
Chapter # 

AN EXPERIMENTAL STUDY OF ZIGBEE FOR 

BODY SENSOR NETWORKS 
 

José Augusto Afonso
1
, Diogo Miguel Ferreira Taveira Gomes2, and Rui 

Miguel Costa Rodrigues 3 
1 Centro Algoritmi, University of Minho, Guimarães, 4800-058, Portugal, e-mail: 

jose.afonso@dei.uminho.pt, phone: 351-253510184, fax: 351-253510189. 
2 Centro Algoritmi, e-mail: a50035@alunos.uminho.pt. 
3 Centro Algoritmi, e-mail: a50043@alunos.uminho.pt. 

 

Abstract: We present an experimental performance evaluation of ZigBee networks in the 

context of data-intensive body sensor networks (BSNs). IEEE 802.15.4/ZigBee 

devices were mainly developed for use in wireless sensors network (WSN) 

applications; however, due to characteristics such as low power and small form 

factor, they are also being widely used in BSN applications, making it necessary 

to evaluate their suitability in this context. The delivery ratio and end-to-end 

delay were evaluated, under contention, for both star and tree topologies. The 

reliability of the ZigBee network in a star topology without hidden nodes was 

very good (delivery ratio close to 100%), provided the acknowledgement 

mechanism was enabled. On the other hand, the performance in a tree topology 

was degraded due to router overload and the activation of the route maintenance 

protocol triggered by periods of high traffic load. The effect of the devices’ clock 

drift and hidden nodes on the reliability of the star network was modeled and 

validated through experimental tests. In these tests, the worst-case delivery ratio 

when the acknowledgment is used decreased to 90% with two sensor nodes, 

while for the non-acknowledged mode the result was of 13%. These results show 

that a mechanism for distributing the nodes’ traffic over the time is required to 

avoid BSN performance degradation caused by router overload, clock drift and 

hidden node issues.  

 

Keywords: Body sensor networks, Experimental study, IEEE 802.15.4, Quality of service, 

Wireless sensor networks, ZigBee.  
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1. INTRODUCTION 

Recent advances in wireless communications, microelectronics and signal 

processing are enabling the development of body sensor networks (BSNs). 

These networks are mainly comprised by wearable or implantable sensor 

devices and a wireless network to transport the collected data from the users’ 

bodies to a remote site [1]. BSNs can be used to monitor diverse 

physiological parameters and signals, such as temperature, heart rate, blood 

pressure, blood oxygen saturation, body posture, electroencephalogram 

(EEG), electrocardiogram (ECG) and electromyogram (EMG) [2].  

BSNs can provide significant benefits in the long term diagnosis and 

treatments of patients, with minimum constrains to daily life activities. 

These networks allow the patients to move freely, inside or outside the 

hospital, while providing continuous monitoring, which can be particularly 

useful when long periods of monitoring are required. For example, many 

cardiac diseases are associated with episodic abnormalities, such as transient 

surges in blood pressure or arrhythmias [3], which cannot always be detected 

using conventional monitoring equipment. BSNs have the potential to 

provide early detection and prevention [4] of such pathologies, replacing 

expensive therapies later on. 

IEEE 802.15.4 and ZigBee are widespread adopted network standards 

conceived primarily for wireless sensor networks (WSN) applications, which 

typically generate event based and low data rate traffic. Currently, these are 

also the most widely used network standards for BSNs [1],[2],[5]. However, 

unlike WSNs, BSNs usually generate periodic and, frequently, data-intensive 

traffic (e.g., ECG, EEG and body posture data). Therefore, the suitability of 

these standards to transport the traffic generated by this type of BSN sensors 

needs to be assessed. 

Several works in the literature present performance evaluation results 

regarding IEEE 802.15.4 and/or ZigBee protocols, for different application 

scenarios. However, most of these results are based on analytical models [6-

8] or simulations [9-10]. On the other hand, this work, which presents a 

revised and extended version of our previous work [11], concerns the 

experimental performance evaluation of ZigBee and IEEE 802.15.4 using 

BSN traffic. This approach provides further insight on the performance of 

these systems, by taking into account variables present in real-world 

implementations that have impact in the performance but are overlooked in 

most theoretical models, such as the processing load in the network nodes. 

In [12], the authors present a multihop ZigBee-based BSN system for 

patient monitoring in hospitals, where wearable patient units using MICAz 
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motes are connected to a commercial blood pressure and heart rate monitor. 

Experimental tests in laboratory using three patient units resulted in no data 

loss. In [13], the authors present a multihop 802.15.4-based BSN system that 

measures the heart rate and blood oxygen levels of emergency room patients. 

The system was implemented using Telos motes and used the Collection 

Tree Protocol (CTP) provided by TinyOS to forward the measurements to a 

gateway. The measured delivery ratio was above 99.9%.  

Unlike these two works, which only use low data rate sensors, our work 

considers sensors that generate data-intensive traffic. Three relevant quality 

of service (QoS) metrics are studied: delivery ratio (DR), end-to-end delay 

and goodput. Clock drift and hidden nodes effects were also modeled and 

evaluated. 

2. NETWORK STANDARDS AND PLATFORMS 

2.1 IEEE 802.15.4 and ZigBee 

The IEEE 802.15.4 standard [14] specifies the physical (PHY) and 

medium access control (MAC) layers for low power, low data rate and low 

cost wireless network devices. The PHY layer uses direct sequence spread 

spectrum (DSSS) and defines different transmission rates and bands: 250 

kbps for the 2.4 GHz band and 20/40 kbps for 868/915 MHz band, among 

other possible optional configurations. The MAC layer defines two different 

operation modes: a non-beacon-enabled mode, which uses an unslotted 

CSMA-CA (Carrier Sense Multiple Access - Collision Avoidance) 

algorithm, and a beacon-enabled mode, which defines a superframe structure 

and uses a slotted CSMA-CA algorithm. The MAC layer provides also an 

optional guaranteed time slot (GTS) scheme, which allows the allocation of 

dedicated bandwidth for devices; however, this scheme is limited to a 

maximum of seven GTS allocations. 

ZigBee [15-16] is a standard designed for low power devices used on 

wireless monitoring and control systems. The protocol supports star, tree and 

mesh topologies. In star topology, all devices communicate directly with the 

coordinator. Tree and mesh topologies allow to increase the range of the 

network by introducing routers that relay the traffic from the end devices 

(EDs). The ZigBee stack is based on the Open Systems Interconnection 

(OSI) model. Each layer performs a specific set of services for the layer 

above. The stack is divided into four distinct layers: physical (PHY), 

medium access control (MAC), network (NWK) and application (APL). The 

IEEE 802.15.4 standard defines the two lower layers of ZigBee: PHY and 

MAC. The NWK layer enables multihop network communication and is 

responsible to create and maintain the network, discover new routes and 
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assign the devices short addresses, among others tasks. The APL layer 

supports up to 240 applications on the same device. 

2.2 Experimental Evaluation Platforms 

The hardware platform used in the tests was the CC2530 development kit, 

which is provided by Texas Instruments, a leading supplier of ZigBee 

products. It is based on the CC2530 [17] SoC (System on Chip), which 

integrates a microcontroller and a transceiver in the same chip. The 

microcontroller is based on the 8051 architecture, and the transceiver is 

compliant with the IEEE 802.15.4 standard in the 2.4 GHz frequency band. 

The experimental tests presented in this work were developed using the 

ZigBee and IEEE 802.15.4 stack implementations provided by Texas 

Instruments: Z-Stack and TIMAC, respectively. The Z-Stack version that 

was used, Z-Stack-CC2530-2.4.0-1.4.0, supports the two stack profiles of the 

ZigBee 2007 specification: ZigBee and ZigBee Pro. This Z-Stack version is 

a combination of the ZigBee stack implementation version 2.4.0 and the 

IEEE 802.15.4 stack implementation version 1.4.0. Some of the experiments 

described in this work use only the IEEE 802.15.4 stack. In these cases, the 

standalone TIMAC version TIMAC-CC530-1.3.1 was used.  

3. EVALUATON METHODS AND MODELS 

This section describes the experimental evaluation methods and models 

that were used to obtain the results presented in the next section. Channel 26 

was used, due to the absence of interference from Wi-Fi networks and other 

sources, verified using a spectrum analyzer. Likewise, the transmission 

power and placement of the nodes was set to assure that there are no packet 

losses due to path loss or shadowing effects, since the purpose of this study 

is to evaluate only the losses due to collision and transmission attempt 

failures of the CSMA-CA protocol caused by contention, clock drift and 

hidden nodes. In the tests with hidden nodes, the signals of the sensor nodes 

were blocked from each other using metal plates and the nodes were placed 

inside an anechoic chamber to avoid multipath propagation.  

The default parameters of the IEEE 802.15.4 unslotted CSMA-CA 

algorithm were used. The overhead introduced in the data packets by all 

ZigBee layers accounts for a total of 264 bits, in all evaluation scenarios. All 

tests finish after the coordinator has received 5000 packets from the end 

devices. The tests presented in this work used the ZigBee Pro stack profile, 

but the same tests were performed using ZigBee stack and the results have 

shown no significant differences. 

This work uses data-intensive traffic parameters extracted from a real 
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implementation of a body posture monitoring system composed by multiple 

sensor modules, each one containing three accelerometers and three 

magnetometers [18], which are sampled at 30 Hz. Two different traffic 

configurations were used. In mode A, packets are transmitted at 200 ms 

intervals, and the data packet length, which includes six samples from each 

sensor plus the protocol overhead, is 89 bytes. In mode B, smaller packets of 

62 bytes with half of the samples are transmitted every 100 ms. Similar data-

intensive traffic can be found in other BSN applications, such as ECG 

monitoring, where the sampling rate can reach 250 Hz per electrode [19]. 

3.1 Delivery Ratio and Delay 

In this evaluation scenario, the delivery ratio and end-to-end delay were 

measured in a contention environment where multiple EDs generate packets 

to the coordinator simultaneously. The delivery ratio (DR) represents the 

ratio of the number of successfully delivered packets to the number of 

packets generated by the source node application. The end-to-end delay is 

the time since the packet is delivered for transmission by the source node 

application layer until it reaches the destination node application layer. 

Although star topologies are more common for BSNs, multihop topologies 

are considered in many works [12-13]. Therefore, two topologies were 

evaluated: star and 2-hop tree. In the latter, a router forwards the packets 

from the EDs (sensor nodes) to the coordinator. 

The same tests were performed with both Z-Stack and TIMAC, in order to 

observe the overall system behavior when supported by these two different 

stacks. Since the IEEE 802.15.4 standard does not define a network layer, 

for the tests using the TIMAC, the router of the 2-hop tree topology was 

simulated using a peer-to-peer network where all the EDs transmit the 

packets to a specific device, which relays the packets to the coordinator.  

A wired trigger signal controlled by the coordinator was used to generate a 

periodic interrupt on the EDs according to the transmission period, which 

was set to 200 ms (mode A). The main objective of the trigger is to create a 

scenario of contention where all the EDs try to access the medium at same 

time, which represents a worst-case contention scenario. For the delay tests, 

an end device was chosen to be the reference device for the measured values. 

3.2 Clock Drift 

This section proposes a model that uses the differential clock drift between 

two ZigBee end devices to estimate the duration of two parameters: the 

interference period (TInt), defined as the period during which the two end 

devices using the unslotted CSMA-CA algorithm will contend for the 

channel due to the clock drift, and the interference repetition interval (TIntRep). 
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This model uses the times associated to a packet transmission according to 

the unslotted CSMS-CA algorithm of the IEEE 802.15.4 standard, which are 

shown in Fig. 1. 

 
Figure 1. Times associated to the IEEE 802.15.4 unslotted CSMA-CA algorithm. 

 

The transmission period (TTx) is composed by the random backoff interval 

(TBackoff), a transceiver turnaround time (TTA) from RX to TX, the packet 

transmission time (TPacket), a turnaround time from TX to RX and, finally, the 

ACK transmission time (TAck). The turnaround time is defined in IEEE 

802.15.4 standard and corresponds to 192 µs. The ACK transmission time is 

352 µs, while the packet transmission time depends on the payload length. 

Each end device EDn was physically connected to the coordinator (base 

station), to measure the number of added or missing oscillations (ticksdrifted) 

within a period T, in comparison to the coordinator's clock. The differential 

clock drift between the base station (BS) and end device n can be calculated 

through equation 1, where fosc is the nominal clock frequency of the CC2530 

(32 MHz). 

 

 ���,��� =	
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��������
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 (1) 

 

The differential clock drift between ED1 and ED2 can be obtained, without 

the knowledge of the absolute clock drift of the end devices (DEDn), from the 

respective differential clock drifts in relation to the BS: 
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Unsynchronized devices transmitting periodic traffic with the same 

nominal period will eventually contend for the wireless channel due to the 

clock drift effect. If the differential clock drift between ED1 and ED2 is DED1, 

ED2 and the nominal transmission period of the nodes is given by TED, then 

both nodes will start to contend for the wireless channel every TIntRep seconds. 

The value of the interference repetition interval can be obtained through 

equation 3: 
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The interference period (TInt) during which two devices will compete for 
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the channel can be obtained through the equation 4, where TVul represents the 

vulnerability time window. 

 

 ���
 =	
�'()
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  (4) 

 

Fig. 2 shows this vulnerability time window under which the transmissions 

of two nodes may interfere with each other. 

 

 
Figure 2. Vulnerability window for the clock drift evaluation scenario. 

 

Equations 5 and 6 represent the instants of time when the interference 

period between devices ED1 and ED2 begins and ends, respectively. 

 

 *��� +	��,�
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TBackoff_min is the minimum backoff period, which is equal to zero. TTx_max 

represents the maximum period needed to transmit a packet and receive the 

respective acknowledgment (if required), which is calculated using the 

maximum backoff period (TBackoff_max = 2.24 ms). tEDn and t’EDn represent 

instants of time where device n starts the CSMA-CA algorithm. We obtain 

TVul from t’ED1 – tED1: 

 

 �345 = 2	 ×	(��1_/,1 −	��0) (7) 

 

To validate our model, we evaluated a ZigBee network formed by two end 

devices that transmit packets in mode B (TED = 100 ms) to the coordinator in 

a star topology. The packet transmission time in this case is 1.984 ms. In 

order to better observe the interference periods and interference repetition 

tED1 tED1	+	TTx_max	

tED2 tED2	+	TTx_min	

tED2’ tED2’+	TTx_max	

tED1’ tED1’+	TTx_min	

t

t

t

t



8 Chapter #

 
intervals, we forced a hidden node situation, so nodes are unable to backoff 

due to carrier sense, and the ACK mechanism was disabled. Therefore, in 

this case: 

 

 ��1_/,1 = ��,�
-��_/,1 + ��0 +	�",�
!
 (8) 

 

3.3 Hidden Node Problem 

In this test, two ZigBee end devices hidden from each other transmit 

packets in mode B in a star network topology. In order to analyze a worst-

case scenario, the nodes generate packets at the same time, according to a 

trigger signal sent by the coordinator, and no acknowledgments are used. 

The minimum transmission period (TTx_min) is associated to TBackoff_min 

(zero), while the maximum transmission period (TTx_max) is achieved with 

TBackoff_max (2.24 ms, which corresponds to 7 unit backoff periods). Given the 

packet transmission time in this test (1.984 ms), when the coordinator 

triggers a transmission in both EDs, the corresponding transmitted packets 

will not collide only if the transmission periods of ED1 and ED2 are equal to 

TTx_min and TTx_max, respectively, or vice versa. The probability for this 

specific case to occur (pTX) can be obtained through the following equation: 

 

 D�E = 	2	 ×	D�,�
-��_/�� 	×	D�,�
-��_/,1 (9) 

 

The two probabilities on the right side of this equation are equal to 1/8, 

since they come from a discrete uniform distribution with 8 possibilities (0 

to 7). Therefore, pTX is 3.125%. This value corresponds to the expected DR 

of the network when the ACK mechanism is not used. 

3.4 Maximum Goodput 

In this scenario a single ED transmits packets continuously to the 

network coordinator in the star topology. The application layer waits for the 

indication that the ACK has arrived before sending the next packet. The 

theoretical maximum goodput is obtained using equation 10, where the 

average transmission period is the sum of the MAC times presented on 

Fig. 1, using the mean backoff interval (1.12 ms). 

 

 FGGHDI* =
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4. RESULTS AND DISCUSSION 

4.1 Delivery Ratio and Delay 

During the tests with the Z-Stack in the 2-hop tree topology and with the 

acknowledgment mechanism enabled, a router blocking problem was 

observed. Through the use of a packet sniffer, it was noticed that the router 

relays packets for just few seconds, then blocks for around 8 seconds, after 

what it becomes available again and the process repeats. Several other tests 

were performed in other conditions, and it was verified that this problem 

only occurred in tests where the router was subject to high traffic load. A 

possible explanation for this problem is that the router experiences an 

overload situation where it is not able to handle packet relaying at the NWK 

layer when new packets are constantly being received at the MAC layer 

(which is a higher priority task in the Z-Stack implementation). Therefore, in 

order to allow the evaluation of the delivery ratio and delay during the period 

where the router is not blocked, the number of packets received by the 

coordinator for this particular experiment was reduced from 5000 to 1000 

packets.  

Fig. 3 presents the measured DR with Z-Stack as a function of the number 

of sensor nodes. For the star topology, the DR was close to 100% when the 

ACK mechanism was used. However, the DR for the 2-hop tree topology 

with 3 to 5 end devices was lower (around 96%). The explanation is that, 

due to the high traffic load generated by the end devices, the route 

maintenance protocol, triggered by the router’s network layer, initiates the 

route discovery procedure frequently (each 5 seconds, on average). This 

procedure, which lasts for around 250 ms, forces the router to interrupt the 

packet relaying, causing packet drops due to buffer overflow. When the 

acknowledgments are disabled, the DR decreases significantly in both 

topologies as the number of sensor nodes increases, as expected. 

In order to compare the TIMAC performance with Z-Stack, the length of 

the data packets has been equaled to the one used in the Z-Stack 

measurements through the introduction of dummy bytes, since the TIMAC 

has smaller protocol overhead. Fig. 4 presents the DR with TIMAC as a 

function of the number of sensor nodes. 

The results with the ACK mechanism enabled are worse than the ones 

obtained using the Z-Stack. This is explained by the fact that the Z-Stack 

network layer may retransmit a packet if the MAC layer has failed to 

transmit it (the default is one retransmission). The non-acknowledged 

experiments showed better results with the Z-Stack for the tree topology, due 

to the router’s network layer capability for buffering the received packets 

and relaying them in lower contention periods, whereas the application that 

simulates the router in the TIMAC relays the received packets immediately. 
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Figure 3. DR measured with Z-Stack as a function of the number of nodes. 

 

 
Figure 4. DR measured with TIMAC as a function of the number of nodes. 

 
Figure 5. Average delay as a function of the number of nodes for both Z-Stack and TIMAC. 
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Fig. 5 and Fig. 6 show the measured average and maximum end-to-end 

delay, respectively, as a function of the number of sensor nodes, for both Z-

Stack and TIMAC, and using the ACK mechanism. The delays measured 

with TIMAC are lower than those measured with the Z-Stack, due to the 

lower processing load introduced by the TIMAC stack. As expected, the 

delays increase with the number of nodes, because the contention, collisions 

and retransmissions also increase. The activation of the route maintenance 

protocol for the Z-Stack tree topology with 3 to 5 nodes causes the buffering 

of packets in the NWK layer, increasing significantly the maximum delay 

for the ZigBee network. 

 

 
Figure 6. Maximum delay as a function of the number of nodes for both Z-Stack and TIMAC. 

4.2 Clock Drift 

Table 1 specifies the differential clock drifts between end device n and the 

BS (DBS,EDn).  

 
Table 1. Measured differential clock drifts to the BS in ppm. 

DBS, ED0 DBS, ED1 DBS, ED2 DBS, ED3 DBS, ED4 

3.6 0.1 -1.0 -0.5 0.2 

 

We have chosen end devices 0 and 1 for the experimental measurements 

and model validation; for these nodes, the differential clock drift is 

DED1,ED0 = 3.5 ppm. Using these values in equation 4, we obtain a TInt value 

of 40 minutes. The TIntRep period, which can be obtained through equation 3, 

is 7 hours and 56 minutes. Fig. 7 shows the results obtained in this test, 

which uses a moving average window of 60 messages to compute the DR, 

corresponding to 6 seconds.  The test started at 18:15:10 and ended at 

13:02:44 the next day. The DR was 100% most of the time, which 
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corresponds to non-interference periods. The DR decreases when the 

interference period starts, reaches a minimum when both devices are 

generating packets simultaneously, and then increases again until the end of 

the interference period. Taking into account these boundaries, the 

interference period lasted for approximately 40 minutes. The interference 

repetition interval is approximately 7 hours and 53 minutes. The measured 

TInt matches the value predicted by the theoretical model, whereas TIntRep 

presents an error of 0.6%.  These results validate the proposed model. 

 
Figure 7. DR with clock drift in a star topology with two hidden nodes. 

 

4.3 Hidden Node Problem 

In this evaluation scenario, the measured DR when the acknowledgment is 

used was 90%, whereas for the non-acknowledged mode the result was of 

13%, which is very close to the minimum DR verified in the clock drift 

experiment, shown in Fig. 7. Previous results showed DRs in the absence of 

hidden nodes of 100% and 91% for two end devices transmitting in 

acknowledged and non-acknowledged modes, respectively (Fig. 3). 

Therefore, when compared with the results without hidden nodes, the results 

with hidden nodes show accentuated decrease in the DR. These results show 

that, in a scenario of contention, the DR of a simple network constituted by 

only two hidden EDs decreases considerably. With more hidden nodes, the 

network performance would be even worse. This may seriously compromise 

the reliability of the network and, consequently, make it unable to satisfy the 

QoS requirements [20] of BSN applications. 

The DR measured in this experiment for the non-acknowledged mode 

(13%) is higher that the value predicted by the theoretical analysis (3.125%) 

performed on the previous section. In order to discover the origin of this 
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discrepancy, we analyzed the log file of this specific experiment. The 

theoretical analysis assumes that the coordinator should only receive packets 

that were sent from the nodes in the absence of collision, which is only 

possible if node 1 selects TBackoff_min and node 2 selects TBackoff_max when the 

CSMA-CA is executed, or vice-versa. Therefore, it should not be possible, in 

principle, to receive packets from only one of the nodes; however, this 

situation occurred, causing an increase on the DR. Using a packet sniffer, it 

was possible to observe that both nodes transmit their packets when 

triggered and, if one of the nodes was disabled, the coordinator receives all 

the packets from the other node. It was also observed that if the transmit 

power of the nodes were controlled in a way for the coordinator to receive 

equal power from both nodes, the DR decreased, while it increased if the 

packets were received with different power. Therefore, we conclude that the 

difference between theoretical and experimental results may be related with 

the capture effect, where, in the presence of collision, a packet may be 

successfully received if its power is sufficiently greater than the power of the 

interfering packet. 

4.4 Maximum Goodput 

Fig. 8 presents the theoretical and measured maximum goodput for star 

topology, as a function of the payload length, using the Z-Stack. The 

measured goodput is significantly lower than the theoretical values given by 

equation 10 because the latter was calculated using only the MAC times 

presented in Fig. 1. However, when the delays from the application to the 

MAC layer (TAPP→MAC) and vice versa (TMAC→APP) are added to the average 

transmission period, the theoretical values become correct. For example, 

with 90-byte payload, the measured average TAPP→MAC and TMAC→APP values 

were, respectively, 4.04 ms and 2.23 ms. Using these values, the theoretical 

maximum goodput becomes 59.7 kbps, which is very close to the measured 

value (60.5 kbps). 

 
Figure 8. Maximum goodput for star topology. 
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A simple enhancement, which consists in sending two packets from the 

application layer from the MAC layer at the beginning, was implemented 

and tested.  As shown in Fig. 8, this enhancement provides a substantial 

increase in the measured maximum goodput (70.7% with 90-byte payload). 

The rationale is that the MAC layer will always have a spare packet 

available on its buffer and therefore it can bypass most of the delay between 

the application and MAC layers. 

5. CONCLUSION 

 This work presented an experimental performance analysis of ZigBee in 

the context of the BSNs, using the Texas Instruments implementations of 

ZigBee (Z-Stack) and IEEE 802.15.4 (TIMAC).  

 For 2-hop tree, tests have shown that successive periods of high traffic 

load can cause the ZigBee router to start the route discovery procedure, with 

negative impact on the delay and DR. A router blocking problem, which is 

also caused by high traffic loads and lasts several seconds, was also observed. 

 Results from the clock drift analysis showed that interference periods may 

last for a long time due to the small clock drifts between nodes. The 

experiments have also demonstrated the validity of the proposed clock drift 

model, where the theoretical and experimental results are close. 

 Other results have shown that the DR with hidden nodes is considerably 

worse. Although this experiment considered a worst-case contention 

scenario, due to the synchronization of packet generation instants, only two 

end devices were used. Multiple hidden nodes combined with the clock drift 

effect may cause frequent network reliability problems during long periods. 

Since BSN applications demand specific QoS requirements, these results 

suggest that it is necessary to provide a mechanism to distribute the traffic 

load generated by high traffic nodes along the time in ZigBee-based BSNs, 

in order to prevent the router overload, clock drift and hidden node issues. 
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