
Enhancing Login Security Through the Use of Keystroke Input Dynamics

Kenneth Revett
1
, Sérgio Tenreiro de Magalhães

2
, and Henrique M. D. Santos

2

1
University of Westminster

Harrow School of Computer Science

London, UK HA1 3TP

Revettk@westminster.ac.uk

2
Universidade do Minho

Department of Information Systems

Campus de Azurem

4800-058 Guimaraes, Portugal

{psmagalhaes, hsantos} @dsi.uminho.pt

Abstract

Security is a critical component of most computer systems – especially those used in E-commerce activities over

the Internet. Global access to information makes security a critical design issue in these systems. Deployment of

sophisticated hardware based authentication systems is prohibitive in all but the most sensitive installations. What is

required is a reliable, hardware independent and efficient security system. In this paper, we propose an extension

to a keystroke dynamics based security system. We provide evidence that completely software based systems based

on keystroke input dynamics can be as effective as expensive and cumbersome hardware based systems. Our system

is a behavioral based system that captures the typing patterns of a user and uses that information, in addition to

standard login/password security to provide a system that is user-friendly and very effective at detecting imposters.

The results provide a means of dealing with enhanced security that is growing in demand in web-based applications

such as E-commerce.

Keywords: Biometrics, Keystroke dynamics, Keyboard partitioning, intruder detection, typing rhythm

1. Introduction

With the increasing number of E-commerce based organizations adopting a stronger consumer-orientated

philosophy, web-based services (E-commerce) must become more user-centric. As billions of dollars worth of

business transactions occur on a daily basis, E-commerce based enterprises must ensure that users of their systems

are satisfied with the security features in place. As a starting point, users must have confidence that their personal

details are secure. Access to the user’s personal details is usually restricted through the use of a login ID/password

protection scheme. If this scheme is breached, then a user’s details are generally open for inspection and possible

misuse. Hardware (physiological) based systems are not yet feasible over the Internet because of cost factors and in

addition, the question as to their ability to reduce intruder detection has not yet been answered equivocally. One

thing is for certain, providing every household with a retinal scanner and instructions on its usage has not yet reached

mainstream society. The extent to which hardware based security enhancement systems are able to reduce the

imposter acceptance rate is still study dependent and the results indicate that the false acceptance ratio (FAR) is still

on the order of 5%, beyond the acceptable risk level of many organizations (and individuals) considering the costs in

terms of hardware and training time. We propose an inexpensive (virtually free) software based enhancement to class

C (login ID/password) security measures that provides a cross-over error rate with respect to false acceptance/false

rejection ratios that is very competitive with hardware based systems both in terms of accuracy and monetary outlay.

 Our system is based on what has now become known as “keystroke dynamics” with the addition of keyboard

partitioning [1,2]. We also consider in this study the affect of typing speed and the use of a rhythm when a user

enters their login details. Keystroke dynamics was first introduced in the early 1980s as a method for identifying the

individuality of a given sequence of characters entered through a traditional computer keyboard. Researchers

focused on the keystroke pattern, in terms of keyboard duration and keyboard latency [2,10]. Evidence from

preliminary studies indicated that when two individuals entered the same login details, their typing patterns would be

sufficiently unique as to provide a characteristic signature that could be used to differentiate one from the another. If

one of the signatures could be definitively associated with a proper user, then any differences in typing patterns

associated with that particular login ID/password must be the result of a fraudulent attempt to use those details.

Thus, the notion of a software based biometric security enhancement system was born. Indeed, there are commercial

systems such as BioPassword that have made use of this basic premise.

A critical issue with respect to enhancement of login based security systems is the criteria for success. There are

two basic errors associated with biometric applications with respect to verification: false rejection (FRR -type I

error) and false acceptance (FAR - type II error). One wishes to develop a system that minimises type II errors

without increasing type I errors. In this paper, we employ the Crossover Error Rate (CER) as our measure of the

balance between false acceptance ratio (FAR) and the false rejection ratio (FRR), as depicted in Figure 1 below.

FAR FRR

CER

Fig.1 - CER
Threshold

%

Figure 1. Plot of a threshold for acceptance of the user input versus the acceptance rate of the input. We

 calculate the Crossover Error Rate (CER) as the point where the FAR and FRR intersect one another

Striking the balance between sensitivity and specificity is a difficult balancing act. Traditional approaches have

employed either machine-learning or deterministic algorithms. Among the solutions based on machine learning, the

work presented by Chen [3] achieved a CER less than 1% and a 0% FAR. Ord and Furnell [4] also tested this

technology, with a 14 people group, to study the viability of applying this technology on PINs (Personal

Identification Numbers) typed on a numeric-pad. Although the results were initially promising, it was found that the

results did not scale up well and the authors indicated that this technology was not feasible for community based

applicability. Deterministic algorithms have been applied to keystroke dynamics since the late 70’s. In 1980 Gaines

[5] presented the results of a study of the typing patterns of seven professional typists. The typists were asked to

enter a specified text (3 paragraphs) repeatedly over a period of several months. The authors collected data in the

form of keystroke latencies from which they constructed digraphs were constructed and analysed statistically.

Unfortunately, no real conclusion could be drawn from this study regarding the uniqueness of each typist’s style –

most likely resulting from the small sample size and/or inadequate data sample. The method used to establish a

keystroke pattern was a breakthrough, which introduced the concept of a digraph, the time spent to type the same two

letters (digraph), when together in the text as depicted in Figure 2 below.

Figure 2. Digraph latencies for the input sequence ‘no’ displaying both duration and latencies

 Since then, many algorithms based on Algebra and on probability and statistics have been presented. Joyce &

Gupta presented in 1990 [6] an algorithm to calculate a metric that represents the distance between acquired

keystroke latency times over time, thus introducing a dynamic approach. In 1997 Monrose and Rubin employed an

Euclidean Distance and probabilistic method based on the assumption that the latency times for one-digraph exhibits

a Normal Distribution [7]. Later, in 2000, the same authors presented an algorithm for identification, based on the

similarity models of Bayes [8], and in 2001 they presented an algorithm that employed polynomials and vector

spaces to generate complex passwords from a simple one, using keystroke patterns [9].

The algorithms cited are a small example of many approaches used to find adequate keystroke dynamics

algorithms with a convenient CER. Many others could also be referred, all with different evaluation methods,

different number of users involved (usually a limited number of users), different number of keystrokes required to

enroll the system and different number of repetitive operations required to authenticate and/or identify the user. This

diversity in the algorithm parameters and in the evaluation method makes the task of comparing their results a very

difficult one. Furthermore, there is, in this subject, no concept of what is a representative data sample. The same

algorithm presents different results when tested with different volunteer groups. The only way to compare two

algorithms is to test it against the same group.

In our research, we examine various typing characteristics that might provide subtle but consistent signatures that

we can use for keystroke verification purposes. Our initial study was designed to provide a baseline case for the

CER from a group of informed users that were asked to participate in this study. Once we established a baseline

CER< we then wished to determine if there were factors related to typing styles that could alter the CER. We

selected two basic factors: location of the keys on the standard keyboard (keyboard partitioning) and typing speed.

Our preliminary results ([11]) indicated that keyboard partitioning – sectioning the keyboard into n zones and then

requiring that each element of a passphrase be from a con-contiguous zone had a positive impact on the CER. We

also found that if we forced users to type at sub-optimal speeds, the CER also dropped slightly. These two basic

additions to the baseline algorithm yielded CER below 4% - a result consistent with the best software based

algorithms and also hardware based systems. In the next section we describe in detail the algorithms deployed in this

study, followed by a Results section, and lastly a brief discussion of this work.

2. Implementation

Our primary goal is to produce a software-based system that is capable of performing automated user

ID/password verification. We employ the following steps when a new user is added to the system (or is required to

change their login details):

1. The login ID/password or simply the new password is entered a certain number of times (enrollment).

2. A profile summarising the keystroke dynamics of the input is generated and stored for access to the verification

component.

3. A verification procedure is invoked which compares stored biometric attributes to those associated with a given

login ID/password entry after the enrollment process.

The enrollment process, made by the user once on the first use of the service, consists on typing the users usual

password, or passphrase, twelve times. If the user mistyped the passphrase, they were prompted to continue entering

until all twelve entries were entered. During the enrollment procedure, statistics were calculated and stored for the

verification process. Specifically, our algorithm calculates and stores the average, median, standard deviation, and

the coefficient of variation for the latency times for each digraph (13 in all) and the total time spent entering each

passphrase. Our enrollment phase was based on a series of 14 character passphrases entered into our system by a

group of 8 volunteers, all of whom were fully aware of the purpose of this study and all reasonably computer literate.

Each volunteer was requested to input a passphrase a minimum of twelve times in order to generate the statistics

required for the verification phase. In addition, each volunteer served as their own control for FRR rates by entering

their respective passphrases for an additional period of four weeks after the start of the study (yielding an average of

10,000 entries for FRR determination). The stored data table for the enrollment statistics was updated over time,

with the oldest entry replaced by the most recent enrollment episode.

For our verification stage, we recruited a group of 43 volunteers (34 through the internet version of this

software) and 9 users via a laptop running our software. All participants in the verification phase of this study

(including the volunteer group) were required to enter at least 16 entries per user. For the volunteers (enrollment and

verification), this provided use with the means to calculate the FRR (the first 12 entries were for enrollment and the

rest for verification) and also for FAR on passphrases entered by other volunteers. All verification participants (43)

only participated in determination of the FAR of the system. In total, we had over 187,000 login attempts in the

baseline determination phase, with less than 0.01% successful attacks.

To allow a comparison of our FAR/FRR values with existing published results [6], we used a threshold of

60% for the time latencies for a positive match between a verification request and stored data for that passphrase.

When a verification entry was input into our system, we used the following measure to determine if the digraph

latency time was appropriate for a given passphrase. For each pair of keystrokes (digraphs) the algorithm will

measure the time latency, defined as TLP, and compare it with the one stored.

() TLP
Average

nSDesviatio
medianAverageLowest ≤








−95,0*; () 








+≤

Average

nSDesviatio
medianAverageHigherTLP 05,1*;

Equation 1. Crtieria for acceptance of a given input for the digraph latency.

The comparison result will be a hit if and only if this criterion has been met. A total of 13 digraphs exist for

each 14-character passphrase, and the results for each digraph are stored in a temporary Boolean array. A ‘1’ is

placed in the table if the LTP is within the specified boundary conditions and is the first occurrence of a ‘1’ in the

passphrase (always true for the first correctly entered character). Subsequent correctly input keystrokes would result

in a ‘1’ being replaced by a ‘1.5’ for that digraph entry in the array. If the keystrokes did not result in a hit, then a ‘0’

is entered for that digraph position in the array. Then the elements in the array for a particular passphrase are added

together. If the sum is greater than a given threshold, then the entry is considered valid, otherwise it is invalid. For

instance, if the threshold is set on 70%, users will only be authenticated to the system if the value A obtained from a

given attempt is over 70% of the highest possible value, which is given by: () 15.1*1__ +−charactersofnumber .

Finally, if and only if, the login attempt is accepted, the oldest values stored for the latencies are substituted by the

corresponding values collected in this successful attempt. This last procedure will allow the data stored to evolve

with the user. This allows the system to evolve over time, as the user’s familiarity with their passphrase improves

with time and practise, so will the statistics. The system administrator can change the sensitivity of the system at

will. For instance, to maintain a 60% threshold, all users must generate a score given by (number_of_characters –

1)*1.5 +1 that is over 60% of the maximum score. For a 14-character passphrase, this would yield a score of 12.3,

which would be set to 12, since our threshold is a multiple of 1/2. Thus any score greater than 12 would be

considered a legitimate entry into the system. By varying this threshold, we can extract an estimate of the FAR/FRR

as a function of the sensitivity threshold. What we wish to produce is a system that yields a very low FAR without

incurring a large FRR in the process. A reasonable criterion is when the FAR/FRR intersect – the Crossover Error

Rate (see Figure 1). What we wish to do is reduce the CER to the lowest possible value without placing an undue

burden on the user community. We have explored two basic techniques in a previous work [11], focusing on

keyboard partitioning and the typing speed. We present the results of an extended study on these factors, which we

present in the following Results section.

3. Results

This algorithm presented a CER of 5,58% and it can achieve, at the lowest thresholds, a FRR of near zero that

maximizes the comfort of the user. At the higher demanding thresholds the algorithm presents a near zero FAR,

maximizing the security. The results of our baseline experiment, with a single 14-character passphrase are presented

in Figure 2 below.

R
2
 = 0 , 9 7 9 7

R
2
 = 0 , 9 8 5 5

0 , 0 0 %

1 0 , 0 0 %

2 0 , 0 0 %

3 0 , 0 0 %

4 0 , 0 0 %

5 0 , 0 0 %

7 9 11 12 13 14 15 16 17 18 19 20

F A R F R R

R e g r e s s i o n l i n e (F R R) R e g r e s s i o n l i n e (F A R)

Figure 3. False Acceptance Rates and False Rejection Rates for the range of possible thresholds for a 14 character

passphrase. The x-axis is the threshold according to equation 1 and the y-axis is the resulting FAR/FRR. The data

was generated from over 10,000 entries of the same passphrase.

The results presented in Figure 3 can be summarized by the CER – which was 5.58%. It is important to notice that

the results obtained in this experiment are the worst case scenario, when a passphrase breech has occurred. If the

passphrase was not disclosed, then we could extrapolate the FAR (considering a brute force attack) by:

FARBrute_force = (1/(Number_of_possible_passphrases))* FARKnow_passphrase (2)

Equation2 states that if the passphrase were not known, then the FAR would be equivalent to the FAR when the

passphrase was known, multiplied by the probability of guessing the passphrase. With a 14-character passphrase,

the success rate of a brute force is near astronomical.

3.1. Additional experiments

We wanted to determine whether we could improve on our based CER of 5.58%. Our first experiment

attempted to incorporate the geographical arrangements of the characters in a passphrase onto the keyboard. Figure

4 below depicts the notion of keyboard partitioning, where the keyboard is divided into roughly four equal

zones/partitions.

Figure 4. The keyboard partition into divided four disjoint zones proposed by Revett and Khan [11]

Preliminary results suggested that forcing users to input passphrases where each character was from a non-

contiguous region/partition reduce the FAR/FRR from approximately 4% down to approximately 2% [11]. Although

the criteria in [11] were different for determining the FAR/FRR, we decided to employ keyboard partitioning as an

added feature into the current system. This task was accomplished in a more general fashion, where we wished to

incorporate generic performance features such as typing speed into the system, as an integral part of the acceptance

criteria. It was reasoned that keyboard partitioning might impact the typing characteristics of a user, depending on

their typing skills. We incorporated keyboard gridding into our performance criteria by weighting characters that are

in contiguous keyboard partition more heavily than those that were within the same partition or in non-contiguous

partitions (by a factor of 2). The results from this study are presented in Figure 5 below. This

R 2 = 0 , 9 9 4 4

R 2 = 0 , 9 8 9 7

0 , 0 0 %

5 , 0 0 %

1 0 , 0 0 %

1 5 , 0 0 %

2 0 , 0 0 %

2 5 , 0 0 %

3 0 , 0 0 %

3 5 , 0 0 %

4 0 , 0 0 %

4 5 , 0 0 %

5 0 , 0 0 %

F A R F R R

R e g r e s s i o n l i n e (F R R) R e g r e s s i o n l i n e (F A R)

Figure 5. FAR/FRR when a modified version of the acceptance criteria was employed. The CER

was just below 5% (4.97) for this experiment.

experiment was identical to the previous one (see Figure 3) except that a different cohort of volunteers was

employed, along with a different 14 character passphrase. This result also provides a control to our previous results,

in that a smaller cohort of 10 knowledgeable volunteers entered the same passphrase 100 times each after an after an

enrolment period of twelve successful entries) yielded similar results to the previous work. Although we can not

directly attribute the slight reduction in CER to the use of the weighting for keyboard partitioning, we can make an

inference that the previous results are supported by the current results.

We also investigated the length of the passphrase to see if it has an influence on the CER value. Our

previous work [2] along with the work presented in this paper so far utilised long passphrases (14 characters).

Generally, most IDs/passwords, PINs etc. are much shorter – on average between 4-8 characters in length. We

therefore investigated a series of 7 character passphrases selected randomly by a computer programme. We enlisted

a group of 10 volunteers to participate in this study (the same cohort used in the partitioning experiment). The users

engaged in the same enrollment procedure as described above, and the same threshold of 60% was used in the

verification process, without the extra weighting for consecutive contiguous keyboard gridding. The results are

presented in Figure 6 below. The CER was calculated at 4.1%, slightly lower than that found for the 14-character

passphrase and quite consistent with previous results [11]. The results were obtained from a passphrase containing 6

characters randomly generated via a computer programme. Ten volunteers were involved in this

Figure 6. FAR/FRR for the study using a 7 character passphrase. The CER (not on this display) was 4.1%. These

results were obtained through 10 volunteers, entering a specific passphrase of 6 characters for a total of 1,000 trials

(10 users @100/passphrase).

FAR/FRR

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10Score

%
 C
o
rr
e
c
tl
y
 E
n
te
re
d

FAR FRR

study, and each employed the same enrollment scheme used previously in this study. The scoring was performed as

previously indicated without any weighting for character positioning.

4. Conclusions

This study provides supporting evidence to the role software based security systems can bring to the issue of

enhanced computer security. Our system, based on keystroke dynamics, is not overly burdensome to the user, very

cost-effective, and very efficient in terms of the overhead placed on an internet based server. We achieve a very low

FAR/FRR (each less than 5%), compatible with those produced by very expensive hardware based systems. In

addition, we have begun investigating additional strategies that can be combined with keystroke hardening, such as

keyboard partitioning. Partitioning provides an added layer of security, but requires users to limit their selection of

login IDs and passwords. But if security is vitally important to the organisation – such as mission critical E-

commerce sites, then this is a small price to pay to remain in business. A single successful attack can literally put a

site into financial bankruptcy.

Our system incorporates the evolving typing styles of individuals. This is an important property of any

software based biometric system. Users may experience through personal development, variations in their typing

styles and/or speed. For instance, when a user is forced to change their password, they will take time to adjust to it,

which will certainly have an impact on their typing signature. Any system that fails to take this into account will

yield an undue burden on the user if it is not capable of dynamically adjusting the required acceptance thresholds.

In our future work, we will review our current strategy for obtaining a verification score by counting the

number of contiguous digraphs, which may be somewhat severe, in that if a user is incorrect on the middle digraph,

their score can at most be half-maximal. We are going to explore whether relaxing the requirement that only

contiguous digraphs are counted in the score. We will explore in addition, the effects of ID/password length and

typing speed as additional methods to increase the security level of this system.

Acknowledgment: readers interested in BioPassword should visit their website at:

http://www.biopassword.com/bp2/welcome.asp

10. References

[1] Yan, J., Blackwell, A.F., Anderson, R. & Grant, A. , 2004, Password memorability and security: Empirical results, IEEE

Security and Privacy 2(5), 25-31.

[2] Magalhães, S. T. and Santos, H. D., 2005, An improved statistical keystroke dynamics algorithm, Proceedings of the IADIS

MCCSIS 2005.

[3] Chen, Z., 2000. Java Card Technology for Smart Cards. Addison Wesley, U.S.A.

[4] Ord, T. and Furnell, S. M., 2000. User authentication for keypad-based devices using keystroke analysis. Proceedings of the

Second International Network Conference – INC 2000. Plymouth, U.K.

[5] Gaines, R. et al, 1980. Authentication by keystroke timing: Some preliminary results. Rand Report R-256-NSF. Rand

[6] Joyce, R. and Gupta, G., 1990. Identity authorization based on keystroke latencies. Communications of the ACM. Vol. 33(2),

pp 168-176.

[7] Monrose, F. et al, 2001. Password Hardening based on Keystroke Dynamics. International Journal of Information Security.

[8] Monrose, F. and Rubin, A. D., 1997. Authentication via Keystroke Dynamics. Proceedings of the Fourth ACM Conference

on Computer and Communication Security. Zurich, Switzerland.

[9] Monrose, F. and Rubin, A. D., 2000. Keystroke Dynamics as a Biometric for Authentication. Future Generation Computing

Systems (FGCS) Journal: Security on the Web.

[10] Alen Peacock, Xian Ke, Matthew Wilkerson. "Typing Patterns: A Key to User Identification," IEEE

 Security and Privacy, vol. 02, no. 5, pp. 40-47, September-October 2004.

[11] Revett, K. and Khan, A., 2005, Enhancing login security using keystroke hardening and keyboard gridding, Proceedings of

the IADIS MCCSIS 2005.

