achieve the environmental target assumed for GHG emissions. Directive
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2009/28/EC for the promotion of the use of energy from renewable sources defined for Portugal a target of 31%

share of energy from renewable sources in gross final consumption up to 2020. To achieve this target, investments

in renewable technologies, mostly wind power were evident during the last years, as demonstrated in Figure 1.5.

However, higher shares of technologies of variable output, despite all benefits, create challenges to the system op-

erator as demonstrated in previous sections of this chapter. The Portuguese electricity system, comprising a large set

of RES and non-RES technologies, represents then an interesting case study worth to be considered for the evaluation

of the impacts of RES integration and also for testing optimization tools for electricity planning.
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Chapter 2

Optimization modelling to support renewables

integration in power systems

Paper submitted for publishing in international journal in February 2015 as Sérgio Pereira, Paula Ferreira, and A.I.F.

Vaz. Optimization modelling to support renewables integration in power systems.

ABSTRACT

This paper focus on the problem of generation expansion planning and on the integration of increasing share of

renewable energy sources (RES) technologies in the power grid. A survey of papers addressing the use of optimization

models for electricity generation planning is presented. This literature review fed the design of an electricity power

plan model able to integrate thermal and RES power plants. An analysis of different electricity scenarios for a mixed

hydro-thermal-wind power system is presented resourcing to the proposed mixed integer optimization model. The

results show the importance of these tools to support the strategic energy policy decision making under different

regulatory or political scenarios. The expected impacts in terms of costs and CO2 emissions are evaluated for a 10

years planning period, and a set of optimal scenarios is analyzed. The use of the model to obtain and characterize

close to optimal scenarios is shown to be strategically useful. The particular case of the impact of different wind power

scenarios is addressed, demonstrating the relevance of presenting other possible strategies that, although not being

original Pareto solutions, may be worth to consider from the decision makers perspective.
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2.1 Introduction

The decision making process for electricity power generation has been going through deep changes across time.

Several aspects previously not considered as important, are nowadays getting an increasing attention from the de-

cision makers. Therefore, tools that allow(s) to better support the increasingly difficult decision makers’ task, play

a fundamental role, particularly in addressing complex problems of electricity generation expansion planning. It is

now commonly accepted that the underlying principles of the sustainable development concept must be recognized

and included on power generation decisions, allowing to achieve satisfactory solutions from the cost, environmental,

and social points of view. However, achieving these solutions is not an easy task, and the integrated resource plan-

ning should seek to identify the mix of resources that best meets the future energy needs of consumers, economy,

environment, and society. Optimization models are proved to be helpful tools that can be used to provide better

information, and thus, contributing to turn more accurate the decision maker policy. Several studies about energy

planning models, where economic and environmental objectives are the predominant focus, are already available. A

comprehensive review of energy modeling problems, addressing, among others, the energy planning models and the

use of optimization tools, may be found in Jebaraj and Iniyan (2006) or Foley et al. (2010).

This paper contribution is threefold. Firstly, a revision on the long-term generation expansion planning is presented.

The aim of this review is to provide an insight into the models used and their contribution to support energy decision

making. Secondly, a contribution to the electricity planning field is aimed by presenting an useful tool for strategic

energy decision makers specially designed to the particular case of mixed hydro-thermal-wind power systems. The

proposed model allows to take into account the seasonality of the hydro and wind regimes. Run of river, hydro storage,

and pumping units are included aiming to tackle the problem of wind power variability. The optimization model entails

the formulation of economic and environmental objective functions, subject to a set of constrains translating the legal,

technical and demand requirements of the system. Thirdly the model is used to present possible optimal electricity

scenarios in the future for these systems, establishing investment and generation plans and evaluating the cost,

emissions and external dependency impact. The results are enriched with an analysis of alternative power solutions,

that are not located in the Pareto front but may be considered “close to optimal solutions”. This last step is particularly
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useful to assist decision making regarding the future of wind power.

This paper is organized as follows. Section 2.2 provides some recent and representative examples from the

literature, addressing the usage of optimization models for electricity power planning and the analysis of renewable

energy sources (RES) integration in power planning modeling. Section 2.3 describes the proposed model formulation

and in Section 2.4 a realistic case study is presented, and the results are analyzed. Finally, conclusions are stated in

Section 2.5. The paper includes also an appendix detailing the obtained results.

2.2 Generation expansion planning

Until the 1970’s the electricity planning problem consisted basically in determining the best size, timing, and type

of the power stations, getting into account the electricity demand (Hobbs, 1995). Nowadays the electricity planning

is becoming more complex, with the growing share of renewable energy sources (RES), some of them with variable

output contributing to this increasing complexity. Great investments and costs are committed on the construction of

new power stations, on their operation and maintenance, and on the operation and maintenance of the existing ones.

Using optimization models may be seen as a huge advantage in the minimization of inherent costs, leading to a more

efficient electricity system. Naturally, electric utilities become one of the earliest users of optimization methods applied

to optimization electricity planning models (Hobbs, 1995).

Long-term horizon planning frequently addresses the generation expansion planning problem and envisages sup-

porting strategic decision making. In fact, the generation expansion planning is highly addressed in the literature,

with the main concern of finding the least cost expansion plan, according to the characteristics of each electricity sys-

tem (Tekiner et al., 2009). However nowadays, CO2 emission control and reduction is assuming an increasing role

in energy decisions and support policies. Figueira et al. (2005) recognized the importance of energy decisions based

on the economic dimension, but, according to the authors, power planning optimization requires usually not only the

total expansion cost minimization, but also environmental impacts minimization. Also, Cai et al. (2009) underlined the

importance of the environmental aspects latent on the electricity decision making, along with other concerns such as

fossil fuel increasing prices, reliability, and security of supply, for long seen as ongoing challenges faced by decision

makers around the entire world.
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2.2.1 Optimization models for power planning

According to Hobbs (1995), optimization models are usually used to resource and equipment planning, with a time

range between ten to forty years. The objective of these optimization models is to obtain the least cost mix generator

addictions and decommissioning, taking into account electricity demand forecasts, investment costs and fuel prices.

Optimization models for generation expansion planning are therefore seen as useful and powerful tools to many

decision makers. The complexity of the optimization model results from the diversity of technologies available to

systems expansion, the temporal and/or spatial evolution of parameters included in the model, and the environmental

and social arguments that need to be integrated (Li et al., 2010). Generation expansion planning allows to identify the

most adequate technology and expansion size, taking into account economic criteria, and ensuring at the same time

that the installed capacity follows the expected demand growth (Pereira and Saraiva, 2010). In line with this, Meza

et al. (2009) support that the generation expansion planning aims to determine the best solution for future generation

utilities, recognizing that wrong decisions will result in a loss of a large amount of money. To meet the increasing

demand, new generation utilities will be needed. This requires large investment and operating costs, and the generation

expansion planning models aim to minimize the social costs of electricity, including environmental and financial costs.

Different approaches to solve the problem of the generation expansion planning can be seen over the literature.

Associated to these different approaches are different techniques that encompasses multi-objective algorithms, ben-

der’s decomposition algorithms, stochastic programming, mixed integer programming (MIP), dynamic programming,

genetic algorithms, linear programming and particle swarm optimization.

In a previous study, Linares and Romero (2000), proposed and applied an electricity power planning model for

Spain including already multiple economic and environmental objectives. Although a large set of general optimization

models have been proposed to tackle the generation expansion problem, it is evident that eachmodel has to be adapted

to the particular characteristics of the system under analysis taking into account technical, geographical, political,

legal, and environmental restrictions. This led authors to develop and apply particular models that easily describe the

underlying problem and conduct the intended simulations. See, for example, Meza et al. (2009), presenting a single-

period multi-objective mixed-integer nonlinear generation expansion planning designed for the case of the Mexican

power system or Tekiner et al. (2010) describing also a multi-objective generation expansion planning over a multi-

period planning horizon of 15 year. Other studies considering multi-objective programming can be seen in Celli et al.

(2005) and Heinrich et al. (2007). A bi-level generalized Benders’ decomposition model to solve generation expansion
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planning is presented in Bloom et al. (1984). In their work, authors calculate production costs and system reliability

in the problem second-level, and then results are applied in the first level, master problem, to calculate power units

expansion plan. Also Rebennack (2014) applied a bender’s decomposition algorithm for the Panama’s power system.

Investment decisions are calculated in the master problem while the second level deals with the emissions and power

units schedule problems.

Along with the demand, both wind and hydro uncertainty turns the task of generation expansion planning model

increasingly harder. Stochastic programming (SP) despite the complexity that brings to the models is frequently used to

deal with this problem (Manabe et al., 2014). For example Askari et al. (2013) addressed in their work the problem of

demand uncertainty for the electricity sector investment problem resorting to SP in an optimization model. Also Pantoš

(2013) presented a stochastic generation expansion planning for the electricity power system and natural gas system.

In AlRashidi and EL-Naggar (2010), particle swarm optimization was used for peak load demand forecast. Applied to

Kuwait and Egyptian networks, peak load forecast will allow to minimize the error associated with the estimated model

parameters and therefore a more reliable generation expansion plan can be obtained.

Moghddas-Tafreshi et al. (2011) addressed in their work the complexity of generation expansion planning in com-

petitive environments. In their study, a particle swarm optimization method was also used to find the best investment

solution for each generation company. In the same way Pereira and Saraiva (2011) also enhanced the difficulties

of generation expansion planning in a competitive environment. However in this case a genetic algorithm was used.

An improved genetic algorithm was also developed and used in Park et al. (2000) to solve a least costs generation

expansion planning for a fourteen and twenty four year time horizon.

Other techniques have been used by other authors to solve the generation expansion planning. For exam-

ple, Yildirim et al. (2006) presented a simulated annealing genetic algorithm for a least cost optimization problem.

A case study with seven types of generating units and a 20 years planning horizon was considered and applied to

Turkey’s power system. Similar studies using simulated annealing were previously used in Zhu and Chow (1997)

and Wu et al. (2004).

The objective of this chapter was not to present an exhaustive revision of the literature, but rather showing the

importance of optimization models for electricity generation planning and the diversity of approaches used by different

authors to deal with such complex problem. Next section, aims to demonstrate how these models are frequently used

also to deal with the analysis of RES integration in the power systems.
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2.2.2 RES integration in power planning

The integration of high levels of RES in the power system is changing the way society looks for electricity power planning,

moving from a centralized perspective of the electricity sector to a more close to load centers perspective (Sarafidis

et al., 1999). Allied to this paradigm change, and regarding to the increasing level of RES in the electricity system,

economic concerns and the increase of public awareness regarding the environmental concerns are key focus for the

nowadays generation expansion planning problem. In fact, according to Erdinc and Uzunoglu (2012), combining RES

such as, wind, solar, hydro, etc. with traditional sources may lead to a more economic, environmental friendly and

reliable electricity system. Also Hafez and Bhattacharya (2012), recognize the increasing importance that is being

given to the RES integration. In their work the authors have used the HOMER tool for the design, planning, sizing

and operation of a hybrid microgrid, assessing the impacts, in terms of life cycle costs and environmental emissions.

Also Sadeghi et al. (2014) have enhanced the importance of RES power units as an alternative to traditional ones, in

order to reduce greenhouse gases emission. In their study a generation expansion problem is addressed to evaluate

the impact of RES penetration in the electricity system under a feed-in tariff scheme. Results show that RES have in fact

a positive impact in both greenhouse gases emission and in the acceptance of generation companies to invest in RES.

In Biswal and Shukla (2014) a least cost generation expansion planning model is presented in order to meet the future

electricity needs in a more economical, environmental, and social acceptable way. With this work, the authors aim to

assess the economic impacts of large scale integration of wind in the system. In Gil et al. (2014) a stochastic generation

expansion planning for the Chilean system is developed. A mixed integer programming model, taking into account

hydro uncertainty is considered and PLEXOS tool used to obtain the simulation results. Results show a reduction

between 1.3% and 1.9% on the investment and expected operational costs when comparing with a deterministic

approach. Saxena et al. (2014) presented a stochastic model for both generation and transmission expansion planning,

taking into account the solar power generation uncertainty. Results show that using solar generation will result in a

reduction of both thermal power units investment and average operation and production costs.

Despite the benefits, mostly environmental ones, the integration of RES implies addressing some concerns, essen-

tially due to the impacts that renewable source may have in the operation of power system (Leung and Yang, 2012).

These impacts lie essentially in the high variability of most renewable resources, with wind in the line of front on this

issue. For example in Liu et al. (2011), the authors assessed the capacity of the Chinese energy system to integrate

higher levels of wind power. For that, the EnergyPLAN tool, was used, and the maximum wind power capacity that
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guarantees the system feasibility determined. Conclusions led to three main strategic solutions to mitigate the impacts

of large wind power capacity integration, being these solutions the increasing mix of power generation technologies,

the combination of heat pumps with heat storage devices to apply on district heating and the bet on the development

of the electric vehicles. Jahromi et al. (2012) presented in their work a multi-objective model for distributed generation

expansion planning. A fuzzy approach is proposed with the aim of minimize total costs, emissions and voltage profile.

The model is therefore applied to different studies accessing its effectiveness. For example in Karunanithi et al. (2014),

the authors present a generation expansion planning model applied to an Indian state and considering a period of

30 years. The impacts of RES integration, mainly wind and solar, along with reliability, loss of load probability, and

energy not served criteria are assessed for different RES penetration levels. Results show that an increase of RES,

20% beyond the total installed capacity, will result in a loss of reliability and therefore to an increase of investment

costs due to the need to invest in back up capacity to maintain the system reliability.

The use of optimization models applied to the generation expansion planning problem seems to be essential, even

more when RES are getting increasing importance. The complexity added to the power systems with the integration

of RES is evident, and usually associated to problems such as, small investments towards improving and extending

the electricity infrastructure, backup systems geographically too remote from the potential power sites or currently

financially infeasible and the difficulties associated to the operation of thermal power units (Li et al., 2012). Therefore,

the use of optimization models becomes essential to identify and mitigate these problems, resulting on a more trustful

integration of RES in the power system.

In the following sections a multi-objective MILP generation expansion planning is introduced in detail with the final

aim of attesting its application to a mixed hydro-thermal-wind power system. The model is built in an incrementally

and centrally planned perspective. The Portuguese system analysis was addressed as a case study representing

the starting point for the problem. In fact, the Portuguese system matches perfectly in typical problems like the

one addressed in this work. Economic and environmental criteria are included in the objective functions, aiming to

minimize total generation costs and environmental impacts. Economic aspects comprise investment and operation

costs of power generation units, while environmental ones comprise the minimization of greenhouse gases emission,

specifically CO2.

49



2.3 Model formulation

2.3.1 Objective functions

The proposed model formulation takes into account both the economic and environmental cost. Two objective func-

tions are considered. The first objective function concerns the economic cost measured in e and is defined by

∑
t∈T

∑
n∈N

[(
Icn

j(1 + j)ltn

(1 + j)ltn − 1
+ CFOMn

)
Ipn,t(1 + j)−t

]
+

∑
t∈T

∑
m∈M

∑
i∈I

[
(CV OMi + Fi + Cpi + EC × CO2i)Pi,m,t∆m(1 + j)−t

]
, (2.3.1)

where T is a set of the time period (in years) considered in the model, N is a set of the new power plants to be

included in the system, M is the set of months per year of planning, I is the set of all power plants, Icn is the

n new power plant investment cost (e/MW), j is the annual discount rate, ltn is the n new power plant lifetime

(years), CFOMn is the Operation and Management (O&M) fixed cost of the n type of power plant (e/MW), Ipn,t

is the installed power of plant n in year t (MW), CV OMi is the variable O&M costs for each i type of power plant

(e/MWh), Cpi is the cost of pumping for each i type of power plant (e/MWh), Fi is the fuel cost for each i type

of power plant (e/MWh), EC is the CO2 emission allowance cost (e/ton), CO2i is the CO2 emission factor of

type i power plant (ton/MWh), Pi,m,t is the power output from power plant i in month m of year t (MW), and ∆m

is the number of hours for monthm.

This objective function is set up by the sum of fixed and variable costs. The fixed costs are related to both the

investment cost of the new power plants and to all fixed O&M costs. The capital investment cost is obtained through the

sum of annuities over the planning period, assuming the uniform distribution of the investment cost during the plant

lifetime. This approach, although not taking into account the possibility of the accelerated depreciation of technologies,

is commonly used for the computation of the levelized cost of electricity for mature technologies in relatively stable

markets, as it is assumed in this analysis. Also, being the candidate power technologies already mature, with the

exception of offshore wind power, changes on the future O&M costs were assumed to be negligible for the ten years

planning period. In addition these costs are far from being the determinant ones, as investment and fuel are the major

cost drivers. In what concerns to variable costs, those encompass the variable O&M costs, the fuel and pumping costs,

and CO2 emission allowance costs for each power plant.
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The second objective function represents the environmental burden, measured in tons of CO2 emission of the

system. The objective function is defined by

∑
t∈T

∑
m∈M

∑
i∈I

CO2iPi,m,t∆m. (2.3.2)

This objective function is described as the sum of the totalCO2 emissions released from all power plants during

the entire planning period.

2.3.2 Constraints

The set of adopted constraints for the electricity sector planning problem usually includes constraints derived from

physical processes, demand requirements, capacity limitations, and legal/policy impositions. These constraints are

described as equations imposing conditions to the model formulation and by this defining values of the decision

variables that are feasible (Hobbs, 1995).

Demand constraint

The total power generation from all power units must meet the system load demand at each month of each year of

the planning period, including the pumping consumption. The mathematical formulation of these constraints is

Dm,t − PSRPm,t ≤

(∑
s∈S

Ps,m,t −
∑

p∈Pump

Pp,m,t

)
∆m, ∀m ∈ M, ∀t ∈ T, (2.3.3)

where Dm,t is the demand in month m of year t (MWh), PSRPm,t is the production of other renewable power

plants (non-large hydro and non-wind) and co-generation in monthm of year t (MW), S is the set of all power plants

except pumping units, and Pump is a set of all pumping power units.

Power capacity constraints

For each month of each year during the entire planning period, the power output of each power plant must be less or

equal to the available installed power. The availability factor of each thermal power plant was assumed as constant

for each month during all the years included in the planning. This availability factor ranges from 92% for coal and fuel
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oil power plants, to 94% for CCGT power plants (Kehlhofer et al., 2009). The assumed constraints were defined for

existing and new power units in the system. The first one is related to existing power units and is defined by

Pe,m,t ≤ φe,m × Ipe,t ∀e ∈ T _E, (2.3.4)

where φe,m is the availability factor of power unit e on month m, Ipe,t is the installed power of unit e on year t,

T _E is the set of all existent thermal power plants.

The second set of constraints is related to new power units and is defined by

Pn,m,t ≤ φn,m × Ipn,t ∀n ∈ T_N, (2.3.5)

where T _N is the set of all new thermal power plants and φn,m is the availability factor of power unit n on month

m.

Renewable constraint

Renewable constraint enforce the model to ensure at least a pre-defined minimum level of electricity generation from

renewable energy sources. The mathematical formulation of the constraint is given in the following equation.

∑
m∈M

[
dp× PSRPm,t +

∑
e∈E_Wind

Pe,m,t ×∆m +
∑

n∈N_Wind

Pn,m,t ×∆m+

∑
e∈E_Hydropower

Pe,m,t ×∆m +
∑

n∈N_Hydropower

Pn,m,t ×∆m

]

≥ sharer ×
∑
m∈M

Dm,t ∀t ∈ T, (2.3.6)

where dp is the share of renewable SRP (SRP-Special Regime Production comprises renewable power producers,

excluding large hydro and wind power plants, and renewable and non-renewable cogeneration plants), sharer is the

goal for renewable energies, andN_Wind andE_Wind are the sets of the new and existent wind power plants,

respectively.
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Wind constraints

These constraints ensure wind power generation capacity to be equal to the total installed power taking into account

the monthly wind availability. These constraints are set as equalities assuming that wind power is not subject to

dispatch, benefiting from feed-in tariffs and priority access to the grid. These set of constraints are described by

Pn,m,t = φn,m × Ipn,t ∀t ∈ T, ∀m ∈ M, ∀n ∈ N_Wind (2.3.7)

and

Pe,m,t = φe,m × Ipe,t ∀t ∈ T, ∀m ∈ M, ∀e ∈ E_Wind. (2.3.8)

It is also necessary to ensure that wind power potential will be kept between proper values, achieved by imposing

the following bound constraints.

Ipn,t ≤ ONV ∀t ∈ T, ∀n ∈ N_Onshore, (2.3.9)

whereN_Onshore is the set of wind onshore power plants,ONV is the maximum onshore wind potential value

(MW), and

Ipn,t ≤ OFV ∀t ∈ T, ∀n ∈ N_Offshore, (2.3.10)

whereN_Offshore is the set of wind offshore power plants and OFV is the maximum offshore wind potential

value (MW).

Large hydro constraints

For the large hydropower plants with reservoir, constraints regarding the expected storage and production capacity for

each month of each year of planning period are included into the model, where power pumping is also considered.

The following equation relates the reservoir level for the next month in terms of the previous reservoir level, inflows

and consumption. Two sets of constraints appear due to the transition between December and January of consecutive

years.
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reserve1,t = reserve12,t−1 + Inflows1,t ×
(
(Ipn,t + Ipe,t)

Ipe,t

)
−( ∑

n∈N_Hydroreserve

Pn,1,t +
∑

e∈E_Hydroreserve

Pe,1,t

)
×∆1+

∑
p∈Pump

ηp ∗ Pp,1,t ×∆1 ∀t ∈ T \ {1}, (2.3.11)

where reservem,t is the reservoir level on monthm of the year t, Inflowsm,t is the hydro inflow on monthm of

the year t, N_Hydroreserve are all new hydropower units with reservoir, E_Hydroreserve are all existing

hydropower units with reservoir and ηp is the efficiency of pumping units, usually around 70%.

reservem,t = reservem−1,t + Inflowsm,t ×
(
(Ipn,t + Ipe,t)

Ipe,t

)
−( ∑

n∈N_Hydroreserve

Pn,m,t +
∑

e∈E_Hydroreserve

Pe,m,t

)
×∆m+

∑
p∈Pump

ηp ∗ Pp,m,t ×∆m ∀t ∈ T, ∀m ∈ M \ {1}. (2.3.12)

Additional upper and lower bounds must be used to define maximum and minimum reservoir levels, represented

in the following sets of constraints.

reservem,t ≤ maxRm,t ∀t ∈ T, ∀m ∈ M, (2.3.13)

reservem,t ≥ minRm,t ∀t ∈ T, ∀m ∈ M, (2.3.14)

maxRm,t = maxReservoir ×
(
(Ipn,t + Ipe,t)

Ipe,t

)
∀t ∈ T, ∀m ∈ M,

∀n ∈ N_Hydroreserve, ∀e ∈ E_Hydroreserve (2.3.15)

minRm,t = 0.2×maxRm,t ∀t ∈ T, ∀m ∈ M, (2.3.16)
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wheremaxRm,t andminRm,t are themaximum andminimum reservoir level allowed, respectively andmaxReservoir

is the maximum capacity of reservoir measure inMWh.

The next set of constraints ensures that the production of run-of-river power plants is kept equal to the installed

power, taking into consideration the average monthly availability of these units. This type of plants are characterized

by a reduced storage capacity.

Pn,m,t = φn,m × Ipn,t ∀t ∈ T, ∀m ∈ M, ∀n ∈ N_Hydrorr, (2.3.17)

whereN_Hydrorr is the set of new run-of-river hydropower plants.

Pe,m,t = φe,m × Ipe,t ∀t ∈ T, ∀m ∈ M, ∀e ∈ E_Hydrorr, (2.3.18)

where E_Hydrorr is the set of existing run-of-river hydropower plants.

The next set of constraints ensures a minimum share of the new run-of-river power plants on the hydropower

system under analysis.

∑
n∈N_Hydrorr

Ipn,t ≥ sharerr ×
∑

n∈N_Hydropower

Ipn,t ∀t ∈ T, ∀m ∈ M. (2.3.19)

Pumping constraints

For the mathematical formulation of the operation of hydropower plants with pumping capacity, two reservoirs must be

taken into account. The upper one storages water from inflows and from pumping itself, while the lower one storages

water already used for electricity generation that may be pumped again later to the upper level. Again two set of

constraints are necessary to model the year transition from December to January for consecutive years. The model

set of constraints related with pumping follows.
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pumping_reserve1,t + dump1,t = pumping_reserve12,t−1+( ∑
n∈N_Hydroreserve

Pn,1,t +
∑

e∈E_Hydroreserve

Pe,1,t

)
×∆1

−
∑

p∈Pump

ηp × Pp,1,t ×∆1 ∀t ∈ T \ {1}, (2.3.20)

where pumping_reservem,t is the reserve of the pumping storage hydropower plant in monthm, of the year t,

and dumpm,t is the pumping reservoir energy dump, i.e., all unusable pumping energy in month m of the year t

when max pumping reserve level is reach due to lack of pumping need.

pumping_reservem,t + dumpm,t = pumping_reservem−1,t+( ∑
n∈N_Hydroreserve

Pn,m,t +
∑

e∈E_Hydroreserve

Pe,m,t

)
×∆m

−
∑

p∈Pump

ηp × Pp,m,t ×∆m ∀t ∈ T, ∀m ∈ M \ {1}. (2.3.21)

Constraints on the upper and lower bounds on the pumping reservoir must also be included to ensure reliability

of system, which are represented by the following constraints.

pumping_reservem,t ≥ min_pumping_reserve ∀t ∈ T, ∀m ∈ M, (2.3.22)

and

pumping_reservem,t ≤ max_pumping_reserve ∀t ∈ T, ∀m ∈ M, (2.3.23)

where min_pumping_reserve and max_pumping_reserve is the minimum and maximum level for the

pumping reserve, respectively.

The next three sets of constraints ensure the reliability of pumping units. For each time period the energy pumped

cannot be higher then the pump capacity, represented in the first two sets of constraints, or higher than the maximum
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capacity of the lower reservoir, represented by the third set of constraints.

Pe,m,t ≤ φe,m × Ipe,t ∀t ∈ T, ∀m ∈ M, ∀e ∈ E_Hydropump, (2.3.24)

where E_Hydropump is the set of existent large hydropower plants with pumping capacity.

Pn,m,t ≤ φn,m × Ipn,t ∀t ∈ T, ∀m ∈ M, ∀n ∈ N_Hydropump, (2.3.25)

whereN_Hydropump is the set of new large hydropower plants with pumping capacity.

∑
n∈N_Hydropump

Pn,m,t ×∆m ≤ max_pumping_reserve ∀t ∈ T, ∀m ∈ M. (2.3.26)

This last set of constraints imposes a minimum level of installed pumping power for each MW of installed wind

power added to the system. This is a fundamental element of the model as it ensures hydro complementarity with

wind resources, which strongly contributes to the reliability of the electricity supply by reducing the impacts of the wind

power volatility on the electric system.

∑
n∈N_Hydropump

Ipn,t +
∑

e∈E_Hydropump

Ipe,t ≥

∑
e∈E_Wind

Ipe,t +
∑

n∈N_Wind

Ipn,t

β
, ∀t ∈ T.

(2.3.27)

where β is a constant that reflects the relationship between pumping and wind installed power.

Capacity constraints

For thermal power units, a capacity constraint is used to relate the total modules number with the installed power.

Ipn,t = number_unitsn,t ×mcn ∀n ∈ T _N, (2.3.28)

where number_unitsn,t is the number of new installed thermal units set as the only integer variable of model and

mcn is the capacity of each new considered module.
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Additionally, the following constraints imposes that the Ipn,t is increasing during the planning period.

Ipn,t ≥ Ipn,t−1 ∀t ∈ T \ {1},∀n ∈ I. (2.3.29)

Reserve constraints

The reserve set of constraint ensures the security of the system, taking into account the non-usable capacity, which

includes the capacity that cannot be scheduled due to reasons like the temporary shortage of primary energy resources,

affecting in particular the hydro and wind power plants (for a detailed description please refer to Ferreira (2008)).

RM

( ∑
n∈I_N

Ipn,t +
∑
e∈I_E

Ipe,t + IPsrpt

)
≤
∑

n∈I_N

Ipn,t +
∑
e∈I_E

Ipe,t + IPsrpt−

(LW × (
∑

n∈N_Wind

Ipn,t +
∑

e∈E_Wind

Ipe,t) +LH × (
∑

n∈N_Hydropower

Ipn,t +
∑

e∈E_Hydropower

Ipe,t)+

LSRP × IPsrpt + LBHG+ LBTG− Plt) ∀t ∈ T (2.3.30)

where I_N and I_E are the set of all new and existent power units respectively, RM is the reserve margin of

system, IPsrtt is the installed power of SRP in year t, LW is the potential reduction of wind power due to the lack

of wind, LH is the potential reduction of hydropower due to a dry regime, LSRP is the potential loss of SRP due

to an unfavorable regime and LBHG and LBTG represent the lost of biggest hydro and thermal power groups.

Plt is the system peak load on year t. Using this restriction, the model, explicitly takes into account the impact that

the increasing hydro and wind capacity, will have on the RM requirements.

2.4 Model implementation and results analysis

2.4.1 Case study

The optimization model previously described was designed with the final aim of being used for the analysis of a

mixed hydro-wind-thermal power system. For this case study, a typical system encompassing all the electricity power

generation technologies referred above, was taken into consideration. The particular case of the Portuguese electricity

system was then selected, as representative of an example of this technology mix. Despite of the chosen case, the
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conclusions reached out should be valuable and useful for policy makers having to deal with strategic power planning

in a system combing thermal, hydro, and wind power, strongly constrained by the seasonal availability of the hydro

and wind power.

In fact, in the end of 2013, Coal, CCGT, and large hydropower plants were the major contributors of Portuguese

electricity production with a total installed power of approximately 1756MW, 3829MW, and 5239MW, respectively.

However, the role of non large hydro renewable sources is increasing. Wind power, in particular, reached 4368 MW in

2013 (REN, 2013b) and is expected to keep on this increasing trajectory at least until 2022 (REN, 2013a). The herein

described planning model requires the present situation of the electricity system under study, along with the technical

constraints. In particular, RES minimum production levels were defined according to EU directives and goals, and a

minimum relationship between pumping and wind power was imposed, in order to smooth the wind power variable

output. Thus, and for the Portuguese case under analyses, for each 3.5 MW of wind power capacity 1 MW of pumping

capacity is foreseen (INAG, 2007).

In order to reduce the complexity of the analysis, a closed system was assumed, i.e, electricity imports and exports

were not accounted in the model. This way, analysis will look for optimal electricity plans to meet the internal demand

at minimum generation cost. Furthermore, and according to REN (2013a), it is assumed a 1.1% annual growth rate

of electricity demand. The natural gas prices are assumed to increase 1.4% per year and the coal prices are assume

to increase 0.8% per year, according to the IEA (2012) current policies scenario.

The variables used for the optimization problem were the production of all existent and new power units in month

m of year t, the installed power of all new power units in year t, the total storage energy in month m of year t of

lower and higher reservoir (hydro reserve and pumping reserve), the dump of energy in monthm of year t and finally,

the only integer variable, the total number of thermal units. On the other hand, the installed power of existent units

was treated as parameters (Coal 628MW , Gas 3824MW , Wind 4194MW , and Hydro 5239MW ).

2.4.2 Used approach and numerical results

Our proposed model was coded in GAMS (2011). The CPLEX solver was selected to obtain the numerical results

reported herein. The CPLEX solver is interfaced with GAMS and proved to be successfully used by other authors in

similar modeling optimization problems (Kamalinia and Shahidehpour, 2010). The numerical results were obtained in

a Microsoft Windows operating system using a Intel® CORE™i5-2410M CPU@ 2.3GHz computer with 4GB of memory.
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A multi-objective problem with a single period of ten years horizon was considered for the electricity planning of

mix thermal-wind-hydropower system. Despite the typical one year or longer time step used for the long-term horizon

generation expansion planning models, this work follows a set of 12 aggregated monthly load blocks which allows to

consider in a more reliable way the seasonality of both the RES resources and of the demand. The model assumes

then average operating conditions for each month. The short-term impacts, that might be particularly relevant for large

wind power scenarios, are not explicitly included in the model but the predicted wind seasonality obtained from the

monthly availability factor along with the RM formulation (see equation (2.3.7), (2.3.8), and (2.3.30)) already allows

taking into account the uncertainty of wind availability. In addition, the hydro system is also expected to provide backup

capacity that should smooth these impacts, resourcing to the pumping units as described by equation (2.3.27). Both

these set of constraints represent the system stability criteria of the model.

The multi-objective problem was addressed by solving single-objective optimization problems. Firstly a single-

objective optimization problem was solved for each objective function reported in equations (2.3.1) and (2.3.2), using

equations equations (2.3.3)– (2.3.30) as constraints. For our case study the single objective optimization problem

represents a mix integer linear optimization problem (MILP) with 2912 continuing variables, 50 integer variables, and

3603 constraints. These single-optimization problems are named as R0 and R9, for the objective function (2.3.1)

and (2.3.2) respectively, and represent the extreme solutions of the multi-objective model. The results of this initial

exercise are presented in Table 2.1 detailing the total cost and emissions for the entire planning period, together with

the cost and emissions per MWh and the computation time to obtain each solution.

In addition to the single-objective minimization of the costs and emissions, and in order to provide some insights

about the multi-objective problem, 8 additional optimization problems named from R1 to R8, were considered.

These optimization problems represent different scenarios and allow to design the Pareto front, presented in Fig-

ure 2.1. These results were obtained by minimizing the cost objective function described in Equation (2.3.1) while

Equation (2.3.2) was included as a constraint, i.e., the amount ofCO2 emissions were constrained to 8 pre–selected

values. The extreme points correspond to solutions presented in Table 2.1, while the intermediate results correspond

to the solutions of the CO2 emissions constrained problems.

A first inspection of the presented Pareto fronts clearly reveals that the used objective functions are divergent under

the assumed conditions of the system and a cost reduction will largely induce an increase in the CO2 emissions.

An analysis of Figure 2.1 allows to conclude that the decrease of CO2 emissions negatively influences the cost

of the electricity generation system, but this relationship is not linear. The results indicate that the slope of the curve
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Table 2.1: Optimal objective functions solutions

Cost CO2 Cost CO2

(Me) (Mton) (e/MWh) (ton/MWh)

Optimal cost solution R0 7640.84 171.88 14.638 0.329

Optimal emission solution R9 16146.11 10.36 30.9 0.02
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Figure 2.1: Pareto curve solutions for the MILP
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is much higher for the points on the left hand side than for the points close to the right hand side, meaning that the

first CO2 emission gains are less expensive to achieve.

Table 2.2 describes the evolution of the installed power of different technologies when reduction on CO2 emis-

sions are included in the model. A reduction of the new coal power plants may be observed as the emission limits

are getting more restrictive. On the other hand, investments in new CCGT power plants follow an opposite pattern,

increasing as theCO2 emissions limits are reduced. Investments in new CCGT power plants leads to higher produc-

tion costs ensuring both demand and environmental requirements. For the first solutions of the optimization problems

(R1,R2, andR3), the CO2 levels are then mainly achieved through the replacement of coal power electricity pro-

duction by CCGT, hydro and wind electricity production. This substitution brings considerable environmental gains.

It should be stressed that hydro potential is reached at solution R1 and so, for solutions closer to the right hand

side of the graph, CO2 reductions may only be achieved by increasing investments on wind power (onshore and

offshore) and reducing CCGT production and investments. Although some CO2 reductions are achieved, those are

much costlier than the ones obtained for the initial ranges of the curve. This can be observed at the solution point

R8, where the kink of curve occurs, originating a significant increase on cost of avoided emissions from average 36.7

e/ton obtained in the left hand side of Figure 2.1 to average 304.3 e/ton on the right side of same graph.

Although wind power may displace part of the electricity generated by large thermal power plants, it has a limited

capacity to displace conventional installed power. For example, between the optimal cost solution R0 and R7 an

increase of 4405MW of the total installed wind power is observed, however the thermal power is reduced by only

1552MW, with the total replacement of investment in new coal power units by the investment in new gas units.

Being wind power a technology of variable output its contribution to the security of supply in peak moments is low as

reflected in the reserve margin restriction (Equation (2.3.30)). For the scenario with minimum emissions (R9) the

total electricity production exceeds the electricity demand mainly due to the increase of wind power in the system.

This is particularly evident during the winter months when the availability of both hydro and wind resources achieve

the highest values and as such the monthly non-dispatchable production overcomes the total electricity demand.

As a general result, the contribution of renewable sources to CO2 emission reduction must be underlined. The

hydropower and in particular wind power electricity generation tend to increase as the emissions restrictions get higher,

resulting in two important aspects: the increase of the RES share and the reduction of the external energy dependency

of the country.
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Table 2.2: Installed power and contribution for electricity in the 10th year of planning

R0 R1 R2 R3 R4 R5 R6 R7 R8 R9

Total Installed Power (MW)

Coal (new) 2400 1000 400 - - - - - - -

Coal (existing) 628 628 628 628 628 628 628 628 628 628

Gas (new) - - 1010 1858 2020 2020 1858 848 1010 2868

Gas (existing) 3824 3824 3824 3824 3824 3824 3824 3824 3824 3824

Wind (new) - - - - - - 983 4405 4429 5529

Wind (existing) 4194 4194 4194 4194 4194 4194 4194 4194 4194 4194

Hydro (new) 124 4646 4646 4646 4646 4646 4646 4646 4646 4646

Hydro (existing) 5239 5239 5239 5239 5239 5239 5239 5239 5239 5239

SRP 3710 3710 3710 3710 3710 3710 3710 3710 3710 3710

Total 20303 23425 23835 24283 24445 24445 25266 27678 27864 30822

Contribution for electricity demand (%)

Coal (new) 34.3% 13.8% 5.9% 0% 0% 0% 0% 0% 0% 0%

Coal (existing) 7.7% 7.7% 7.7% 0% 0% 0% 0% 0% 0% 0%

Gas (new) 0% 0% 13.2% 24.8% 26.9% 26.9% 23.7% 10.6% 12.6% 8.5%

Gas (existing) 0.8% 10.1% 5.3% 6.2% 3.7% 3.7% 1.6% 1.8% 0% 0%

Wind (new) 0% 0% 0% 0% 0% 0% 4.6% 20.5% 20.7% 25.4%

Wind (existing) 20.4% 20.4% 20.4% 20.4% 20.4% 20.4% 20.4% 20.4% 20.4% 20.1%

Hydro (new) 0.3% 10.3% 14.4% 15.9% 16.1% 16.8% 21.7% 12.9% 12.4% 24.3%

Hydro (existing) 15.5% 16.6% 12% 11.7% 11.9% 11.2% 7% 12.8% 12.9% 6%

SRP 21.0% 21.0% 21.0% 21.0% 21.0% 21.0% 21.0% 21.0% 21.0% 21.0%

Share of RES1 46.7% 57.8% 57.4% 58.5% 58.9% 58.9% 64.2% 77.1% 76.9% 86.1%

Energy dependence2 53.3% 42.2% 42.6% 41.5% 41.1% 41.1% 35.8% 22.9% 23.1% 18.8%

1Assuming that 10.5% is renewable energy from SRP;

2Assuming that 10.5% is non-renewable energy from SRP;
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2.4.3 Wind power sensitivity analyses

The optimization procedure aims to reduce a very large number of possible plans, to a small number of optimal plans

that are to be presented to decision makers. However, the solutions found represent the optimal point from a pure

mathematical perspective and the decision maker should not disregard other solution that, although not being optimal,

may present other considerable advantages with a small cost increase.

Figure 2.1 presents the optimal solution from the mathematical point of view, considering the two main objectives

of the model. In fact, cost and emissions trade-off analysis leave aside important aspects such as the external energy

dependency or the need to diversify the fuel mix of the system under analysis. The results also indicate that for the

majority of the obtained optimal solutions the wind power is far from achieving the full estimated potential. It seems

then important to explore the possibility of different onshore wind scenarios, analyzing other plans that although not

being Pareto optimum may be interesting from the strategic decision making perspective.

The plot presented in Figure 2.2 provides the results of imposing to the system a predefined value for the total

installed wind power. As an illustrative example, this simulation was conducted for scenario R3 for which the total

amount of CO2 emissions during entire planning period must be less or equal to 110Mton. New solutions were

obtained with higher costs and consequently moving away from the original Pareto line.

Setting the values for the new installed onshore wind power equal to 1000, 1500, 2000, 3000, 4000 and

4429MW leads to higher costs. As such, the increase of wind power on the system would not lead to a reduction of

CO2 emissions but rather to a change on the fossil fuel power technologies contribution. When comparing these

results to the originalR3 solution, it can be observed a reduction of the electricity generated from CCGT. On the other

hand the electricity production from coal would increase. An increase of the CO2 allowance cost could change the

relative cost structure of CCGT and coal power plants and by this inducing both cost andCO2 reductions. These new

solutions present higher costs and no changes on CO2 emissions values, comparatively toR3, but the contribution

to both a reduction of the external energy dependency of the electricity sector and to an increase of the share of

electricity produced from RES should not be overlooked in systems highly dependent of imported fuel sources. For

example, imposing 4000MW of new installed wind power during the planning period, would result in a solution 21%

more expensive than the originalR3. However, it would be possible to reduce the external dependency of the electricity

generation sector by 5.5% and the share of RES would increase by the same amount, comparatively to the optimal

values reported under R3. Furthermore, for high wind power scenarios the electricity production can exceed the
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Figure 2.2: Wind power simulation for R3 solution

demand projections demonstrating the potential for electricity exportations in an integrated market.

The integration of RES technologies, despite of all the usually attributed environmental advantages, can in fact

increase the complexity of the models, turning more difficult the tasks of grid managers. The use of optimization

methods supported by sensitivity analysis can be a powerful and huge help to the decision makers, allowing recognizing

the interaction between all elements in the electricity system, which are fundamental for the long range planning. The

illustration above shows how installing different values of wind power leads to the redefinition of the required capacity

for each technology, and of the output among different generation.

The aim of this exercise was not to present an exhaustive description of all possible plans, but rather to drew

attention to some examples showing the relevance of presenting other possible strategies to decision makers. The new

proposed solutions ensure the required CO2 maximum levels and present also a maximum 28% cost increase over

the R3. However, they may become more interesting when other aspects, such as the external energy dependency

or the need to balance coal and gas in the system, are considered.
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2.5 Conclusions

This paper analyses the generation expansion planning problem in a mixed hydro-thermal-wind power system. For this,

one optimization model for electricity planning was presented and adapted to the characteristics of the system under

study. A deterministic programmingmodel was proposed aiming to support the long-term strategic decision, and taking

into account the need to reconcile economic and environmental objectives. Being deterministic, the model assumes

perfect knowledge of the demand, legal and technical restrictions and costs over time. The proposed model can be

used to assist in the strategic electricity planning process of systems strongly supported on hydro and thermal power

and with expected wind power increase. The model usefulness was demonstrated for a case study but may be easily

adapted to other cases with similar characteristics, allowing to design and analyze different policy options recognizing

the interaction between the elements of the electricity system and the seasonality of the underlying renewable energy

sources.

From the solution of the optimization model and assuming the described departing conditions, the results indicate

that as theCO2 objectives become more restrictive, in general, the least expensive way to comply is to firstly replace

the coal by CCGT and by wind power production. Wind power contribution only increases significantly for highly

environmentally constrained solutions. These results may be explained by the low capacity credit of wind and the

required hydropower reserve schemes directly related with the total installed wind power. Also, these hydro schemes

represent an important contribution to meet the RES constraint, allowing then to keep the installed wind power below

the estimated potential.

The analysis of close to optimal solutions demonstrate how planning based on optimization models still remains an

essential tool, when other objectives beyond the economic and cost are intended to be considered. It was possible to

observe that imposing the installation of a fixed value of new wind power would lead to different scenarios that, although

not being optimal Pareto solutions, may be interesting from the strategic decision makers’ perspective. These solutions

ensure the required CO2 levels at a higher cost but contribute to the reduction of the external energy dependency

of the country and to the increase of RES share in the electricity balance. This approach may be particularly useful

to support multicriteria sustainable electricity planning decisions, based on the evaluation of minimum (or close to

minimum) cost scenarios and taking into account other environmental and social objectives.

The proposed model assumed monthly load blocks to capture the wind and hydro seasonality. Also, the combi-

nation of wind and hydro pumping is expected to smooth the wind power variability and to increase the flexibility of the
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system (REN, 2013a). Nevertheless, the importance of designing long range planning models properly, accounting

for short-term impacts of RES of variable output on thermal power operation performance, should not be overlooked,

in an effort to find solutions of lower costs but not at an expense of higher CO2 emissions.

References

M.R. AlRashidi and K.M. EL-Naggar. Long term electric load forecasting based on particle swarm optimization. Ap-

plied Energy, 87(1):320 – 326, 2010.

M. T. Askari, M. Z. A. A. Kadir, H. Hizam, and J. Jasni. Evaluation of uncertainties on generation expansion planning.

In Power Engineering and Optimization Conference (PEOCO), 2013 IEEE 7th International, pages

273–276, 2013.

G. C. Biswal and S. P. Shukla. Economic Aspects of Wind Powergeneration. International Journal of Advance

Engineering and Research Development, 1, 2014.

J. A. Bloom, M. Caramanis, and L. Charny. Long-Range Generation Planning Using Generalized Benders’ Decompo-

sition: Implementation and Experience. Operations Research, 32(2):290–313, 1984.

Y. Cai, G. Huang, Z. Yang, Q. Lin, and Q. Tan. Community-scale renewable energy systems planning under uncertainty

- An interval chance-constrained programming approach. Renewable and Sustainable Energy Reviews, 13:

721–735, 2009.

G. Celli, E. Ghiani, S. Mocci, and F. Pilo. A multiobjective evolutionary algorithm for the sizing and siting of distributed

generation. Power Systems, IEEE Transactions on, 20(2):750–757, 2005.

O. Erdinc and M. Uzunoglu. Optimum design of hybrid renewable energy systems: Overview of different approaches.

Renewable and Sustainable Energy Reviews, 16(3):1412 – 1425, 2012.

P. Ferreira. Electricity Power Planning in Portugal: The Role of Wind Energy. PhD thesis, University of

Minho, 2008.

67



J. Figueira, S. Greco, M. Ehrogott, D. Diakoulaki, C.H. Antunes, and A.G. Martins. MCDA and energy planning. In F.S.

Hillier, editor,Multiple Criteria Decision Analysis: State of the Art Surveys, volume 78 of International

Series in Operations Research & Management Science, pages 859–898. Springer New York, 2005.

A.M. Foley, B.P. Ó Gallachóir, J. Hur, R. Baldick, and E.J. McKeogh. A strategic review of electricity systems models.

Energy, 35(12):4522 – 4530, 2010. ISSN 0360-5442.

GAMS. General Algebraic Modeling System. GAMS Corporation, 2011. http://www.gams.com.

E. Gil, I. Aravena, and R. Cardenas. Generation Capacity Expansion Planning Under Hydro Uncertainty Using Stochastic

Mixed Integer Programming and Scenario Reduction. Power Systems, IEEE Transactions on, PP(99):1–10,

2014.

O. Hafez and K. Bhattacharya. Optimal planning and design of a renewable energy based supply system for microgrids.

Renewable Energy, 45(0):7 – 15, 2012.

G. Heinrich, L. Basson, B. Cohen, M. Howells, and J. Petrie. Ranking and selection of power expansion alternatives

for multiple objectives under uncertainty. Energy, 32(12):2350 – 2369, 2007.

F. Hobbs. Optimization methods for electric utility resource planning. European Journal of Operational Re-

search, 83:1–20, 1995.

IEA. World Energy Outlook 2012, 2012. International Energy Agency.

INAG. Plano nacional de barragens com elevado potencial hidroeléctrico.

http://pnbeph.inag.pt/np4/np4/?newsId=4&fileName=pnbeph_memoria.pdf, 2007. Instituto da Água, in

Portuguese.

M. E. Jahromi, M. Ehsan, and A. F. Meyabadi. A dynamic fuzzy interactive approach for DG expansion planning.

International Journal of Electrical Power & Energy Systems, 43(1):1094 – 1105, 2012.

S. Jebaraj and S. Iniyan. A review of energy models. Renewable and Sustainable Energy Reviews, 10:281–311,

2006.

68

http://www.gams.com


S. Kamalinia and M. Shahidehpour. Generation expansion planning in wind-thermal power systems. Generation,

Transmission & Distribution, IET, 4:940–951, 2010.

K. Karunanithi, S. Kannan, and C. Thangaraj. Generation expansion planning for Tamil Nadu: a case study. Inter-

national Transactions on Electrical Energy Systems, 2014.

R. Kehlhofer, F. Hannemann, F. Stirnimann, and B. Rukes. Combined-cycle gas & steam turbine power plants.

Pennwell Books, 2009.

D. Y. C. Leung and Y. Yang. Wind energy development and its environmental impact: A review. Renewable and

Sustainable Energy Reviews, 16(1):1031 – 1039, 2012.

X. Li, K. Hubacek, and Y.L. Siu. Wind power in China - Dream or reality? Energy, 37(1):51 – 60, 2012.

Y.F. Li, G. Huang, Y.P. Li, Y. Xu, and W. Chen. Regional-scale electric power system planning under uncertainty - A

multistage interval-stochastic integer linear programming approach. Energy Policy, 38:475–490, 2010.

P. Linares and C. Romero. A multiple criteria decision making approach for electricity planning in Spain: economic

versus environmental objectives. Journal of the Operational Research Society, 51:736–743, 2000.

W. Liu, H. Lund, and B. Vad Mathiesen. Large-scale integration of wind power into the existing Chinese energy system.

Energy, 36(8):4753 – 4760, 2011.

Y. Manabe, R. Hara, and H. Kita. Generation Expansion Planning Considering Mass Penetration of Renewable Energy

Generation and Supply Reliability. Electrical Engineering in Japan, 189(3):1–12, 2014.

C. Meza, M. Yildirim, and A. Masud. A Multiobjective Evolutionary Programming Algorithm and Its Applications to

Power Generation Expansion Planning. IEEE Transactions on systems, Man, and Cybernetics - Part A:

Systems and Humans, 39:1086–1096, 2009.

S.M. Moghddas-Tafreshi, H.A. Shayanfar, A. S. Lahiji, A. Rabiee, and J. Aghaei. Generation expansion planning

in Pool market: A hybrid modified game theory and particle swarm optimization. Energy Conversion and

Management, 52(2):1512 – 1519, 2011. ISSN 0196-8904.

69



M. Pantoš. Stochastic generation-expansion planning and diversification of energy transmission paths. Electric

Power Systems Research, 98(0):1 – 10, 2013.

J. Park, Y. Park, J. Won, and K. Y. Lee. An improved genetic algorithm for generation expansion planning. Power

Systems, IEEE Transactions on, 15(3):916–922, 2000.

A. J. C. Pereira and J. T. Saraiva. A decision support system for generation expansion planning in competitive electricity

markets. Electric Power Systems Research, 80(7):778 – 787, 2010. ISSN 0378-7796.

A. J. C. Pereira and J. T. Saraiva. Generation expansion planning (GEP) - A long-term approach using system dynamics

and genetic algorithms (GAs). Energy, 36(8):5180 – 5199, 2011. ISSN 0360-5442.

S. Rebennack. Generation expansion planning under uncertainty with emissions quotas. Electric Power Systems

Research, 114(0):78 – 85, 2014.

REN. Plano de Desenvolvimento e Investimento da Rede de Transporte de Electricidade 2014–2023, Maio 2013a.

Redes Energéticas Nacionais, in Portuguese.

REN. Informação Mensal – Sistema Eletroprodutor, Dezembro, 2013b. Redes Energéticas Nacionais, in Portuguese.

H. Sadeghi, M. Mohammadian, A. Abdollahi, M. Rashidinejad, and S. M. Mahdavi. Renewable-based generation

expansion planning considering environmental issues using GSA. In Intelligent Systems (ICIS), 2014 Iranian

Conference on, pages 1–6, 2014.

Y. Sarafidis, D. Diakoulaki, L. Papayannakis, and A. Zervos. A regional planning approach for the promotion of

renewable energies. Renewable Energy, 18(3):317 – 330, 1999.

K. Saxena, P. Jain, and R. Bhakar. Coordinated GEP and TEP integrating correlated solar generation and load. In

Recent Advances and Innovations in Engineering (ICRAIE), 2014, pages 1–5, 2014.

H. Tekiner, D. Coit, and F. Felder. Solving the Single-period Multi-objective Power Generation Expansion Planning

Problem. In Proceedings of the 2009 Industrial Engineering Research Conference (IERC), pages

1–6, 2009.

70



H. Tekiner, D. W. Coit, and F. A. Felder. Multi-period multi-objective electricity generation expansion planning problem

with Monte-Carlo simulation. Electric Power Systems Research, 80(12):1394 – 1405, 2010. ISSN 0378-

7796.

F. Wu, Z. Yen, Y. Hou, and Y. Ni. Applications of AI techniques to generation planning and investment. In Power

Engineering Society General Meeting, 2004. IEEE, pages 936–940 Vol.1, 2004.

M. Yildirim, K. Erkan, and S. Ozturk. Power generation expansion planning with adaptive simulated annealing genetic

algorithm. International Journal of Energy Research, 30(14):1188–1199, 2006.

J. Zhu and M. Chow. A review of emerging techniques on generation expansion planning. Power Systems, IEEE

Transactions on, 12(4):1722–1728, 1997.

71



72



Chapter 3

Short-term electricity planning with increasing

wind capacity

Paper published as Sérgio Pereira, Paula Ferreira, and A.I.F. Vaz. Short-term electricity planning with increase wind

capacity. Energy, 69(0)12–22, 2014.

ABSTRACT

The variable electricity output of the renewable energy sources (RES) power plants, such as wind and hydropower,

is an important challenge for the electricity system managers. This paper addresses the problem of an electricity

system supported mainly on hydro, thermal and wind power plants. A binary mixed integer non-linear optimization

model with hourly time step is described. The model is applied to a system close to the Portuguese electricity case

assuming demand forecasts for the year 2020. The main objective of this paper was to analyze the impact that different

levels of installed wind power can have in the operation of this electricity system, taking into account the hourly and

intra-annual variation of the renewable resources, the demand projections and also the technical restrictions of thermal

power plants. The results confirmed wind power as strategic technology to reduce both the marginal cost and CO2

emissions. According to the simulations run, wind power will not replace hydropower but a decrease of thermal power

production is foreseen as more wind power is added to the system. Gas power plants will be the most affected ones

for large wind power scenarios, increasing part load operation and reducing the numbers of operating hours.
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3.1 Introduction

Over the passed decades, electricity system generation has gone over a set of different changes. Different technologies

start to arise and the importance of Renewable Energy Sources (RES) for electricity generation is now remarkable.

RES technologies are usually characterized by zero CO2 gas emissions, lower operation and maintenance costs but

higher investment costs.

The promotion and use of RES for electricity generation is one of the most important greenhouse gas mitigation

measures (Delarue et al., 2009). However, the increasing use of these technologies creates new challenges to the

electricity power management. They are frequently characterized by production of variable output, are not subject to

dispatch and can benefit from feed-in-tariffs. On the contrary, in most electricity systems, large thermal and hydropower

plants compete in the market for dispatch.

The intra-annual seasonality and the variability of wind power output can be particularly challenging, significantly

impacting the performance of thermal power plants operating in the same electricity system. According to Jonghe

et al. (2012), large-scale wind power development affects short-term operation of the electricity system, as well as the

optimal generation technology mix since wind increase significantly the variability of energy generation. The variability

of wind power into the grid will enforce thermal generators ramping to compensate supplying disruptions or to operate

at low load conditions. According Troy et al. (2010), increasing variability and unpredictability in the power system,

due to wind curve characteristics, will frequently originate the increasing number of startups, ramping and periods

of operation at low load levels. In line with this, Duque et al. (2011) support that, with the increase of wind power

generation all over the world, the integration of wind power generation in electricity power systems needs to be carefully

performed and requires new concepts in operation, control and management. In their study, a joint operation between

a wind farm and a hydro-pump plant is addressed having into account the uncertainty of the wind power forecast.

Other concern that is usually related to RES technologies such as wind and hydro is the difficulty on forecasting

their availability. Different studies have focused on this thematic. Wang et al. (2009) study the impact of wind power

forecasting on the unit commitment problem and economical dispatch. A set of different scenarios to deal with

wind uncertainty were considered, transforming the problem into a stochastic one. Despite the complexity usually
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associated to the stochastic problems that usually leads to better results, the authors concluded that a deterministic

method combined with an increased reserve requirement can produce results that are comparable to the stochastic

case. In Vardanyan and Amelin (2011) a survey of short-term hydropower planning with a large amount of wind power

in the system is presented. In their study some conclusions were underlying. They have concluded that research when

uncertainty is considered is not fully explored and when considered can significantly increase problem size, which may

require more advanced solution algorithms and techniques to bring problem size down and make it solvable.

This work aims to contribute to the analysis of the impact of wind power in the operating performance of an

electricity system combining thermal, hydro, and wind power plants. For that, an optimization model for short-term

electricity planning will be presented and used to test different levels of installed wind power, evaluating the effect on

cost andCO2 emissions. The proposed model resources to hourly time steps, allowing to capture the hourly variation

of the renewable resources and also to take into account the technical restrictions of the thermal power plants.

This paper is organized as follows. Section 3.2 will present an overview over the definition of unit commitment

problem. A set of literature examples will be described to better understanding. In section 3.3 the proposed model

formulation will be described. In Section 3.4 a realistic case study of an electricity system with thermal, hydro and wind

power plants system is addressed, and the results of the model implementation are analyzed. Finally, conclusions

are stated in Section 3.5.

3.2 Short-term planning: The Unit Commitment problem

It is well addressed in the literature that the principal aim of power planning, whether it is applied to long-term planning

horizon or to short-term horizon, is to minimize the operation cost of the system allowing to fulfil a forecasted demand.

Optimization models for short-term electricity power generation scheduling are therefore seen as useful and powerful

tools to decision makers.

Short-term electrical power generation scheduling also known as unit commitment (UC) problem is essential for the

planning and operation of power systems. The basic goal of the UC problem is to properly schedule the on/off states

of all the units in the system. Further on, the optimal UC should meet the predicted load demand, plus the spinning

reserve requirement at every time interval minimizing the total cost of production (Senjyu et al., 2003). Şima Uyar et al.

(2011) describe the short-term electrical power generation scheduling as an optimization problem, in which optimal

startup and shutdown schedules need to be determined over a given time horizon for a group of power generators

75



under operational constraints. The objective remains the minimization of the power generation costs meeting the

hourly forecasted power demands. Following this idea, Zhang et al. (2011) focused on the variations in operating

costs caused by integration of an increasing amount of wind power in thermal generation systems. According to the

simulation results the authors concluded that wind power brings considerable cost increase on thermal generation.

Furthermore, when wind power is integrated in the grid, more flexible generation with higher cost are dispatched in

peak load regulation, units starts and stop more often and more money is spent on ramping costs, increasing the

average cost of the system.

Niknam et al. (2009) presented on their work a typical UC problem. A new formulation based on benders decom-

position was proposed and the performance evaluated under three case studies for a typical system with 100 units.

The first case study shows the effectiveness of the proposed algorithm without considering the ramp rate constraints

while in the second case study, the ramp rate constraints were taken into account. The third case study considers

no startup costs in the system. The numerical results obtained allowed the authors to confirm the efficiency of the

study. Simoglou et al. (2010) addressed on their work the problem of the self-scheduling of a thermal electricity pro-

ducer in day-ahead energy and reserves markets. Three different startup types are modeled, each one with different

start-up costs, synchronization time, soak time, and predefined startup power output trajectories, all dependent on

the unit’s characteristics. The model was tested for a daily versus weekly scheduling of a fictional producer with five

units using a typical load demand curve of the Greek Power System.

Despite the economic interest of these problems the environmental concern is also becoming increasingly relevant.

Catalão et al. (2008) study focus on a multi-objective problem formulation with two objective functions, total fuel cost

and total emissions. Also Chiang (2007) present a multi-objective problem for the economic emission dispatch of

a hydrothermal power systems. On his work two objective functions were presented, one for the total cost and the

other for the total emissions allowance. The results show the best cost, the best emission and the best compromise

solutions. The pareto-optimal was also presented representing the trade-off between the cost and environmental

objectives. Delarue et al. (2009) presented, in a case study for Belgium, a simulation tool that properly models wind

power and its unpredictability and allows to determine the effects that wind power has on the cost of electricity

generation and on CO2 emissions.

Many other studies addressing the short-term electrical power generation scheduling are well documented in

literature with emphasis on the changes that occur in the operation of the thermal units due to increase of wind

penetration on system and on the the market prices (see for example Traber and Kemfert (2011) and Troy et al.
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(2010)). In the next section, the proposed model formulation will be described, considering all technical constraints

of thermal power units such as ramps, minimum up and downtime and start-up and shut down cost.

3.3 Model formulation

The formulation followed in this work for the unit commitment problem, in a system with high penetration of wind

and hydropower, is described in detail in this section. The model assumes a set of different fossil fuel units mostly

comprised of coal and gas. In what concern to hydropower units, the model assumes two different types such as: the

large hydropower units with reservoir and the run–of–river units. Pumping units were also included in the model. Due

to the increase complexity of the model no individual set for wind and hydropower units were considered. Instead,

the model assumes all the individual wind power units as one, and the same will occur with hydropower technologies.

By assuming wind and hydropower units as aggregated units the variability of the output of each independent unit is

overlooked. This strategy allows to reduce the complexity of the model and is expected to not severely compromise

the results, as no grid bottlenecks in the Portuguese system are considered in the model.

3.3.1 Objective function

The proposed model formulation takes into account the economic cost, originating one objective function to be con-

sidered. This objective function is set up by the sum of the variable costs of the electricity system. The variable costs,

encompass the variable Operation and Management (O&M) costs, fuel and pumping cost, CO2 emission allowance

costs and shutdown and startup costs for each group. The objective function is measured in e and is defined by:

∑
t∈T

∑
j∈J

[Ct,j + Sut,j + Sdt,j] +
∑
t∈T

[CV OMhd
× phdt] +

∑
t∈T

[CV OMhr × phrt] +

∑
t∈T

[(Cpp × ppumpt) + (CV OMp × ppumpt)] +
∑
t∈T

[(pwindt × CV OMe)] (3.3.1)

where T is the set of the time period (in hours) considered in the model, J is the set of all groups of thermal

power plants included in the system, Ct,j is the total cost of thermal power groups (e), Sut,j is the startup cost of

thermal power groups (e), Sdt,j is the shutdown cost of thermal power groups (e), CV OMhd
is the O&M cost

of hydropower plants with reservoir (e/MWh), phdt is the power output of hydropower plant with reservoir in hour t
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(MWh),CV OMhr is the O&M cost of run–of–river power plants (e/MWh), phrt is the power output of run–of–river

power plant in hour t (MWh),Cpp is the cost of pumping (e/MWh), ppumpt is the power output of pumping power

plant in hour t (MWh), CV OMp is the O&M cost of pumping power plant (e/MWh), pwindt is the power output

of wind power plant in hour t (MWh) and CV OMe is the O&M cost of wind power plants(e/MWh).

The costs of thermal power groups considered in objective function above encompasses the fuel cost of each

group, the O&M cost, the emissions allowance cost and the startup and shutdown costs. Those can be defined by

equations (3.3.2), (3.3.3), (3.3.4), and (3.3.5).

Ct,j =
[
Fj + CV OMj + (CO2j × EC)

]
ptj (3.3.2)

Sdt,j = CSdj × (vt−1,j × (1− vt,j)) (3.3.3)

Sut,j = ColdSj (vt,j × (1− vt−1,j))×
∏

n=1→Nj

1− vt−n,j (3.3.4)

Sut,j = HotSj (vt,j × (1− vt−1,j))×

1−
∏

n=1→Nj

1− vt−n,j

 (3.3.5)

where Fj is the fuel cost of group j (e/MWh),CV OMj is the O&M cost of thermal power group j (e/MWh),EC

is the CO2 emission allowance cost (e/ton), CO2j is the CO2 emission factor of type j power group (ton/MWh),

CSdj is the shutdown cost of thermal power group j, vt,j is the binary variable that is 1 if thermal power group j

is on in hour t or 0 if it is off, ColdSj is the cost of the cold startup of power group j (e),Nj is the time necessary

for a cold startup (h) andHotSj is the cost of the hot startup of power group j (e).

3.3.2 Constraints

The set of adopted constraints for the unit commitment problem usually includes constraints derived from physical

processes, demand requirements, capacity limitations, and legal/policy impositions. These constraints are equations

that impose conditions to the model formulation, defining values of the decision variables that are feasible Hobbs

(1995).

78



Demand Constraint

To ensure the reliability of the system, the production of all power plants should meet the total system load at each

hour of planning period. Thus, the demand must be equal to the total power output from power plants plus the special

regime producers power output minus pumping consumption. The mathematical formulation of this constraint is

∑
j∈J

ptt,j + phdt,hd
+ phrt,hr + pwindt,e − ppumpp,j + Psrpt = Dt ∀t ∈ T (3.3.6)

where Dt is the demand in hour t of planning (MWh) and Psrpt is the generation output of all special regime

producers (except large hydropower plants and wind power plants) including co-generation in each t hour of the

respective planning period (MWh).

Thermal Power Capacity Constraints with Ramp Considerations

Power capacity constraints ensures that all power groups included in the model will not produce more than respective

group capacity for each hour of the planning period. Indeed, the power output will be less or equal to the power

group capacity. A minimum output of 35% of capacity for coal and gas thermal power groups is considered due to

its technical characteristics. Furthermore, startup and shutdown ramp constraints were also considered to ensure a

more reliable system representation. Mathematical formulation of these constraints is

pt,j ≤ Pj [vt,j − (vt,j × (1− vt+1,j))] + (vt,j × (1− vt+1,j))× Sdrj (3.3.7)

pt,j ≤ ptt−1,j +Ruj × vt−1,j + Surj × (vt,j × (1− vt−1,j)) (3.3.8)

pt,j ≥ 0 (3.3.9)

pt,j ≥ ptt,j (3.3.10)

Pj × vt,j ≤ ptt,j (3.3.11)
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ptt−1,j − ptt,j ≤ Rdj × vt,j + Sdrj × (vt−1,j × (1− vt,j)) (3.3.12)

ptt,j ≥ 0 (3.3.13)

where pj,t is the maximum power generation of group j in time t (MWh), Pj is the maximum capacity of thermal

group j (MW), Sdrj is the shutdown ramp limit of group j (MWh), Ruj is the ramp up limit of group j (MWh),

Surj is startup ramp limit of group j (MWh), Pj is the minimum capacity of thermal power group j (MW) andRdj

is the ramp down limit of group j (MWh)(see Arroyo and Conejo (2004)).

Minimum up and down time of thermal power groups

Minimum Up and Down time constraints enforce the feasibility of system in terms of proper technical operation of

units. Once a shutdown is verified the group must remain off for a certain period of time as well as if startup happens,

the group must remain working over a certain time period. Equation (3.3.14) and (3.3.15) ensure then operation

feasibility in terms of minimum up and minimum down time constraints, respectively.

∑
i∈i≤UTj

vt+i,j ≥ UTj × (vt,j × (1− vt−1,j)) (3.3.14)

∑
i∈i≤DTj

1− vt+i,j ≥ DTj × (1− vt,j)× (vt−1,j) (3.3.15)

where UTj is the minimum up time of thermal group j andDTj is the minimum down time of thermal group j.

Large Hydro Constraints

For the large hydropower plants with reservoir, constraints regarding the expected storage and production capacity for

each hour of planning period are considered in the model. The following equations relate the reservoir level for the

hour t in terms of the previous reservoir level, inflows, and consumption. Two sets of constraints appear due to the

need of consider an initial reserve for the first hour of the planning period.

reservet = Inflowst + (ηp × ppumpt)− phdt + Ir t = 0 (3.3.16)
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reservet = Inflowst + (ηp × ppumpt)− phdt + reservet−1 ∀t ∈ T \ {0} (3.3.17)

where reservet is the reservoir level on hour t of the planning period, Inflowst is the hydro inflow on hour t

of the planning period, Ir is the initial reserve of reservoir on hour 0 of planning period and ηp is the efficiency of

pumping units.

Additional upper and lower bounds must be used to define maximum and minimum reservoir levels as well as the

maximum power output of these units that must be less or equal to groups capacity. The following set of equations

represent these constraints.

reservet ≤ reservemax (3.3.18)

reservet ≥ reservemin (3.3.19)

phdhd,t ≤ Phd
(3.3.20)

where reservemax and reservemin are the maximum and minimum reservoir level allowed, respectively andPhd

is the maximum power capacity of hydropower unit with reservoir.

The next set of constraints makes the production of run-of-river power plants equal to the installed power, taking

into consideration the availability of these units. This type of plants are characterized by its reduced storage capacity.

phrt = ϕhr,t × Phr (3.3.21)

where ϕhr,t is the run–of–river units availability in hour t that is strongly season dependent.

Pumping Constraints

For the mathematical formulation of the operation of hydropower plants with pumping capacity, two reservoirs must be

taken into account. The upper one storages water from inflows and from pumping itself, while the lower one storages
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water already used for electricity generation that later may be pumped again to the upper level. Again two set of

constraints are necessary to model the initial pumping reserve for the first hour of planning period.

Preservet = phdt − (ηp × ppumpt) + PIr t = 0 (3.3.22)

Preservet = phdt − (ηp × ppumpt) + Preservet−1 ∀t ∈ T \ {0} (3.3.23)

where Preservet is the reserve of the pumping storage hydropower plant in hour t, PIr is the initial reserve of

lower reservoir for instance t = 0.

The set of three next constraints representing the upper and lower bounds on the pumping reservoir and the

maximum output production of pumping units, must also be included to ensure reliability of the system. These are

represented by the following constraints.

Preservet ≤ Preservemax (3.3.24)

Preservet ≥ Preservemin (3.3.25)

ppumpt,p ≤ Pp (3.3.26)

wherePreservemax andPreservemin are, respectively, the maximum and minimum capacity of lower reservoir

and Pp is the maximum capacity of pumping.

Wind constraints

This constraint ensures wind power generation capacity to be equal to the total installed power taking into account

the wind availability. This constraint is set as an equality assuming that wind power is not subject to dispatch, making
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use of the feed-in tariffs and has priority access to the grid. Wind constraint is described by

pwindt,e = ϕt,e × Pe (3.3.27)

where Pe is the maximum capacity of wind power units (MW) and ϕt,e is the wind availability in hour t.

Security constraints

Power units outages although not being frequent must be considered and prevented. These outages have different

reasons for happen consisting essentially on the power units breakdown and stoppages for maintenance. Furthermore,

suddenly increase of power consumption that may occur must be taken into considerations. Equation 3.3.28 represent

this security constraint for each moment t.

∑
j∈J

(
Pj − ptt,j

)
+
∑

hd∈Hd

(
Phd

− phdt,hd

)
+
∑

hr∈Hr

(
Phr − phrt,hr

)
≥ Dt × α (3.3.28)

where α is the parameter that will ensure the reliability of the system and usually represent 10%.

3.4 Model implementation and results analysis

3.4.1 Case study

The optimization model previously described was designed with the final aim of being used for a typical unit com-

mitment problem in the analysis of a mixed hydro-wind-thermal power system. For this case study, a typical system

encompassing all the electricity power generation technologies referred above was considered, highlighting the im-

pacts that an increase wind power capacity have in the system. The particular case of the Portuguese electricity

system was selected as representative of an example of this technology mix.

The Portuguese electricity system comprises essentially large thermal and hydropower plants in two different

regimes: the ordinary regime production (ORP) encompasses thermal and large hydropower plants while the special

regime production (SRP) encompasses renewable energy sources except large hydropower plants. The investment in

new technologies, essentially wind power, is increasing due to environmental and social concerns along with the need

to reduce the external energy dependence. According to WWEA (2011) in 2011, Portugal occupied the tenth world
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position in wind power capacity with 3960 MW installed, from which 260 MW were installed during the first half of

2011. This corresponds to 21% of total installed power of Portuguese national system and 17% of the total electricity

production REN (2012). According to REN (2011), even despite of the 3.2% decrease in the Portuguese electricity

consumption in 2011, an increasing trajectory of wind power is expected to keep on at least until 2022. In what

concerns ORP, in 2011, a reduction of 27% of total hydropower production was observed totaling 10808 GWh, with a

hydraulic productivity index (HPI)1 of 0.92, against 14869 GWh of 2010 with a HPI of 1.31. On the contrary, thermal

power groups production experience an increase of 12%, totaling 19435 GWh against the 17299 GWH of 2010. This

variability is quite informative of the changes on production that power plants, highly dependent of climate conditions,

can bring to the system.

Weather conditions and seasonality will influence the power output in each year and consequently, will have

an impact on electricity system operation and on the thermal power units generation performance. Figure 3.1 and

3.2 demonstrate the variability of the wind and run–of–river hydro production for January and August2. As may be

observed, the production of both wind and hydropower plants is much higher during winter (in January) than during

summer (in August), due to the availability of the underlying resources. In fact in 2011, during the winter, RES

production represented approximately 66% of the total electricity demand but during summer this share was only

24%. This demonstrates the need to analyze the short-term scheduling of the electricity system considering a large

share of RES.

In order to reduce the complexity of the analysis, a closed system was assumed and the imports and exports

were not accounted in the optimization process. This way, the analysis will look for optimal electricity plans to meet

the internal demand at minimum generation cost.

3.4.2 Simulation process

According to Jonghe et al. (2012), although linear programming (LP) models have been successfully used because

of their ability to model large problems, mixed integer programming models must be used when binary variables

are associated with investment projects or non-convexities, such as minimum run levels and minimum up – and

downtimes.

1Ratio between the hydropower production during a time period and the hydropower production that would be expected for the same

period under average hydro conditions.
2Availability used as a proxy of the variability of the resource measured as power output/ maximum capacity.
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Figure 3.1: Hourly production of run–of–river power units in January and August 2011 weeks [Own elaboration from

REN data].
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Figure 3.2: Hourly production of wind power units in January and August 2011 weeks [Own elaboration from REN

data].
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The previous described model is applied to the Portuguese case with a time horizon of one week. A total of 31

different thermal power units, mostly comprising coal and gas, were considered, corresponding to the Portuguese

system in 2011. A single-objective problem described in equations (3.3.1)– (3.3.28) assumes a hourly time step,

allowing to get an more accurate representation of all technical characteristics of power units, resulting in a mix

integer nonlinear optimization problem (MINLP) with 16633 continuing variables, 5208 integer variables, 48889

equation constraints, 579261 non-linearities and 183592 nonzeros modeled in GAMS code (GAMS, 2011). The

AlphaECP solver was selected to obtain the numerical results reported herein. Other optimization solvers were tested,

but were unable to provide a satisfactory answer, either in time or final objective function value. The numerical results

were obtained in a Microsoft Windows operating system using a 2.3GHz Pentium i5 computer with 4GB of memory.

Besides the installed wind power and the different fossil fuel units the model assumes two different types of hy-

dropower technologies, the large hydropower units with reservoir and the run–of–river units. Hydro pumping units

were also included in the model. The simulation was conducted assuming five different scenarios, each one represent-

ing five levels of wind capacity going from the base scenario with 4080 MW until an maximum increase of 50%, and

demand forecasts for the year 2020. Both Table 3.1 and Table 3.2 describe the case study in terms of installed power

and scenarios used. In the case described on Table 3.2, scenarios were created having into account the possible

increase of the wind power capacity.

The behavior of an electricity system comprising high penetration of renewables can be strongly influenced by

the climatic conditions of the different seasons of the year. Table 3.3 presents the average values of hydro and wind

availability and the demand for each season since 2009 for the Portuguese power system. Analyzing this table is

possible to conclude that the demand tends to be higher in the winter. It is also during this season that both hydro

and wind availability are higher. On the contrary, it is on the summer that both hydro and wind power availability are

lower. Moreover, the electricity demand in summer is close to the demand in Autumn and higher than the demand

in Spring, which due to the lower hydro availability can create additional difficulties in the scheduling of the power

system.

Due to the complexity of the model, this work uses as parameters the data of 4 typical weeks, corresponding

each one to a typical season of the year. The objective is to minimize the total costs of the system, and to analyze

the behavior of all thermal and hydropower units over all four representative weeks of the seasons for all scenarios

presented in Table 3.2. The predicted wind and hydropower output were obtained from the hourly availability factor,

which allowed to take into account the uncertainty and variability of wind and hydropower.
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Table 3.1: Installed power system (Source: REN website).

Technology Number of Installed Power

power groups per technology (MW)

Thermal Power

Coal 8 1820

Gas 15 4033

Fuel 8 1145

Total - 31 6998

Hydropower
Run-of-rivers - 2583

Large hydropower units - 2649.8

Total - - 5232.3

Wind Power - - 4080

Pumping - - 1053.3

Table 3.2: Case study scenarios.

Wind power (MW)

Base scenario 4080

+20% 4896

+30% 5304

+40% 5712

+50% 6120

87



Table 3.3: Seasonal characteristics of the Portuguese electricity system 2009–2011 (Source: Own elaboration

using REN data).

2011 2010 2009

Demand Hydro Wind Demand Hydro Wind Demand Hydro Wind

(MW) avail. avail. (MW) avail. avail. (MW) avail. avail.

Winter (week 1) 6349.4 51% 31% 6515.2 61% 37% 6136.4 39% 28%

Spring (week 2) 5496.9 33% 22% 5536.1 47% 26% 5293.3 17% 21%

Summer (week 3) 5575.4 11% 23% 5830.3 18% 18% 5522.0 10% 20%

Autumn (week 4) 5684.4 24% 29% 5979.4 23% 31% 5837.6 17% 34%

Average/year 5776.5 30% 26% 5965.3 37% 28% 5697.3 21% 26%

3.4.3 Numerical results

The results obtained considering all scenarios are presented in Table 3.4. Analysing both Table 3.4 and Figure 3.3,

it is possible to observe that for an increasing level of wind power generation, both the average cost and average

CO2 emissions tend to decrease. Comparing the base scenario with the scenario corresponding to an increase

of 50% of wind power, it is possible to observe a reduction of 38%, 22%, 11% and 15% on the estimated cost of

the system for a typical week in winter, spring, summer and autumn respectively. The costs reduction experienced in

winter and spring weeks are more significant due to the weather conditions, more favorable to wind and to hydropower

production, in these seasons. Clearly, the same happens when considering the production cost per MWh. For example,

for the winter week a reduction from 14.8 e/MWh to 9.1 e/MWh have occurred between the base scenario and

the wind +50% scenario. This reduction can be explained by the increase of electricity generation provided by wind

power, characterized by no fuel costs and lower costs of operation and maintenance when comparing with traditional

fossil fuel generation units. Another consequence of the increase of electricity generation provided by wind power is

the reduction of CO2 emissions. In addition to the non fuel costs and lower costs of operation and maintenance

associated to wind power, these are also free of CO2 emissions. An increase of wind production will then result in a

reduction of the CO2 emissions. Table 3.4 shows this reduction trend.

The behavior of the different technologies can be seen in figures 3.4 – 3.7. Observing both Figure 3.4 and
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Figure 3.5 the reduction verified in the production provided from thermal power units is evident. This reduction is even

more notorious for the CCGT power units, when comparing with coal power units, due to the technical characteristics

of the both technologies. While coal units work as base load units, CCGT units are more flexible, being able to be online

for a shorter time period and even fastest then coal power units. This means that CCGT units are used mostly during

peak and close to peak hours, as can be seen in Figure 3.5 for example during the period between hours 6 and 27 of

the planning period. During this period wind power registed lower generation values, promptly compensated by CCGT

units. On the other hand, observing Figure 3.6 and Figure 3.7 it is possible to verify the lower electricity generation

provided by wind and hydropower units, resulting from the lower availability of wind and hydro resources during the

summer. This increases significantly the total cost of the system, even considering lower demand comparatively with

the other seasons. As can be seen in both figures, coal and CCGT units will need to compensate renewable resources

shortage to meet the demand imposing higher fuel and operation and maintenance costs.

Besides the coal, CCGT and fuel power units, the large hydropower units have an important role in the scheduling

process. During seasons with higher hydro inflows and together with wind power, hydropower units contribute to

reduce the cost of electricity generation through the reduction of the electricity provided by thermal power sources.

Comparing the results of the winter and summer simulations presented in figures 3.5 and 3.7, the importance of the

availability of RES resources and in particular of hydro becames evident. During summer hydropower contributed to

4.03% of the total output against 32.56% during the winter. As for wind, its contribution was 21.23% in the summer

and increased to 34.96% in the winter. The shortage of hydro and wind resources is compensated by thermal power

plants, contributing with 59.78% of the power production during the summer and only 17.54% during the winter.

On the other hand hydropower units are flexible and so, together with CCGT power units are capable to suppress

curtailment of wind power generation. Figures 3.6 and 3.7 demonstrate the importance of hydropower even during

the summer, with large dams output compensating moments with high demand and low wind. This is can be observed

for example during 55 – 65 hours in Figure 3.6 and 105 – 115 hours in Figure 3.7.

The variability of the electricity generation is well evidenced in all figures 3.4 – 3.7. Figures 3.8, and Figure 3.9

represent the load factor3 and the utilization factor4 of thermal power units when facing increasing levels of wind power

in the system. Analayzing Figure 3.8, is possible to verify that during the summer and autumn the thermal units load

factor is higher. This coincide with the lower availability of renewable resources. Coal power plants work mainly as

3Measure of the electricity produced at power plant compared to the maximum possible output in a time period.
4Measure of the working hours of a power plant compared to the maximum number of hours possible.
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Table 3.4: Optimal objective functions solutions.

Cost Marginal Cost CO2 Emissions Startups

(e) (e/MWh) (ton/MWh)

Base Scenario

Week 1 (Winter) 19.486.812,22 14.8 0.175 129

Week 2 (Spring) 23.101.719,29 18.8 0.262 99

Week 3 (Summer) 34.658.326,21 31.6 0.379 52

Week 4 (Autumn) 29.592.443,86 26.9 0.343 60

20% increase

Week 1 (Winter) 15.980.853,11 12.1 0.161 116

Week 2 (Spring) 20.814.419,08 16.9 0.246 95

Week 3 (Summer) 33.154.141,98 30.2 0.369 62

Week 4 (Autumn) 27.712.873,14 25.2 0.327 56

30% increase

Week 1 (Winter) 15.310.537,48 11.6 0.144 118

Week 2 (Spring) 19.617.704,96 15.9 0.235 76

Week 3 (Summer) 32.885.106,64 29.9 0.367 105

Week 4 (Autumn) 27.051.093,74 24.6 0.321 97

40% increase

Week 1 (Winter) 13.578.053,12 10.3 0.133 83

Week 2 (Spring) 19.677.475,79 15.9 0.229 125

Week 3 (Summer) 31.970.882,98 29.1 0.360 105

Week 4 (Autumn) 27.310.160,46 24.9 0.325 109

50% increase

Week 1 (Winter) 12.001.397,79 9.1 0.119 54

Week 2 (Spring) 18.013.913,39 14.6 0.211 107

Week 3 (Summer) 30.980.476,08 28.2 0.350 75

Week 4 (Autumn) 25.023.238,29 22.8 0.304 67
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Figure 3.3: Cost and CO2 results for different wind power scenarios
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Figure 3.4: Power production for base scenario in a Winter week
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Figure 3.5: Power production for 50% wind power increase in a Winter week
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Figure 3.6: Power production for base scenario in a summer week
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Figure 3.7: Power production for 50% wind power increase in a summer week

base load and their load factor tend to be high for all the scenarios, even reaching full load in base scenario and

scenario +20% during the summer. In general, the load factor tends to decrease, even if slightly in some cases, as

the wind capacity increases. The utilization factor tends to be higher than load factor in seasons with more renewable

resources which means that each thermal unit tends to be working more hours but at lower load factor.

All these findings can be confirmed more easily through the figures 3.10 – 3.13. The relation between load factor

and utilization factor is clearly influenced by the increase of wind power and also by the different characteristics of the

seasons of the year. Comparing both figures 3.10 and 3.11 with figures 3.12 and 3.13 the higher load and utilization

factors of the thermal units during seasons with lower values of wind electricity generation is evident. According to the

results, the increase of wind power will impact the utilization and load factors of all thermal power plants. However,

and as expected CCGT will experience the strongest reduction on their output due to their technical characteristics

but also due to their highest fuel costs. The results also show that an increase of wind power generation will not

replace the hydropower generation. This can be seen by the slight increase of the hydropower load factor as the wind

capacity increases. Notwithstanding, the impact on coal is also evident specially during the winter season. As for

fueloil, although the figures show some changes the importance on the overall system is reduced, as fueloil power

output represents only between 0% and 2.97% of the total production for the assumed scenarios.

Other aspect that strongly influences the behavior of the power units and by this way the cost of the system, is
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Figure 3.8: Thermal power units load factor

 

0,0%

10,0%

20,0%

30,0%

40,0%

50,0%

60,0%

70,0%

80,0%

90,0%

100,0%

Coal Gas Fuel Coal Gas Fuel Coal Gas Fuel Coal Gas Fuel Coal Gas Fuel

0% 20% 30% 40% 50%

U
ti

liz
at

io
n

 f
ac

to
r 

(%
) 

Wind power  capacity 

Winter Spring Summer Autumn

Figure 3.9: Thermal power units utilization factor
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Figure 3.10: Load factor VS utilization factor for a Winter week

the number of startups and shutdowns of thermal power plants. Figures 3.14 – 3.17 show that no linear trend can

be derived. In fact, although the number of startups seem to be higher in large wind power scenarios, during the

winter period for example the startups of the gas power plants reduce with increasing wind power levels. During the

summer, the number of startups of CCGT is more sensitive to the increase of wind power, which can be related to the

low of hydro availability, reducing the dam possibilities of compensating wind variability.
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Figure 3.11: Load factor VS utilization factor for a Spring week
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Figure 3.12: Load factor VS utilization factor for a Summer week

96



 

0%

20%

40%

60%

80%

100%

120%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 10% 20% 30% 40% 50%

Lo
ad

 f
ac

to
r 

(%
) 

U
ti

liz
at

io
n

 f
ac

to
r 

(%
) 

Wind power increase 

Coal U. factor Gas U. factor Fuel U. factor Dams U. factor

Coal load factor Gas load factor Fuel load factor Dams load factor

Figure 3.13: Load factor VS utilization factor for a Autumn week
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Figure 3.14: Startups for a Winter week
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Figure 3.15: Startups for a Spring week
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Figure 3.16: Startups for a Summer week
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Figure 3.17: Startups for a Autumn week

3.5 Conclusions

This paper analyzes the short-term electricity power generation scheduling also known as unit commitment problem.

For this, one optimization model was presented and adapted to the characteristics of the system under study aiming

to analyse the impact of increasing wind power scenarios in a systems containing hydro, wind and thermal power

plants.

From the solution of the optimization model and assuming the described departing conditions, the results indicate

that as the wind power capacity increase the overall marginal cost of the system tend to decrease. These results are

explained by the lower RES costs of operation and maintenance comparatively to traditional fossil fuel power plants.

The same way, being the wind power free of CO2 emissions the results also confirms the reduction of the CO2

emissions, as wind capacity increases.

Another important aspect is the fact that for all the scenarios, the lower production costs and CO2 emissions

are always achieved during the winter period. Although this season presents the higher electricity demand it is also

the one with higher wind and hydro availability. On the contrary, during the summer period both the wind and hydro

availability are lower, leading to higher thermal power production and causing an increase on the marginal costs and

CO2 emissions of the system. This demonstrates the impact and importance of analyzing the seasonal behavior of
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resources and consumption during electricity power planning.

The results also shows that coal power units will work as base load units while gas and hydropower units, being

more flexible, will frequently be required to work as peak load units. As such, the increase of wind capacity is expected

to have a major impact on the gas units. This is reflected in the increase number of startups of these power units

caused by the variability of the electricity generation provided by wind power. In addition to the increase number of

startups, a decrease on the production of electricity provided by CCGT is observed for increasing wind power scenarios.

It is also important to note that the changes on the load factor of the fueloil units is practically negligible for this study

as fuel power output represents at most 3% of the total electricity production. The results also show that an increase

of the wind power generation will not replace the hydropower generation. This can be seen by the slight increase of

the hydropower load factor as the wind capacity increases.

Analysing all results becomes evident the complexity faced by all grid managers. The results comprove the fact of

the increasing variability and unpredictability of wind power generation, frequently originate that thermal power plants

will experience an increasing number of startups, ramping and periods of operation at low load levels. Thus, no linear

trend can be derived. In fact, although the number of startups seems to be higher for large wind power scenarios,

during the winter period for example the startups of the gas power plants reduce with increasing wind power levels.

During the summer, the number of startups of CCGT is more sensitive to the increase of wind power, which can be

related to the low of hydro availability, reducing the dam possibilities of compensating wind variability. Regardless of

these technical impacts, the main results of the analysis put in evidence the importance of wind power as strategic

technology to reduce both the marginal cost and CO2 emissions of this electricity system.
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Chapter 4

A simplified optimization model to short-term

electricity planning

Paper submitted for publishing in international journal in March 2015 as Sérgio Pereira, Paula Ferreira, and A.I.F.

Vaz. A simplified optimization model to short-term electricity planning.

ABSTRACT

Short-term optimization models, usually applied to traditional problems like unit commitment (UC) and economic

dispatch problem, are essential tools for the planning and operation of power systems. However, the large number of

variables and restrictions, necessary for a good andmore accurate representation of any electricity system, require high

computational resources, frequently resulting in high computation times. This study proposes a simplified approach

of a model for the electricity planning of power plants allocation based on the available resources. The proposed

model resources to quadratic penalty functions to replace the unit on/off binary variables frequently included in the

UC problem. The approach is then supported on a non-linear optimization model able to solve this electricity planning

problem in shorter computation times, with solutions close to the ones obtained with more complex models. The

model is fully described and tested under different scenarios of an electricity system comprising thermal, wind, and

hydropower plants. The results were compared to the ones obtained with a more complex model, analysing the main

differences obtained for cost, CO2 emissions, and thermal power groups commitment. The major advantage of the
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simplified model comes from the computational time needed for state-of-the-art optimization solvers to provide an

optimal solution, comparatively to mixed integer models.

Keywords: Electricity planning, short-term planning, renewable energy sources, thermal power plants.

Nomenclature

SETS

T - Set of the time period (h) J - Set of all thermal power groups

C - Set of all coal power plants G - Set of all gas power plants

PARAMETERS

CV OMhd
- Variable O&M cost of hydropower plants (e/MWh) CV OMhr - Variable O&M cost of run–of–river power plants (e/MWh)

CV OMp - Variable O&M cost of pumping power plants (e/MWh) CV OMe - Variable O&M cost of wind power plants (e/MWh)

CV OMj - Variable O&M cost of thermal power group j (e/MWh) Cpp - Pumping cost (e/MWh)

Fj - Fuel cost (e/MWh) EC -CO2 emissions allowance costs (e/ton)

CO2j
-CO2 emissions factor of thermal power plant j (ton/MWh) CSdj - Shutdown cost of thermal power plant j (e)

ColdSj - Cost of cold startup of thermal power plant j (e) HotSj - Cost of hot startup of thermal power plant j (e)

Nj - Time necessary for a cold startup in hours

VARIABLES

Ct,j - Total cost of thermal power group j in hour t (e) Sut,j - Startup cost of thermal power group j in hour t (e)

Sdt,j - Shutdown cost of thermal power group j in hour t (e) phdt - Power output of large hydropower plants in hour t (MWh)

phrt - Power output of run–of–river power plants in hour t (MWh) ppumpt - Power output of pumping power plants in hour t (MWh)

pwindt - Power output of wind power plants in hour t (MWh) ptt,j - Power output of thermal power plants j in hour t (MWh)

vt,j - Binary variable that is 1 if thermal power group j is on in hour t or 0 if it is off Lc(t) - Load factor of coal power groups (MW)

Lg(t) - Load factor of gas power groups (MW) ac, bc, cc - Coefficients of coal quadratic curves

ag, bg, cg - Coefficients of gas quadratic curves Pj - Maximum capacity of thermal power plant j

4.1 Introduction

The increase of Renewable Energy Sources (RES) technologies characterized by its variable output, and frequently with

priority access to the grid, can contribute to the increasing number of startups and shutdowns of thermal power plants

and also enforcing ramping, due to possible disruptions or low load conditions operation (Troy et al., 2010; Jonghe

et al., 2012). Modern electricity power generation systems own a high level of complexity, usually with a high set

of thermal power plants combined with RES power plants and giving rise to a large number of technical constraints.

Short-term optimization models, usually applied to traditional problems like UC and economic dispatch problem,

arise as essential tools for the planning and operation of power systems. These tools can also be used to support

energy decision making, allowing to test the expected outcomes of different electricity scenarios. However, due to the
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complexity associated to these problems, the translation of these problems in a computational language becomes a

hard task. The large number of variables and restrictions, necessary for a good and more accurate representation of

any electricity system turns the code complex and highly computational resource consuming.

The basic goal of the UC problem is to properly schedule the on/off states of all the generation power plants in

the system. Further on, the optimal UC should meet the predicted load demand, plus the spinning reserve requirement

at every time interval minimizing the total cost of production (Senjyu et al., 2003; Şima Uyar et al., 2011). According

to Hobbs (1995), traditional UC and economic dispatch problems usually requires short-term periods of time. Time

periods ranging from one to ten minutes or eight hours to one week for economic dispatch and UC problem respectively

are example of time periods addressed in short-term optimization models.

UC plays an important role in the economic operation of the entire power system. In fact, a diversity of tech-

nics have been applied over the time to solve this problem. Technics such as, Bender’s decomposition (Bertsimas

et al., 2013), differential evolution (Mandal and Chakraborty, 2009), evolutionary algorithms (Georgopoulou and Gi-

annakoglou, 2009), genetic algorithms (Dhanalakshmi et al., 2013), Lagrangian Relaxation (Frangioni et al., 2011),

MILP optimization (Viana and Pedroso, 2013), particle swarm optimization (Jeong et al., 2010), simulated anneal-

ing (Saraiva et al., 2011) and stochastic optimization (Wang et al., 2013) are examples of mathematical approaches

used to solve the UC problem. For example in Mandal and Chakraborty (2009), both economic and environmental

concerns are considered for the problem of short-term scheduling, resulting in a multi-objective problem. To solve the

problem an algorithm based on differential evolution is used and a price penalty factor is considered, transforming

the problem into a single objective one. Also Georgopoulou and Giannakoglou (2009) present in their work a multi-

objective short-term scheduling problem with stochastic demand data. However, in this particular case, a evolutionary

algorithm method is considered. Other interesting work is for example the work presented in Viana and Pedroso

(2013). Instead of presenting a typical large-scale MINLP to solve the UC problem, the authors present a simplified

approach by the mean of a piecewise linear approximations, transforming the MINLP into a MILP.

The, objective of this work is twofold. Firstly, a simplified model for the UC problem is presented with the final goal

of reducing the complexity traditionally present in these models and computational tools, resulting in less computation

time to get an optimal solution. A nonlinear quadratic problem (NLQP) resorting to penalty functions to replace the unit

on/off binary variables is therefore proposed in this paper. Secondly, a comparison between the presented model

and a more complex one, detailed in Pereira et al. (2014) is presented. The comparison will be made in terms of the

obtained costs, CO2 emissions, thermal power plants commitment, and the total simulation time needed. For this,
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an analysis of a case study representative of a electricity system comprising thermal, wind, and hydropower plants

is addressed. The selected case study corresponds to an electricity system close to the Portuguese one. Foreseen

load demand and SRP (Special Regime Producers, representing renewable and cogeneration non subject to dispatch)

production data for the year 2020 is considered. Simulations were conducted assuming three different scenarios,

each one representing different levels of wind capacity. The seasonality of both hydro and wind power recourses is

considered, as the models are compared under four typical weeks, each one representing a season of the year, with

hourly time step (0–167h).

This paper is organized as follows. First, section 4.2 will present an overview of the proposed simplified model. All

simplifications in relation to the more detailed and complex model proposed in Pereira et al. (2014) will be presented

and analyzed. In section 4.3 a comparison between the results obtained with both models will be described. For

this comparison, the simplified model will be applied to the specific case study of a thermal, hydro, and wind power

electricity system described in Pereira et al. (2014), analysing in particular the model usefulness to test different

wind power scenarios aiming to support energy decision making. Finally, conclusions are stated in the last section,

section 4.4.

4.2 Short-term electricity planning: a simplified approach

According to Jonghe et al. (2012), although linear programming (LP) models have been successfully used because of

their ability to model large electricity generation mix problems, mixed integer programming models must be used when

binary variables are associated with investment projects or non-convexities, such as minimum run levels and minimum

up and downtimes of thermal power plants. However, when dealing with problems of high dimension, the use of binary

variables can lead to difficulties in terms of computational effort and consequently in obtaining an optimal solution

in reasonable time. In order to reduce these difficulties, some changes to the model previously proposed in Pereira

et al. (2014) are introduced. These changes encompasses the removal of the binary variables and the consideration

of quadratic curves for fuel and emissions costs, aiming to penalize both the operation of thermal power plants at

reduced load factors and the startups. It is expected that this penalty can avoid the use of binary variables associated

to minimum up and down time of thermal power groups, ramp considerations, and startup and shutdown restrictions

in Pereira et al. (2014), without severally compromising the quality of the results.

Usually, the fuel cost per unit of output (specific fuels costs, e/MWh), in any given time interval, is given as a
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function of the generator power output or load factor and is represented by a quadratic function. In the specific case

of this work, the curves considered for the representation of the fuel andCO2 emissions costs are a function of each

generator load factor. Both the assumed gas and coal fuel curves can be seen in Figure 4.1.
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Figure 4.1: Coal and gas fuel cost curves.

The same assumptions were considered for the CO2 emissions cost curves (specific emission factors, t/MWh).

Figure 4.2 shows precisely the behavior of both coal and gas emissions cost curves as the generator load factor

increase.

The previously proposed model presented in Pereira et al. (2014) is represented by a single objective function,

corresponding to the minimization of the operational costs. This objective function is set up by the sum of the variable

costs of the electricity system, encompassing the variable operation and maintenance (O&M) costs, fuel and pumping

costs (hydro),CO2 emission allowance costs, and shutdown and startup costs for each thermal group. Moreover, for

both fuel costs and CO2 emissions of thermal power groups, average values were assumed. The objective function

is measured in e and was defined in equation (4.2.1), further defined in equations (4.2.2 - 4.2.5).

∑
t∈T

∑
j∈J

[Ct,j + Sut,j + Sdt,j] +
∑
t∈T

[(CV OMhd
× phdt) + (CV OMhr × phrt)+

(Cpp × ppumpt) + (CV OMp × ppumpt) + (pwindt × CV OMe)] (4.2.1)
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Figure 4.2: Coal and gas CO2 emissions curves.

with,

Ct,j =
[
Fj + CV OMj + (CO2j × EC)

]
ptt,j (4.2.2)

Sdt,j = CSdj × (vt−1,j × (1− vt,j)) (4.2.3)

Sut,j = ColdSj (vt,j × (1− vt−1,j))×
∏

n=1→Nj

1− vt−n,j (4.2.4)

Sut,j = HotSj (vt,j × (1− vt−1,j))×

1−
∏

n=1→Nj

1− vt−n,j

 (4.2.5)

In what concerns to the proposed model simplification, the original objective function described in equation (4.2.1)

and equations (4.2.2 - 4.2.5), were replaced by a single new objective function described in equation (4.2.6). The main

differences resulting from this change are therefore evident an encompasses the inclusion of the quadratic penalty

functions and consequently the removal of binary variables.
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∑
t∈T

∑
g∈G

[
ag(Lg(t))

2 + bg(Lg(t)) + cg
]
×ptt,g+

∑
t∈T

∑
c∈C

[
ac(Lc(t))

2 + bc(Lc(t)) + cc
]
×ptt,c+

∑
t∈T

∑
g∈G

[
ag(Lg(t))

2 + bg(Lg(t)) + cg
]
× EC × ptt,g +

∑
t∈T

∑
c∈C

[
ac(Lc(t))

2 + bc(Lc(t)) + cc
]
×

EC × ptt,c +
∑
t∈T

∑
j∈J

[CV OMj × ptt,j] +
∑
t∈T

[CV OMhd
× phdt] +

∑
t∈T

[CV OMhr × phrt] +
∑
t∈T

[(Cpp × ppumpt) + (CV OMp × ppumpt)] +∑
t∈T

[(pwindt × CV OMe)] (4.2.6)

Aside from changes in the objective function, other assumptions were taken into account to the simplification of

the model. The minimum up and downtime constraints, presented in Pereira et al. (2014) were not considered in the

simplified approach. The absence of these two constraints is assumed to be compensated by the quadratic function

for fuel consumption and CO2 emissions, penalizing a large number of startups and with this keeping the up and

down times in a reasonably limit. Observing both figures 4.1 and 4.2, it is possible to verify that for lower values of

load factor, costs, and CO2 emissions tend to be higher. Usually low load factor values are registered during startup

and shutdown periods or periods of high RES power output. In this last case, thermal power plants must decrease

their power output with negative impacts on their efficiency. Under these conditions specific cost andCO2 emissions

of these plants may tend to increase. The inclusion of quadratic functions in the optimization model is expected to

penalize both low load factor operation and frequent startup/showdown operations. Thermal power plant will then

tend to operate at high load factor values, increasing its efficiency, reducing costs, and also the number of startups

and shutdowns which should result in longer operating periods.

The last change comparatively to Pereira et al. (2014) is related to the ramping constraints. According to Simoglou

et al. (2010, pg. 1967), ramps “restrict the capability of a thermal unit to increase/decrease its output

over any two successive time periods that the unit is either in the dispatchable phase, or involved in a

startup or shut-down procedure”. Pereira et al. (2014) model, resorted once more to the use of binary variables

to deal with the ramps constraints. For a simplification propose, the solution adopted in order to minimize the loss of

exactitude was the assumption of a maximum variation of production, 30%, between two consecutive periods of time.
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These assumptions result in equations (4.2.7) and (4.2.8) for ramp up and ramp down respectively.

ptt,j − ptt−1,j ≤ 0.30× Pj (4.2.7)

ptt−1,j − ptt,j ≤ 0.30× Pj (4.2.8)

4.3 Analysis of the results

The proposed model described in section 4.2 was coded in GAMS (2011). MINOS solver, that is interfaced with GAMS,

was selected to obtain the numerical results reported herein. In this section a comparative analysis between Pereira

et al. (2014) short-term model and the proposed simplified model will be discussed. This comparative analysis will

be focused mainly on costs, CO2 emissions, and number of startups and the total simulation time needed for

both models. A case study representing a system with high reliance on wind, hydro and thermal power is used to

proceed with the comparison. Four typically weeks were considered, as described in Pereira et al. (2014): week 1

corresponding to a winter week, week 2 representing a spring week, week 3 representing a summer week, and week 4

representing an autumn week. For each week, hourly time step (0–167h) was considered, describing the typical data

characteristics of the season, more properly, demand profiles and wind and hydro availability. Also, different wind

scenarios are considered departing from the base scenario corresponding to a total installed wind capacity of 4080

MW and assuming a 20% and 50% increase over this initial value. The simplification process results in a deterministic

nonlinear quadratic optimization problem (NLQP) instead of the mixed integer nonlinear optimization problem (MINLP)

in Pereira et al. (2014).

The results obtained by running both models are described in Table 4.2. Table 4.3 represents the relative dif-

ference between the models for cost, CO2 emissions, and number of startups. In a general way, and as shown in

both figures 4.3a and 4.3b, the main difference when comparing both models is related with the higher load factor

of both coal and CCGT power groups for simplified model, resulting in an increase, even that slight, of global thermal

generation. This is particularly evident for CCGT for the base case scenario. As for the utilization factor, described

in figures 4.4a and 4.4b, the simplified model seems to converge to solutions relying less in the utilization of coal

power plants. This means that the simplified model tend to be characterized by the search for solutions ensuring that
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Table 4.1: Installed power system (Source: REN website).

Technology Number of Installed Power

power groups per technology (MW)

Thermal Power

Coal 8 1820

Gas 15 4033

Total - 23 5853

Hydropower
Run-of-rivers - 2583

Large hydropower plants - 58423

Total - - 84256

Wind Power - - 4080

Pumping - - 1053

thermal power plants will be operating at high load factor levels even if they operate during a smaller number of hours.

This can be explained by the use of quadratic characteristics curves for thermal power plants, penalizing the operation

at low load factors.

The differences obtained between both models on costs and CO2 emissions are mainly justified by the relative

use of coal and natural gas and the higher or lower number of startups. Although the simplified model does not

specifically include startup costs as model parameters, the use of quadratic curves penalize these startups. In fact,

equation (4.2.7) restricts the capability of a thermal power plants to increase its output over any two successive time

periods, meaning the starting up will impose lower load factors and consequently higher costs.

For example, for the 50% wind scenario, week 1 (winter) the simplified model converges to a solution presenting

a higher load factor for coal but with lower utilization ratio. As for gas, although the load factor is lower its utilization

ratio is considerable higher than the one obtained for the extended model. This increase on CCGT combined with the

increase on the number of startups will result in a slight increase on the marginal cost but also on the reduction of the

CO2 emissions. This reduction on coal power output and increase on CCGT output is evident on figures 4.5a and

4.5b, where it is also possible to see the increase on the number of startups for CCGT. On the opposite for week 3

(summer) the solution of the simplified model is characterized by lower marginal cost, lower number of startups and

lower emissions ofCO2, comparatively to the extended model. In this case, the lower costs seem to come both from

111



Table 4.2: Optimal objective functions solutions.

Pereira et al. (2014) model Simplified model

Marginal Cost CO2 Emissions Number of Marginal Cost CO2 Emissions Number of

(e/MWh) (ton/MWh) Startups (e/MWh) (ton/MWh) Startups

Base Scenario

Week 1 14.8 0.175 129 13.8 0.178 102

Week 2 18.8 0.262 99 18.2 0.251 74

Week 3 31.6 0.379 52 28.2 0.382 37

Week 4 26.9 0.343 60 24.1 0.347 111

20% increase

Week 1 12.1 0.161 116 11,8 0,163 167

Week 2 16.9 0.246 95 16,9 0,232 138

Week 3 30.2 0.369 62 26,8 0,369 64

Week 4 25.2 0.327 56 23,1 0,333 138

50% increase

Week 1 9.1 0.119 54 9,3 0,103 137

Week 2 14.6 0.211 107 15,3 0,178 107

Week 3 28.2 0.350 75 25,7 0,341 53

Week 4 22.8 0.304 67 21,4 0,299 119

the lower number of startups, from the higher load factors obtained for the CCGT and from the higher dams power

output as shown in figures 4.6a and 4.6b.

The same goes for the base case scenario described in figures 4.7 and 4.8, where the lower number of startups

obtained for the simplified model both for weeks 1 and 3 have a clear influence on the resulting lower costs. In

addition, for week 3, dams power output is higher for the simplified model, which also leads to lower marginal costs.

Despite the differences observed in the system behavior between both models, the maximum difference of the

obtained cost values was 12.7% and in most of the simulations this difference was less than 10%. On the other

hand the computational time to obtain a optimal solution was reduced significantly. While the original Pereira et al.

112



Table 4.3: Summary of models comparison for different wind power scenarios.

∆ Marginal Cost ∆ CO2 Emissions ∆ Startups

Base Scenario

Week 1 -7.2% 1.7% -26.5%

Week 2 -3.3% -4.4% -33.8%

Week 3 -12.1% 0.8% -40.5%

Week 4 -11.6% 1.2% 45.9%

20% wind power increase

Week 1 -2.5% 1.2% 30.5%

Week 2 0% -6.0% 31.2%

Week 3 -12.7% 0% 3.1%

Week 4 -9.1% 1.8% 59.4%

50% wind power

Week 1 2.2% -15.5% 60.6%

Week 2 4.6% -18.5% 0%

Week 3 -9.7% -2.6% -41.5%

Week 4 -6.5% -1.7% 43.7%

(2014) short-term model required in average 72 hours to obtain an optimal solution (4 weeks simulation with hourly

time step each one), the simplified model was able to give a solution in approximately 2 minutes. This significant

reduction in time allows the users to perform more detailed analysis of the system with the possible increasing in the

number of scenarios under consideration. Thus, the simplified approach may be used with significant benefits mainly

in what concerns to the computational time effort. This also means that the simplified model is clearly more suitable

for supporting timely decision making although the results of the extended model reflect more reliable and realistic

assumptions for the electricity operational planning.
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(a) Pereira et al. (2014) model
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(b) Simplified model

Figure 4.3: Load Factor.
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(b) Simplified model

Figure 4.4: Utilization Factor.
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(a) Power production for 50% wind power increase in a Winter week (Pereira et al. (2014) model)
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(b) Power production for 50% wind power increase in a Winter week (Simplified model)

Figure 4.5: Winter week with 50% wind power increase simulation results.
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(a) Power production for 50% wind power increase in a Summer (Pereira et al. (2014) model)
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(b) Power production for 50% wind power increase in a Summer week (Simplified model)

Figure 4.6: Summer week with 50% wind power increase simulation results.
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(a) Power production for base scenario in a Winter week (Pereira et al. (2014) model)
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(b) Power production for base scenario in a Winter week (Simplified model)

Figure 4.7: Winter week simulation results.
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(a) Power production for base scenario in a Summer week (Pereira et al. (2014) model)
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(b) Power production for base scenario in a Summer week (Simplified model)

Figure 4.8: Summer week simulation results.
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4.4 Conclusions

This paper propose a simplified approach for the short-term electricity planning. A quadratic penalty function is

introduced with the objective of avoiding the use of binary variables associated to minimum up and down time of

thermal power groups, ramp considerations, and startup and shutdown restrictions. This will result in a deterministic

nonlinear quadratic problem instead of a mixed integer nonlinear one, with significant savings in computational time to

obtain an optimal solution. For the model evaluation, a comparison between the simplified approach and the extended

model presented in literature (Pereira et al., 2014) is proposed.

The obtained results for the comparison between both models put in evidence that, in general, when the simplified

model is applied, the marginal costs of the system tend to decrease comparatively to the extended model. Even with a

small influence, the fact that the simplifiedmodel does not consider the costs associated to the startups and shutdowns,

along with the use of quadratic curves, contributes to this somewhat lower values of the obtained costs. Regarding

the amount of CO2 emissions, the differences between both models are relatively low. In fact, the simplified model

tends to have slightly higher values for CO2 emissions which can come from the lower use of dams in some weeks

and from the lower load factor of coal power plants, resulting in higher emission values. Although in most of scenarios

CO2 emissions are higher in the simplified model, a few weeks present lower values than the ones obtained with the

extended model, which is due to the higher utilization ratio of the CCGT in detriment of coal power.

The major drawback of the simplified model are the required assumptions to avoid the use of the binary variables.

On the other hand, the use of quadratic penalty functions allowed to take into account the operating curves of thermal

power plants and represented possible solution to incorporate restrictions related to the number of startups and

ramping. Therefore, despite not optimal, the simplified model allows to achieve a compromise between the quality of

the electricity system modeling and computational time. In fact, the major advantage of the simplified model, when

compared with the extended model, is with respect to the computational time needed for state-of-the-art optimization

solvers to provide an optimal solution. While simplified and extended models produce close optimal solutions results,

a reduction from 72 hours to 2 minutes was achieved. The simplified model is then considered to be a good option

to perform simulations under a large set of scenarios, supporting the selection of a few of them to be subsequently

analyzed with the extended Pereira et al. (2014) version if further detail is required.
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Chapter 5

Generation expansion planning with high share

of renewables of variable output

Paper submitted for publishing in international journal in March 2015 as Sérgio Pereira, Paula Ferreira, and A.I.F.

Vaz. Optimization modelling to support renewables integration in power systems.

ABSTRACT

In this paper, a new generation expansion planning (GEP) model is presented, aiming to integrate in the GEP

problem the short-term impacts of variable renewable energy sources (RES) on thermal power plants operating per-

formance. A hourly time step for each year of the time horizon is then considered, resulting in a binary mixed integer

non-linear cost optimization model. The proposed model, is then used to design electricity plans for a 10 years plan-

ning period for differentCO2 constrained scenarios for a system supported on thermal, hydro and wind power. These

plans were compared with the ones obtained with a traditional GEP model, assuming average operating conditions

for the thermal power plants. The results demonstrated that RES of variable output has a relevant impact on the

short-term operating performance of thermal power plants, and as such these impacts should not be overlooked for

the design of long-term strategic plans of the electricity sector. In particular, the proposed integrated model showed

that assuming average operating conditions can result on the underestimation of the system cost. This underestima-

tion is more evident for highly CO2 constrained scenarios due to increasing reliance on RES of variable output. The
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proposed integrated approach enables a more realistic computation of the projected system cost andCO2 emissions

that should be considered in the strategic electricity planning.

Keywords: Generation expansion planning; Unit commitment; Renewable energy sources; Optimization prob-

lem.

5.1 Introduction

The investment in new technologies, essentially based on renewable resources is increasing. Fossil fuel resource are

being used at high rate and the uncertainty surrounding the future supply of fossil fuels is a present concern (Shafiee

and Topal, 2009). Besides that, the investment in renewable technologies becomes evident due to the increasing

concerns with the environment (Leung and Yang, 2012). Therefore, and in accordance with Lund (2007, pg. 912),

“sustainable energy development strategies typically involve three major technological changes” in-

cluding energy savings on the demand side, efficiency improvements in the energy production, and replacement of

fossil fuels by various sources of RES.

The commitments that were addressed with the Kyoto protocol were like a lever for the changes in the previous

paradigm. The ambitious targets for electricity generation from renewable energies for Europe, can be seen as impor-

tant mitigation measures in the action against greenhouse gas (GHG) emissions and the threat of large-scale climate

change and global warming. The achievement of these compromises are only possible with the investment on RES,

where wind power is expected to have a major role (Kabouris and Kanellos, 2010). In fact, the large integration of RES,

characterized by their variable output and not subject to dispatch, can bring considerable impacts to the electricity

systems. Frequency and voltage regulation, available transmission capacities to accommodate RES plants, connection

interfaces in the electric power system and also interference on the operational performance of the traditional power

plants such as the increase on the number of startups and shutdowns of thermal power plants and their inefficient

use are some of the challenges brought by RES plants (Kabouris and Kanellos, 2010; Albadi and El-Saadany, 2010;

Pereira et al., 2014).

Formerly the task of the decision makers was to settle the best size, timing, and type of generation power plants,

meting the demand (Hobbs, 1995). The emerging of renewable power plants, essentially wind power, has added a

high level of complexity to the electricity sector. In most cases, RES output is variable, difficult to predict well in advance

124



and non-dispatchable. All this has an impact on the electricity system operation forcing other technologies to adapt to

these RES conditions and frequently resulting in thermal power plants operating as backup with implications on their

efficiency and consequently on the environmental and cost performance of the system. Optimization models remain

essential to help in the decision making process, but must clearly recognize the all set of impacts and restrictions

brought by the RES power plants.

Usually, when addressing optimization models to electricity sector, two different time horizons are associated.

The first, long-term horizon, is addressed to the generation expansion planning (GEP) and according to Hobbs (1995)

ranges between 10 and 40 years horizon. These problems will help the decision makers in the strategic decision

making process. The second, short-term, is usually addressed to the power plants allocation based on the available

resources. Also known as unit commitment and economic dispatch, these problems time horizon usually ranges

between 8 hours to 1 week horizon.

Hereupon, the objective of this work is twofold. Firstly, a optimization tool for the strategic GEP problem is aimed,

envisaging the inclusion of two different time horizons and resulting in what will be called here after as an integrated

model. The proposed approach should allow to include in the GEP problem the short-term impacts of RES on thermal

power plants operating performance. Secondly the usefulness of the model will be demonstrated to design possible

optimal electricity scenarios in the future, essentially for systems that encompass large wind and hydropower plants.

The results detail for each scenario the proposed expansion plans, evaluating aspects such as cost, emissions, and

external dependency. A comparison between this model and the already existent model presented in Pereira et al.

(2015a) is presented, aiming to evaluate the usefulness of the proposed integrated model.

This paper is organized as follows. Section 5.2 will present an overview over the definition of GEP and unit

commitment problems. A set of literature examples will be described to better understanding. In section 5.3 the

proposed model formulation will be described. In Section 5.4 a realistic case study of an electricity system with

thermal, hydro and wind power plants system is addressed. Both models considered for comparison will be tested

and the results of implementation analysed. Finally, conclusions are stated in Section 6.4.

5.2 Generation expansion planning

The definition of the GEP problem seems to be consensual among the overall literature. Must of the authors which work

focuses in the GEP problem are in accordance with Meza et al. (2009, pg. 1086), when saying that GEP problem
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is the problem of “determining WHAT, WHEN, and WHERE new generation units should be installed

over a planning horizon, satisfying the expected energy demand”. According Karthikeyan et al. (2013),

GEP problem is one of the most important decision-making activities in electric utilities. Once more, the author

defines this problem as the least-cost GEP that meets forecasted demand. In their work, a differential evolution and

self-adaptive differential evolution algorithms have been used for a GEP problem considering 6-year, 14-year and 24-

year planning horizons. The main objective of the work was to compare the results with the results obtained using

dynamic programming method. In Jonghe et al. (2011) a static linear programming investment model is developed

determining the optimal technology mix. A cost minimization problem is addressed having into account that increased

variability of the net load profile, due to wind power generation, strongly influences system operation. The author

conclude that with the wind capacity increase, the capacity of peak load and high peak load technologies does not

need to increase significantly being on the other hand the base load technologies replaced by more flexible mid load

generation technologies.

With the changes in the paradigm of the electricity power planning, environmental concerns are getting increasing

importance in GEP problems applications. In fact, according to Careri et al. (2011), formerly, GEP problems were faced

by vertically integrated utilities aiming to minimize production and capital costs. However, renewable technologies

have now a fundamental role on the electricity production systems, demonstrating the increasing importance of the

environmental concerns. It is the case of Santos and Legey (2013). In this study, a methodology to incorporate

environmental cost to the construction and operation of specific hydro-thermal generation system is addressed. A

mixed integer programming problem for the long-term expansion planning is used, minimizing the expansion costs.

Also Linares and Romero (2000) have recognized besides the economic dimension, the environmental impacts. In their

study, a methodology that combines several multi-criteria methods was proposed and applied to a specific electricity

planning case study in Spain, resulting in a multi-objective optimization problem with a planning horizon for the year

2030. Furthermore, environmental concerns applied to GEP problems are seen as being essential to promote society

welfare, leading to an increase number of works in literature (see for example Figueira et al. (2005); Li et al. (2010);

Cai et al. (2009)).

For Pereira and Saraiva (2013, pg. 41), “the objective of a GEP problem is to identify the most ade-

quate investment schedule of generation plants together with their sitting and technology to supply

the demand considering its possible evolution along the planning period while enforcing some reli-

ability constraints”. Aside of the GEP problem main goal being the production and capital costs minimization, the

126



introduction of market mechanisms originate major changes in the way decisions are taken. Having this into consid-

eration, Pereira and Saraiva (2010) described a profit maximization optimization approach to address the generation

expansion-planning problem in order to help generation companies to decide whether to invest on new assets. Along

with the typical constraints ensuring the safe operation of the system, the author considers a set of uncertainties

related with the price volatility, the reliability of generation power plants, and the demand evolution.

Although rapid grid penetration of electricity provided through renewable energy utilities is seen as one of the

most important GHG mitigation measures, problems in the operation of the electricity system and even environmental

and climatic impact of renewable utilities became a reality (Leung and Yang, 2012). Over the last years, the increase

growth of renewable installed capacity was obtained in large extension by the wind power sector. Increasing awareness

about emissions, climate change, and environmental issues, the awareness about oil and gas reserves depletion and

also the improvements in wind turbine technologies were some of the main reasons of this increase (Albadi and El-

Saadany, 2010). However, the unpredictability and variability of the RES, became a challenge to the grid operators in

the way that it can originate periods of surplus of production, increase hours of thermal power plants working at low

load factor and increase number of startups and shutdowns of thermal power plants (Lund and Munster, 2003; Liu

et al., 2011; Zhang et al., 2011).

Also known as unit commitment (UC) problem, the aiming of the self-schedule electricity power generation prob-

lems is to properly schedule the on/off states of all power plants in the system, meeting the predicted load demand,

plus the spinning reserve requirement at every time interval minimizing the total cost of production (Senjyu et al.,

2003). According to Barth et al. (2006), integration of large amounts of wind power in a liberalized electricity system

will impact both the technical operation of the electricity system, specially in what concerns to the requirement of

increase capacities of the spinning reserves, and the electricity markets. In Gutiérrez-Martín et al. (2013), the authors

refers the renewable energy sources as a measure to reduce GHG. The focus of their study is the interactions between

wind generation and thermal plants cycling and the objective is to analyze the contribution of renewable energy to the

environment. The results show that CO2 reductions are still relevant at high wind penetration levels.

It seems evident that for each model, whether it will be used for the GEP problem or for the optimal operation of

generation power plants, different concerns are focused. Models for GEP problem, usually proposed for the strategic

decision making process, tend to be limited in what concerns to obtaining detailed operation patterns of generation

power plants. In fact, according to Jonghe et al., 2011, pg. 2233, long-term investment or GEP problems “present

little information on the inclusion of operational aspects and optimize for a limited number of demand
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levels”. On the other hand, problems like unit commitment or economical dispatch are operation models targeting

the best power plants schedule, minimizing cost and having no concerns regarding long-term possible demand growth.

Models able to aggregate both long-term investment and power plants schedule problems are then crucial, spe-

cially for systems with high levels of RES with variable output. In line with this concern, Zhang et al. (2013) described a

planning model aiming to find the best economic/environmental electricity system commitment considering high level

of renewables penetration and new controllable electric devices. The model is firstly used to plan the best technology

mix having into account future demand growth and secondly to obtain power plants scheduling, analyzing its behavior

using an hour-by-hour time step. A multi-objective optimization model is than applied to a case study of a power

generation planning in the Tokyo area out to 2030.

In the next section, the formulation of a new model for long-term strategic generation planning considering both

economical/environmental concerns will be described. The model incorporates the impact of renewable generation

technologies on other technologies, integrating then the unit commitment problem with the generation expansion

planning problem.

5.3 Model formulation

In this section, the formulation followed in this work for the integrated problem, in a system with high penetration of

wind and hydropower, is described in detail. The model assumes a set of different fossil fuel plants comprising coal

and gas. In what concern hydropower plants, the model assumes two different types: the large hydropower plants

with reservoir and the run–of–river plants. Pumping power plants were also included in the model. For the sake of

simplicity, wind power was dealt as a single power plant. The same goes for all hydropower technologies. As for coal

and gas power plants, these were desegregated in operating groups. This option allowed to fully capture the impacts

of RES of variable output on these thermal power groups.

5.3.1 Objective function

The proposed model formulation includes two objective functions. The cost objective function is set up by the sum of

fixed and variable costs. The fixed costs are related to both the investment cost of the new power plants and to all fixed

operation and maintenance (O&M) costs. The capital investment cost is obtained through the sum of annuities over
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the planning period, assuming the uniform distribution of the investment cost during the plant lifetime. This approach,

although not taking into account the possibility of the accelerated depreciation of technologies, is commonly used

for the computation of the levelized cost of electricity for mature technologies in relatively stable markets, as it is

assumed in this analysis. Also, being the candidate power technologies already mature, with the possible exception

of offshore wind power, changes on the future O&M costs were assumed to be negligible for the ten years planning

period. In addition these costs are far from being the determinant ones, as investment and fuel are the major cost

drivers. In what concerns to variable costs, those encompass the variable O&M costs, the fuel and pumping costs,

andCO2 emission allowance costs for each power plant. The cost objective function is measured ine and is defined

by equation (5.3.1).

∑
t∈T

∑
n∈N

[(
Icn

j(1 + j)ltn

(1 + j)ltn − 1
+ CFOMn

)
Ip(n, t)× (1 + j)−t

]
+

∑
t∈T

∑
nGas∈NGas

((newnGas(t, nGas)× (1− newnGas(t− 1, nGas)))×

IcnGas
j(1 + j)ltnGas

(1 + j)ltnGas − 1
+ CFOMnGas

)
Ip(nGas, t)× (1 + j)−t+∑

t∈T

∑
nCoal∈NCoal

((newnCoal(t, nCoal)× (1− newnCoal(t− 1, nCoal)))×

IcnCoal
j(1 + j)ltnCoal

(1 + j)ltnCoal − 1
+ CFOMnCoal

)
Ip(nCoal, t)× (1 + j)−t+∑

t∈T

∑
tri∈Tri

(CV OMi(t, tri) + TFc(t, tri) + TEc(t, tri)) (1 + j)−t, (5.3.1)

where T is the set of the time period (in years) considered in the model for the strategic planning, j is the annual

discount rate, N is the set of new wind, hydropower with reservoir and run-of-river power plants included in the

system, NCoal is the set of new coal power groups included in the system, NGas is the set of new gas power

groups included in the system, CFOMn is the fixed O&M cost of new wind, hydropower with reservoir and run-of-

river power plants included in the system (e/MW), CFOMnCoal is the fixed O&M cost of new coal power groups

included in the system (e/MW),CFOMnGas is the fixed O&M cost of new gas power groups included in the system

(e/MW), Icn is the investment cost of new wind, hydropower with reservoir and run-of-river power plants included

in the system (e/MW), IcnCoal is the investment cost of new coal power groups included in the system (e/MW),

IcnGas is the investment cost of new gas power groups included in the system (e/MW), Ipn is the installed power
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of new wind, hydropower with reservoir and run-of-river power plants included in the system (MW), IpnCoal is the

installed power of new coal power groups included in the system (MW), IpnGas is the installed power of new gas

power groups included in the system (MW), CV OMi(t, tri) is the variable O&M cost of all power plants included

in the system in year t for trimester tri (e), TFc(t, tri) is the fuel cost of each thermal power group considered

in the system in the year t for trimester tri (e), TEc(t, tri) is the emission cost of each thermal power group

considered in the system in the year t for trimester tri (e), newnCoal(t, nCoal) is a binary variable that is one if

a new coal group is installed and zero if not in year t for trimester tri and newnGas(t, nGas) is a binary variable

that is one if a new gas group is installed and zero if not in year t for trimester tri.

The fuel andCO2 costs of a thermal power group, ther, per unit in any given time interval, are usually given as

a function of the generator power output or load factor and are represented by quadratic functions. These quadratic

functions allow to obtain the fuel and CO2 costs according to the operating efficiency of each thermal power group.

The described model, assumes cost and CO2 as functions of each generator group load factor, Fther(Lther(t)).

Following Pereira et al. (2015b) model, cost andCO2 curves for both coal and natural were considered as presented in

Figures 5.1 and 5.2. Therefore, TFc(t, tri) and TEc(t, tri) can be computed from equations (5.3.2) and (5.3.3).
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Figure 5.1: Coal and gas fuel cost curves.
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Figure 5.2: Coal and gas CO2 cost curves.

TFc(t, tri) =
∑
h∈H

∑
eGas∈EGas

(
afeGasL

2
eGas(t, tri, h, eGas) + bfeGasLeGas(t, tri, h, eGas) + cfeGas

)
×

F (eGas)× P (t, tri, h, eGas)+∑
h∈H

∑
eCoal∈ECoal

(
afeCoalL

2
eCoal(t, tri, h, eCoal) + bfeCoalLeCoal(t, tri, h, eCoal) + cfeCoal

)
×

P (t, tri, h, eCoal)+∑
h∈H

∑
nGas∈NGas

newnGas(t, nGas)
(
afnGasL

2
eGas(t, tri, h, nGas) + bfnGasLnGas(t, tri, h, nGas) + cfnGas

)
×

F (nGas)× P (t, tri, h, nGas)+∑
h∈H

∑
nCoal∈NCoal

newnCoal(t, nCoal)
(
afnCoalL

2
nCoal(t, tri, h, nCoal)

+bfnCoalLnCoal(t, tri, h, nCoal) + cfnCoal

)
× P (t, tri, h, nCoal), (5.3.2)

131



TEc(t, tri) =
∑
h∈H

∑
eGas∈EGas

(
aeeGasL

2
eGas(t, tri, h, eGas) + beeGasLeGas(t, tri, h, eGas) + ceeGas

)
×

EC × P (t, tri, h, eGas)+∑
h∈H

∑
eCoal∈ECoal

(
aeeCoalL

2
eCoal(t, tri, h, eCoal) + beeCoalLeCoal(t, tri, h, eCoal) + ceeCoal

)
×

EC × P (t, tri, h, eCoal)+∑
h∈H

∑
nGas∈NGas

newnGas(t, nGas)
(
aenGasL

2
eGas(t, tri, h, eGas) + benGasLeGas(t, tri, h, eGas) + cenGas

)
×

EC × P (t, tri, h, nGas)+∑
h∈H

∑
nCoal∈NCoal

newnCoal(t, nCoal)
(
aenCoalL

2
nCoal(t, tri, h, nCoal)

+benCoalLnCoal(t, tri, h, nCoal) + cenCoal)× EC × P (t, tri, h, nCoal), (5.3.3)

where H is the set of the time period (in hours) considered in the model for the electricity generation scheduling

from all power plants, ECoal is the set of existent coal power groups included in the system, EGas is the set of

existent gas power groups included in the system, P (t, tri, h, i) is the electricity power generated by the respective

i power plant/group (mwh), af , bf , cf , ae, be, ce are the coal and gas quadratic curve coefficients of fuel andCO2

emissions costs respectively, Fegas and Fngas are the fuel cost of new and existent gas power groups (e/m3) and

EC is the CO2 emission allowance cost (e/ton).

The second objective function represents the environmental impact, measured in tons of CO2, of the system.

The CO2 emissions objective function is defined by equations (5.3.4) and (5.3.5)

∑
t∈T

∑
tri∈TRI

Emi(t, tri). (5.3.4)
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Where

Emi(t, tri) =
∑
h∈H

∑
eGas∈EGas

(
aeeGasL

2
eGas(t, tri, h, eGas) + beeGasLeGas(t, tri, h, eGas) + ceeGas

)
×

P (t, tri, h, eGas)+∑
h∈H

∑
eCoal∈ECoal

(
aeeCoalL

2
eCoal(t, tri, h, eCoal) + beeCoalLeCoal(t, tri, h, eCoal) + ceeCoal

)
×

P (t, tri, h, eCoal)+∑
h∈H

∑
nGas∈NGas

newnGas(t, nGas)
(
aenGasL

2
eGas(t, tri, h, eGas) + benGasLeGas(t, tri, h, eGas) + cenGas

)
×

P (t, tri, h, nGas)+∑
h∈H

∑
nGas∈NGas

newnCoal(t, nCoal)
(
aenCoalL

2
eCoal(t, tri, h, eCoal)

+benCoalLeCoal(t, tri, h, eCoal) + cenCoal)× P (t, tri, h, nCoal). (5.3.5)

This objective function is described as the sum of the total CO2 emissions released from all power plants during the

entire planning period.

5.3.2 Constraints

Constraints are equations that impose conditions to the model formulation, defining values of the decision variables

that are feasible (Hobbs, 1995). For the specific case of the electricity generation sector, these constraints derived

from physical processes, demand requirements, capacity limitations, and legal/policy impositions

Demand Constraint

To ensure the reliability of the system, the production of all power plants should meet the total system load at each

hour of planning period and for the entire strategic generation expansion planning. Thus, the demand must be equal

to the total power output from power plants plus the special regime producers (SRP1) power output minus pumping

1SRP includes electricity production from cogeneration and RES power plants excluding large dams, run–of–river and wind plants.
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consumption. The mathematical formulation of this constraint is defined by equation (5.3.6).

∑
i∈I

P (t, tri, h, i)−
∑

pump∈Pump

P (t, tri, h, pump) + Psrp(t, tri, h) = D(t, tri, h), (5.3.6)

whereD(t, tri, h) is the demand in hour h of planning for year t and trimester tri (MWh), Psrp(t, tri, h) is the

generation output of all special regime producers (except large hydropower plants and wind power plants) including

co-generation in hour h of planning for year t and trimester tri (MWh), I is the set of all power plants except pumping

plants and Pump is the set of all pumping power plants.

Thermal Power Capacity Constraints with Ramp Considerations

Power capacity constraints ensure that all power groups included in themodel will not producemore than the respective

group capacity for each hour of the scheduling period. The power output must then be less or equal to the power group

capacity, as defined in equations (5.3.7) and (5.3.8). Furthermore, ramp constraints were also considered to ensure a

more reliable system representation. Mathematical formulation of these constraints is presented in equations (5.3.9)

– (5.3.12).

Max power

P (t,m, h, ether) ≤ Ipow(ether), (5.3.7)

P (t,m, h, nther) ≤ Ip(t, nther), (5.3.8)

where ether is the ether existent thermal power groups, nther is the nther new thermal power groups and

Ipow is the installed power of the existent coal and gas power groups.

Ramps

P (t,m, h, ether)− P (t,m, h− 1, ether) ≤ 0.3× Ipow(ether), (5.3.9)

P (t,m, h− 1, ether)− P (t,m, h, ether) ≤ 0.3× Ipow(ether), (5.3.10)
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P (t,m, h, nther)− P (t,m, h− 1, nther) ≤ 0.3× Ip(t, nther), (5.3.11)

P (t,m, h− 1, nther)− P (t,m, h, nther) ≤ 0.3× Ip(t, nther). (5.3.12)

where 0.3 is the assumed maximum percentage (30%) variation of production between two consecutive periods of

time as proposed in Pereira et al. (2015b) model.

Large Hydro Constraints

For the large hydropower plants with reservoir, constraints regarding the expected storage and production capacity for

each hour of the scheduling period are considered in the model. Equations (5.3.13) – (5.3.15) relate the reservoir

level for the hour h in terms of the previous reservoir level, inflows, and consumption.

reserve(t, tri) = Ir + Inflows(t, tri)×
(
(Ip(t, nHa) + Ip(t, eHa)

Ip(t, eHa)

)
−( ∑

nHa∈NHydro

∑
h∈H

P (t, tri, h, nHa) +
∑

eHa∈EHydro

∑
h∈H

P (t, tri, h, eHa)

)
+( ∑

npump∈Pump

∑
h∈H

ηnpump ∗ P (t, tri, h, npump)
∑

epump∈Pump

∑
h∈H

ηepump ∗ P (t, tri, h, epump)

)

t = 1 and tri = 1, (5.3.13)

reserve(t, tri) = reserve(t− 1, 4) + Inflows(t, tri)×
(
(Ip(t, nHa) + Ip(t, eHa)

Ip(t, eHa)

)
−( ∑

nHa∈NHydro

∑
h∈H

P (t, tri, h, nHa) +
∑

eHa∈EHydro

∑
h∈H

P (t, tri, h, eHa)

)
+( ∑

npump∈Pump

∑
h∈H

ηnpump ∗ P (t, tri, h, npump)
∑

epump∈Pump

∑
h∈H

ηepump ∗ P (t, tri, h, epump)

)

∀t ∈ T \ {1} and tri = 1, (5.3.14)
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reserve(t, tri) = reserve(t, tri− 1) + Inflows(t, tri)×
(
(Ip(t, nHa) + Ip(t, eHa)

Ip(t, eHa)

)
−( ∑

nHa∈NHydro

∑
h∈H

P (t, tri, h, nHa) +
∑

eHa∈EHydro

∑
h∈H

P (t, tri, h, eHa)

)
+( ∑

npump∈Pump

∑
h∈H

ηnpump ∗ P (t, tri, h, npump)
∑

epump∈Pump

∑
h∈H

ηepump ∗ P (t, tri, h, epump)

)

∀t ∈ T \ {1}, ∀tri ∈ Tri \ {1} (5.3.15)

where Ir is the initial reserve in the reservoir, reserve(t, tri) is the reservoir level on trimester tri of the year

t, Inflows(t, tri) is the hydro inflow on trimester tri of the year t, nHa is the nHa hydropower plant with

reservoir belonging to the set of all new hydropower plants NHydro, eHa is the eHa hydropower plant with

reservoir belonging to the set of all existent hydropower plantsEHydro and ηepump and ηnpump are the efficiency

of pumping plants, usually around 70%.

Additional upper and lower bounds must be used to define maximum and minimum reservoir levels, as repre-

sented in equations (5.3.16) and (5.3.17).

reserve(t, tri) ≤ maxR

(
(Ip(t, nHa) + Ip(t, eHa)

Ip(t, eHa)

)
(5.3.16)

reserve(t, tri) ≥ 0.2×maxR

(
(Ip(t, nHa) + Ip(t, eHa)

Ip(t, eHa)

)
(5.3.17)

wheremaxR is the maximum reservoir level allowed.

In what concerns to electricity generation from hydropower plants, equations (5.3.18) and (5.3.19) were used to

impose the maximum production limit for each plant.

P (t, tri, h, nHa) ≤ Ip(t, nHa) (5.3.18)

P (t, tri, h, eHa) ≤ Ipow(t, eHa) (5.3.19)
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where Ipow(t, eHa) is the installed power of the existent large hydropower power plants and Ip(t, nHa) is the

installed power of the new large hydropower power plants.

The next set of constraints imposes that the production of run-of-river power plants should be equal to the installed

power, taking into consideration the availability which depends on the year seasonality. This type of plants are char-

acterized by its reduced storage capacity and can be represented mathematically by equations (5.3.20) and (5.3.21).

P (t, tri, h, nHr) ≤ Ip(t, nHr)× ϕ(tri, h) (5.3.20)

P (t, tri, h, eHr) ≤ Ipow(t, eHr)× ϕ(tri, h) (5.3.21)

where eHr is the eHr run-of-river hydropower plant belonging to the set of all existent hydropower plantsEHydro,

nHr is the nHr run-of-river hydropower plant belonging to the set of all new hydropower plants NHydro and

ϕ(tri, h) is the run–of–river plants availability in trimester tri that is strongly seasonally dependent.

Pumping Constraints

For the mathematical formulation of the operation of hydropower plants with pumping capacity, two reservoirs must

be taken into account. The upper one storages water from inflows and from pumping itself, while the lower one

storages water already used for electricity generation that later may be pumped again to the upper level. Again a set of

constraints are necessary to model the initial pumping reserve for the first hour of planning period. These constraints

are defined by equations (5.3.22) – (5.3.24).

reservep(t, tri) = IRp+( ∑
nHa∈NHydro

∑
h∈H

P (t, tri, h, nHa) +
∑

eHa∈EHydro

∑
h∈H

P (t, tri, h, eHa)

)
−( ∑

npump∈Pump

∑
h∈H

ηnpump ∗ P (t, tri, h, npump)
∑

epump∈Pump

∑
h∈H

ηepump ∗ P (t, tri, h, epump)

)

t = 1 and tri = 1, (5.3.22)
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reservep(t, tri) = reservep(t− 1, 4)+( ∑
nHa∈NHydro

∑
h∈H

P (t, tri, h, nHa) +
∑

eHa∈EHydro

∑
h∈H

P (t, tri, h, eHa)

)
−( ∑

npump∈Pump

∑
h∈H

ηnpump ∗ P (t, tri, h, npump)
∑

epump∈Pump

∑
h∈H

ηepump ∗ P (t, tri, h, epump)

)

∀t ∈ T \ {1} and tri = 1, (5.3.23)

reservep(t, tri) = reservep(t, tri− 1)+( ∑
nHa∈NHydro

∑
h∈H

P (t, tri, h, nHa) +
∑

eHa∈EHydro

∑
h∈H

P (t, tri, h, eHa)

)
−( ∑

npump∈Pump

∑
h∈H

ηnpump ∗ P (t, tri, h, npump)
∑

epump∈Pump

∑
h∈H

ηepump ∗ P (t, tri, h, epump)

)

∀t ∈ T \ {1}, ∀tri ∈ Tri \ {1} (5.3.24)

where Irp is the initial reserve in the lower reservoir and reservep(t, tri) is the lower reservoir level on trimester

tri of the year t.

Again, in what concerns to the generation from hydropower pumping plants, the set of constraints defined by

equation (5.3.25) and (5.3.26) were used.

P (t, tri, h, npump) ≤ Ip(t, npump), (5.3.25)

P (t, tri, h, epump) ≤ Ipow(t, epump), (5.3.26)

Wind constraints

This constraint ensures wind power generation capacity to be equal to the total installed power taking into account the

wind availability. This constraint is set as an equality assuming that wind power is not subject to dispatch, and has
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priority access to the grid. Wind constraint are described by equations (5.3.27) and (5.3.28)

P (t, tri, h, eWind) = α(tri, h)× Ipow(t, eWind) (5.3.27)

P (t, tri, h, nWind) = α(tri, h)× Ip(t,Wind) (5.3.28)

where eWind is the eWind wind power plant belonging to the set of all existent wind plants EWind, nWind

is the nWind wind power plant belonging to the set of all new wind plants NWind and α(tri, h) is the wind

availability in trimester tri for each hour h.

Thermal modular capacity and Renewable potential

In order to define maximum modular capacity for the thermal power groups as well as the renewable maximum

potential, a set of constraints must be used as described in equations (5.3.29) and (5.3.30) for gas and coal power

groups, equations (5.3.31) and (5.3.32) for wind power plants and equation (5.3.33) for hydropower plants.

Ip(t, nGas) = newnGas(t, nGas)×mc(nGas), (5.3.29)

Ip(t, nCoal) = newnCoal(t, nCoal)×mc(nCoal), (5.3.30)

Ip(t, Onshore) ≤ ONV, (5.3.31)

Ip(t, Offshore) ≤ OFV, (5.3.32)

Ip(t, nHydro) + Ip(t, nHr) ≤ HP, (5.3.33)

where mc(nGas) and mc(nCoal) are the capacity of each new gas and coal considered module, ONV and

OFV are the wind onshore and offshore potential respectively andHP is the hydropower potential.
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Security constraints

The reserve margin (RM ) constraint, presented in equation 5.3.34, ensures the security of the system, taking

into account the non-usable capacity, which includes the capacity that cannot be scheduled due to reasons like the

temporary shortage of primary energy resources, affecting in particular the hydro and wind power plants. Using this

restriction, the model, explicitly takes into account the impact that the increasing hydro and wind capacity, will have on

theRM requirements (for a detailed description please refer to Ferreira (2008)). Furthermore, power plants outages

although not being frequent must be considered and prevented. These outages have different reasons for happen

consisting essentially on the power plants breakdown and stoppages for maintenance. Besides that, suddenly increase

of power consumption that may occur must be taken into considerations. Thus, equations (5.3.34) and (5.3.35) are

essential when scheduling the power plants subject to dispatch, maintaining the reliability of the system.

RM

(∑
n∈IN

Ip(t, n) +
∑
e∈IE

Ipow(t, e) + IPsrp(t)

)
≤

∑
n∈IN

Ip(t, n) +
∑
e∈IE

Ipow(t, e) + IPsrp(t)−

(LW × (
∑

nWind∈NWind

Ip(t, nWind) +
∑

eWind∈EWind

Ipow(t, eWind))

+ LH × (
∑

nHydro∈NHydro

Ip(t, nHydro) +
∑

eHydro∈EHydro

Ipow(t, eHydro))+

LSRP × IPsrp(t) + LBHG+ LBTG− Pl(t)) ∀t ∈ T, (5.3.34)

where IN and IE are the set of all new and existent power plants respectively, RM is the set reserve margin of

system, IPsrp is the installed power of SRP in year t, LW is the potential reduction of wind power due to the lack

of wind, LH is the potential reduction of hydropower due to a dry regime, LSRP is the potential loss of SRP due

to an unfavorable regime and LBHG and LBTG represent the lost of biggest hydro and thermal power groups.

Pl(t) is the system peak load in year t.
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∑
ether∈ETher

(Ipow(t, ether)− P (t, tri, h, ether))

+
∑

nther∈NTher

(Ip(t, nther)− P (t, tri, h, nther))

+
∑

eHa∈EHydro

(Ipow(t, eHa)− P (t, tri, h, eHa))

+
∑

nHa∈NHydro

(Ip(t, nHa)− P (t, tri, h, nHa)) ≥ D(t)× β, (5.3.35)

where ETher is the set of all existent thermal power groups, NTher is the set of all new thermal power groups,

and β is the parameter that will ensure the reliability of the system and usually represent 10%.

5.4 Model implementation

In this section, the model proposed in section 5.3 is tested and analysed for a wind-hydro-thermal power system.

Besides guiding the application and presenting the analysis of the results, a comparison between integrated model

and the model described in Pereira et al. (2015a) will be considered. The major goal is to evaluate if and the use of

the integrated model, explicitly accounting for short term impacts on GEP, would lead to different results of the ones

obtained in the traditional GEP model, relying on average operating conditions.

5.4.1 Case study

The optimization model described in section 5.3 was designed with the final aim of being used for the strategic

electricity power planning integrating the power plants allocation based on the available resources, in the analysis

of a mixed hydro-wind-thermal power system. All the electricity power generation technologies referred above were

considered, highlighting in particular the impacts that an increase of wind power capacity have in the system. For

that, the particular case of the Portuguese electricity system was selected.

In the last few years, the increase of RES power, mostly wind power, was evident as reflected in Figure 5.3.

According to DGEG (2014) and analyzing Figure 5.4, in 2014 the production of electricity through wind power was

only surpassed by hydropower. Until 2011, hydropower combined with coal and gas power plants were the major
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electricity producers in Portugal (REN, 2011). All this commitment was translated in a share of 62% of production

derived from RES, verified in the end of 2014.
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Figure 5.3: Evolution of RES for electricity in Portugal (Own elaboration (DGEG, 2014)).

Although in the last years a higher importance has been given to the renewables in the Portuguese electricity

system, its share in the electricity system is highly dependent of the seasonality of the year. Contrary to year 2014

where wind and hydropower generation was 11.8 and 14.6 TWh respectively, in 2011, wind and hydropower

generation was 9 and 10.8 TWh respectively. This is justified by the higher wind and hydro availability during

2014 which lead to a reduction of electricity generation provided by thermal power plants. This reduction was from

19.4 TWh in 2014 to 12.4 TWh in 2011. For that has contributed the reduction of electricity generation from

natural gas power plants, from 10.3 TWh in 2011 to 1.4 TWh in 2014 (REN, 2011, 2014). This is mostly due to

the CCGT technical characteristics that allows easily and more rapidly to compensate both wind and hydro seasonal

variability. On the contrary, coal power plants, characterized by its lower flexibility and for working as base load power

plants, tend to keep its generation constant, having contributed with 10.3 and 11 TWh respectively in 2011 and

2014.

Furthermore, the increase of RES in the electricity system is also seen as a measure to mitigate the electricity
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dependency. For that, along with the increasing share of RES and with the thermal power generation reduction, the

reduction of the electricity importation presents a valuable contribution. This can be seen, for example, in REN (2011)

and REN (2014) where a reduction in the importations, from 2.8 TWh in 2011 to 0.9 TWh in 2014, is evidenced.

In the next sub-section, results addressing the impacts of increasing share of RES in the system will be analysed.

 

0

2

4

6

8

10

12

14

16

Coal Wind Importations Large Hydro Natural Gas Cogeneration Other
renewables

TW
h

 

Figure 5.4: Electricity production in 2014 (Own elaboration (REN, 2014)).

5.4.2 Used approach and numerical results

The proposed model described in section 5.3 was coded in GAMS (2011). DICOPT solver, that is interfaced with GAMS,

was selected to obtain the numerical results reported herein. The numerical results were obtained in a Microsoft

Windows operating system using a Intel® CORE™i5-2410M CPU @ 2.3GHz computer with 8GB of memory.

A multi-objective problem with a period of ten years horizon was considered for the strategic electricity planning of

a mix thermal-wind-hydropower system. Since an integrated model is proposed, for each year of the strategic electricity

planning, the model considers the individual commitment of each thermal power group. To this end, a hourly time

step, usually used for the problem of UC, allowing to get a more accurate representation of all technical characteristics

of power plants, was considered. The result is a mix integer nonlinear optimization problem (MINLP). Due to the high

complexity of the problem and consequently increase of computational effort, the model considers a set of 24 hours,

one day, per season of the year. For each one of the seasons of the year, characteristic renewable availability as well
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as demand consumption were taken into consideration. In line with this, 4 trimesters were considered assuming that

each one would be represented by the considered 24 hours period.

As starting point, a total of 23 different thermal power groups, comprising coal and gas, were considered. In what

concerns to wind power, all individual power plants were aggregated and dealt as a single power plants. The same

principle was considered for the large hydropower plants, however in this case, three different groups were included:

the large hydropower plants with reservoir, the run-of-river power plants, and the pumping power plants.

The problem was addressed by solving eight single-objective optimization problems. Firstly, a single-objective

optimization problem was solved for each objective function, using equations (5.3.6)– (5.3.35) as constraints and

equation (5.3.1) and (5.3.4) for cost and emissions minimization respectively. The remaining 6 cost optimization

problems, each one constrained by a fixed value for the total emissions for the 10 years planning period (80, 70, 60,

50, 40, and 30 Mton), allowed to design the Pareto front shown in Figure 5.5.
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Figure 5.5: Pareto curve solutions

A comparison between this new integrated model and the model for the strategic electricity power planning

described in Pereira et al. (2015a) was attempted. Table 5.1 show the results obtained when using both models,

detailing the total and average cost and emission for the extreme solutions.

Observing Table 5.1 is possible to verify that the cost over the entire planning period tends to be higher when
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Table 5.1: Optimal objective functions solutions

Cost CO2 Cost CO2

(Me) (Mton) (e/MWh) (ton/MWh)

Integrated Model

Optimal cost solution 9019 95.5 17.358 0.184

Optimal emission solution 15803 25.9 30.414 0.05

Pereira et al. (2015a) model

Optimal cost solution 6071 104.8 11.685 0.202

Optimal emission solution 13186 0.625 25.378 0.00012

integrated model is used. In what concerns emission values, the results of the integrated model are strongly influenced

by both the assumed short-term technical restrictions for thermal power plants and the hourly variability of wind and

hydropower output. This turns more difficult to find a obvious trend on the extreme solution results. However,

Figure 5.5 clearly demonstrates that for each one of the assumed CO2 values, the cost obtained with the integrated

model is higher than the one obtained with Pereira et al. (2015a) model. These differences result from the higher

reliance on CCGT to backup hydro and wind power hourly variability, with higher fuel costs but lower emissions than

coal power plants (Pereira et al., 2014). This increase of CCGT power output is demonstrated in figures 5.6 – 5.9.

The higher emission values obtained in the solutions for the integrated model are also justified by the thermal power

groups operating constraint, penalizing systems with high RES share.

The tradeoff between costs and CO2 emissions for both models simulations, represented in the form of Pareto

curve, is shown in Figure 5.5. For both models it is evident that as more restrictive CO2 emissions values are

considered, the cost of the system tend to increase while CO2 emissions decrease. This happens mostly because

the achievement ofCO2 emissions targets are only possible by investing in RES technologies, and reducing electricity

production from the more pollutant thermal power groups. Figures 5.10 to 5.13 and Figures 5.14 to 5.17 show

precisely this behavior. For example, analysing Figures 5.10 to 5.13 is possible to verify that as the way that a

reduction in theCO2 emission occurs, from 80 Mton to 30 Mton, the generation of electricity from coal power groups

decreases. This lack of generation is compensated by natural gas power groups generation and by the investment in
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new run–of–river power plants. Note for example that for the case of Figure 5.13, from 2015 forward, the electricity

generation from coal power groups will be 0. On the opposite way, in Figure 5.10 the electricity generation from natural

gas is residual. Another aspect to take into account is that the investment in new wind power plants only occurs for

more extreme point solutions, as demonstrated in Figure 5.9. This can be explained by the high cost investment

associated to wind technology.

In a general way, the behavior observed when using the Pereira et al. (2015a) model is followed by the integrated

model. However, the fact that the integrated model consider the commitment of thermal groups, allows to obtain

the results closer to the real operation of the electricity system, resulting in both higher costs and higher emissions.

System behavior when using integrated model can be seen in Figures 5.14 to 5.17. Also for this model the reduction

of coal power production is evident as CO2 restrictions are imposed. In fact, looking to Figure 5.17 is possible to

verify that there is no electricity generation derived from the existent coal power groups. This is compensated by the

increase production of the gas power groups, and by the investment in new technologies including gas, coal and RES

power plants. Note that new generation plants like coal power plants are more efficient than the older ones which

allows to reduce the amount of CO2 emissions. Other difference when comparing with the Pereira et al. (2015a)
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Figure 5.6: Power production for minimum cost solution using integrated model
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Figure 5.7: Power production for minimum cost solution using Pereira et al. (2015a) model
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Figure 5.8: Power production for minimum emissions solution using integrated model
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Figure 5.9: Power production for minimum emissions solution using Pereira et al. (2015a) model
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Figure 5.10: Power production solutions for intermediate Pareto curve values of emissions using Pereira et al.

(2015a) model (80Mton).
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Figure 5.11: Power production solutions for intermediate Pareto curve values of emissions using Pereira et al.

(2015a) model (60Mton).
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Figure 5.12: Power production solutions for intermediate Pareto curve values of emissions using Pereira et al.

(2015a) model (40Mton).
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Figure 5.13: Power production solutions for intermediate Pareto curve values of emissions using Pereira et al.

(2015a) model (30Mton).
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Figure 5.14: Power production solutions for intermediate Pareto curve values of emissions using integrated model

(80Mton).
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Figure 5.15: Power production solutions for intermediate Pareto curve values of emissions using integrated model

(60Mton).
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Figure 5.16: Power production solutions for intermediate Pareto curve values of emissions using integrated model

(40Mton).
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Figure 5.17: Power production solutions for intermediate Pareto curve values of emissions using integrated model

(30Mton).

model is the earlier investment in wind power. While in the Pereira et al. (2015a) model the investment is only seen

for the extreme solution of the Pareto front, in the integrated model, investment in new wind power plants starts to

emerge, even that only closer to the end of planning period, for solutions closer to the minimum cost solution (see

Figure 5.14). The high variability of electricity generation of these power plants, allied to the high technical constraints

of thermal groups can explain this trend.

In fact, the uncertainty associated to the renewable sources, with focus on the wind, brings high challenges to

the operation of the electricity system. This uncertainty is also highly related to the seasonality of each trimester

of the year. Both Figures 5.18 and 5.19 show precisely this. Both coal and gas technologies have very different

operating conditions. While coal power groups work as base load power plants, CCGT power groups, being more

flexible can be partially used to backup, compensating the variability of RES electricity generation. Therefore, CCGT

power groups tend to work as peak load power plants. Figure 5.18, shows that for the entire planning period and

during all trimesters, coal power groups load factor is higher than the CCGT ones.

As referred above, seasonality along the year has a significant impact on the power systems operation. Tradition-

ally dry seasons as summer and autumn (trimester 3 and 4 respectively) contrast with typical wet and windy seasons
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as winter and spring (trimester 1 and 2 respectively). Thus, because of the increase renewable sources electricity

generation verified in both first and second trimester, coal and CCGT power plants electricity generation tends to be

lower when comparing with the same generation power plants in the remain trimesters. On the other hand, if utiliza-

tion factor is considered, as presented in Figure 5.19a, it is possible to verify that CCGT utilization factor (related to

the number of operating hours) tends to be higher during higher RES availability periods, as is the case of first and

second trimester. CCGT is then compensating the wind and hydropower variability, even if this means working a larger

number of hours at lower load factor levels. On the other hand, with the lower availability of RES, traditional power

groups tend to increase their share of electricity generation, with both higher utilization and load factors during the third

and fourth trimesters. This trend is presented in Figure 5.19b, with coal and even gas power groups contributing to

electricity generation only in trimester 3 and 4. Although Figure 5.19b represents an emission minimization solution,

coal power output still remains relevant with investments foreseen on new and more efficient coal power plants. These

ones, would be operating at both high load and utilization factors as shown in figures 5.18 and 5.19.
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(b) Minimum emissions solution

Figure 5.18: Thermal power plants load factor
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(b) Minimum emissions solution

Figure 5.19: Thermal power plants utilization factor
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5.4.3 Wind power sensitivity analysis

In this work, a wind sensitivity analysis is also considered for the comparison of both models. For this, solutions

close to the Pareto optimal but with different shares of wind power were analysed, as these options can be relevant

depending on the decision makers. Figure 5.20, represents the Pareto fronts for the two models and their sensitivity

analysis. These solutions were obtained with a maximum amount of CO2 emissions equal to 60Mton for the entire

planning period. Departing from the base case, presented in Figures 5.11 and 5.15, additional constraints were

added to the models imposing minimum predefined values for the new installed wind power between 1000 MW and

the assumed maximum wind potential (4429MW).

For both models, the results show that an increase of the total installed wind power will mostly lead to a re-

duction on the investment of new run–of–river power plants, promptly compensated by the new wind power plants.

Furthermore, for both models, CCGT production tends to be reduced and replaced mainly by wind and in a much less

extension by coal.

Once more, the cost obtained using the integrated model were higher then the ones obtained with the Pereira

et al. (2015a) model. However, the cost differences between the base solution and each new solution constrained

by minimum installed wind power, are higher for the Pereira et al. (2015a) model as seen in Table 5.2. This comes

from the fact that for the integrated model, base solution already included new wind power plants. This mean that the

imposed wind power constraints were less restrictive to this model then to the Pereira et al. (2015a) model.

Table 5.2: Costs increase for the different wind power solutions comparatively to the base solution

Integrated model Pereira et al. (2015a) model

MW (e/MWh) (e/MWh)

1000 0.4 1.1

1500 0.8 1.7

2000 1.2 2.3

3000 2.3 3.5

4000 3.6 4.8

4429 4.0 5.4

156



 

0,090

0,095

0,100

0,105

0,110

0,115

0,120

0,125

0,130

0,135

19,0 19,5 20,0 20,5 21,0 21,5 22,0 22,5 23,0 23,5 24,0

C
O

2 
(t

/M
W

h
) 

Cost (€/MWh) 

Cost: 23.2€/MWh 
New Wind onshore:  4000MW 

 

Cost: 23.6€/MWh 

New Wind onshore:  4429MW 

 

Cost: 21.9€/MWh 

New Wind onshore:  3000MW 

 

Cost: 20.4€/MWh 

New Wind onshore:  1500MW 

 

Cost: 20.8€/MWh 

New Wind onshore:  2000MW 

 

Cost: 19.57€/MWh 

Solution point with 60Mton emissions  

 

Cost: 20.0€/MWh 

New Wind onshore:  1000MW 

 

(a) Integrated Model

 

0,090

0,095

0,100

0,105

0,110

0,115

0,120

0,125

0,130

0,135

12,5 13,5 14,5 15,5 16,5 17,5 18,5

C
O

2 
(t

/M
W

h
) 

Cost (€/MWh) 

Cost: 18.5€/MWh 

New Wind onshore:  4429MW 

 

Cost: 18.0€/MWh 

New Wind onshore:  4000MW 

 

Cost: 16.7€/MWh 

New Wind onshore:  3000MW 

 

Cost: 15.5€/MWh 

New Wind onshore:  2000MW 

 

Cost: 14.9€/MWh 

New Wind onshore:  1500MW 

 

Cost: 14.3€/MWh 

New Wind onshore:  1000MW 

 

Cost: 13.2€/MWh 

Solution point with  

60Mton emissions 

(b) Long-term Model

Figure 5.20: Wind power sensitivity analysis

In general, these new wind power constraints lead to higher costs. However, although not being optimal solutions

under an economic perspective, they can represent valuable options for the decisions makers that may assign a high
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importance to non–economical criteria. In fact, these new solutions contribute to the reduction of the external energy

dependency and to the increase of the share of electricity production from RES.

5.5 Conclusions

This paper presents a new optimization model to analyze the generation expansion planning problem in a power system

mixing wind, thermal and hydropower plants. The innovative aspect comparing with other problems for the generation

expansion planning is the inclusion of electricity power generation scheduling also known as unit commitment problem,

resulting in an integrated model. The adoption of a hourly time step to be considered in each year of the generation

expansion problem helps on the increase reliability of the problem, in a model that allows to fully acknowledge the

short-term impacts of long-term strategies, during the decision making process. A deterministic programming model

was proposed, taking into account the need to reconcile economic and environmental objectives and also with focus

on the impacts that an increase on the installed wind power may have on the system performance.

The analysis of results allows to verify that as the CO2 objectives become more restrictive, in general, electricity

generation from existent coal power groups tends to be replaced by CCGT ones and by the investment in new power

plants, even coal power ones. This becomes necessary so the system can be able to deal with the variability and

unpredictability of the RES power plants. Thus, the proposed integrated model will ensure the best generation expan-

sion planning without disregarding the technical constraints of thermal power groups. The results also demonstrates

that only for highly environmentally constrained solutions, new wind power will be added to the system. This can be

explained by both the higher investment costs of wind power technology and the added difficulties of the system to

deal with variable output technologies.

As coal power groups will work as base load groups while gas and hydropower groups/plants will frequently be

required to work as peak load groups/plants, the increase of RES of variable output such as wind or run-of-river plants

will have a major impact on the gas power groups operating conditions. In fact, the results show that the increasing

variability and unpredictability of RES generation will frequently originate periods of operation at low load levels and

also to lower utilization factor periods. A high RES reliance will also turn the system more sensitivity to the resources

seasonality. Higher RES resources availabilities during winter and spring seasons leads to lower load and utilization

factors of thermal power groups, contrasting with the higher load and utilization factors during summer and autumn

seasons.
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Finally, the usefulness of the integrated model is demonstrated for the analysis of high wind power scenarios. In

fact, imposing new wind power to the system may not lead to the optimal solution under an economic perspective,

however, may be interesting from the strategic decision makers’ perspective.
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Chapter 6

A userfriendly tool for electricity systems

analysis

Paper accepted for publishing in March 2015 as Sérgio Pereira, Paula Ferreira, and A.I.F. Vaz. A userfriendly tool for

electricity systems analysis. 2nd International Conference on Energy and Environment: bringing together Engineering

and Economics, 18-19 June, Guimarães, Portugal.

ABSTRACT

Optimization models to support energy decision making, with focus on electricity generation, have been used

since the 70’s. While these models were initially mainly focused in the economic aspects, nowadays models take

into consideration a new paradigm of electricity power generation, due to the increase of fossil fuel prices along with

increasing environmental concerns. While several decision support tools for the energy sector are available, most of

them require considerable experience and programming skills from the users. This work intends to present and detail

a new user-friendly tool, coined as ESAM, which is supported by four different (optimization) models. One model for

the generation expansion planning (GEP), one model for unit commitment (scheduling problem) process, one model

representing a simplified approach of the scheduling problem, and lastly, one model that combines the generation

expansion problem with the scheduling problem (integrated problem). The goal of ESAM is to provide an interface

between users and the optimization models translated in GAMS codes, allowing the use of these optimization models
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in a easier and more intuitive way. Therefore, the proposed tool aims to facilitate data input, simulation of the electricity

systems and results output, promoting the effective dissemination of the models.

Keywords: Generation expansion planning, Unit commitment, Graphical tool.

6.1 Introduction

Society is nowadays more aware concerning worldwide climate change threats. These society concerns, together with

the finite availability of fuel fossil resources (and consequently their increasing price trend) are in focus and have a

particular impact in strategic energy decisions. Additionally, environmentally negative impacts of traditional resources,

like coal and gas, in electricity power generation have been promoting RES power technologies. These new concerns

are leading to a change on the paradigm of electricity power generation, making the use of RES for electricity production

a key issue.

In spite of the numerous advantages associated with the use of RES, its inclusion creates complex planning

challenges to both the strategic decision making and the operation of the electricity power generation system (unit

commitment problem). Characterized by its variable output and limited predictability, RES availability remains difficult

to forecast, leading to adverse consequences to the normal operation of traditional electricity power plants generation.

Problems such as insufficient regulating and reserve power (Ummels et al., 2007), increase ramping requirements of

traditional power plants (Albadi and El-Saadany, 2010), or traditional power plants low level operation (Pereira et al.,

2014) are usually associated to RES variability, with a high contribution from wind power generation.

Current changes and difficulties in the energy sector planning, in particular in the electricity generation, demands

for the use of strategic planning tools. The objective of this work is to present a new user-friendly application (coined as

ESAM) that consists in a tool considering a graphical interface between new optimization models for electricity power

planning and an optimization solver, providing to the decision makers a strategic planning tool.

This paper is organized as follows. First, section 6.2 presents a survey of the most used energy planning computer

tools. In section 6.3, a detailed description of the ESAM tool is presented. Finally, conclusions are stated in the last

section, section 6.4.
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6.2 Survey on computational tools for energy planning

Energy planning problems complexity has increased over the years due to the increase on available technologies,

networks size, and environments concerns. Decision makers are now supported by complex mathematical software.

According to Foley et al. (2010), electricity systems models are tools used by electricity analysts to manage and plan

the electricity system, to trade electricity, and for generation expansion planning purposes. Author also enhance that

electricity system’s modeling is now more complex, requiring new technics due to technological advances and envi-

ronment concerns. While a huge variety software is available, each one has specific characteristics and are applied in

different ways and to different planning problems. Models like MARKAL and TIMES (ETSAP, 1976), MESSAGE (IIASA,

1980), LEAP (Heaps, 2012), HOMER (1992), WILMAR Planning Tool (WILMAR, 2006), EnergyPLAN (1999), PLEXOS

(1999), among others are largely used and well documented over literature. For example, MARKAL is a mathematical

model of the energy system that “computes energy balances at all levels of an energy system: primary

resources, secondary fuels, final energy, and energy services” (IEA, 2009). It was developed in a coopera-

tive multinational project by the Energy Technology Systems Analysis Programme (ETSAP) of the International Energy

Agency (IEA) that started in 1978 and whose main objective is to obtain energy services at minimum global costs.

Both investment, operating, and primary energy supply decisions are considered by the model. More recently, TIMES

(integrated MARKAL-EFOM System) model generator was developed and uses long-term energy scenarios to conduct

in-depth energy and environmental analysis. It combines two different, but complementary, systematic approaches

to energy modeling, which consists in a technical engineering approach and an economic approach. TIMES is a

rich technology, bottom-up model generator, which uses linear-programming to produce a least-cost energy system

over medium to long-term time horizons (IEA, 2009). TIMES code is written in GAMS (2011), which is a commercial

high-level modeling system for mathematical programming (Connolly et al., 2010).

MESSAGE (Model for Energy Supply Strategy Alternatives and their General Environmental impact), was developed

by the International Institute for Applied Systems Analysis (IIASA) in Austria since 1980 (Connolly et al., 2010). It is a

systems engineering optimization model used for medium to long-term energy system planning, energy policy analysis,

and scenario development (IIASA, 1980). According to Connolly et al. (2010), the software uses a 5 or 10 years time

step, taking into consideration thermal generation, renewable, and storage/conversion transport technologies, allowing

costs to be simulated.

LEAP (Long range Energy Alternatives Planning system), is a software for energy policy analysis and climate change
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mitigation assessment, developed at the Stockholm Environment Institute in 1980. It is an integratedmodeling tool that

can be used to track energy consumption, production and resource extraction in all sectors of an economy (Connolly

et al., 2010; Heaps, 2012). LEAP model can be considered as a medium to long-term model and most of it analysis

uses annual time step.

The EnergyPLANmodel, developed andmaintained by the Sustainable Energy Planning Research Group at Aalborg

University since 1999, allows to study the operation of national systems on an hourly basis, contrary to models like

MARKAL, TIMES and MESSAGE that use for planning medium to long-term energy systems, developing scenarios

for national or global regions and taking into account climate change policies (EnergyPLAN, 1999). EnergyPLAN

operation analysis includes electricity, heating, cooling, industry, and transport sectors. Therefore, different thermal,

renewable storage/conversion, transports, and costs are considered. Programmed in Delphi Pascal, the model has a

user-friendly interface and is freeware (EnergyPLAN, 1999; Connolly et al., 2010). According to Connolly et al., 2010,

pg. 1068, EnergyPLAN “optimises the operation of a given system as opposed to tools which optimise the

investment in the system”.

Another tool, largely used and well documented in literature, is PLEXOS Integrated Energy Model. Developed by

Energy Exemplar company and first released in 2000, PLEXOS is an energy market simulation software that uses

cutting-edge mathematical programming and stochastic optimization techniques (PLEXOS, 1999). With a compre-

hensive graphical interface, PLEXOS is an easy to use software with a set of different applications such as production

cost simulation, capacity expansion planning, renewable generation integration analysis, and operational planning with

stochastic optimization.

In addition to the models described above, a large set of different models with a large diversity of energy analysis

applications can be found in the literature. A more detailed survey over the existent tools for energy analysis can be

seen in Connolly et al. (2010).

In a general way, optimization models without graphical support are not user-friendly. Additionally, most of them

are focused exclusively on a specific approach like generation expansion or scheduling, neglecting, for example, the

integration of both approaches. Therefore, the demand for a new tool is relevant and appropriated. This work presents

a new user-friendly application (ESAM) that consists of new optimization models for electricity power planning, based

on a multi-periodic approach combining optimization models for long-term capacity expansion with models for the

unit commitment process, based on short-term optimization of the available resources. ESAM gives access to a set

of optimization models, previously described and translated in GAMS, in a more intuitive and easier way. The set of
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models includes the model for the strategic electricity power planning for long-term capacity expansion (generation

expansion problem), the model for unit commitment process, the model based on short-term optimization of the

available resources (scheduling problem), the model representing a simplified approach of the scheduling problem,

and an integrated model that combines the generation expansion problem with the scheduling problem (integrated

problem). All models comprise a set of different fossil fuel power groups, mostly coal and gas, two different types of

hydropower plants (large hydropower plants with reservoir and the run–of–river power plants), pumping power plants,

and wind power plants. However, for simplification propose, no individual wind and hydropower plants are considered.

Thus, all the individual wind power and hydropower plants were aggregated and two sets, one for wind power and

other for hydropower, are considered. All models have as objective function the cost minimization, however, for both

GEP and integrated problem, besides costs minimization, CO2 emission minimization is considered, transforming

these problems into bi-objective problems.

6.3 The ESAM tool and models

In the following subsections, a detailed description of the ESAM tool is presented. The tool was developed in Visual

Basic, using the Microsoft Visual Studio environment. Figure 6.1 provides the main menu, from which access to all

models that compose the application can be gained. In the main menu, information about the ESAM tool, as well as

all contacts, can be obtained. The ESAM tool also provides (several) test cases that can be loaded by selecting “File”,

“Add”,“Example case study”. This example loads the Portuguese case study, allowing user to consider some already

defined options. The implemented models are described in the following subsection.

6.3.1 Generation expansion problem

By definition, the generation expansion planning problem (GEP) is the problem of “determining WHAT, WHEN,

and WHERE new generation units should be installed over a planning horizon to satisfy the expected

energy demand”[ Meza et al., 2009, pg. 1086]. This section is used to describe, in detail, the ESAM module where

the GEP model presented in Pereira et al. (2015a) is implemented. This module can be accessed by selecting the

option “File” in the main menu (Figure 6.1). The “New”, “Generation Expansion Problem” subitems will open a new

window as show in Figure 6.2.
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Figure 6.1: ESAM tool (Main Menu).

The first window is composed by three main tabs named “Model Elements Id”, “Costs & Units Capacity”, and

“Electricity Demand & SRP1” as can be seen in Figure 6.2. In the first one, the user will be able to choose the horizon

time for his problem, the name of the set of existent (installed) power plants, as well as the name of the new (to

be installed) power plants to be considered in the optimization process. The “units validation” button provides an

update/refresh of the model.

The next tab, named “Costs & Units Capacity”, is where most of the input data concerning power plants can

be changed by the user. Three new sub-tabs, named “Power Units”, “General Settings”, and “Overall View”, are

considered as can be seen in Figure 6.3.

In this first sub-tab, “Power Units” (Figure 6.3), the user is allowed to define the input data related to the modular

capacity (group capacity) of new (to be installed) thermal power groups, renewable wind and hydropower units potential

(maximum capacity allowed to install for each considered technology), large hydropower plants (dams) inflows with

respective reservoir levels, and some others considerations such as, minimum renewable production, pumping costs,

1Special Regime Producers (SRP) - For this work, SRP is assumed to include all renewable power plants except wind and largehydro

power plants.
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Figure 6.2: ESAM tool (GEP)

 

Figure 6.3: ESAM tool “Costs & Units Capacity” tab/“Power units” sub-tab
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and minimum run-of-river installed power. ESAM tool also allows users to enforce the model to install a specific value

of wind power capacity (see top left form in Figure 6.3). Besides that, the model also allows to consider a minimum

capacity (to be installed) of run-of-river power plants, that can be used to compensate the (geographical and physical)

limitations in installing large hydropower plants (dams).

In the “General Settings” sub-tab, shown in Figure 6.4, input data for the yearly peak load, power plants monthly

availability, new power plants lifetime, special regime producers installed power, reference margin, and considerations

like emissions allowance cost and discount rate can be updated by the user. In this sub-tab, users are also allowed to

obtain costs minimization having into account a specific amount of CO2 emissions (see top left form in Figure 6.4).

The reference margin (RM), given by equation (6.3.1) (see (Ferreira, 2008)), can be computed pressing the “Reference

margin computation” button. A new window, shown in Figure 6.5, is used to introduce the corresponding values, where

the example provided by the ESAM module can be tried out by pressing the button “Data Example”.

 

Figure 6.4: ESAM tool (GEP) “Costs & Units Capacity”/“General Settings” sub-tab

RM =
(Reliable available capacity − Peak Load)

System Capacity
(6.3.1)
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Figure 6.5: Reference Margin window calculation

In the last sub-tab, “Overall View”, shown in Figure 6.6, the user is able to insert the data related to the invest-

ment and fixed operation & maintenance costs of new power plants, variable operation & maintenance costs, CO2

emissions costs, fuel cost of all power units, and the power plants installed capacity of existent power plants.

The last “Electricity Demand & SRP” main tab is where the user can update the monthly and annual electricity

demand, and also the expected SRP production. The data is inserted in the form presented in Figure 6.7.

After saving all the data that refer to the model, the user can run the model by pressing the button “Run

Gams”, under the same tab. After the simulation the results are saved in an Excel (2015) file (.xlsx) named genera-

tion_expansion_problem and located in GAMS project directory (typically in the c : \Documents\gamsdir\projdir).

Thus, user will be able to freely analyze all the obtained results. Future versions of ESAM module will internally present

and analyze the results.

6.3.2 Scheduling Problem

Scientific literature provides a huge variety of definitions for the unit commitment (UC) problem. According to Norouzi

et al. (2014), the goal of implementing an UC problem is to optimize energy sources, being the load demand supplied
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Figure 6.6: ESAM tool (GEP) “Costs & Units Capacity”/“Overall view” sub-tab

 

Figure 6.7: ESAM tool “Electricity Demand & SRP” tab
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at the lowest cost. Delarue et al. (2013) refers to the UC problem as the process of schedule the power plants to meet

the demand fluctuation. For Catalão et al. (2008, pg. 3), “short-term scheduling of thermal units is defined

as the task of establishing the minimum fuel cost for the hourly generation schedule of the thermal

power plants during a time horizon of 1 day up to 1 week, satisfying the demand of electrical energy

and the considered constraints”. In line with this, Senjyu et al. (2003) defined UC problem as the problem of

defining the proper on/off state of all power plants of the system in each time interval, minimizing costs, and meeting

the demand forecasts and spinning reserve.

Latterly, the increase penetration of RES on the electricity system, and therefore their impacts, are a major

concern for the electricity system managers. Thus, new challenges for the electricity system managers are expected

to emerge. The use of ESAM tool can therefore be an important support to assess the impact that different levels of

renewables integration may have on the operation and management of the electricity system, along with dealing with

the commissioning of the involved power plants.

In the following subsections, a detailed description of both extended and simplified approaches of scheduling

problem is presented.

Scheduling problem – Extended approach

The Extended approachmodule can be accessed by selecting the option “File”, “New”, and then “Scheduling Problem”

from the main menu window (see Figure 6.1). A new window, as the one shown in Figure 6.8, with three main tabs

named: “Model Elements Id”, “Costs & Units Capacity”, and “Electricity Demand & SRP”, will appear, allowing user

to insert the data and to select all possible model options.

Thermal groups names, to be considered in the model, are inserted in the first main tab. This first version of

ESAM only considers gas and coal thermal power groups. As RES power plants are aggregated, they are already

pre-defined in the model. In the same tab, users are also able to define the model time horizon (defined in hourly

steps of 24 or 168 hours) and the emissions allowance costs.

The second main tab, named “Costs & Units Capacity”, addresses the power plants main characteristics. This tab

is composed by two sub-tabs named “Thermal Power Units” and “Renewable Units”, as can be seen in Figure 6.9. The

first main issue is the model type selection where the extended model or a simplified approach can be selected. The

simplified approach description is postponed to subsection 6.3.2. Considering the extended model, costs, capacities,
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Figure 6.8: ESAM tool (Scheduling Problem)

and some other technical characteristic of thermal power groups are addressed in the “Costs & Units Capacity” first

sub-tab (Figure 6.9). Concerning costs and groups capacity of coal and gas thermal power groups, user is able to

insert the maximum and minimum capacity, and fuel, variable operation and maintenance (O&M) costs. Technical

aspects such as the minimum up and down time, and the technical power groups cold and hot startup time can also

be considered. Additionally, shutdown, hot and cold startup costs can be considered. The CO2 emissions released

by power groups as well as typical security considerations, as the case of the spin reserve, are also considered. Finally,

the ESAM module also allows users to consider ramps settings. These settings can be inserted in the ramps window,

obtained by pressing the button “Ramps”, as shown in Figure 6.10. In this new window, users are able to insert all

data related to the up, down, startup, and shutdown ramps capacity.

Sub-tab “Renewable Units”, as shown in Figure 6.11, regards to renewable power plants, where its main charac-

teristics can be considered. These characteristics encompasses the variable operation & maintenance costs, power

plants capacity, wind and run-of-river plants hourly availability, and large hydropower plants inflows. Regarding large
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Figure 6.9: ESAM tool “Costs & Units Capacity” tab/“Thermal power units” sub-tab

hydropower plants, reservoir levels as well as pumping costs can be considered and dimensioned. In this sub-tab, the

user is also allowed to specify a value for CO2 emissions over which want to minimize the overall system costs (see

top right form in Figure 6.11).

The last main tab, named “Electricity Demand & SRP”, regards to the expected demand and special regime

producers generation. Here the user is able to insert the expected hourly demand to be met, as well as the expected

SRP generation. Figure 6.12 is representative of this tab section. After inserting and saving all data, optimization

results are obtained by running the model, which can be achieved pressing the button “Run Gams”. Once again,

results will be saved in an Excel file (.xlsx) named scheduling_problem and located in the GAMS project directory

(typically in the c : \Documents\gamsdir\projdir).

Simplified approach

Usually, the complexity associated to the scheduling problems, due to the large amount of power plants/groups and

time horizon considered, leads to complex mixed integer programming problems, which are computationally expensive
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Figure 6.10: Ramps considerations

 

Figure 6.11: ESAM tool “Costs & Units Capacity” tab/“Renewable Units” sub-tab
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Figure 6.12: Schedule problem “Electricity Demand & SRP” tab.

to solve. However, simplified approaches of existent models can be used to obtain numerical results that, despite of

not being optimal, give satisfactory accuracy. This simplified model allows users to try a large number of different

scenarios in a reasonable computing time (Pereira et al., 2015b).

The simplified model can be accessed in the sub-tab “Thermal Power Units” under tab “Costs & Units Capacity” of

the schedule problem section, by selecting the option “Simplified Model” (see Figure 6.13). The differences between

both models are focused on the thermal power groups. The simplified approach does not consider in the model the

minimum up/downtime and the hot/cold startups and shutdown costs. The simplified model considers ramp options

by imposing a maximum variation of power production between two consecutive periods of time fixed at 30%. However,

in order to mitigate the changes when comparing with the extended approach, the simplified approach considers

the typical fuel and CO2 costs quadratic curves. These changes in the model, lead to a non-linear programming

problem without integer variables (see (Pereira et al., 2015b)), which results in an optimization problem requiring less

computational effort to be solved. Figure 6.13 presents the simplified approach window. In this new window, user
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is allowed to select quadratic curves coefficients. Moreover, the user is allowed to opt between choosing the default

(internal coded) quadratic curves coefficients or select their own coefficients. This can be seen in Figure 6.14.

 

Figure 6.13: ESAM tool “Costs & Units Capacity” tab/“Thermal power units” sub-tab (Simplified approach)

The remaining model parameters and settings remains as in the extended model and results are saved in an

Excel file (.xlsx) named simplified_approach and located in the GAMS project directory (typically in the

c : \Documents\gamsdir\projdir).

6.3.3 Integrated Problem

The development of optimization models based on a multi-periodic approach, which combine models for long-term ca-

pacity expansion with short-term models for the unit commitment process seems to be the next logical step. See Zhang

et al. (2013) and Pereira et al. (2015c) for two works where such approach has already been proposed.

Following the model proposed in Pereira et al. (2015c) the ESAMmodule implements an integrated model that can

be used by selecting, in main menu window, the menu “File”, “New”, “Integrated Problem”. A new window, shown
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(a) Fuel and CO2 coefficients curves (ESAM

suggestion)

 

(b) Fuel and CO2 coefficients curves (User choice)

Figure 6.14: Fuel and CO2 coefficients curves data (Schedule Problem - Simplified approach)

in Figure 6.15, will emerge. As shown in Figure 6.15 and, like for the previous model main window, the “Integrated

Problem” provides three main tabs named “Model Elements Id”, “Costs & Units Capacity”, and “Electricity Demand

& SRP”.

In the first main tab, named “Model Elements Id”, the user is able to select the generation expansion planning

time horizon as well as the time horizon for the scheduling problem. In the first case, a yearly time step is used while

for the scheduling problem a hourly step of 24 and 168 hours is considered. This main tab allows user to specify

existent and new thermal power plants to be used in the model, by inserting their name into the provided forms.

The second main tab (“Costs & Units Capacity”) provides three additional sub-tabs allowing user to insert the main

input data concerning costs and technical characteristics of all power plants/groups considered in the model. These

new sub-tabs are named “Thermal Power Units”, “Renewable Units”, and “General Settings”, as can be observed in

Figure 6.16. Dedicated to thermal groups, the “Thermal Power Units” sub-tab gives user access to more three sub-

tabs. These tabs are, “Investment/O&M Costs”, ‘Installed Power”, and “Fuel/Emissions costs & General settings”. In

the “Investment/O&M Costs” tab (Figure 6.16), the user is able to provide the investment and fixed O&M costs of the

new thermal groups, and also the variable O&M costs of both new and existent thermal power groups. In the “Installed
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Figure 6.15: ESAM tool (Integrated Problem)

Power” tab (Figure 6.17), the user is allowed to define the power capacity of existent thermal power groups as well

as the capacity of the future thermal power groups to be considering in the strategic expansion planning. Finally,

the “Fuel/Emissions costs & General settings” tab (Figure 6.18) allows user to define the lifetime of the new thermal

power groups, the fuel cost in (e/m3) of gas power groups and the fuel and emissions curves costs coefficients of

both coal and gas power groups. Note that only gas power groups fuel costs are considered because, contrary to coal

groups, gas fuel curve consumption is represented in m3/mwh and for costs minimization propose, conversion

to e is require. As in the extended model, quadratic cost curves coefficients may be user specified. By default the

coefficients used in Pereira et al. (2015c) are taken. Figure 6.19 shows how each possibility can be selected.

The second tab of “Costs & Units Capacity” main tab is dedicated to the renewable power plants (“Renewable

Units”), which gives access to two additional sub-tabs named “Investment/O&M Costs” (Figure 6.20a) and ‘Installed

Power” (Figure 6.20b). In “Investment/O&M Costs” sub-tab, the user provides investment and fixed O&M costs of

the new (to be installed) large hydro, run-of-river, pumping, and wind power plants. Variable O&M costs, for these new

and existent (installed) power plants types, can also be provided. In the “Installed Power” sub-tab, user can define the

renewable power plants lifetime, the installed capacity, the wind and hydro potential, and the SRP installed capacity.

As in the generation expansion problem, a specific value for wind power potential can be defined by the user, enforcing

the model to install this specific wind power capacity (see bottom right form in Figure 6.20b).
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Figure 6.16: ESAM tool “Costs & Units Capacity” sub-tabs

 

Figure 6.17: Integrated problem “Installed Power” tab (Thermal Units).

The “General Settings” (Figure 6.21) sub-tab, accessed through the “Costs & Units Capacity” main tab, allows

the user to specify some additional models parameters. In this sub-tab, the user is allowed to define both wind
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Figure 6.18: Integrated problem “Fuel/Emissions costs & General settings” tab (Thermal Units).

 

(a) Fuel and CO2 coefficients curves (ESAM suggestion)

 

(b) Fuel and CO2 coefficients curves (User choice)

Figure 6.19: Fuel and CO2 coefficients curves data (Integrated Model)
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(a) Integrated problem “Investment/O&M Costs” tab

 

(b) Integrated problem “Installed Power” tab

Figure 6.20: Integrated problem “Renewable Units” tab
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and run-of-river power plants availability, large hydropower inflows, as well as its reservoir levels and pumping cost,

the yearly peak load, the discount rate, and the emissions allowance costs. Power system security is taken into

consideration by allowing user to set the spin reserve and reference margin. Reference margin can be calculated by

pressing the “Reference margin computation” button, which will open the window shown in Figure 6.5 and already

described for the generation expansion problem (see section (6.3.1)). Again, and like in the generation expansion

problem, cost minimization can be calculated having into account a specific value for the CO2 emissions (top right

form in Figure 6.21).

 

Figure 6.21: Integrated problem “General Settings” tab

The last tab, “Electricity Demand & SRP”, is where user can update electricity demand as well as SRP param-

eters. Due to complexity and high dimension of this problem, integrated model assumes four trimesters for the

calculations. Each trimester represents a season of the year and its assumed that in each trimester, respective

months will share the same system behavior. After inserting and saving all data, optimization results are obtained

by running the model, which can be achieved by pressing the button “Run Gams”. Once again, results will be

saved in an Excel file (.xlsx) named integrated_model and located in the GAMS project directory (typically in the

c : \Documents\gamsdir\projdir).
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Figure 6.22: ESAM tool “Electricity Demand & SRP” tab

6.4 Conclusions

The existent tools to support energy decision making are deemed to be essential due to the changes evidenced over

the years in the paradigm of energy sector and the required effort to proposed future scenarios and energy policies.

In what concerns to the electricity sector, these changes are mainly related with the development of new and more

environmental friendly technologies and consequently their impacts on the power system. Thus, the task of the decision

makers becomes increasingly complex and so, the usefulness of optimization tools is evident, allowing to deal with

large problems with high number of variables and constraints that characterize the electricity systems. However, and

in a general way, these tools are very complex, which difficult their dissemination among users not fully familiarized

with programming/mathematics techniques. Furthermore, some of the available tools are not freeware and lack a

proper easy-to-use graphical interface.

This paper presents a new tool used to support electricity decision problems analysis. Apart of covering both well

known problems, frequently addressed in literature, as is the case of the electricity expansion and schedule problems,

this new application also includes a simplified approach of the schedule problem, and a new model that results of

the combination of the two previous ones (Integrated problem). The translation into the GAMS modeling language

of the described problems would still be insufficient to completely help the user. As such, a graphical interface was
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developed supporting the user on the data input, models’ simulation and analysis of the results. Thus, the goal of this

tool is to allow the user to apply these problems in a more simplified and intuitive way, without losses of information,

keeping results accuracy, and without neglect visual aspect. The application will be available as a freeware tool to be

tested by different users, receiving feedback from them in order to correct possible errors, increase the quality of the

tool and expand its usage by incorporating additional technologies or restrictions in the models.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

Energy decision makers face nowadays a hard task. Over the past years, changes in the paradigm of the electricity sec-

tor are evident and enhanced by the society new environmental concerns the depletion of fossil fuel and its increasing

trend prices, and also by the increasingly reliance on RES technologies frequently characterized by its variable output.

Therefore, from to all these changes, new challenges on the operation of the electricity system are expected to arise.

The use of optimization models to support decision making in the electricity sector is extensively debated in the liter-

ature, discussing different methods and providing examples. However, the impacts of RES integration on long-term

strategic planning models, is still not fully explored.

Usually, when applied to the electricity sector, two main problems are considered. One for the strategic generation

expansion planning and other for the UC and economic dispatch. The difference lies mostly in the horizon time frame

in which each one fits into. The strategic generation expansion planning, addressed in chapter 2, is the problem of

defining which, when, and where a specific power unit should be installed, in order to meet the expected demand at

minimum cost. This is a highly constrained problem which must be modeled from the technical, legal, and environ-

mental requirements of the electricity system. The inclusion of technologies of variable output presenting a noticeable

seasonable behavior, adds additional complexity to these models. In chapter 2 a MILP that considers both economic

and environmental objective functions, subject to a set of constraints translating the legal, technical and demand

requirements of the system was formulated. The model was applied and used to present possible optimal electricity
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scenarios for a system close to the Portuguese one, establishing investment and generation plans and evaluating the

cost, emissions and external dependency. The results indicated that as theCO2 objectives become more restrictive,

in general, the least expensive solution was to firstly replace the coal by CCGT. According to the results, wind power

contribution would only increase significantly for highly environmentally constrained solutions. These results may be

explained by the low capacity credit of wind and the required hydropower reserve schemes directly related with the

total installed wind power. The results also emphasized the possibility of considering different scenarios that, although

not being optimal Pareto solutions, may be interesting from the strategic decision makers’ perspective. This approach

may be particularly useful to support multi-criteria sustainable electricity planning decisions, based on the evaluation

of minimum (or close to minimum) cost scenarios taking into account environmental and social objectives.

Despite all benefits frequently assigned to RES power, a diversity of impacts, affecting mainly the operation and

management of the electricity system, can be also associated with the increasing levels of RES, and in particular to

wind power. According to scientific literature these impacts are usually related with increasing difficulties with voltage

management, reduction of efficiency of thermal or hydropower power plants, increasing difficulty of the transmission

system to accommodate wind generation, increasing reserve requirements and increasing on non-used energy. Chap-

ter 3, presents a MINLP used to solve the UC problem. Along with a detailed model description, an analysis over the

impacts of the increasing levels of wind power on an electricity system was presented. For this a wind-hydro-thermal

power system close to the Portuguese one was used to test the model and to draw conclusions on wind power impacts.

Results indicates that as the wind power capacity increased the overall marginal cost of the system tended to decrease.

In the same way, results also confirms the reduction of theCO2 emissions. These results are explained by the lower

RES costs of operation and maintenance comparatively to traditional fossil fuel power plants and due to the fact that

wind power production was assumed to be free of CO2 emissions. Results also emphasized the importance of both

wind and hydro seasonality, put in evidence on the marginal costs of the electricity system, that reached the highest

values during the dry and low wind seasons. Regarding the impact of the increase of wind capacity on the operation

of thermal power plants, the results demonstrated that CCGT plants would be the most affected ones. The variability

of wind power output is shown to result on both the increase of the number of startups of CCGT and the reduction of

its power output.

The model developed in Chapter 3, provided a detailed description of the unit commitment problem applied to

a system close to the Portuguese one. However, the model was demonstrated to be very complex, resulting in high

computation times. In chapter 4, a new and simplified approach of the model previously proposed is presented.
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Aiming to reduce the complexity, a set of amendments where considered transforming a MINLP into a NLQP. Results

evidenced that despite being a simplified approach, and as such discarding or simplifying some of the technical

constraints previously included, the new approach allows to achieve good solutions that represent a good compromise

between the quality of the results and the required computational times. The quality of the results was demonstrated

through the comparison of the solution obtained with both models, showing that the simplified approach can be used

as a first attempt to analyse a large set of different electricity scenarios and, select the most relevant ones to be

analysed with the model proposed in Chapter 3, if further detail is required.

In the fourth paper, presented in chapter 5, an optimization model to apply to the analysis of the electricity sector

was presented. Based on a multi-periodic approach combining optimization models for long-term capacity expansion

(chapter 2) with models for the unit commitment process (chapter 3 and 4), based on short-term optimization of

the available resources, this new model is coined as integrated model. This model provides additional technical

considerations to the previously one proposed in Chapter 2. It allows in particular, to take into account the operational

performance of thermal power plants avoiding the use of average operational conditions. The impacts of RES of

variable output are then recognized and integrated in the model, resulting on more reliable estimations of costs and

CO2 emissions to be considered for the long-term scenarios generation. As in the previous chapters, the model

was applied to an electricity system close to the Portuguese one, aiming to present future electricity scenarios and

to compare the results with the ones obtained in Chapter 2. The results of both models show a similar trend, with

the reduction of CO2 limits resulting on the replacement of production from existent coal power plants by CCGT

and even by new and more efficient coal power plants, and to less extent by wind power. The contribution of new

wind power for the system only becomes relevant for highly environmentally constrained solutions, resulting from its

higher investment costs but also from its impacts on the operating performance of thermal power plants. In fact,

the integrated model results in higher costs for the same CO2 constrained solutions. This comes from the use of

both short-term technical constraints for thermal power plants and from the hourly variability of wind and hydropower

output, now taken into account.

The conducted literature review and the design and development of the optimization models for electricity plan-

ning, demonstrated that the use of these models is strongly limited by their complexity and their lack of user-friendly

interfaces. Users are frequently required to have expertise in both programming and mathematical field. Therefore,

tools that support the use of these models in a more easier and intuitive way are considered to be essential and

useful. The paper presented in chapter 6 aims to tackle this challenge. The development of a graphical tool (coined
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as ESAM) that will support the use of all models presented in this work is then proposed. The paper comprise an

detailed description (manual) of “how to use” this tool, aiming to contribute to the extensive use of the results of this

research. The users are challenged to freely use the models and apply them according to their interest in a way of

testing it and obtain feedback for its improvement.

With this work, a deeper understanding of the impacts of RES integration in the electricity system was fulfilled,

by formulating optimization models for long-term and short-term electricity planning and applying these models to

a system close to the Portuguese one. The results proved that RES integration, and in particular wind power, can

have relevant impacts on the overall electricity system and on the different power plants comprising it. In general, an

increase on the RES share can result on higher average costs mainly due to the assumed investment costs, but will

also lead to a reduction of the marginal costs of the system and of the CO2 emissions. However, it became obvious

that the computation of the marginal cost and CO2 emission reduction cannot be based on the simple assumption

of substitution of electricity generation technologies. Increasing wind power in the system, will affect the operational

regime of thermal power plants both on their load factor and utilization factor. The quantification of these short-term

impacts must then be taken into account during long-term strategic planning.

Recognizing RES impacts, a new integrated optimization model for strategic electricity planning was developed

and tested allowing to conclude that these impacts are relevant and, as such, they should not be overlooked during the

design of future scenarios. In fact, results showed that not contemplating these aspects can lead to underestimation

of the costs of each scenario and to the overestimation of the CO2 abatement potential of wind power, significantly

influencing the choice of technologies to be added in the future.

This thesis showed that the use of the optimization models for drawing conclusions over the aforementioned

aspects is of great benefit, but it was also demonstrated to be complex task and requiring considerable experience

from the users. The work developed allowed to make an important contribution for the effective dissemination and

usage of these models, by providing a user-friendly platform enabling researchers and stakeholders to deal with

electricity planning problems in a simpler but reliable way.

7.2 Future Work

The work performed in this thesis was applied to the Portuguese electricity system that is comprised by a mix of

thermal, hydro and wind power technologies. Therefore, all models developed in here can be easily adapted to assess
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the impacts of wind power in electricity systems close to the Portuguese one. Thus, one possible further development

can be the application of the developed models to others wind-hydro-thermal system or to address an Iberian scale

taking into account all the relevant technologies.

The technological development in what refers to renewable energy sources is evident nowadays. Despite wind

power, other technologies such as photovoltaic and biomass are available in a commercial scale, and others such as

wave or concentrated solar power are starting to emerge. In all models presented herein, all these RES technologies

and cogeneration were assumed as parameters not included in the optimization procedure. Therefore, future research

should consider models improvements by considering all these technologies taking into account their cost, technical

and seasonal characteristics. This should contribute to disseminate the models even further, allowing to adapt it to

electricity systems with different characteristics.

For the sake of simplicity, all models proposed in this thesis assumed a closed system, where cross-border was

not included. However, the integration of the markets can have a relevant impact on strategic electricity planning

in particular in what concerns the inclusion of RES. Future work should then address the interconnection capacity

including this in the optimization approach, allowing then to draw scenarios taking into account the possibility of

electricity importations and exportations.

One consequence of the emergence of the electricity markets liberalization is the creation of new generation

companies, competing for the electricity commercialization. Contrary to the traditional centralized electricity generation

systems, where the cost are to be minimized, in the liberalized markets, companies seek for profit maximization.

Along with this, power production companies are also committed to minimize the impacts that RES may bring to their

generation portfolio. Thus, both generation expansion and UC are usual problems to which electricity companies

assign significant importance and therefore, future research may consider the developed models presented herein

and apply them in the context of companies portfolio.
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