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Abstract

The analysis of causal relations among events in
a distributed computation plays a central role in
distributed systems modeling. Existing models for
causal time-stamping are based on a known set of
entities, either processes or data repositories, where
events can occur. The advent of mobile comput-
ing settings that stimulate cooperation among ar-
bitrary groups of nodes, possibly in isolation, pre-
cludes the use of a pre-established set of entity iden-
tifiers. Addressing this problem, the article pro-
poses a causality definition and a time-stamping
model that allows the analysis of those environ-
ments, while retaining compatibility with the clas-
sic causality model.

1 Introduction

Distributed computations are often modeled as a
set of concurrent activities. These activities are
distributed among computing nodes and perform
communication by message passing over a commu-
nication network. In such systems physical time
can only be approximated and potential causality
plays a fundamental role in the analysis and under-
standing of these computations[12, 13].

Recently, mobile systems have emerged as a dis-
tinctive kind of distributed systems raising demand
for the adaptation of distributed systems theory
and techniques. When compared to stationary
nodes served by a local network, mobile nodes ex-
hibit different communication patterns and avail-
ability, often experiencing long periods of discon-

nection. Mobility itself can lead to changes on the
cardinality and identity of the activities involved in
distributed computations.

Taken together, these factors will influence the
determination of causality in mobile environments,
raising the need for an adaptation of the existing
techniques. This article addresses this issue and
presents a causality logging mechanism that fits en-
vironments where the number of concurrent activ-
ities is unbound, and the lifespan of each process
is often inferior to that of the distributed compu-
tation.

The next section will summarize the present
techniques for causality logging and reference some
recent adaptations that fit mobile networks. Build-
ing on these notions, a following section will in-
troduce a more general mechanism that addresses
the concerns that were raised by the introduction
of mobile nodes. Sections 4 and 5 present a model
of autonomous causality and the associated time-
stamping scheme. Section 6 closes the article with
conclusions.

2 Causality Modeling

2.1 in Distributed Systems

Following the definition of causality as a partial or-
der among events [6], logical vector time-stamping
techniques have been proposed [3, 13, 8] for an
efficient description of this partial order. These
representations have been shown to provide a cor-
rect modeling of the partial order that was initially
defined by Lamport as a happened-before relation
among primitive events [6, 13].



Definition 2.1 Lamport causality A% s defined as

the smallest transitive relation on the set of events
lam

E, = C E x E, satisfying:
lam . .
® e4i — €qj, Uf €qir€qj € Eq occur in the same
process P, and eq; occurs before eqj, verifying
1< 7.

lam . .
® e,i — ey, if eai € E, is a send event and
ey € Ey the corresponding receive event.

From this definition it can be seen that in Lam-
port causality it is assumed that events on the same
process are related in a total order. This assump-
tion, which is crucial for the validity of description
techniques based on vector time-stamping, is rea-
sonable for the majority of the modeled systems.
Nevertheless, some systems do not exhibit a to-
tal ordering among events in the same activity. In
such cases, stronger description techniques based
on causal histories [13, 4] are required and vector
time-stamping may no longer be sufficient.

2.2

Recently, the need to support efficient causality log-
ging, in mobile networks with a mix of fixed sup-
port stations and mobile nodes, called for the re-
evaluation of causality logging for activities exhibit-
ing non total ordering [10, 1]. In these configura-
tions, space saving and reliability issues suggest the
use of partial ordering techniques for the delegation
of logging tasks from the mobile nodes to their al-
located support stations.

Although mobile networks, with support stations
and mobile nodes, do represent a major portion of
current mobile systems architectures, it is now clear
that a new trend favoring direct interaction among
mobile nodes is rapidly emerging. The leading fac-
tors are: the increased ubiquity of mobile devices
capable or seaming-less inter-communication; the
standardization efforts towards close range radio
communication among mobile devices [7, 5]; and
the development of data sharing protocols for point
to point collaboration [2].

The new class of mobile systems that comes with
this trend calls for a new approach to causality
modeling. An approach that copes with the in-
creased dynamism and unpredictability of interac-
tion peers and the short lifespan of each individual
activity.

in Mobile Systems

3 A Data Driven View

3.1 Modeling Process Causality

When logging a distributed computation performed
by a set of processes, causality connections can be
introduced both by internal events local to a pro-
cess, and by send/receive event pairs.

The modeled causality in the first case is bound
to the occurrence of events within the processes.
It is expected that these events induce changes in
the local state of the process, thus influencing each
other.

On the second case, causality connections are due
to communication. When send and receive events
perform a communication act among two processes,
the causality link between the two separate process
states is performed by way of a data item that is
communicated. This data item can be seen as a
transient portion of state that is separate from the
local state of the processes.

In both cases, the description can be adapted in
order to express causality connections by relating
portions of data (state and messages) that exhibit
causal dependencies. Under this vision, we can
introduce an alternative picture of internal events
and send /receive event pairs.

Tagging by P the state instance that represents
a process in a given point in time, and by M an
arbitrary message, we can observe three patterns
that respectively represent the occurrence of inter-
nal, send and receive events.

P ~P P~ P M

, S

M P ~P

This representation helps to enlighten some char-
acteristics of process causality modeling. For in-
stance, the fact that all three transformations must
operate over a given P shows that the number of
processes that will engage in the distributed com-
putation must be known a priori'. In fact most
causality models assume that the appropriate num-
ber of processes exist, and do not incorporate ex-
plicit primitives for processes creation and destruc-
tion [13]. The lack of these primitives invalidates
the two associated patterns.

IThis is sometimes circumvented by replacing fixed size
vector time-stamps by associative arrays. In such cases it is
the set of process names that is fixed.
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We can also observe that messages are immutable
and cannot be combined or duplicated, thus pro-
hibiting three additional patterns.

M ~ M M ~ M M
\\ \\
M M ~ M

Before delving deeper into a more data driven
vision of causality it should be recalled that a du-
ality of process causality and replica versioning is
taken into account. In fact the comparable con-
cepts of vector clocks[3, 13] and version vectors [8]
have evolved together as representations of causal-
ity. Both exhibit the same dependence on the iden-
tity and number of the modeled units (that in our
description we have restricted to processes), and
both can be expected to benefit from the evolution
that we are about to describe.

3.2 Towards Autonomous Operation

The set of transitions allowed in process causality
have been adequate for the distributed computa-
tions that build on a set of communicating pro-
cesses. A fixed number of processes enables the use
of the indexed integer vectors that base vector time-
stamping schemes. Even on environments where
the number of participating processes changes with
time, it is often possible to uniquely identify each
process so that an associative array from process
identifiers to integers can be used as a base for vec-
tor time-stamps [11].

Nevertheless, we argue that, on environments of
extreme mobility and free interaction among mobile
nodes, these approaches are no longer adequate.
Several factors concur to the validity of this state-
ment:

e The number of participating instances is often
impossible to determine and even impossible
to uniquely identify in an uniform way. This
is the case when we allow the creation of new
participants by duplication in isolation. Such
actions are needed if collaboration with unex-
pected peers is to be supported.

e The distinction between messages and process
state is fuzzier in these environments, thus sug-
gesting their eventual unification into a single
concept. For example, in the IETF iCalendar?
specification, the structure of an event schedul-
ing message and the persistent event itself are
alike.

e The adoption of asynchronous communication
schemes that are implemented with persis-
tent messages and make use of epidemic dif-
fusion raises the opportunity to replicate and
combine the actual messages. Consequently,
causality dependencies among messages be-
comes relevant.

In order to address causality modeling in these
environments, the causality connections are better
described by linking dependent portions of data.
The patterns that are relevant in such a model
show the occurrence of internal events that change
a state, events that derive new instances of a state,
and events that combine them.

S ~8 S ~8 S
\\ \\
S S ~8

By restricting the multiplication and combina-
tion actions to pairs the model can be made sim-
pler, without loss of generality, since it will still be
possible to model multi-part links by combining the
basic links.

The model of causality that is presented in the
next section formalizes this viewpoint, introducing
a vision of causality that is centered on the state.
This vision should be able to generalize the classi-
cal process causality® and support the analysis of
autonomous mobile systems.

2See: IETF Calendaring and Scheduling Working Group
at http://www.imc.org/ietf-calendar/
3As defined by Lamport[6].



4 Autonomous Causality

Causality is modeled over a set of instances S =
{Sa;Sh, . -- } of which a subset will be active at any
specific point in time. We consider the occurrence
of internal events in a given instance, as well as du-
plication and combination events that change the
set of active instances. Internal events can be se-
quentially indexed in the appropriate instance as
they occur in a total order.

For each instance S; € S, we represent by FE,
the set of events that occur in it. This is a totally
indexed set, as depicted by E, = {e;1,€s2,.-.}.
The set of system events E gathers all the events
that occur in the instancesin S, E = E, U E,U---.

Duplication and combination events are respec-
tively allocated as the last event of the duplicated
instance and as the initial events of the combined
instance. The first and the last event of a given
instance S, are conveniently denoted as e;; and

€r_o-

Definition 4.1 The causality relation — is de-
fined as the smallest transitive relation on the set
E of events, -C E x E, satisfying:

® ey — ey, if egiyeq; € Ey occur in the same
instance S, and eg; occurs before ey, thus ver-
ifying 1 < j.

0 e, . ey ifes o € By and ey € Ey, with
E,,E, as the events of S;, Sy respectively, and
one of the following conditions holds:

— ey 15 a duplication event and Sy is cre-
ated from S; by that event.

— ey1 5 a combination event and Sy is cre-
ated from Sz, and from another instance
of S, by that event.

In Figure 1 we show a set of related events, that
exemplify this partial order of causality.

As usual, two events are concurrent when they
are not causally related.

Definition 4.2 The concurrency relation, «»C
E x E, among distinct events from E is defined
as: e « €' if and only if =(e — €') and —(e' — e).

The expressiveness of this causality model allows
the representation of process causality, as defined

€d2
/1\
€ed1 €el €c3
€p2 €c2
4 )
€p1 €c1
€a3
/|\
€02
€al

Figure 1: A partial order among events, depicting
causality.

by Lamport, and shown in definition 2.1. Infor-
mally, an encoding could be obtained by the fol-
lowing set of transformations: Both processes and
messages are represented by generic instances; In-
ternal events are simply registered in the associated
instance; Send events lead to a duplication that
yields two instances, one associated to the sending
process and the other to the message; Likewise, re-
ceive events combine the instance of the message
and that of the receiving process and derive a new
process instance.

This expressiveness has a price, and it comes
to face when developing time-stamping schemes —
the significant point is the absence of pre-defined
unique identifiers for tagging the instances. The
identification problem will lead, as shown in the
next section, to the use of a composition technique
that uses the available identifiers when a new in-
stance is to be created. In fact, similar composition
techniques are also needed in actual systems that
resort to epidemic propagation [9], when it comes
to the autonomous creation of unique identifiers.

Even though the associated time-stamping tech-
nique would prove to be overly expensive for mod-
eling process causality, it embodies the necessary
expressiveness for systems that exhibit autonomous
mobility.
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000(1) 001(1) 01(3)
~ |
00(2) 01(2)
/|\ /'\
00(1) 01(1)

0(3)

0(2)

0(1)

Figure 2: Event time-stamps with duplication only.
Each label tags an event with the instance identifier
followed by the event sequence number in braces.

5 Time-stamping scheme for
Autonomous Causality

The definition of adequate time-stamps for the im-
plementation of this causality relation must start
with the selection of adequate instance identifiers.
These identifiers are only bound to the represented
data instance and must be independent of the com-
puting node that might be operating on that in-
stance. By fulfilling these requirements, those iden-
tifiers will be able to persist with the instance, track
causality links that origin in data interchange by
transportable media, and even allow the creation of
new dependencies while data is in dissemination.

Fitting these requirements, the selected identi-
fiers can be constructed as incremental sequences of
three alternative symbols. Representing the set of
three symbols by 3, with the elements {0, 1, ¢}, the
possible sequences from this set can be represented
by 3*. The use of these elements is due to the fact
that upon duplication two alternatives need to be
distinguished, and that an additional distinction is
needed in order to represent combinations.

In fact, if only duplications were to be consid-
ered, it would suffice to use the symbols 0,1 and a
natural counter to tag the total oder of events in
each instance. This example is shown in Figure 2.

When combinations are considered, the symbol
<& is put to use when creating the new identifier,
and an additional entry is made to register the com-

010(2) &
/I\
010(1) &
000(2 \
4
000(1) 001(1 01(3)
™ — ]
00(2) 01(2)
] ]
00(1) 01(1)
0(3)
0(2)
/I\
0(1)

Figure 3: Event time-stamping with two bifurca-
tions and one combination.

bined instance identifiers. This new entry is a table
that gathers the pairs of identifiers that have been
combined. It is represented by 23" 3" which is the
algebraic representation of a subset of pairs formed
from 3*. The resulting time-stamps are now of the
format 3* x N x 23"%3"_ This format specifies that
the event time-stamps are composed by a instance
identifier 3*, a natural index N that shows the event
order within the instance, and a set of pairs of iden-
tifiers that have been combined in the past 23" %3",

Figure 3 shows an example of event time-
stamping with duplications and combinations®.
The combined pairs are represented with the no-
tation ’d—l to depict that the identifiers idl and
1d2 have been combined in the past. As such, the
subset 23"%3" is representable by the pairs that it
holds, as in :‘i—é% . Finally, the identifiers for
combined instances are obtained by adding a < to
one of the affluent instances.

The formal description of this time-stamping
method starts by the definition of the event reg-
istering procedure.

4All these examples start from a common root. If more
than one root is needed, in a given system, an initialization
procedure should perform the number of duplications that
lead to their creation.



Definition 5.1 Consider that I;, N;, Eq; are the
three components of the time-stamps that tags
events of an instance j. These components are,
respectively, the identifier, the natural indexr and
the set of identifier pairs that keeps the combined
identifiers. The value of the identifiers is shown in
double quotes and will be subject to concatenations
with the operator +. The set Eq; can be indexed so
that Eq;(idy) yields idy if it contains the pair L

. id2
id2 " ielding nil otherwise.

or idl?

o Initially o first instance i holds a virtual event
with, Iz = ”O”,Ni = 0, Eqi = {}

e Upon occurrence of an internal event on an
instance j, the matural index is incremented,
N; := N; + 1, deriving the new time-stamp.

o Upon a duplication event over the instance
j, with the derivation of instances k and I,
this event is stored as the last event of j with
N; := N;+ 1. The new instances, k and I, are
ingtialized with Iy, := I; + 70,1, := I; +71”
and the set of combined identifiers is inher-
ited by Eqy := Egq;,Eq := Eg;. Finally
a virtual initial event initializes the counters
N :=0,N; :=0.

e Upon a combination event, that joins two in-
stances m and n and derives a new instance o,
this event is registered as the first event of the
new instance with N, := 1. The new identifier
can be obtained by I, := I, + 77 or alterna-
tively by I, := I, +"<”. The set of combined
instances is inherited and actualized with the
recent merge by FEq, := Eq,, U Eq, U {II—’:}

With this procedure the events that occur in
a distributed computation can be identified by
a time-stamp consisting on the triplet (I, N, E,).
These time-stamps hold the necessary information
for comparing two events with respect to their par-
tial order of causality. The definition bellow intro-
duces the appropriate procedures.

Definition 5.2 Consider I, N, Eq. as the values
that are associated to a given event e. Making use
of a function S() that applied to an identifier I,
derives the set of identifiers (I, included) that are
initial segments of the identifier I, we define a re-
cursive function A() that derives the set of ancestor
identifiers of I, as:

o A(nil) = {}

o A(L) = 8(I.) UUp, sy A(Ego(1)
With this function we define:

o eq=c¢p iff I, = I, NN, = Ng,

o e, < ey iff I, = I, NNe, < Ng, or I, #
L, N, € A(L,).

o e, || e iff ~(eq < ep) A(er < eq)

The essential element of this definition is the
derivation of the set of past identifiers from the
inspection of the I and E, components of a time-
stamp. The recursive procedure uses the initial seg-
ments of the identifier to derive the direct ancestor
identifiers that lead to it. This first set can then be
used to introduce the identifiers from converging
branches and recursively find their direct ancestors
and other converging branches. After the recursive
construction the resulting set will hold all the an-
cestor identifiers of a given identifier, thus enabling
a direct determination of the partial ordering of the
time-stamps under consideration.

This technique is akin to vector time-stamps in
the sense that any pair of time-stamps hold the nec-
essary information to assess their relation with re-
spect to the partial order. The recursive calculation
is confined to the time-stamp data and does not in-
volve the inspection of other time-stamps. Other
time-stamping schemes for process causality, that
use recursive reconstruction, use it in order to col-
lect a distributed state across several time-stamps
[10, 1]. In contrast, this system holds all the needed
information locally.

Assessing that this time-stamping scheme is a
correct characterization of autonomous causality as
stated in definition 4.1 can be achieved by proving
lemma 5.1 . Space restrictions, however, condition
us to the presentation of the lemma under consider-
ation, together with a simple synopsis of the actual
proof.

Lemma 5.1 Taking any two distinct events e,e’
the following correspondence holds:

e e—e iffe<e.

e ewnce iffe| €.



Proof Synopsis The proof is established by as-
sessing the validity of the first expression and them
inferring the second from the definitions. As for
the validity of the first expression the proof can
be decomposed on proving the two expressions
e<e =>e— e and (e <€) = (e = €).
Both can be properly derived from the analysis of
the definitions 5.1 and 5.2. a

6 Conclusions

Current techniques for causality logging, both for
distributed computations and for tagging data de-
pendencies in data based environments, have been
essentially based on a fixed number of units. Even
when the number of units is allowed to change, the
unique identity of the intervening units is either
pre-established or assigned in a centralized way.

The emergence of new computing settings where
the number and the identity of the nodes is uncer-
tain, calls for the separation of the time-stamping
mechanism from the node identity. Additionally, in
such systems the data lifespan is often superior to
that of the processes that manipulate it, thus rein-
forcing the insufficiency of processes as the driving
force in the causality model.

The resulting causality definition expresses
causality links by relating data instances, which
can have autonomous existence or be only a rep-
resentation of a process state. The extended ex-
pressiveness of this definition allows the descrip-
tion of communication patterns that resort to epi-
demic propagation, as well as ad hoc interaction
among mobile hosts and data repositories. Doing
this, our model departs from both process causality
and replica versioning schemes, respectively based
on version vectors and vector time-stamping.

The associated time-stamping mechanism fulfills
the requirements for a correct characterization of
the causality definition and allows localized logging
of the causality relation. The resulting time-stamps
require however a considerable amount of state in
order to allow a local characterization of the partial
ordering of any two events.

Improving the state consumption in actual im-
plementations is more at issue here than it was
for process causality. Further research on the use
of known compression techniques for vector time-

stamping, as well as the potential for the creation
of aggregate time-stamps at points of confluence of
several branches, can be expected to derive lighter
implementations of this scheme.

As for assessing that the time-stamping scheme
is minimum, it rests as an open issue.
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