
Universidade do Minho

Escola de Engenharia

Pedro José Ribeiro Moreira
Knowledge Analytics

Outubro de 2014

Universidade do Minho

Dissertação de Mestrado

Escola de Engenharia

Departamento de Informática

Pedro José Ribeiro Moreira
Knowledge Analytics

Mestrado em Engenharia Informática

Trabalho realizado sob orientação de
Professor Pedro Rangel Henriques!
Engenheiro Miguel Grade

Outubro de 2014

AC K N OW L E D G E M E N T S

There are a number of people without whom this thesis might have not been written to whom
I am deeply grateful.
First of all, I would like to thank the companies that provided the opportunity of developing
this master work in a professional environment, Inova Ria and Maisis, without whom the
internship would no be possible.
Next, I would like to thank my supervisors, Prof. Pedro Rangel Henriques and Eng. Miguel
Grade, whose supervision, knowledge and guidance was fundamental the success of the
project.
In addition, I would like to thank my friends, college and work colleagues for helping me when
I needed.
I would specially like to thank my parents and my sister, for supporting me during this stage
of my life.
Last but not least, I would like to thank my girlfriend, who was always there for me.

3

A B S T R AC T

This document consists in a thesis report for a master work on the area of Knowledge Analyt-
ics. This thesis is the main component of the second year of the masters degree in Informatics
Engineering at University of Minho and it was developed in collaboration with Maisis - In-
formation Systems, from Aveiro, Portugal.

The main goal of this thesis was to study the knowledge management plataform Oobian,
property of Maisis and to develop and integrate software modules to extract, analyse, compute
and disseminate information present in a knowledge database.

4

R E S U M O

Este documento consiste num relatório de tese na área de Análise de Conhecimento. A
tese é o componente principal do segundo ano do Mestrado em Engenharia Informática da
Universidade do Minho. O trabalho de tese foi desenvolvido em colaboração com a Maisis -
Information Systems, sediada em Aveiro, Portugal.
O principal objetivo deste trabalho de tese foi fazer um estudo sobre a plataforma de gestão
de conhecimento Oobian, propriedade da Maisis, desenvolver e integrar módulos de software
de modo a permitir a extração, análise, processamento e disseminação de informação presente
na base de conhecimento.

5

C O N T E N T S

Contents . iii
Acronyms . v
List of figures . vi
List of tables . viii
1 introduction . 1

1.1 Context and Problem . 1
1.2 Semantic Web, Ontology & Linked Data 2
1.3 Data Analytics & Visualization . 7
1.4 Motivation . 8
1.5 Goals . 8
1.6 Contribution . 9
1.7 Methodology . 9

1.7.1 Development Methodology . 10
1.8 Work Plan . 10
1.9 Document Structure . 12

2 knowledge management and visualization 13
2.1 Oobian platform . 13

2.1.1 Oobian architecture . 14
2.1.2 Oobian features . 14

2.2 Data Analysis and Visualization tools 20
2.2.1 Sgvizler . 20
2.2.2 Google Charts . 21
2.2.3 IBM Many Eyes . 22
2.2.4 Microsof Silverlight PivotViewer 23

3 proposed solution . 24
3.1 Requirement Specification . 24

3.1.1 Analysis Methodology . 24
3.1.2 Stakeholders . 25
3.1.3 Actors . 25
3.1.4 Requirements . 27

3.2 Proposed Architecture . 29
3.3 Query Format . 30
3.4 Output Format . 31

iii

Contents

3.4.1 CSV Table . 33
3.5 Embed component . 33

4 development . 35
4.1 Client side . 35

4.1.1 Component Integration and Configuration 41
4.2 Server side . 43
4.3 Visualization Embedding . 46

5 achieved results . 49
5.1 560.PT - Portugal Business Network . 49
5.2 Joobian . 56

6 conclusion . 62
6.1 Future Work . 63

a requirement specification . 67
a.1 Functional Requirements . 68
a.2 Non-Functional Requirements . 79

a.2.1 Usability . 79
a.2.2 Design . 79
a.2.3 Interface . 80
a.2.4 Physical . 80

iv

AC RO N Y M S

API Application Programming Interface

CEO Chief Executive Officer

CMS Content Management System

CSV Comma Separated Values

FURPS Functionality, Usability, Reliability, Performance, Supportability

GTD Getting Things Done

HTML Time Division Multiple Access

HTTP HyperText Markup Language

JAX Java Specification Request

JSF Java Server Faces

JSON JavaScript Object Notation

OWL Web Ontology Language

OLW-DL Web Ontology Language Description Logic

RDF Resource Description Framework

RDFS Resource

REST Resource Description Framework Schema

SPARQL SPARQL Protocol and RDF Query Language

URI Uniform Resource Identifier

URL Uniform Resource Locator

W3C World Wide Web Consortium

XHTML eXtensible Hypertext Markup Language

XML eXtensible Markup Language

v

L I S T O F F I G U R E S

Figure 1 Evolution of Web . 2
Figure 2 Ontology hierarchy . 4
Figure 3 Linking Open Data cloud - April 2014 6
Figure 4 Agile development process . 11
Figure 5 Oobian architecture . 14
Figure 6 Oobian Content Sources . 15
Figure 7 Content Processing Pipeline . 15
Figure 8 Oobian HTML client - Instances of a Class 16
Figure 9 Oobian HTML client - Instance details 17
Figure 10 Oobian HTML client - Relation details of an instance 17
Figure 11 Oobian HTML client - Faceted filtering 18
Figure 12 Oobian HTML client - Maps mode 19
Figure 13 Sgvizler html element example 20
Figure 14 Google Charts example . 21
Figure 15 IBM Many Eyes visualization example 22
Figure 16 Silverlight PivotViewer example 23
Figure 17 Use case diagram . 26
Figure 18 Architecture Block Diagram . 29
Figure 19 JSF architecture . 36
Figure 20 Knowledge Analytics composite component 36
Figure 21 Analytics panel . 37
Figure 22 Extract from Knowledge bean: managed properties 38
Figure 23 Extract from Knowledge bean 39
Figure 24 JavaScript function to draw a visualization 40
Figure 25 Extract from the configurations file 41
Figure 26 REST web service interface . 44
Figure 27 Server side block diagram . 45
Figure 28 Popup with the embedding code 46
Figure 29 getElements function . 47
Figure 30 Extract from the drawFromEmbed function 48
Figure 31 560.pt class hierarchy . 50
Figure 32 Area chart: Nº of companies / Creation date 51
Figure 33 Pie chart: % of companies / Nº employees 52

vi

List of Figures

Figure 34 Bar chart: Nº of companies / Ratio of companies with 500+ employ-
ees . 53

Figure 35 Donut chart: Relations of instance Portugal 54
Figure 36 Pie chart: family of Services related to Portugal 55
Figure 37 Joobian class hierarchy . 56
Figure 38 Bar chart: 15 cities with more Job Offers 57
Figure 39 Column chart: 15 cities with more Job Offers in Portugal . . . 58
Figure 40 Line chart: Evolution Job Offers matching Java in Porto 59
Figure 41 Table: 15 cities with more Job Offers in Portugal 60
Figure 42 ”Dashboard” page with multiple charts 61
Figure 43 Analytics button mockup . 68
Figure 44 Instance relations example . 69
Figure 45 Related instance cluster example 70
Figure 46 Simple Data Table . 71
Figure 47 Bar Chart . 71
Figure 48 Column Chart . 71
Figure 49 Line Chart . 72
Figure 50 Area Chart . 72
Figure 51 Pie Chart . 72
Figure 52 Donut chart . 72
Figure 53 Proposed grammar . 75
Figure 54 Embed Html popup mockup . 76

vii

L I S T O F TA B L E S

Table 1 Requirement Priority . 27
Table 2 Functional requirements . 28
Table 3 Non-Functional requirements . 28
Table 4 Chart Restrictions . 73

viii

1

I N T RO D U C T I O N

In this first chapter of the report is made an introduction to the master work. It is exposed
to the reader the main problem and presented a contextualization of the work, as well as the
goals intended to be accomplished with it. It is explained the motivation behind the project
from the point of view of the company as well as the student and it is also presented a general
work plan and the working methodology adopted.

1.1 context and problem

In the context of the Master degree in Informatics Engineering of University of Minho, this
master work is the main component of the second and final year. The work is supported
by the InovaRia’s Genius Trainee Program1, and was developed in partnership with Maisis -
Information Systems2 from Aveiro, Portugal.

Maisis is a software development company, founded in 1994, whose focus is to provide
products and solutions for the telecommunications market. One of those products is the
Oobian3 ecosystem.

Oobian is a knowledge management platform that extracts and indexes information from
structured and unstructured data inside and outside organisations, transforming it into a real
knowledge database. The users of the platform can search and drill through the information
in a rich user interface that creates a unique navigation experience. With this work, Maisis
intends to take the next step and add features to the platform aiming to allow companies
using Oobian to perform deeper data and knowledge analytics and improve their business
intelligence processes.

The main problem this work proposes to solve is the lack of a formal method to extract
and process information for analysis and report features. The platform already has formal
methods to structure and present data from ontologies, however it doesn’t have a formal
solution to query the server and obtain a structured data set of results prepared for analysis.
So, the general goals of this work are to specify a query format, to specify a format for

1 http://www.bolsasgenius.pt/
2 http://www.maisis.pt/
3 http://www.oobian.com/

1

http://www.bolsasgenius.pt/
http://www.maisis.pt/
http://www.oobian.com/

1.2. Semantic Web, Ontology & Linked Data

the resultant data set and to make an analysis by generating reports about the information
present in those results.

1.2 semantic web, ontology & linked data

As said by Tim Berners-Lee, semantic web is ”a new form of web content that is meaningful
to computers” [4].

On the last few years the web went through great changes, it has gone from being a company
focused information portal (web 1.0) to a social platform (web 2.0). Before, the majority of
the information on-line was created by companies; now, the focus is on contents created by
social communities and networks. This change led to a massive growth of the amount of
information present on the web.

In spite of these major changes, the current web is still mostly based on old keyword search
mechanisms, but it is changing, evolving once again. Semantic Web (web 3.0), the web of
data is that evolution. From unstructured information to a real knowledge database. On
figure 1 is represented the evolution of the web[7].

Figure 1.: Evolution of Web

2

1.2. Semantic Web, Ontology & Linked Data

On the basis of Semantic Web is a shift of the computational pattern, from a information
centred to a knowledge centred one, enabling people and machines to connect, share and use
knowledge.

The main goal of Semantic Web is to give ”meaning” to the information present in the
web [4], inserting machine-readable meta-data into web contents about them and how they
are related to each other. By doing this it’s possible to create autonomous agents that can
extract and process relevant information and perform tasks on behalf of the users.

But how do these agents recognize the objects and relationships between them? Is there
any standard? How can they deal with the diversity of web contents? The answer to these
questions is the use of ontologies.

In philosophy, an ontology is a theory about the nature of existence, about types of things
that exist. Web researchers adopted this term and for them an ontology is ”formal explicit
description of concepts in a domain of discourse”[13], a document or file that defines formally
a set of types, properties and the relationship between types. In both computer science
and philosophy, ontologies have in common the representation of entities, ideas or events,
along with their properties and relations, according to a system of categories. One of the
main advantages of ontologies is the fact that regardless of the language in which they are
expressed, contemporary ontologies share a set of common components [12].

These components are:

• Individuals: the basic objects or instances.

• Classes: groups of individuals that belong together and share properties.

• Attributes: characteristics, properties or parameters that objects or classes can have.

• Relations: ways in which classes and individuals can be related.

• Function terms: structures with a high degree of complexity that can replace an indi-
vidual in a statement.

• Restrictions: formal descriptions of what must be true in order for some assertion to be
accepted as input.

• Rules: if-then sentences that describe logic.

• Axioms: assertions in a logical form that contain the overall theory of the ontology.

• Events: the changing of attributes or relations.

Typically, a web ontology has a taxonomy and a set of inference rules. The taxonomy is
used to define classes of objects and the hierarchical relations between them. A car may be
defined as a type of vehicle, and number plates may be defined as a type of identification, to

3

1.2. Semantic Web, Ontology & Linked Data

apply only to vehicles. This definition of classes, subclasses and relations is very useful as a
large amount of knowledge can be expressed by assigning properties to classes and allowing
subclasses to inherit those properties. Figure 2 depicts a simple representation of the hierarchy
of a knowledge base.

Figure 2.: Ontology hierarchy

There are some specific languages to encode ontologies. In the web context, the main
ontology language is OWL - Web Ontology Language.

The W3C Consortium describes OWL as being the choice of use when ”the information
contained in documents needs to be processed by applications, as opposed to situations where
the content only needs to be presented to humans”4. OWL explicitly represent the meaning
of terms in vocabularies and the relations between them, and has a set of characteristics like
cardinality, equality, symmetry (and other characteristics of properties), that turn it ideal to
describe properties and classes.

There are three sub languages of OWL [15]:

• OWL Lite: it is the simplest, providing only the basics, for example, supports cardinality,
but only permits cardinality values of 0 or 1. It is used for quick migration for thesauri
and other taxonomies it’s directed for those needing a classification hierarchy with
simple constrains.

• OWL DL: includes all OWL language constructs with certain restrictions, for example,
a class may be a subclass of many classes, but it cannot be an instance of another class.
It is directed for those who want maximum expressiveness while retaining computational
completeness.

4 http://www.w3.org/TR/2004/REC-owl-features-20040210/#s1.2

4

http://www.w3.org/TR/2004/REC-owl-features-20040210/#s1.2

1.2. Semantic Web, Ontology & Linked Data

• OWL Full: it is complete kit, for those who want maximum expressiveness and syntactic
freedom and don’t need computational guarantees.

Each of these sub languages is an extension of its simple predecessor.

When talking about Semantic Web or Web 3.0, the words ”Linked Data” appear very often.
What is Linked Data after all?

Linked data is about using the web in the creation of typed links between data from different
sources. To do so Berners-Lee [5] proposed a set of principals or best practices for publishing
data on the web, to ensure that all data becomes part of the same data space. These principals
are:

• Use URIs as names for things;

• Use HTTP URIs so that people can look up those names;

• When someone looks up a URI, use the standards (RDF, SPARQL) to provide useful
information;

• Include links to other URIs, so they can discover more things.

On the base of Linked Data there are three main technologies[9], URIs (Uniform Re-
source Identifiers), HTTP (HyperText Transfer Protocol) and HTML (HyperText Markup
Language). Entities are identified by URIs that use the http:// scheme and can be looked up
by dereferencing the URI over the HTTP protocol and represented in the widely used content
format of HTML. These technologies are supplemented by RDF that provides a graph based
data model to represent the world.

According to W3C recomendations [8], data encoded in the RDF model is the form of
subject, predicate and object triples. Both the subject and the object elements are URIs that
identify a resource and the predicate represents the relation between them, also in the form
of a URI.

Together, RDF and OWL provide solid basis for creating vocabularies that can be used to
describe real world entities and how they are related.

The most visible example of application is the Linking Open Data project5. Founded on
2007, the aim of the project was to bootstrap the Web of Data by identifying available exist-
ing data sets, convert them according to the Linked Data principles and publish them on the
web. From small research labs to large organizations the project has grown considerably and
the scale of the Web of Data can be depicted as shown in Figure 3.

5 http://linkeddata.org/

5

http://linkeddata.org/

1.2. Semantic Web, Ontology & Linked Data

Figure 3.: Linking Open Data cloud - April 2014

Each node in the graph represents a distinct data set and each arc represents a link between
items from the two connected data sets. Heavier arcs correspond to a greater number of links
and bidirectional arcs indicate the outward links to the other exist in the data set.

6

1.3. Data Analytics & Visualization

1.3 data analytics & visualization

On the past years, Business Intelligence has become an important area of study for companies.
Leaders and CEOs started to wonder how to get the maximum value from the information
and knowledge that they already have inside their archives and databases, in order to gain
advantage on the ever more global and competitive market. This lead to the development of
techniques and methods to analyse and comprehend information inside companies in order to
gain perspective about the company performance and predict the future of business. A well
selected set of metrics about statistical data, and the use of those metrics allows companies
to make informed data-driven decisions. MIT Sloan reports that companies with top perfor-
mance use until five times more analytics than lower performance ones [11]. The field of web
analytics has emerged and became a major field of research within business intelligence[6].
Based on data mining and statistical analysis, web analytics offers many analytical chal-
lenges and opportunities. The web based on HTTP/HTML hyper-links associated with web
search engines and directory systems helped to develop technologies for web crawling, web site
ranking or search log analysis. This naturally led to research about consumer behaviour, and
search trends. With the growing of semantic web and the appearance of knowledge databases,
it is expectable that the web analysis become even more important, as companies will be able
to identify more specific needs of their clients and answer in conformity.

As important as a good business analytics process is the presentation of the conclusions of
that analysis. Direct reports with charts or other visual representation of the data is half way
to ensure the comprehension of the message. This leads to the visualization field.

Visualisation is the method of communicating a message using any kind of visual representa-
tion like images, charts, diagrams. This is not a new field, visualisation techniques have been
used for over a thousand years, for instance in ancient cartography, however, the invention
of computer graphics was a massive development on this subject.

Some areas of application:

• Data analytics: using charts or maps to create reports about sets of data.

• Scientific visualisations: representing data about experiments

• Product development: using software to create 3d models and design prototypes of
products.

• Education visualisations: using simulations to aid the understanding of specific topics
or subjects.

Visualization, combined with data analytics, specially in the area of multimedia, is, accord-
ing to IBM’s 2013 Global Technologies Outlook [10] one of the main technology trends that

7

1.4. Motivation

will lead to industry changing products over the next years. Due to the size and complexity
of the data sets available there is a growing need of companies and particular users for visual
analytics tools.

1.4 motivation

For Maisis, the main motivation behind this master work is to add value to the Oobian plat-
form. In the economical context of today, with a very competitive market, companies have
to innovate and answer with quality products to the client’s needs. There is a growing need
on the field of business analytics for tools that provide features to create reports about big
collections of data. The Oobian platform is a horizontal knowledge management platform
that provides better search and navigation through knowledge. Oobian extracts and indexes
information from non-structured and structured data scattered inside and outside the organ-
isation, transforming it into real business knowledge. One of the gaps that were identified is
the lack of business analytics features in the platform. This feature could potentially improve
the business intelligence processes capabilities.

For the student, the motivation is to successfully complete his master course, working
and researching on an interesting field, with the added benefit of working in a professional
environment.

1.5 goals

This section presents a general description of the main goals this master work intended to
accomplish. Once this master work was developed as an internship in Maisis, the main goal
was to develop a work that could answer to the company’s problem described previously.

The work involved in this master thesis was divided in two main phases, a theoretical
one, with the study of the problem and the state of the art, and a practical one with the
specification and development of a software solution.

The goals for this master work were the following:

• to make a theoretical study and to understand some key concepts as:

– Oobian platform;

– Ontologies, Semantic Web and Linked Data;

– Data visualization tools and techniques;

• to formalize querying mechanisms to obtain data from the Oobian core engine (Knowl-
edge Server - Kserver).

• to specify a format for the resultant data set.

8

1.6. Contribution

• to propose mechanisms and techniques to analyse the data about the ontologies present
on the Oobian knowledge management platform;

• to create a visual user interface to present the generated reports;

• to create a mechanism to embed those visualizations into external websites.

All the software modules should be integrated on the existent Oobian infrastructure.
The main goal of this work is to give an extra dimension of analysis of the data present in

the platform, adding value to the global user experience.

1.6 contribution

The contributions of this master work fall within two main plans. At one side, in a theoretical
plan, is a theoretical study, with reading, synthesis and analysis of bibliography related with
the subjects in study. At the other side, in a practical plan, is the development of software
modules to achieve the specified goals. Being so, the contributions made with this work are:

• Theoretical study on the state of the art about data analysis and visualization tools, as
well as core concepts as ontologies, semantic web or linked data.

• Specification of a query mechanism to retrieve data from the Oobian knowledge server
using an json table accepted by Google Visualization API as output format.

• Development and integration with Oobian HTML client, of a component to create visual
representations of data present on the knowledge base.

• Specification of an HTML component structure in order to allow visualizations to be
embedded into web pages.

• Development of a JavaScript library to support the embedding of visualizations created
on the Oobian platform with real time data.

1.7 methodology

Aiming to satisfy all proposed goals the adopted methodology was ”Getting Things Done”
(GTD)[2], to control the development of activities and documentation. This methodology
consists in the idea of breaking projects into small tasks and work in one task at the time.
This bottom-up way of time management leads to a stress free productivity.
This master work is composed of the following steps:

• Bibliographic search;

9

1.8. Work Plan

• Reading and synthesis of the selected bibliography;

• Analysis of requirements and specification of the solution;

• Development of software prototypes;

• Evaluation of the prototypes and discussion about the achieved results.

Once the work was developed in a professional context, supervision and support from the
company was constant. This support was a major contribution on the process of accomplishing
the proposed goals.
The supervision process translated into short meetings where the work both in development
of the solution and in documentation was presented to and evaluated by Miguel Grade.
In addition, when necessary, there were meetings with Prof. Pedro Henriques, in order to
update the status of the development process and to discuss the writing of the documentation.

1.7.1 Development Methodology

The selected methodology during the development process consisted in grouping functional
requirements into small core groups. For each one of those groups, several steps were executed:
implement, test, present to the supervisor, receive feedback, make necessary alterations and
corrections and test again. This process translated into an agile process. Figure 4 depicts the
process for each group of requirements.

After the requirement specification process, requirements were grouped according to the
level of depth of the analysis, class, instance or cluster level. For each one of these groups
figure 4 helps to understand the development process. As each requirement was implemented,
tests were made to check if the obtained results were correct.

1.8 work plan

The duration of this master thesis was estimated in eight months. Although all main goals
were well defined, initially wasn’t possible to know how many time was needed to accomplish
each one. Despite that, the eight months were divided in five distinct phases. The thesis
report was written in parallel with all the phases described below:

1st phase - theoretical study: This first phase was used to study the state of the art
and to learn important concepts to the development and implementation of the system.

2nd phase - specification and requirement analysis: In the second phase the main
task was to specify the solution and the system requirements, which was validated by
the development team and by the stakeholders.

10

1.8. Work Plan

Figure 4.: Agile development process

3rd phase - development: On this phase started the development of the software proto-
type. This was to the longest phase.

4th phase - testing/bugfixing: After the prototype was developed the main task was to
test and validate it by emulation of real world scenarios. The goal was to identify and
correct possible errors or bugs to maximize the quality of the final software.

5th phase - evaluation and conclusion of the report: The last phase was used to
evaluate the prototype and to draw conclusions relating the results of this evaluation
and all the theoretical studies done during the master work.
Once this evaluation was made, the rest of the time was used to finish this document.

11

1.9. Document Structure

1.9 document structure

The present thesis report is organized and structured so that the reader can understand the
concepts in study, the existent problem and the achieved results that aim to answer and solve
that problem. Being so, this thesis was divided into several chapters that describe theoretical
concepts as well as practical results of the developed components.

• Chapter 1: Introduction - In the first chapter of the document it is presented to the user
the contextualization of the problem, as well as the goals intended to be accomplished
and the motivation behind the project. The working methodology followed and the
work plan were also introduced.

• Chapter 2: Knowledge Management and Visualization - In the second chapter it is
discussed the state of the Oobian platform, in particular, its HTML client. A study
about some existent data analysis and visualization tools is also presented.

• Chapter 3: Proposed Solution - The third chapter presents to the user the proposed
solution to the initial problem. First it is described the requirement specification process.
Then it is explained the specification of the solution itself.

• Chapter 4: Development - Chapter four describes the development stage of the master
work. Some of the used technologies are presented and the main methods and choices
made during the development of the different components are explained.

• Chapter 5: Achieved Results - In chapter five, readers can see the achieved results.
This chapter consists of two main usage scenarios and there are several figures depicting
features and behaviours of the client and the developed components.

• Chapter 6: Conclusion - Chapter six, the final chapter, presents to the reader the main
conclusions drawn from this master work, as well as possible evolutions and features
that can be added in the future.

Chapter 1 was an introduction to the thesis report. In this chapter the reader found an
initial overview of the context of the work and the main problem it proposes to solve.
It were exposed some vital concepts to aid the understanding of the thesis, the motivation
behind it and the goals Maisis intended to be accomplished.
After that it the main contributions of this work were briefly described and the work method-
ology was presented.

12

2

K N OW L E D G E M A N AG E M E N T A N D V I S U A L I Z AT I O N

Studying the state of the art is the starting phase of a good master work. This study is
important as it allows to gain a perspective of what are the works on the field and what is
the state of available tools. As this master work is being developed in a specific context, part
of the study of the state of the art was focused on the Oobian platform. In this chapter it
is presented a study about Oobian, existing data analysis tools, and visualization tools or
libraries.

2.1 oobian platform

Companies, government agencies and other organizations maintain huge amounts of informa-
tion in electronic format, including spread sheets, policy manuals, web pages, to mention just
a few. Contemporary private data sets can now exceed the size of the entire Internet in the
1990s, although some organizations do not publicize their stores. The content may be stored
in file shares, websites, content management systems (CMSs) or databases, but without the
ability to find this corporate knowledge, managing even a small company would be hard.
Oobian1 is an horizontal knowledge management platform that provides better search and

navigation through knowledge. It extracts and indexes information from structured and non-
structured data scattered in organizations and transforms it in organized business knowledge.
Oobian provides a simple way of searching through all the knowledge fragments scattered all
around the enterprise, offering many advantages to the common user that is trying to get
his hands into specified content. Oobian connects people to the information they need to get
their jobs done. General productivity suites, for example intranet search solutions, increase
employee efficiency by connecting a broad set of people to a broad set of information. In
comparison, search-driven applications drive measurable return on investment by helping a
well-defined set of people accomplish specific business tasks more efficiently. Search-driven
applications, such as research portals and 360º costumer insight solutions aggregate informa-
tion from a defined set of content repositories, add structure to unstructured information and
provide a contextual, interactive and actionable experience. Booth companies and clients ben-

1 http://www.oobian.com/

13

http://www.oobian.com/

2.1. Oobian platform

efit of an increase of efficiency by a better management of the information inside a company
and Oobian provides this management.

2.1.1 Oobian architecture

Oobian simply putting is a platform that manages to index scattered data along companies
and provide it to the users. To accomplish this, it relies on a Client-Server architecture as
depicted in figure 5.

Figure 5.: Oobian architecture

The Oobian Server is the heart of the platform. It is responsible for all the crawling,
content pipeline processing, indexing, searching and intelligent semantics. On the bottom
layer of Oobian server there are several data connectors to feed content to the index. The top
layer provides services that are consumed by the Oobian client. In figure 6 are listed some of
the supported content sources.

Once the content is picked up from its sources, it is feed to the content processing pipeline.
Figure 7 shows the main stages of that process.

2.1.2 Oobian features

Here are some of the Oobian platform key features:

• Web user interface with drill-up and drill-down features;

14

2.1. Oobian platform

Figure 6.: Oobian Content Sources

Figure 7.: Content Processing Pipeline

• Support for W3C Semantic Web recommendations like OWL or RDFS;

• Ontology based;

• Geo-referencing support;

• Highly scalable;

• SOAP and REST web service interfaces;

• Documents, Knowledge and Maps integration;

Oobian Insight is the top layer of the platform. It has two modes of presentation, two
clients. One in Silverlight and one in HTML5. On this master work the focus will be on the
HTML client.

15

2.1. Oobian platform

Oobian HTML client has two main modes:

• Navigation;

• Maps;

Navigation
Navigation mode allows users to navigate in the knowledge base, drilling up and down classes,
in a rich user interface. Figure 8 depicts a navigation scenario where an user is exploring
instances of a class.
Each instance is represented as a ”box” with some details about it displayed below the instance
icons. Users can navigate through pages of instances.

Figure 8.: Oobian HTML client - Instances of a Class

16

2.1. Oobian platform

Figure 9 shows some details of an instance and figure 10 depicts clusters of instances related
to the current instance.

Figure 9.: Oobian HTML client - Instance details

Figure 10.: Oobian HTML client - Relation details of an instance

17

2.1. Oobian platform

When exploring classes or clusters of instances, it is possible to filter the instances using a
mechanism of faceted search.
Faceted search, or Faceted navigation is a technique for accessing information organized ac-
cording to a faceted classification. Faceted classification is a form of organizing content, by
assigning multiple attributes to an object, instead of a predetermined taxonomic order. These
attributes, or facets are ”clearly defined, mutually exclusive, and collectively exhaustive as-
pects, properties or characteristics of a class or specific subject” [3]. Lets consider an example,
cars. A car has a certain brand, it is a certain colour, it is listed with a certain price and
belongs to a certain vehicle class. Using facets it is possible to set up a handful of categories
that will combine to fully describe a car: brand, colour, price, class. Each category is popu-
lated with the right terms and organized. Then each car is classified by choosing the right
terms for each category. This is a faceted classification, a set of mutually exclusive and jointly
exhaustive categories, each made by isolating one perspective on the items that combine to
describe all the objects in question.
Figure 11 illustrates the mechanism of faceted filtering present in Oobian client.

Figure 11.: Oobian HTML client - Faceted filtering

18

2.1. Oobian platform

Maps
Maps mode allows users to explore geotagged instances in an interactive map, as shown in
Figure 12.

Figure 12.: Oobian HTML client - Maps mode

19

2.2. Data Analysis and Visualization tools

2.2 data analysis and visualization tools

One of the main goals of this master work is to develop a component to analyse information
with a visual interface. So, it is important to do a research about existing tools for that
purpose. In this section are investigated and presented some of those tools.

2.2.1 Sgvizler

Sgvizler2 is a project for a ”small JavaScript wrapper” [14] which aims to create visualisations
of data by rendering the result set of SPARQL queries into charts or HTML elements. This
project supports a large number of visualization types. It works receiving a SPARQL query
and a SPARQL endpoint from the user and translating the result set into a specific Json
format. This Json is accepted by Google Charts, and the visualizations are generated using
the Google Charts API. The generated visualizations can be integrated in HTML web pages
by including the generated HTML elements. Figure 13 is an example of a generated HTML
element.

Figure 13.: Sgvizler html element example

2 http://dev.data2000.no/sgvizler/

20

http://dev.data2000.no/sgvizler/

2.2. Data Analysis and Visualization tools

2.2.2 Google Charts

Google Charts3 is a visualization API from Google that allows users to visualize and present
many different types of information by creating interactive charts. All chart types are popu-
lated with data from a specific data table with a default format, making it easy to create dif-
ferent charts and visualizations from the same data source. That data table can be populated
directly from the web site, from a database or a Json file in a specific format. The charts are
JavaScript classes with customization properties and are rendered using HTML5/SVG tech-
nologies providing cross-browser compatibility. Figure 14 is an example of a chart created by
this API.

Figure 14.: Google Charts example

3 https://developers.google.com/chart/?hl=pt-PT

21

https://developers.google.com/chart/?hl=pt-PT

2.2. Data Analysis and Visualization tools

2.2.3 IBM Many Eyes

Many Eyes4 is a web based project from IBM that provides visualizations for data upload
by the users [16]. It is developed by an open web community that includes visualization
experts, practitioners, academics and enthusiasts offering their expertise, aiming to provide
the best format to present the data from the users. Users upload their public data, contained
in spreadsheets or text files, and are presented with a variety of visualizations recommended
by Many Eyes. Once the visualization is selected the users can share that visualization over
the web. Figure 15 shows an example of a visualization created with Many Eyes.

Figure 15.: IBM Many Eyes visualization example

This is an interesting tool, but it is not fitted to be used by enterprises or companies, mainly
because it requires for the uploaded data to be public.

4 http://www-958.ibm.com/software/analytics/manyeyes/

22

http://www-958.ibm.com/software/analytics/manyeyes/

2.2. Data Analysis and Visualization tools

2.2.4 Microsof Silverlight PivotViewer

PivotViewer5 is a Microsoft Siverlight control to visualize large collections of objects at once.
It has a dynamic interface with several data filters, sorting and browsing features to help
users to quickly find what they are searching. Figure 16 shows an example of PivotViewer.

Figure 16.: Silverlight PivotViewer example

Chapter 2 presented to the reader a study on the state of the art. The main subject of study
was the Oobian ecosystem, in particular, its HTML client. After that, the study focused on
data analysis and visualization tools and libraries.

5 http://www.microsoft.com/silverlight/pivotviewer/

23

http://www.microsoft.com/silverlight/pivotviewer/

3

P RO P O S E D S O L U T I O N

In this chapter is explained the proposed solution. In first place, it is presented the require-
ment specification process as well as a general requirements list. Then the solution itself is
described, starting with its general architecture followed by more detailed explanations about
the several components of the project.

3.1 requirement specification

A major part in the process of development of a software solution is the requirements spec-
ification. In this section it is presented that specification, the methodology followed, the
stakeholders of this work and actors that will interact with the system. Two lists with the
requirements are also presented. The full requirement specification is presented in appendix
A.

3.1.1 Analysis Methodology

As said before, one of the most important phases of the software development process is the
process of requirement analysis. In order to maximize the quality of the analysis it is recom-
mended to use a well defined methodology.
The selected methodology for the development of this work was FURPS/FURPS+ [1].

FURPS is an acronym for:

• Functionality: functional requirements describing features or capabilities that the
client expects the software to have;

• Usability: describe the system from the user perspective and take into account factors
like the user interface, the quality of documentation, the efficiency and the general
quality of the system;

• Reliability: describe the system predictability, precision or failure recovery;

24

3.1. Requirement Specification

• Performance: describe the system’s performance, like response time, throughput or
resource usage;

• Supportability: describe factors like the compatibility of the system, maintainability
or configurability.

FURPS+ adds support for some possible needs:

• Design: restrictions that influence the design of the solution, as the use of relational
databases;

• Implementation: use of specific tools or standards of development;

• Interface: factors about how the solution interacts with other systems, for instance
format restrains;

• Physical: hardware needed to support the final solution.

3.1.2 Stakeholders

Once the analysis methodology is defined, it is important to identify the stakeholders of the
project. A stakeholder is any person or organization that have interest in the development of
the system.

There are three main stakeholders related with this master work. The first one is Maisis
Information Systems, the company that provided the subject and the possibility of an in-
ternship, represented by Eng. Miguel Grade. Other of the stakeholders is the trainee Pedro
Moreira, that is developing this master work with the intent of finishing his masters degree.
The final stakeholder is professor Pedro Rangel Henriques from University of Minho, who
very kindly agreed to supervise and support this master work.

3.1.3 Actors

In this section are presented the actors that will interact with the platform. Identifying the
actors is an important step on the requirement specification process, as it helps to identify
particular needs of users.

There are two main actors interacting with the system: the common user of the platform
and the external embedded component.
The common user while navigating in the interface, consults and filters information and has
the ability to create visualizations, get the embed code of the visualization and export it as

25

3.1. Requirement Specification

a CSV table.
The external embedded component does requests directly to the server. In first place it makes
a request to obtain a valid authentication token. After that it makes a request with the query
that returns the data table with the results. Figure 17 depicts a simple use case diagram of
the system.

Figure 17.: Use case diagram

26

3.1. Requirement Specification

3.1.4 Requirements

On the process of software development time and efficiency are key factors. So, it is a good
practice to prioritise the different requirements, in order to hep organise the development
process and obtain a final product that is as close as possible to the wanted result.
Table 1 presents the type of priority by which requirements will be listed.

Priority Description
Must Requirements that must be implemented in order to

consider the final product a success.
Should Requirements that should, if possible, be part of the

final product.
Nice Desirable requirements, implemented only if there is

time to do it, without compromise the implementation
of higher priority requirements.

Table 1.: Requirement Priority

27

3.1. Requirement Specification

In order to present to the reader a general view of the requirements, on this subsection are
presented two lists of requirements and their priorities.
Table 2 shows the first list of requirements. Functional requirements describing features and
behaviours that the final solution must have.

Requirement Id Name Priority
1 HTML client integrated component Must
2 Class level analysis Must
3 Instance level analysis Must
4 Cluster level analysis Must
5 Data properties picker Must
6 Multiple visualization types support Must
7 Visualization constrains Must
8 Native query support Must
9 Google Visualization Json table output Must
10 Embed HTML component Must
11 Self updating HTML component Must
12 Interval result segmentation Must
13 Query filter support Must
14 Query limits support Should
15 Query offset support Should
16 Query operations support Nice
17 Data table export as CSV Nice

Table 2.: Functional requirements

Table 3 shows the second list of requirements. Non-Functional requirements considered as
restrictions both to the system and the development.

Requirement type Requirement Id Name Priority
Usability 18 Effectiveness Must
Usability 19 Efficiency Must

Design 20 Oobian platform Must
Interface 21 Oobian client Must
Physical 22 Hardware requirements Must

Table 3.: Non-Functional requirements

28

3.2. Proposed Architecture

3.2 proposed architecture

As said previously, the main goals of this project were to formalize a query structure, to
propose an output format for the resultant data set and to represent that data set in a visual
form.

Figure 18.: Architecture Block Diagram

So, the proposed solution consists on a component, to be available in the Oobian client
user interface, where the user selects data properties and chart types he wants to analyse.
Once the data properties are selected, a query in the specified Json format is injected into a
request that is sent to a web service present in the Kserver. That request with the Json query
is processed and the resultant data set is mapped into the specified Json data table format.
The web service returns that data table which is then processed by the visualisation API and
the charts are presented to the user. Figure 18 represents a general view of the solution.

29

3.3. Query Format

3.3 query format

As said before, one of the main goals of this master work was to define a query format to
obtain data from the server.
The first step to accomplish this goal was to formally define a context free grammar to de-
scribe the query language.

query:
'{select:'select',from:'from',' where:'where', limit:INTEGER',' offset:INTEGER

',' locale:''STRING'}'
;

select:
'{operator:'STRING',properties:['properties']}'
;

from:
'{contextId:'STRING',('instanceId:STRING',)'*', namespace:'STRING'(, objPropId

:'STRING')'*'}'
;

where:
'{'filters'}'
;

properties:
STRING(','STRING)*
;

filters:
filter(','filter)*
;

filter:
STRING':''['STRING(','STRING)*']'
|STRING':''['INTEGER(','INTEGER)*']'
;

As shown in the listing above, the query has the following elements:

• Select: contains an operator(e.g., Count) and an array with a list of properties to be
obtained from the server and included on the final chart. Each data property defined
here corresponds to a column of the results table. The order of the data properties

30

3.4. Output Format

is important as it defines the order of the data columns of the result data set and
ultimately the visual representation.

• From: identifies the location of the data, with the contextId representing the id of
the context (class or instance id) of the ontology, the instanceId representing the id of
the instance and the namespace where those ids are located. InstanceId is an optional
field, as it is only needed when performing analysis of clusters related to one instance
in particular objPropId represents the id of a relation, it is also optional as it is only
needed when performing analysis of a particular relation of an instance;

• Where: contains a set of properties defining the criteria to filter the results of the
query;

• Limit: an integer value to limit the number a results;

• Offset: an integer value to define the number of items to skip before returning results.

• Locale: contains the language of the data that should be returned.

Below is an example of a valid sentence containing a query:
{

select:{operator:"null",properties:[":city"]},
from:{

contextId:":Education",
instanceId:":Person_W -A0CgjJyz",
namespace:"http://www.owl-ontologies.com/CV.owl#"

},
where:{

":countryCodeSource" : ["GB"], ":city" : ["London"]
},
limit:1,
offset:1,
locale:"pt"

}

3.4 output format

With this master work, Maisis intended to specify a standard output format for the result set
of the query. So, to ensure that this format was reusable if needed, the chosen solution was
to create a Json file. This Json follows the rules accepted by Google Charts API. The Json
file has two main properties: cols and rows.

31

3.4. Output Format

Cols: consists in an array of objects matching the columns of a table that describes the ID
and Type of each column.

• id: identifies the column;

• label (optional): string with a label to identify the column;

• type: data type of the column;

Supported data types:

• string;

• number;

• boolean;

• date;

• datetime;

• timeofday.

Rows: consists in an array of objects matching the rows of a table. Each row contains a
array of cell (c) objects corresponding to the cells of a table.
Each cell has a v property that is the value of the cell. The data type of the cell has to match
the data type of the correspondent column.

Example of a Json structure with 3 columns and 5 rows.
{

"cols": [
{"id": "col_1", "label": "year", "type": "string"},
{"id": "col_2", "label": "sales", "type": "number"},
{"id": "col_3", "label": "expenses", "type": "number"}
],

"rows": [
{"c":[{"v":"2001"},{"v":"3"},{"v":"5"}]},
{"c":[{"v":"2002"},{"v":"5"},{"v":"10"}]},
{"c":[{"v":"2003"},{"v":"6"},{"v":"4"}]},
{"c":[{"v":"2004"},{"v":"8"},{"v":"32"}]},
{"c":[{"v":"2005"},{"v":"3"},{"v":"56"}]}
]

}

32

3.5. Embed component

3.4.1 CSV Table

Having defined that the output of the service was going to be a Json string containing a table,
it was only logic to choose CSV as the format to the export feature.
CSV (Comma Separated Values or Character Separated Values) is a simple file format widely

supported by business, consumer and scientific applications, that stores tabular data in a plain-
text formt. This means that the file is a sequence of characters with no data that has to be
interpreted. A CSV file can store any number of records, separated by line breaks. Each
record consists of fields separated by a character, for example a comma or a semicolon, as
illustrated in the following listing.

Number of employees;Companies
1-10;58
100-500;22
50-100;14
10-25;13
25-50;12

3.5 embed component

One of Maisis initial goals for this work was to develop a mechanism to embed visualizations
created by users, with the help of Oobian client, into their own websites.
To accomplish this goal, the proposed solution was to dynamically generate an HTML com-
ponent that could easily be copied and integrated in a web page source code.
Below is depicted an example of a generated component.

<div id="knowledge1404490905747"
data-knowledge -address="http://172.27.192.180:8080"
data-knowledge -service="/Knowledge/rest/kanalytics/data"
data-knowledge -user="jujn9P4BXK+U2MGahmo0Vg=="
data-knowledge -pass="dZW+Md37p1sDdhNUaJcF6w=="
data-knowledge -query="{ 'select' : { 'operator' : null, 'properties' : [':

anoCriacao'] },
'from' : { 'contextId' : ':Empresa', 'namespace' :

'http://www.tice.pt/ontology/tice.owl#' },
'where' : { '' : [] },
'limit' : 0,
'offset' : 0,
'locale' : 'pt' }"

data-knowledge -chart="BarChart"
data-knowledge -title="Empresas / Ano de criação"

33

3.5. Embed component

style="width:600px; height:400px">
</div>

In HTML 5 it is possible to store custom data attributes in HTML components. These
stored data-* attributes can later be used in the JavaScript pages to create richer and engag-
ing user experience.

The generated embed component has the following structure:

• id: Id of the component. In order for this id to be unique, it is composed by the word
knowledge followed by the timestamp of the time when it was created. This way it is
possible to include several components in the same page without having duplicated ids;

• data-knowledge-address: Address where the Kserver is located;

• data-knowledge-service: Contains the specific web service signature that returns the
data;

• data-knowledge-user: Contains an encrypted user name to login into the kserver;

• data-knowledge-pass: Contains the correspondent password;

• data-knowledge-query: Contains the specific query for obtaining the desired results.

• data-knowledge-chart: Visualization type;

• data-knowledge-title: Visualization title;

• style: Contains the styling of the component, namely the width and the height of the
visualization.

Chapter 3 focused on the specification of the proposed solution. In this chapter, the solution
itself was presented to the reader. Starting from the requirement specification process followed
by the specification of the several proposed components, specific aspects of the proposed
solution were described.

34

4

D E V E L O P M E N T

This chapter of the document aims to present the development stage of the master work. It
is made a description of the main methods, choices and results obtained while developing
the solution. This chapter is divided in several sections, in order to explain the several
components that were developed, both client and server side. To aid the understanding of
what was developed, this chapter is illustrated with several pictures and diagrams.

4.1 client side

As said previously, the Oobian platform is based on a well defined Client - Server architecture.
Being so, the developed solution is based on the same architecture that was introduced in the
previous chapter and depicted in 18

Oobian HTML client is based on the JavaServer Faces (JSF) framework. JSF is a ”standard
Java framework for building user interfaces for Web applications.” It is based on a component-
driven design model and uses XML files called view templates or facelets. The FacesServlet
processes requests, loads the appropriate view template, builds a component tree, processes
events and renders and HTML response to the client.
In JSF exists the concept of composite components, special types of templates that act as a
component. Any component is essentially a piece of reusable code that behaves in a particular
way. A composite component consists of a collection of markup tags and other existing
components. This reusable component has a customized, defined functionality and can have
validators, converters, and listeners attached to it like any other component. With Facelets,
any XHTML page that contains markup tags and other components can be converted into a
composite component. Figure 19 depicts a simple diagram of JSF architecture.

In order to integrate the desired Knowledge Analytics module in the Oobian client the
approach chosen was to develop a composite component that could be easily integrated in
the interface, as the one listed in figure 20.
This interface module should provide a slider panel with a menu to select which property to

analyse, the type of visualization to create, both limit and offset inputs to specify the set of

35

4.1. Client side

Figure 19.: JSF architecture

Figure 20.: Knowledge Analytics composite component

results, and the number of segments. This number of segments defines the number of intervals
to split the results when performing analysis of numeric or temporal properties.
Once this panel is a JSF composite component, the only work needed to include it in an
existent page is to call it and pass context parameters.

Figure 21 shows the slider panel described above, integrated in the interface at a class level.
JSF uses Managed Beans to separate presentation from business logic. Program logic is

contained in the bean implementation code and JSF simply refers to bean properties. Basi-
cally, a managed bean is a specialized Java class that synchronizes values with components,
processes business logic and handles navigation between pages.
It is possible to define the scope in which beans are stored. There are the following scopes
available:

• Application (@ApplicationScoped): Application scope persists across all users’ inter-
actions with a web application.

• Session (@SessionScoped): Session scope persists across multiple HTTP requests in a
web application.

• View (@ViewScoped): View scope persists during a user’s interaction with a single page
(view) of a web application.

36

4.1. Client side

Figure 21.: Analytics panel

• Request (@RequestScoped): Request scope persists during a single HTTP request in a
web application.

• None (@NoneScoped): Indicates a scope is not defined for the application.

• Custom (@CustomScoped): A user-defined, non-standard scope.

To support the composite component, it was developed a view scoped managed bean. This
knowledge bean is the core of the client side as it handles all the logic of the component.

According to user’s interaction with the interface, it builds a query object, and serializes it
in a Json string. To do this serialization the choice was to use Jackson. Jackson is a suite of
data processing tools for Java, among which are included libraries as the Object Mapper or
Object Writter that allows to serialize Java objects to Json strings and deserialize Json strings
back to Java objects.

37

4.1. Client side

In JSF it is possible to inject dependencies of managed beans into other managed beans.
Oobian HTML client has several managed beans to handle different operations. When develop-
ing the Knowledge Analytics component this was taken into account and several dependencies
were included in the Knowlege bean. Figure 22 shows an extract of the Knowledge bean where
these dependencies are injected.

Figure 22.: Extract from Knowledge bean: managed properties

For example, facetedSearchBean handles the logic behind the faceted search features of the
client. The best way to include filters when building a query was to use filters that users
apply when navigating in the client. So when users create a visualization it is created with
the filtered set of data and reflect what users define in the faceted filtering mechanism.

38

4.1. Client side

Once created the query object is parsed by Jackson into a Json string and posted into a web
service request sent to the Knowledge Analytics REST web service (figure 23). As response,
the web service returns a Json string containing a data table with the format specified in
chapter 3.

Figure 23.: Extract from Knowledge bean

39

4.1. Client side

The data table is read by a JavaScript function (see figure 24) included in the component
and the visualization is drawn in a pop-up.

Figure 24.: JavaScript function to draw a visualization

40

4.1. Client side

4.1.1 Component Integration and Configuration

As said previously, Oobian HTML is based on JSF and it is a modular platform. It can
be configured to include or not to include modules in order to meet users needs. These
configurations are stored on a properties file that is read by a configurations managed bean
that defines if the modules are rendered or not in the HTML client.
Knowledge Analytics was developed as a composite component, intended to be a module, so
its configurations are stored on that same properties file. Figure 25 shows an extract of that
properties file.

Figure 25.: Extract from the configurations file

There are the following configurable properties:

• enabled: a boolean that defines if the component is enabled;

• exportCsvEnable: a boolean that defines if the export as csv feature is enabled;

• embedChart: a boolean that defines it the visualization embedding is enabled;

• defaultLimit: an integer to define the default Limit of the query to limit the result set;

• defaultOffset: an integer to define the default Offset the result set;

• defaultChartWidth & defaultChartHeight: integers to define the default dimensions, in
pixels, of the visualization on the client;

• defaultEmbedWidth & defaultEmbedHeight: integers to define the default dimensions, in
pixels, of the visualization when embedded on an external web site.

41

4.2. Server side

4.2 server side

As said previously (see Chapter 3, Figure 18), Knowledge Analytics component relies on a
Client-Server architecture. In the previous section the main aspects of the development of
the client side were presented to the reader; in this section are presented the main aspects of
the development of the server side.

In the core of the server side are several REST web services, developed using the Jersey
framework. Java defines REST support via the Java Specification Request (JSR) 311. This
specification is known as JAX-RS. Jersey is a Java framework for developing RESTful web
services, that provides support for JAX-RS APIs and serves as JAX-RS reference implemen-
tation.
JAX-RS uses annotations to define the REST behaviour of Java methods:

• @PATH : Path to the base URL + /created_path. The base url is defined by the
application name, the servlet and the URL from the web.xml configuration file;

• @POST : Indicates that the method answer to an HTTP POST request;

• @GET : Indicates that the method answer to an HTTP GET request;

• @PUT : Indicates that the method answer to an HTTP PUT request;

• @DELETE: Indicates that the method answer to an HTTP DELETE request;

• @Produces(type): Defines which MIME type is delivered by the method, for example
”text/plain” or ”application/Json”;

• @Consumes(type): Defines which MIME type is consumed by the method;

• @PathParam: Used to inject values from the URL into a method parameter.

42

4.2. Server side

Figure 26.: REST web service interface

Figure 26 shows an extract of the interface of the developed services, each one has a specific
address either the encrypted login credentials, or the Json data table.

• getLogin is used by the embedded visualization to perform login on the platform. It an
encrypted user/password pair and returns a valid temporary OAuth access token.

• getTableForComponent receives, from the external embedded component, an access to-
ken and a query for a class level analysis as parameter. Returns a valid Json string
containing a table with the data for the visualization.

• getTableForClient receives, from the HTML client, an access token and a request object
containing a query for a class level analysis. It returns a valid Json string containing a
table with the data for visualization.

• getTableForClientCluster receives, from the HTML client, an access token and a request
object containing a query for a cluster level analysis. Returns a Json string containing
a table with the data for visualization.

43

4.2. Server side

• getTableForComponentCluster receives, from the external embedded component, an ac-
cess token and a Json string with the query for a cluster level analysis. Returns a Json
string containing a table with the data for visualization.

• getTableForComponentClusterRelations receives, from the external embedded compo-
nent, an access token and a Json string with the query for an instance level analysis.
Returns a Json string containing a table with the data for visualization.

• getTableForClientClusterRelations receives, from the HTML client, an access token and
a request object containing a query for an instance level analysis. Returns a Json string
containing a table with the data for visualization.

Each one of these services parses the query and fills the output table with data retrieved
from an Enterprise Java Bean(EJB) of the Oobian Kserver.

Figure 27.: Server side block diagram

44

4.3. Visualization Embedding

4.3 visualization embedding

So far in this chapter it were presented and described some of the key aspects of the devel-
opment stage. It was explained how the client and the server side of the component were
developed. In this section it is described another one, the visualization embedding.

One of the goals Maisis had for the project was to allow users to embed visualizations, charts
or tables, (created in Oobian) into external web sites for example personal, or company web
pages.
As explained in Chapter 3, the proposed solution was to develop a feature to create a custom
HTML element, a div, with custom HTML 5 data-* attributes. These attributes were then
read by a JavaScript library would retrieve the query string, make an HTTP request to the
correspondent web service, obtaining the data table and then render the visualization embed-
ded into the web page content. Figure 28 shows the developed pop-up with the HTML code
of the div element that can be embedded into an web page.

Figure 28.: Popup with the embedding code

The first problem encountered when developing this solution was about how to guarantee
access to the data. Oobian server requires an OAuth access token as authentication. In the
client, this token is created via login, with a registered user/password pair.
This seemed a good starting point, but having the user/password pair, or a token included
in the component, in the ”open”, was obviously out of question.
The solution found to overcome this was simply to encrypt the user/password pair.

45

4.3. Visualization Embedding

In the process of creating the visualization, in the Oobian Client, users are logged in and
have a valid user session. So, when generating the embed code in the client, user’s credentials
are encrypted using an AES Cipher algorithm with Maisis own secret key.

Having the credentials encrypted allowed to include them in the embed code.
In the developed JavaScript library, a login() function reads the encrypted user/password pair
from the embed component, makes a request to the login web service on the server. This web
service decrypts the credentials, generates a valid access token and returns it in the response.
Once obtained the token, it is just a question of including it in the HTTP with the query
in order to authenticate the KServer and retrieve the Json data table to draw de visualization.

The next problem was how to deal with duplicate id’s and how to allow the embedding of
multiple visualizations into the same page.

To deal with the duplicate id problem, the choice was to append a timestamp to the id of
the div, when generating the embedding code. This way, each generated component has a
unique id.

To draw multiple visualizations in the same page, the solution was to include a function in
the JavaScript library to create an array containing all the elements with a specific attribute,
in this case, the custom data-knowledge-query attribute. Figure 29 shows this function.

Figure 29.: getElements function

46

4.3. Visualization Embedding

Once the array with the correct id’s for the elements is built, for each one of those elements,
the main JavaScript function gets the needed values from the custom data-* attributes. It
makes an HTTP request and draws the visualization with the data table presented on the
HTTP response. Figure 30 shows an extract of that function.

Figure 30.: Extract from the drawFromEmbed function

Chapter 4 focused on the development stage of the master work. Here, the reader found a
technical perspective of the solution, with the exposition and explanation of some of the key
aspects and choices made during the development process.

47

5

AC H I E V E D R E S U LT S

The purpose of this chapter is to present some results that were obtained with Knowledge
Analytics component to test its development. As this master work was developed in a pro-
fessional environment, two real world scenarios, that use Oobian platform and contain real
data were selected to test the Analytics module. Being so, this chapter is divided in two
sections describing each one of those usage scenarios. In each of the sections is presented a
brief description of the test scenario and a set of visualizations created in order to test the
various features of the querying process, including simple queries and more complex queries
with filters about the data present on the correspondent knowledge base.

5.1 560.pt - portugal business network

560.PT - Portugal Business Network is an on-line platform that houses information about
Portuguese Communities abroad, the Portuguese Diáspora. Part of it is a showcase of Por-
tuguese companies present on foreign markets.
Some of the goals of this platform are:

• Promote the internationalization of companies and exportation of Portuguese products
and services;

• Promote the contact between registered companies;

• Create business opportunities for Portuguese entrepreneurs abroad;

• Create networks between Portuguese people of different areas to promote Portugal’s
image, culture, interests and communities around the world.

The platform is based on the Oobian platform. In this section, several visualizations created
with the Knowledge Analytics module will be presented.

48

5.1. 560.PT - Portugal Business Network

Figure 31.: 560.pt class hierar-
chy

For each one of the visualizations it is also in-
cluded the correspondent query that was sent to the
server.

The data present in the knowledge base is structured ac-
cording to the hierarchy shown in figure 31.

Class level
To start testing at the class level, the class Empresa was cho-
sen. This class has 130 instances.
The properties of class Empresa are the following:

• Business volume;

• Creation year;

• Gross volume added;

• NACE code;

• Number of employees;

• Ratio (gross value added/business volume) %.

49

5.1. 560.PT - Portugal Business Network

A simple visualization that can be created is the distribution
of the number of companies by their creation date. Figure
32 shows an area chart exhibiting that evolution. To get that visualization, a simple query
asking for the creation date without filters is enough, as listed below.

select : {
operator : "null",
properties : [":anoCriacao"] },

from : {
contextId : ":Empresa",
namespace : "http://www.tice.pt/ontology/tice.owl#"
},

where : { '' : [] },
limit : 0,
offset : 0,
locale : "en"

Figure 32.: Area chart: Nº of companies / Creation date

50

5.1. 560.PT - Portugal Business Network

A simple pie chart can be used to visualize the size of the companies, based on the number
of employees, as depicted in Figure 33. Moving the mouse over each ”slice” of the chart it is
possible to see the exact number of companies.
The query, once again is simple:

select : {
operator : "null",
properties : [":numEmpregados"] },

from : {
contextId : ":Empresa",
namespace : "http://www.tice.pt/ontology/tice.owl#"
},

where : { '' : [] },
limit : 0,
offset : 0,
locale : "en"

Figure 33.: Pie chart: % of companies / Nº employees

51

5.1. 560.PT - Portugal Business Network

Using filters it is possible to perform a deeper analysis of the data. For example, figure 34
shows the Ratio (gva/business volume)% of companies with 500 or more employees. This ratio
can be explained as the margin of profit of the biggest companies present in the knowledge
base.
The query that returns this result contains a filter in the where field:

select : {
operator : "null",
properties : [":racio"] },

from : {
contextId : ":Empresa",
namespace : "http://www.tice.pt/ontology/tice.owl#"
},

where : { ":numEmpregados" : ["500+"] },
limit : 0,
offset : 0,
locale : "en"

Figure 34.: Bar chart: Nº of companies / Ratio of companies with 500+ employees

52

5.1. 560.PT - Portugal Business Network

Instance level
At the instance level, it is possible to create visualizations about the relationships of an
instance. For example, when analysing Portugal as a market, it is possible to create a Donut
with all the relationships of Portugal, as depicted in Figure 35, that shows that most of the
instances related to Portugal are from the Solutions class.
When creating a chart about the relations of an instance, the field properties of the query is
empty because the aim of analysis is whole instance and not any property in particular.

select : {
operator : "null",
properties : [] },

from : {
contextId : ":Mercado_1",
namespace : "http://www.tice.pt/ontology/tice.owl#"
},

where : { '' : [] },
limit : 0,
offset : 0,
locale : "en"

Figure 35.: Donut chart: Relations of instance Portugal

53

5.1. 560.PT - Portugal Business Network

Cluster level
Oobian HTML client groups instances related to a particular instance in clusters. In the
previous chart, it was presented a ”donut” with the relations of Portugal as a market. It is
possible to drill into each one of those clusters and create visualizations about them.
Figure 36 shows a pie chart about the family of Services that are related to Portugal, that is
returned as the answer to the query below.

select : {
operator : "null",
properties : [":familiaServico"] },

from : {
instanceId : ":Mercado_1",
classId : ":Servico",
namespace : "http://www.tice.pt/ontology/tice.owl#",
objPropId : ":temOferta_Servico'"

},
where : { '' : [] },
limit : 0,
offset : 0,
locale : "en"

Figure 36.: Pie chart: family of Services related to Portugal

54

5.2. Joobian

5.2 joobian

Joobian is a mobile application, developed by Maisis that extracts and indexes job offers
and opportunities from several sources and for several countries (Portugal, Brasil, Uk, USA,
among others) and matches them according to user’s skills.

Figure 37.: Joobian class hierar-
chy

Those skills can either be gathered from the user’s LinkedIn
account or manually inserted into the application. This
matching translates into an app that personalises job search
and presents job offers that are made for the user.
On the basis of the application is the Oobian platform.
This test scenario was chosen due to the massive amount of
data present on the knowledge base. On the tested knowl-
edge base it was present a portion of the index used by the
application, containing information gathered during nearly
one month, from 2014-06-18 to 2014-07-17. In this porting
there are approximately 350 000 job offers (the entire index
has over 5 million), matching around 2 300 skills, from about
37 000 cities and published by more than 60 000 companies.
Figure 37 shows the class hierarchy of the data on the knowl-
edge base. Particularly, the class Job Offer has the following
data properties:

• City;

• Company;

• Country;

• Creation date;

• Formated location;

• Job date;

• Skills.

55

5.2. Joobian

The first test consists in a bar chart depicting the fifteen cities with more job offers in the
knowledge base. The query to obtain this data is simple, with a limit of 15 to set the number
of results to get. Figure 38 shows the result of the following query:

select : {
operator : "null",
properties : [":city"] },

from : {
contextId : ":JobOffer",
namespace : "http://www.owl-ontologies.com/CV.owl#" },

where : { '' : [] },
limit : 15,
offset : 0,
locale : "en"

Figure 38.: Bar chart: 15 cities with more Job Offers

56

5.2. Joobian

Adding a filter to the previous query, as listed below, it is possible to create a chart for
example with the fifteen cities with more job offers in Portugal, as depicted in figure 39.

select : {
operator : "null",
properties : [":city"] },

from : {
contextId : ":JobOffer",
namespace : "http://www.owl-ontologies.com/CV.owl#" },

where : { ":country" : ["Portugal"] },
limit : 15,
offset : 0,
locale : "en"

Figure 39.: Column chart: 15 cities with more Job Offers in Portugal

57

5.2. Joobian

Using multiple filters allows users to perform deeper analysis and reach more concrete
results. For example, figure 40 shows the evolution of the number of job offers matching the
skill Java over a period of one month, from 2014-06-30 to 2014-07-29 for the city of Porto.
The chart in figure 40

select : {
operator : "null",
properties : [":creationDate'"] },

from : {
contextId : ":JobOffer",
namespace : "http://www.owl-ontologies.com/CV.owl#" },

where : { ":skills" : ["Java"], ":city" : ["Porto"] },
limit : 0,
offset : 0,
locale : "pt"

Figure 40.: Line chart: Evolution Job Offers matching Java in Porto

58

5.2. Joobian

Every one of the charts showed so far are based on the Json data table specified at Chapter
3, which means that every analysis made so far can simply be depicted by a simple table, as
the one shown in Figure 41.

Figure 41.: Table: 15 cities with more Job Offers in Portugal

59

5.2. Joobian

Embedding multiple charts

One of the main goals of this work was the capability of embedding multiple charts, created
in the Oobian client, in an external web site.
Figure 42 depicts a web page where multiple different charts were embedded, creating a live
dashboard that allows users to keep track of evolutions or changes in information present on
the knowledge base.
In this example it is presented a pie chart with the distribution of job offers by country, a bar
chart with the fifteen cities with more job offers in Portugal, a column chart with the fifteen
skills most requested in Porto, and the evolution of the number of job offers matching Java
in Porto over a period of about one month.

Figure 42.: ”Dashboard” page with multiple charts

In chapter 5, it was made an exposition of the achieved results. Two case studies emulating
real world scenarios were tested and the results were achieved presented to the reader with
the help of several illustrations depicting each test that was made.

60

6

C O N C L U S I O N

Thanks to InovaRia’s Genius Trainee Program, this master was developed in a professional
context, inside a company, focused on a real scenario. As said in the first chapter of this
document, the master work is composed of two main parts, a theoretical one, and a practical
one.
The starting point was the integration in the company, with the study of the company process
of work and an overview of the developed products. Then, it was important to define the real
problem addressed by this work and which goals where intended to be accomplished. These
goals were:

• to make a theoretical study and to understand some key concepts as:

– Oobian platform;

– Ontologies, Semantic Web and Linked Data;

– Data visualization tools and techniques;

• to formalize querying mechanisms to obtain data from the Oobian core engine (Knowl-
edge Server - Kserver).

• to specify a format for the resultant data set.

• to propose mechanisms and techniques to analyse the data about the ontologies present
on the Oobian knowledge management platform;

• to create a visual user interface to present the generated reports;

• to create a mechanism to embed those visualizations into external websites.

Once the problem and goals where defined, it was important to make a study about some
key concepts like semantic web, ontologies, linked data, visualization tools and techniques.
Understanding these concepts was fundamental to develop of the master project. After that,
the study focused on existent tools and platforms that offer similar features as those intended
to be developed. Studying these tools allowed to gain a perspective about the state of the

61

6.1. Future Work

art on this field, about what already exists and what is or is not possible to be done. After
this, a raw solution was proposed. It was defined the general architecture of the solution, the
query and output formats where specified, the final visualization types where chosen and the
restrictions of each type where defined.
This solution was reviewed and approved by the company supervisor and the specification
process began.
The requirement specification was aligned with the proposed solution and requirements them-
selves were defined always under the supervision and approval of the team. Chapters 2 and
3 reported and discussed these first working steps.
Once the specification phase was completed the development phase began. This was the
longest stage of the master work. As the core of the development was completed the testing
began, first in small scale, with small data sets followed by testing with bigger data sets until
the component was stable and optimized. Chapters 4 and 5 were dedicated to expose the
development details and the testing, showing the queries and their results in graphical mode.
It was a very interesting work. There has been a growth in the field of business analytics
during the last years, and the use of semantic web and linked data on the analysis process
gives a real edge to an analytics platform. Another interesting part of this work was the
chance to work on a professional environment. It was demanding, but rewarding at the same
time, as it was a way of learning a lot, in a real-world scenario.

6.1 future work

With the development of this master work, Maisis attained the general goal of adding visu-
alization and analytics features to Oobian. More than creating only a visual representation
of data, it was important to specify and develop solid basis for the future. The developed
solution accomplished this goal and with a query format defined and web services answering
to those queries and returning data in a standard format on the server side, it is possible to
evolve the client side and develop new features with low effort.
Some of the evolutions and features that can be developed in the future include:

• Drilling features: When presenting for example a bar chart about segmented data, users
could click on the bar to re-define the intervals of analysis, drilling up and down the
data. To do this, one possible approach is to reset the query according to the user
interaction, retrieve a new data table from server and re-draw the visualization.

• Property evolution tracking: With the development of analysis scheduling features, a
good improvement is the addition of a feature for setting a scheduler to run a query from
time to time in order to register and keep track of the evolution of a pre-determined
property over a pre-determined period of time.

62

6.1. Future Work

• Google Spreadsheets integration: As the visualizations are created using Google Visual-
ization API and are based on Json data tables with the correspondent structure, an
interesting evolution of the platform would be the integration with Google Spreadsheets,
allowing users to save data tables and charts in their personal cloud space.

63

B I B L I O G R A P H Y

[1] Rafa E Al-qutaish. Quality models in software engineering literature : An analytical and
comparative study. 6, 2010.

[2] D Allen. Getting things done: The art of stress-free productivity. Penguin Books, 2002.

[3] Ori Ben-Yitzhak, Nadav Golbandi, Nadav Har’El, Ronny Lempel, Andreas Neumann,
Shila Ofek-Koifman, Dafna Sheinwald, Eugene Shekita, Benjamin Sznajder, and Sivan
Yogev. Beyond basic faceted search. In Proceedings of the 2008 International Conference
on Web Search and Data Mining, WSDM ’08, pages 33–44, New York, NY, USA, 2008.
ACM.

[4] Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web, 2001.

[5] Christian Bizer, T Heath, and T Berners-Lee. Linked data-the story so far. International
Journal on Semantic …, 2009.

[6] Jacques Bughin, Michael Chui, and James Manyika. Clouds, big data, and smart assets:
Ten tech-enabled business trends to watch. McKinsey Quarterly, 2010:1, 2010.

[7] Mills Davis. Semantic Wave 2008 Report: Industry Roadmap to Web 3.0 & Multibillion
Dollar Market Opportunities. Executive Summary, page 29, February 2008.

[8] Patrick Hayes. RDF Semantics. W3C Recommendation, 10:1–45, 2004.

[9] Tom Heath and Christian Bizer. Linked Data: Evolving the Web into a Global Data
Space, 2011.

[10] IBM Research. Global Technology Outlook 2013. Technical report, IBM Corporation,
2013.

[11] Steve Lavalle, Eric Lesser, Rebecca Shockley, Michael Hopkins, and Krushwitz Nina. Big
Data , Analytics and the Path From Insights to Value Big Data , Analytics and the Path
From Insights to Value. MIT Sloan Management Review, 52:21–32, 2011.

[12] Phillip Lord. Components of an ontology, 2010.

[13] Natalya Noy and Deborah L. McGuinness. Ontology Development 101: A Guide to
Creating Your First Ontology. Technical report, Knowledge Systems Laboratory Stanford
University, 2001.

64

Bibliography

[14] M Skjaeveland. Sgvizler: A javascript wrapper for easy visualization of sparql result sets.
Extended Semantic Web Conference, pages 2–6, 2012.

[15] Steffen Staab and Rudi Studer. Handbook on Ontologies, volume 2. Springer, second
edition, 2009.

[16] Fernanda B. Viegas, Martin Wattenberg, Frank van Ham, Jesse Kriss, and Matt McKeon.
Manyeyes: A site for visualization at internet scale. IEEE Transactions on Visualization
and Computer Graphics, 13:1121–1128, 2007.

65

A
R E Q U I R E M E N T S P E C I F I C AT I O N

According to the FURPS+ methodology, in this appendix are presented, with bigger detail,
the requirements of this master work.
When necessary, for each functional requirement it is included a graphic mockup, in order to
help the total understanding of the intended final product. Some of the mockups represent a
set of requirements, once the Oobian interface allows to represent many information within
the same window. These mockups were presented to and validated by Maisis, and represent
an approach to the aspect of the final solution.
The requirement presentation along this appendix follows a template, created to help on the
comprehension of each requirement. The template is the following:

<Name of the requirement>

• Requirement Id: identification of the requirement;

• Dependencies: list of dependent requirements;

• Priority: priority of the requirement;

• Description: brief description of the requirement.

66

A.1. Functional Requirements

a.1 functional requirements

The main goal of the final product is to represent information present on the Oobian platform,
in a visual format. So, functional requirements are focused on the success of that presentation.

Html client integrated component

• Requirement Id: 1;

• Dependencies: –;

• Priority: Must;

• Description: One of the goals of this work was to develop and integrate a component
in the existent Oobian client. The Html5 client is one of the existant clients of the
Oobian platform, so the developed component should be integrated with the existent
interface. Figure 43 depicts the inclusion of an ”Analytics” button into the interface;

Figure 43.: Analytics button mockup

Class Level Analysis

• Requirement Id: 2;

• Dependencies: –;

• Priority: Must;

67

A.1. Functional Requirements

• Description: the component must allow users to perform an analysis of a class, and
create a visualization, for instances counts about instances of that class;

Instance Level Analysis

• Requirement Id: 3;

• Dependencies: –;

• Priority: Must;

• Description: As depicted by figure 44, when viewing the details of an instance, the
Oobian client presents details of the relations of that instance. The component must
allow users to create a visualization of those relations, for example, a pie or a column
chart;

Figure 44.: Instance relations example

68

A.1. Functional Requirements

Cluster Analysis

• Requirement Id: 4;

• Dependencies: –;

• Priority: Must;

• Description: When navigating in an instance, Oobian client groups instances related
to the current instance in clusters, as depicted by figure ?? so the component must allow
users to make an analysis of the instances in that cluster and create a visualization about
them.

Figure 45.: Related instance cluster example

Data properties picker

• Requirement Id: 5;

• Dependencies: 1;

• Priority: Must;

• Description: In order to allow users to select which property to analyse, the component
must have a picker that shows the data properties of the class or cluster.

69

A.1. Functional Requirements

Multiple visualization types support

• Requirement Id: 6;

• Dependencies: 2, 3, 4;

• Priority: Must;

• Description: The component must allow users to create different types of visualiza-
tions. The system must support the following types:

– Column & Bar charts;

– Line & Area charts;

– Pie & Donut charts;

– Data table;

Oobian is a platform prepared to deal with a large variety of information and knowledge,
from data about company incomes to locations of historical places. To represent such variety
of information it is important that the platform supports several types of chart.

A simple data table is the starting point of representing any set of data, as illustrated by
figure 46.

Figure 46.: Simple Data Table

To represent statistical data between properties, bar and column charts are always a good
option, figures 47 48 are examples of those types of chart.

Figure 47.: Bar Chart Figure 48.: Column Chart

70

A.1. Functional Requirements

Line and Area charts are both good to represent series of data related to time. The ideal
usage for them is to represent trends or evolutions. Figures 49 and 50 are examples of these
types.

Figure 49.: Line Chart Figure 50.: Area Chart

To represent the numerical proportions the ideal type of visualization is a Pie, or Donut
Chart, as illustrated by figure 51 and 52.

Figure 51.: Pie Chart Figure 52.: Donut chart

71

A.1. Functional Requirements

Visualization Constrains

• Requirement Id: 7;

• Dependencies: 6;

• Priority: Must;

• Description: According to the selected property data type and chart type, the system
must have mechanisms to validate the creation of that chart.

Each one of the previously presented types of visualization has specific characteristics. In
order to be able to be represented, the data must follow a set of restrictions, according to
the selected chart type, restrictions like the number of columns of the data table or the data
type. These restrictions are presented in Table 4.

Chart Type Result table
format X-Axis Y-Axis Optional

Bar chart 2 - N columns label
data type: any

value
data type: num-
ber

–

Column chart 2 - N columns label
data type: any

value
data type: num-
ber

–

Pie chart 2 columns slice label
data type: any

slice value
data type: num-
ber

–

Line chart 2 - N columns label
data type: any

value
data type: num-
ber

–

Area chart 2 - N columns label
data type: any

value
data type: num-
ber

–

Table 4.: Chart Restrictions

72

A.1. Functional Requirements

Native Query Support

• Requirement Id: 8;

• Dependencies: –;

• Priority: Must;

• Description: Other of the main goals of this project was to formally define a querying
mechanism. On chapter 3 is present the proposed solution, query language described by
the grammar depicted by figure 53. So, according to the selected property and context
of navigation, the component must create a valid sentence, containing the query. Below
is an example of a valid sentence:
{

select:{operator:"null",properties:[":city"]},
from:{

instanceId:":Person_W -A0CgjJyz",
contextId:":Education",namespace:"http://www.owl-ontologies.com/CV.owl#"

},
where:{

":countryCodeSource" : ["GB"], ":city" : ["London"]
},
limit:1,
offset:1,
locale:"pt"

}

73

A.1. Functional Requirements

Figure 53.: Proposed grammar

Google Visualization json table output

• Requirement Id: 9;

• Dependencies: –;

• Priority: Must;

• Description: Once choosen library for creating visualizations was Google Charts Api,
the system must encode a json string according to the format accepted by the API.
Below is an example of a json in that format.

{
"cols": [

{"id": "col_1", "label": "year", "type": "string"},
{"id": "col_2", "label": "sales", "type": "number"},
{"id": "col_3", "label": "expenses", "type": "number"}
],

"rows": [
{"c":[{"v":"2001"},{"v":"3"},{"v":"5"}]},
{"c":[{"v":"2002"},{"v":"5"},{"v":"10"}]},
{"c":[{"v":"2004"},{"v":"8"},{"v":"32"}]},
{"c":[{"v":"2005"},{"v":"3"},{"v":"56"}]}
]

}

74

A.1. Functional Requirements

Embed HTML component

• Requirement Id: 10;

• Dependencies: 9;

• Priority: Must;

• Description: The system must be able to generate an HTML snippet to allow users
to include the created chart into an external website. Figure 54 is a mockup of an ebed
popup where the generated html snipped is presented allowing users to copy it.

Figure 54.: Embed Html popup mockup

75

A.1. Functional Requirements

Self updating HTML component

• Requirement Id: 11;

• Dependencies: –;

• Priority: Must;

• Description: As said in the previous requirement, the system must be able to create
an HTML component to allow users to embed a chart into a website.
Once this component is created it must be ”alive” and reflect any changes that occur
on the server, always providing an updated analysis.

Interval Result Segmentation

• Requirement Id: 12;

• Dependencies: 9;

• Priority: Must;

• Description: Depending on the data present on the platform, it is possible to have
classes or clusters with data properties with numeric data types, as ”xsd:int” or ”xsd:float”.
Its also possible to have data properties with ”xsd:date” or ”xsd:datetime”. For these
numeric/date typed properties, the system must be able to segment the results in a num-
ber of intervals specified by the user. By doing this, it will allow to create visualizations
that show an evolution, from a minimum to a maximum value.

Query Filter Support

• Requirement Id: 13;

• Dependencies: 8;

• Priority: Should;

• Description: In order to filter the number of results, the system should take in account
the filters applied on the client, build a query with those filters an return a set of filtered
results.

Query Limits Support

• Requirement Id: 14;

• Dependencies: 8;

• Priority: Should;

76

A.1. Functional Requirements

• Description: The component should be able to allow users to limit the number of
results to obtain from the server. So, the query mechanism should be compatible with
limits.

Query Offset Support

• Requirement Id: 15;

• Dependencies: 8;

• Priority: Nice;

• Description: It would be nice if the system allow users to set a number of items to
skip before returning the results.

Query Operations Support

• Requirement Id: 16;

• Dependencies: 8;

• Priority: Nice;

• Description: It would be nice for the component to offer the possibility of including
operations on the querying process. The querying mechanism should be compatible
with operators as Count, Sum, between others.

Data table export as CSV

• Requirement Id: 17;

• Dependencies: 9;

• Priority: Nice;

• Description: All of the created visualizations are based on the data table output
presented previously. It would be nice if the system allows users to export that data in
the CSV format.

77

A.2. Non-Functional Requirements

a.2 non-functional requirements

In this section the non-functional requirements of the software component developed in the
master work are presented. Non-functional requirements reflect qualities of the system and
according to the FURPS methodology, act as constraints both for the system and for the
development.

a.2.1 Usability

The pair Effectiveness/Efficiency is always an important pair of usability requirements for
the satisfaction of the user. On the subject of user interface, this module is intended to be
included on the Oobian Html client interface, so it has to be simple and user friendly, in line
with the rest of the client.
Effectiveness

• Requirement Id: 18;

• Priority: Must;

• Description: The system must be able to answer the needs of the various users. Ulti-
mately it must allow users to create charts about data present on the platform.

Efficiency

• Requirement Id: 19;

• Priority: Must;

• Description: In order for a system to be efficient, it has to provide results in a way
that requires a low amount of effort and time from the user.
On the Knowledge Analytics module, this way is the quick ”Analytics” button that will
be present on the interface.

a.2.2 Design

Oobian Platform

• Requirement Id: 20;

• Priority: Must;

• Description: Oobian platform is the ecosystem where the information that the Knowl-
edge Analytics module consumes is located, so the module must be designed in confor-
mity whit it.

78

A.2. Non-Functional Requirements

a.2.3 Interface

Oobian Client

• Requirement Id: 21;

• Priority: Must;

• Description: Knowledge Analytics is not a standalone component, it is always part
of Oobian Html client, so, users must have an Oobian Client in order to use the final
Knowledge Analytics module.

a.2.4 Physical

Hardware Requirements

• Requirement Id: 22;

• Priority: Must;

• Description: The minimum hardware requirements to support an Oobian client are
the following:

– Mac OS 9.0 or higher, Windows 2008 or higher;

– Microsoft Silverlight (for the Silverlight Insight client);

– Intel Dual Core 1.7 or higher;

– 2GB of ram memory;

– 200 Megabytes of free HDD space;

– Monitor;

– Mouse and Keyboard;

79

	Contents
	Acronyms
	List of figures
	List of tables
	1 Introduction
	1.1 Context and Problem
	1.2 Semantic Web, Ontology & Linked Data
	1.3 Data Analytics & Visualization
	1.4 Motivation
	1.5 Goals
	1.6 Contribution
	1.7 Methodology
	1.7.1 Development Methodology

	1.8 Work Plan
	1.9 Document Structure

	2 Knowledge Management and Visualization
	2.1 Oobian platform
	2.1.1 Oobian architecture
	2.1.2 Oobian features

	2.2 Data Analysis and Visualization tools
	2.2.1 Sgvizler
	2.2.2 Google Charts
	2.2.3 IBM Many Eyes
	2.2.4 Microsof Silverlight PivotViewer

	3 Proposed Solution
	3.1 Requirement Specification
	3.1.1 Analysis Methodology
	3.1.2 Stakeholders
	3.1.3 Actors
	3.1.4 Requirements

	3.2 Proposed Architecture
	3.3 Query Format
	3.4 Output Format
	3.4.1 CSV Table

	3.5 Embed component

	4 Development
	4.1 Client side
	4.1.1 Component Integration and Configuration

	4.2 Server side
	4.3 Visualization Embedding

	5 Achieved Results
	5.1 560.PT - Portugal Business Network
	5.2 Joobian

	6 Conclusion
	6.1 Future Work

	A Requirement Specification
	A.1 Functional Requirements
	A.2 Non-Functional Requirements
	A.2.1 Usability
	A.2.2 Design
	A.2.3 Interface
	A.2.4 Physical

