Fluconazole vs Voriconazole: Candida glabrata’s biofilms response to different azoles

Rodrigues CF1,2, Gonçalves B, Rodrigues ME, Silva SL1,2, Azeredo J1,2, Henriques M1,2

1 LIBRO – Laboratório de Investigação em Biofilmes Rosário Oliveira.
2 Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.

Abstract

Candida glabrata is the second most prevalent yeast in fungal infections, especially in immunocompromised and/or hospitalized patients. Theazole resistance within this species is very well-known and results in a low therapeutic response of *C. glabrata* infections, particularly when associated with biofilms.

Objective - To understand the different efficacies of two azoles against *C. glabrata* biofilms:
- fluconazole (Flu), a long time used drug
- voriconazole (Vcz), a latest drug used only in hospitals.

Methods

Flu and Vcz susceptibilities were determined in pre-formed 24-hour-biofilms of two clinical isolates and one reference strain of *C. glabrata*.

1. **Gene expression analysis**: ERG3, ERG6 and ERG11 expression by qRT-PCR;
2. **Biofilm matrix composition**: carbohydrates, proteins, β-1,3-glucans and ergosterol quantification;
3. **Biofilm production**: dry weight;
4. **Biofilm cell and biomass analysis**: biofilm cultivable cells (CFU) and biofilm total biomass quantification (Violet Crystal 1% w/v);
5. **Retention of the two azoles within the biofilm matrix**: HPLC analysis.

Results

ERG Genes Expression

Overexpression of the three ERG genes in the presence of both azoles. ERG expression more dependent on the strain than on the agent.

Carbohydrates and Proteins Contents

In presence of antifungal: increase of carbohydrates and decrease of proteins.

B-1,3 glucans and Ergosterol contents

In the presence of antifungal: increase of β-1,3 glucans for all strains. Generally: no alteration on the amount of ergosterol present in the matrices of biofilms exposed to agents, in comparison to the controls.

Antifungal diffusion through biofilm matrices

Higher capacity of Vcz to penetrate the biofilm net: Vcz diffused better through the biofilm net (96%) than Flu (90%) and with a better connection to the fungi cells.

Flu was unable to eliminate the C. glabrata’s biofilm cells. Vcz showed to be much more effective in the eradication of the three strains.

Acknowledgements

This work was supported by the Programa Operacional Compete, COMPETE and by national funds through FCT – Fundação para a Ciência e a Tecnologia on the scope of the projects FCT/POCI-01/0168-FEDER/007218 - RIBIOBIO (POCTI/SAU-MIC/61623/2005), P6/BD/93078/2013 and CID - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.

The authors would like to acknowledge Mrs. H. A. for the kindly donation of Fluconazole and Voriconazole.