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This paper is concerned with the structure of semigroups of implicit operations on

various subpseudovarieties V of DReG ∩ LDG, where DReG and DG are the pseudova-

rieties of all semigroups S in which each regular D-class is, respectively, a rectangular

group and a group, and where LDG is the pseudovariety of semigroups locally in DG.

As an application, we give a characterization of the variety of languages recognized by

semigroups in V and derive some join decompositions of pseudovarieties.

1 Introduction

The theory of free profinite semigroups, which received its major impetus with the pu-
blication of Reiterman’s paper [17] in the early eighties, has proven to be an important
tool in the study of pseudovarieties of semigroups and on the varieties of recognizable
languages associated with them (via Eilenberg’s Theorem on varieties [13]). The im-
portance of Reiterman’s theorem was immediately understood by Almeida [1, 2, etc]
and Azevedo [10] who developed the theory. More recently, this approach has also
received the attention of authors like Selmi, Trotter, Volkov, Weil, Zeitoun and oth-
ers [7, 18, 22, 23, 25].

For a pseudovariety V, denote by LV the pseudovariety of all finite semigroups S
such that eSe ∈ V for each idempotent e of S, and by DV the pseudovariety of all finite
semigroups S in which each regular D-class is a subsemigroup of S which lies in V.
Particularly important in this work are the pseudovarieties DReH, DRH and DLH,
where, for a pseudovariety H of groups, ReH, RH and LH denote, respectively, the
pseudovarieties of rectangular groups, of right groups and of left groups, all of whose
subgroups lie in H. We recall that DReG is usually denoted by DO.

This paper is devoted to the study of implicit operations on some subpseudovarieties
of DS, where S is the pseudovariety of all finite semigroups, and consists of part of the
author’s doctoral dissertation [11]. The subpseudovarieties V of DS have a particularly
important property (proved by Azevedo [9, 10] extending a similar result of Almeida [2]
on J, the pseudovariety of J -trivial semigroups), which is the fact that the implicit
operations on V can be factored as finite products of words and regular elements. For
some such pseudovarieties V, a certain form of such a factorization is known to be
canonical for V. This is the case, for instance, of J (Almeida [2]), J ∩ LSl (Selmi [18])
DH ∩ ECom, DRH (Almeida and Weil [6, 8]) and R ∩ LSl (Costa [12]), where Sl,
ECom and R are, respectively, the pseudovarieties of semilattices (i.e. idempotent and
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commutative semigroups), of semigroups in which the idempotents commute and of R-
trivial semigroups. However, the general problem of describing canonical factorizations
for all subpseudovarieties of DS (or even for DS itself) is very far from being achieved.

A crucial result in this paper is the characterization of the regular implicit opera-
tions on pseudovarieties V in the interval [Sl ∨ LI,DReG ∩ LDG], where I is the trivial
pseudovariety. We prove in Corollary 3.2 that they are characterized by their restrictions
to Sl,LI and V ∩G. We also show that DReG ∩ LDG is the greatest subpseudovari-
ety of DReG with this property. Note that V is such that V ∩B = NB, where B and
NB are, respectively, the pseudovarieties of bands and of normal bands. Trotter and
Weil [22] proved that the greatest subpseudovariety of DA, the pseudovariety of semi-
groups in which all regular elements are idempotents, having intersection NB with B is
DA ∩ LJ(= DA ∩ LDG). Using their results, one can show that DReG ∩ LDG is the
greatest subpseudovariety of DReG whose intersection with B is NB. So Corollary 3.2
is somehow related with the result of Trotter and Weil.

This paper is a contribution to the study of the pseudovarieties in the interval
[Sl,DReG ∩ LDG], i.e., the subpseudovarieties of DReG whose intersection with B is
in the interval [Sl,NB]. More precisely, we study the structure of the semigroups of im-
plicit operations on the pseudovarietiesDA ∩ LJ,R ∩ LJ,V ∩W andV ∩W ∩ ECom,
with V ∈ {DReH,DRH,DH} and W ∈ {LECom,LZE,L(Sl ∨G), Com ∗D}, where
∗ denotes the operation of semidirect product of pseudovarieties of semigroups andCom,
D and ZE are, respectively, the pseudovarieties of commutative semigroups, of semi-
groups S in which eS = S for each idempotent e ∈ S and of semigroups in which
idempotents are central (i.e., commute with every element). The techniques that we use
are in close connection with the ones used by Almeida and Weil [6] in the study of the
pseudovarieties of the form DH ∩ ECom.

As a consequence of this work, we are able to give combinatorial descriptions of
the classes of languages recognized by each of these pseudovarieties U. More precisely,
for each finite alphabet A, we describe a set of generators for the Boolean algebra of
the languages of A+ that are recognized by semigroups in U. Excepting the cases U =
DA ∩ LJ and U = R ∩ LJ, the generators are very simple languages. Depending on the
pseudovariety U considered, they are of the form u0A

∗
1 · · ·A∗

l−1ul−1LlulA
∗
l+1 · · ·A∗

nun or

of the form u0A
+
1 · · ·A+

l−1ul−1LlulA
+
l+1 · · ·A

+
n un, where n ≥ 0, the ui are words over A,

Ll is a group language over Al (if U is aperiodic, then Ll = A∗
l or Ll = A+

l , respectively),
the Ai are non-empty subsets of A, and where the ui and the Ai satisfy some conditions
depending on the pseudovariety involved. Note that several varieties of languages have
been described as Boolean combinations of languages of one of the above forms (e.g.
piecewise testable languages (Simon [19]), R-trivial languages (Eilenberg [13]), level 2
languages in the Straubing hierarchy (Pin and Straubing [16]), etc).

The previous results also permit us to compute some joins of pseudovarieties. Recall
that the join V∨W is the least pseudovariety containing both the pseudovarieties V and
W. Among several equalities we prove that,—in the case W = Com ∗D for instance,—
if H is a pseudovariety of abelian groups, then

DReH ∩ (Com ∗D) = (DA ∩ (Com ∗D)) ∨H
= (DRH ∨ DLH) ∩ (Com ∗D)
̸= (DRH ∩ (Com ∗D)) ∨ (DLH ∩ (Com ∗D)).

This paper is organized as follows. In section 2 we briefly recall some definitions
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and properties that we shall need in the sequel. Sections 3 to 8 are dedicated to the
description of the structure of the semigroups of implicit operations on the various
pseudovarieties mentioned above. Finally, section 9 is devoted to the characterization
of the corresponding varieties of languages.

2 Preliminaries

We assume the reader is familiar with the basic notions of finite semigroup theory
and its relationships with the theory of rational languages and finite automata. For
a comprehensive treatment of the theory and for undefined notions and notation, the
reader is referred to the books of Almeida [3], Eilenberg [13] and Pin [15], and to the
survey [7].

2.1 Generalities

By an alphabet, we mean a finite non-empty set A. We denote by AN (resp. A−N) the
set of all words over A that are “infinite to the right” (resp. “infinite to the left”), that
is, the set of sequences of letters of A indexed by N (resp. −N). We denote by u+∞ (resp.
u−∞) the infinite word to the right (resp. left) obtained by repeating infinitely often the
word u ∈ A+.

The set of all letters appearing in a word u (finite or infinite) is denoted by c(u) and
is called the content of u. A word u ∈ A∗ is a prefix (resp. suffix, factor) of a word x
(finite or infinite) if there exist words y and z such that x = uy (resp. x = yu, x = yuz).
For each integer k we denote by pk(x) (resp. sk(x)) the prefix (resp. suffix) of x of length
k, if it exists.

It is well known that every finite semigroup S admits an integer k such that sk is
idempotent for every element s ∈ S. Such an integer will be called an exponent of S.
Notice that if k is an exponent of a finite semigroup S, then every multiple of k is also
an exponent of S.

Let V be a pseudovariety and let A be an alphabet. We denote by F̂A(V) the free
pro-V semigroup over A. The semigroup F̂A(V) can be viewed as the completion of a
certain uniform structure on the free semigroup A+ or as the semigroup of A-ary implicit
operations on V. For this reason, the elements of F̂A(V) are usually called (A-ary)
implicit operations (on V). It is well known that, for instance, F̂A(Sl) is the semigroup
2A of non-empty subsets of A under union. The following important properties of F̂A(V),
will be used freely in this paper.

• There exists a natural injective mapping ι : A → F̂A(V) such that ι(A) generates
a dense subsemigroup of F̂A(V).

• Any mapping from A into a semigroup S of V can be uniquely extended to a
continuous morphism from F̂A(V) into S.

In particular, if W is a subpseudovariety of V, the identity of A induces a continuous
onto homomorphism π : F̂A(V) → F̂A(W), called the canonical projection of F̂A(V)
onto F̂A(W). The image π(x) of an element x ∈ F̂A(V) is called the restriction of x
to W. In particular, when V is a pseudovariety containing Sl, the canonical projection
c : F̂A(V) → F̂A(Sl) = 2A is called the content homomorphism on V. As one can easily
show, c extends to the elements of F̂A(V) the notion of content for words of A+.
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For each x ∈ F̂A(V), the sequence (xn!)n converges in F̂A(V). Its limit, denoted by
xω, is the only idempotent in the topological closure of the subsemigroup generated by
x.

Let V be a pseudovariety and let A be an alphabet. A V-pseudoidentity on A
is a pair (x, y) of elements of F̂A(V), and is usually denoted x = y. We say that a
semigroup S ∈ V satisfies x = y, written S |= x = y, if, for any continuous morphism
µ : F̂A(V) → S, we have µ(x) = µ(y). We say that a subclass C of V satisfies a set
Σ of V-pseudoidentities, written C |= Σ, if each element of C satisfies each element of
Σ. The class of all finite semigroups which satisfy Σ is said to be defined by Σ and is
denoted [[Σ]]V. By a pseudoidentity we will mean an S-pseudoidentity, and we will also
set [[Σ]] = [[Σ]]S.

For instance, adopting the convention of replacing in a pseudoidentity expressions of
the form xω, yω and zω by symbols e, f and g if, respectively, x, y and z do not appear
elsewhere in the pseudoidentity, we have the following equalities:

A = [[xω+1 = xω]], B = [[x2 = x]]

Com = [[xy = yx]], Com ∗D = [[exfyezf = ezfyexf ]]

D = [[xe = e]], ECom = [[ef = fe]]

J = [[(xy)ω = (yx)ω]]A, K = [[ex = e]]

L = [[y(xy)ω = (xy)ω]], LG = [[ex = x]]

LNB = [[xyz = xzy]]B, NB = [[xyzx = xzyx]]B

R = [[(xy)ωx = (xy)ω]], ReG = [[x = xω+1, efe = e]]

RG = [[xe = x]], RNB = [[xyz = yxz]]B

Sl = [[xy = yx]]B, ZE = [[ey = ye]].

As far as the D operator is concerned, the following equalities are well known.

DA = [[(xy)ω(yx)ω(xy)ω = (xy)ω]]A, DG = [[(xy)ω = (yx)ω]]

DLG = [[(xy)ω(yx)ω = (yx)ω]], DReG = [[(xy)ω(yx)ω(xy)ω = (xy)ω]]

DRG = [[(xy)ω(yx)ω = (xy)ω]].

Let Σ be a set of pseudoidentities defining a pseudovariety V. Then LV is defined by
the set of all pseudoidentities which are obtained from Σ by substituting each variable
x by yωxyω where y is a variable that does not occur in Σ. For instance, we have that

LDG = [[(exeye)ω = (eyexe)ω]], LECom = [[(exe)ω(eye)ω = (eye)ω(exe)ω]]

LI = [[exe = e]], LSl = [[exexe = exe, exeye = eyexe]]

LZE = [[(exe)ωeye = eye(exe)ω]].

The following fundamental theorem is due to Reiterman [17].

Theorem 2.1 Let V be a pseudovariety of semigroups and let W be a subclass of V.
Then W is a pseudovariety if and only if there exists a set Σ of V-pseudoidentities such
that W = [[Σ]]V. 2
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2.2 Languages recognized by a pseudovariety V

Let A be an alphabet and letV be a pseudovariety. A subset L of A+ is called a language.
It is said to be recognizable (resp. V-recognizable) if there exists a finite semigroup S
(resp. in V) and a morphism µ : A+ → S such that L = µ−1(µ(L)). In that case, we
say that S recognizes L. The syntactic congruence of a language L is the congruence ∼L

over A+ given by

u ∼L v if and only if xuy ∈ L ⇔ xvy ∈ L for all x, y ∈ A∗.

The syntactic semigroup of L, denoted by S(L), is the quotient of A+ by ∼L. We
know that L is recognizable (resp. V-recognizable) if and only if S(L) is finite (resp.
S(L) ∈ V). Furthermore, a semigroup S recognizes a language L if and only if S(L)
divides S (that is, if S(L) is a homomorphic image of a subsemigroup of S). For more
details on recognizable languages, the reader is referred to [15, 13].

A class of (recognizable) languages is a correspondence C associating with each al-
phabet A a set A+C of (recognizable) languages of A+. A variety of languages is a class
V of recognizable languages such that

(1) for every alphabet A, A+V is closed under finite union, finite intersection and
complement;

(2) for every morphism φ : A+ → B+, L ∈ B+V implies φ−1(L) ∈ A+V;

(3) if L ∈ A+V and a ∈ A, then a−1L = {u ∈ A+ | au ∈ L} and La−1 = {u ∈ A+ |
ua ∈ L} are in A+V.

Let V be a pseudovariety and let V be the class of recognizable languages which
associates with each alphabet A the set A+V of V-recognizable languages of A+. One
can show that V is a variety of languages. Moreover, Eilenberg [13] proved the following
fundamental result.

Theorem 2.2 The correspondence V 7→ V defines a bijective correspondence between
pseudovarieties of semigroups and varieties of languages. 2

We say that a family X of subsets of F̂A(V) separates the points of F̂A(V) if, for
each pair of distinct elements x and y in F̂A(V), there exists an element X of X such
that either x ∈ X and y ̸∈ X, or x ̸∈ X and y ∈ X. The next result, due to Almeida
[3, 7], will be very useful.

Proposition 2.3 Let A be an alphabet, let V be a pseudovariety satisfying no non-
trivial identity, and let V be the corresponding variety of languages. Let L be a subset
of A+V and let L be the set of the topological closures in F̂A(V) of the elements of L.

The Boolean algebra A+V is generated by L if and only if the points of F̂A(V) are
separated by L. 2

2.3 Subpseudovarieties of DS

In this paper we will be particularly interested in some subpseudovarieties of DS.
Almeida and Azevedo [5] gave a number of factorization and regularity results for the
implicit operations on subpseudovarieties of DS, which will prove fundamental in this
paper. Some of these results are summarized in the following propositions.
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Proposition 2.4 Let V be a subpseudovariety of DS containing Sl and let x, y ∈
F̂A(V).

(1) x can be written as a product of the form x = u0x1u1 · · ·xnun where the ui are
words and the xi are regular implicit operations on V.

(2) If x and y are regular, then xJ y if and only if c(x) = c(y).

(3) If w ∈ F̂A(V), c(w) ⊆ c(y), x = wy (resp. x = yw) and y is regular, then x is
regular and xL y (resp. xR y). 2

Proposition 2.5 Let V be a subpseudovariety of DReG. Two regular elements x and
y of F̂A(V) are equal if and only if xω = yω and V ∩G satisfies x = y. 2

We will need also the following result (see [3, Corollary 5.6.2]).

Proposition 2.6 Let V be a pseudovariety of semigroups and let x ∈ F̂A(V) \ A+.
Then x = yzωw for some y, z, w ∈ F̂A(V). 2

We now consider the pseudovariety of nilpotent semigroups N = K ∩D. It is well
known that N satisfies no non-trivial identity. This means that the natural morphism
ι : A+ → F̂A(N) is injective for each alphabet A. In particular, we may identify the
free semigroup A+ with a subsemigroup of F̂A(N). Since N is contained in K, D and
LI, the same is true for each of these pseudovarieties. Furthermore, it is known (see
[3]) that: F̂A(N) is obtained from A+ by adding a zero 0; F̂A(K) = A+ ∪ AN and the
product in F̂A(K) is extended from the product in A+ by letting ww′ = w if w ∈ AN

(dually F̂A(D) = A+ ∪A−N and the product in F̂A(D) is extended from the product in
A+ by letting w′w = w if w ∈ A−N); F̂A(LI) = A+ ∪ (AN × A−N) where AN × A−N is
a rectangular band and if u ∈ A+ and (v, w) ∈ AN × A−N, then u(v, w) = (uv,w) and
(v, w)u = (v, wu).

Note that if x = (v, w) is an element of F̂A(LI)\A+, then v (resp. w) is the restriction
of x to K (resp. D). In particular, LI satisfies a pseudoidentity x = y if and only if K
and D satisfy x = y. This is another way of stating the well known equality LI = K∨D.

3 Regular elements of F̂A(DReG ∩ LDG)

In this section, we give a characterization of the regular elements of the semigroups
F̂A(V) of implicit operations on subpseudovarieties V of DReG ∩ LDG and derive
some important properties of them.

Proposition 3.1 Let V be a subpseudovariety of DReG ∩ LDG containing Sl and K
(resp. D). Two regular elements x and y of F̂A(V) are R-(resp. L-)equivalent if and
only if they have the same content and the same restriction to K (resp. D).

Proof. Suppose first that xR y. In particular, xJ y and so by Proposition 2.4, c(x) =
c(y). Moreover, x = yz for some z ∈ F̂A(V). Since y (and x) is not in A+, this clearly
implies that the restrictions of x and y to K are equal.

Suppose now that c(x) = c(y) and that K satisfies x = y. We claim that the second
condition implies that x = uz and y = uw for some u, z, w ∈ F̂A(V) such that u ̸∈ A+.
Indeed, if (xn)n and (yn)n are sequences of A+ converging, respectively, to x and y in
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F̂A(V), then we can choose subsequences (x′n)n and (y′n)n of (xn)n and (yn)n, such that
x′n = unzn and y′n = unwn for some un, zn, wn ∈ A+. We may choose un such that
|un| > n and, by compactness of F̂A(V), we may suppose that the sequences (un)n,
(zn)n and (wn)n are convergent in F̂A(V) proving the claim. Moreover, Proposition 2.6
says that u = u1u

ω
2u3 for some u1, u2, u3 ∈ F̂A(V).

Now since c(x) = c(y), we deduce from Proposition 2.4 that x, y, xy and yx are
J -equivalent regular elements, and that xyRx. In particular, xy is a group element
because V ⊆ DS and so xy = (xy)ω+1. Furthermore, we deduce successively

xy = (xy)ω+1

= (u1u
ω
2u3zu1u

ω
2u3w)

ω+1

= u1(u
ω
2u3zu1u

ω
2u3wu1u

ω
2 )

ωu3zu1u
ω
2u3w

= u1(u
ω
2u3wu1u

ω
2u3zu1u

ω
2 )

ωu3zu1u
ω
2u3w since V ⊆ LDG

= (u1u
ω
2u3wu1u

ω
2u3z)

ωu1u
ω
2u3zu1u

ω
2u3w

= (yx)ωxy.

This means that xyR y and, consequently, that xR y. 2

Corollary 3.2 Let V be a subpseudovariety of LDG and DReG containing Sl and LI.
Two regular elements of F̂A(V) are equal if and only if they have the same content and
the same restriction to LI and to V ∩G.

Furthermore, DReG ∩ LDG is the greatest subpseudovariety of DReG with this
property.

Proof. We only need to prove the sufficient condition. Since c(x) = c(y) and LI satisfies
x = y, we have xH y from Proposition 3.1. So as the H-class of x is a group (say because
x is regular and V is a subpseudovariety of DS) we deduce xω = yω. Now the equality
x = y follows from Proposition 2.5.

Now suppose that W is a subpseudovariety of DReG not contained in LDG. Then
there are two distinct idempotents of F̂A(W) of the form xωyxω and xωzxω, respectively,
in the same J -class. These elements have clearly the same restriction to LI and W ∩G.
Moreover, since they are J -equivalent, they have the same content by Proposition 2.5.
2

Let V be a pseudovariety in the interval [Sl ∨ LI,DReG ∩ LDG] and let x be a
regular element of F̂A(V). The previous result shows that x is characterized by its
content, say B ⊆ A, and by its restrictions to LI and to V ∩G, say (w,w′) ∈ BN×B−N

and g ∈ F̂A(V ∩G), respectively. So we will denote x by

[w,B, g, w′].

In particular, when x is idempotent it will be denoted by [w,B, 1, w′]. Furthermore, if V
is an aperiodic pseudovariety (i.e., it is such that V ∩G = I), then V is a subpseudova-
riety of DA ∩ LDG. In particular, every regular element of F̂A(V) is idempotent and
it is characterized by its restrictions to Sl and LI. In this case we simplify the notation
and denote it simply by

(w,B,w′).

Remark. We notice that one can show, as above, that for a pseudovariety V in the
interval [Sl∨K,DRG∩LDG] (resp. [Sl∨D,DLG∩LDG]), a regular element x ∈ F̂A(V)
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is characterized by its content, say B ⊆ A, and by its restrictions to K (resp. D) and to
V ∩G, say w ∈ BN (resp. w′ ∈ B−N) and g ∈ F̂A(V ∩G), respectively. Thus, x will be
denoted by [w,B, g] (resp. [B, g, w′]). When V is an aperiodic pseudovariety we denote
x simply by (w,B) (resp. (B,w′)).

Notice also that from the paper of Trotter and Weil [22] one can deduce that
DReG ∩ LDG (resp. DRG ∩ LDG, DLG ∩ LDG) is the greatest subpseudovariety
of DReG (resp. DRG, DLG) whose intersection with B is NB (resp. LNB, RNB).

In order to complete our notation for regular elements of semigroups F̂A(V), we will
now consider the case where V is a subpseudovariety of DG containing Sl. It is known
(say by Propositions 2.4 and 2.5) that, in this case, a regular element x of F̂A(V) is
characterized by its content B and by its restriction g to V ∩G. So we denote x by
[B, g]. If V is aperiodic (i.e., V ⊆ J), then every regular element x is idempotent and
it is characterized by its content B. So we denote x simply by (B).

Thus, we use the notation ( ) for idempotent elements of aperiodic pseudovarieties
and [ ] for the regular elements of the non-aperiodic pseudovarieties. The regular
elements of F̂A(DReG ∩ LDG) enjoy the following important properties.

Proposition 3.3 Let A be an alphabet, let B,C,D ⊆ A be such that B ∩ C ̸= ∅ and
D ⊆ B. Let also b ∈ B. Then, in F̂A(DReG ∩ LDG),

(1) [w,B, g, w′]b = [w,B, gb, w′b], b[w,B, g, w′] = [bw,B, bg, w′],

[w,B, g, w′][v,D, f, v′] = [w,B, gf, v′] and [v,D, f, v′][w,B, g, w′] = [v,B, fg, w′];

(2) if one of c(w′) and c(z) is contained in B ∩ C, then

[w,B, g, w′][z, C, h, z′] = [w,B, g, w′′][z′′, C, h, z′]

for every w′′ ∈ B−N and z′′ ∈ CN such that at least one of c(w′′) and c(z′′) is
contained in B ∩ C.

In particular, F̂A(DRG ∩ LDG) satisfies

(1′) [w,B, g]b = [w,B, gb], b[w,B, g] = [bw,B, bg], [w,B, g][v,D, f ] = [w,B, gf ]

and [v,D, f ][w,B, g] = [v,B, fg];

(2′) [w,B, g][z, C, h] = [w,B, g][z′′, C, h] for every z, z′′ ∈ CN.

Proof. (1) Is an immediate consequence of Proposition 2.4 (3) and of Corollary 3.2.
(2) Suppose, for instance, that c(w′) ⊆ B ∩ C and let w′′ ∈ B−N and z′′ ∈ CN be

such that c(w′′) ⊆ B ∩ C or c(z′′) ⊆ B ∩ C. If c(z′′) ⊆ B ∩ C, we deduce from (1) that
[w,B, g, w′] = [w,B, g, w′][w,B, 1, w′′][z′′, B ∩ C, 1, w′]. So

[w,B, g, w′][z, C, h, z′] = ([w,B, g, w′][w,B, 1, w′′])([z′′, B ∩ C, 1, w′][z, C, h, z′])

= [w,B, g, w′′][z′′, C, h, z′] from (1).

Suppose now that c(z′′) ̸⊆ B ∩ C and let a ∈ B ∩ C. Then c(w′′) ⊆ B ∩ C and using
what we proved above, we deduce

[w,B, g, w′][z, C, h, z′] = [w,B, g, w′][a+∞, C, h, z′]

= [w,B, g, w′][a+∞, B ∩ C, 1, w′′][z′′, C, h, z′] from (1)

= [w,B, g, w′′][z′′, C, h, z′].
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For the proof of (1′) and (2′), it suffices to consider the canonical projection of
DReG ∩ LDG to DRG ∩ LDG and note that the restriction to DRG ∩ LDG of a
regular element [w,B, g, w′] of F̂A(DReG ∩ LDG) is the regular element [w,B, g]. 2

Note that if V is a subpseudovariety of DReG ∩ LDG containing Sl and LI, the
restriction to V of a regular element [w,B, g, w′] of F̂A(DReG ∩ LDG) is also denoted
by [w,B, g, w′]. Hence, the previous result is also valid in F̂A(V).

In the following sections, we will proceed to the description of the semigroups of
implicit operations on various subpseudovarieties of DReG ∩ LDG, namely the semi-
groups:

• F̂A(DA ∩ LDG) and F̂A(R ∩ LDG);

• F̂A(V ∩W) with V ∈ {DReH,DRH,DH} and W ∈ {LECom,LZE,L(Sl ∨G),
Com ∗D};

• F̂A(DH ∩W ∩ ECom) with W ∈ {LZE,L(Sl ∨G),Com ∗D}.

Note that the non-aperiodic cases F̂A(V ∩ LDG) with V ∈ {DReH,DRH,DH}
(and H a non-trivial pseudovariety of groups) are not included here, because we were not
able to solve them. To give an idea of the inclusion relations between the pseudovarieties
involved, we note the following inclusions:

• LSl ⊆ Com ∗D ⊆ LCom ⊆ LZE ⊆ LDG;

• LSl ⊆ L(Sl ∨G) ⊆ LZE;

• LZE ⊆ LECom, LECom ̸⊆ LDG but DReG ∩ LECom ⊆ DReG ∩ LDG.

4 Implicit operations on DA ∩ LJ
We begin our study with the description of the semigroups F̂A(DA ∩ LJ) and F̂A(R ∩ LJ).
We prove that every element of each of these semigroups, can be written in a unique
form as a product of words and idempotents. We note that, since J = DG ∩A, we have
immediately DA ∩ LDG = DA ∩ LJ and R ∩ LDG = R ∩ LJ. Note also that J is a
subpseudovariety of both DA ∩ LJ and R ∩ LJ.

Let us begin by considering the case DA ∩ LJ. Let x ∈ F̂A(DA ∩ LJ) and let an
order be fixed for the letters of the alphabet A. We say that a factorization of x of the
form

x = u0(w1, A1, w
′
1)u1 · · ·un−1(wn, An, w

′
n)un

is normal if

• ui ∈ A∗, u0 ̸= 1 if x = u0;

• for each 1 ≤ i ≤ n such that ui (resp. ui−1) is not the empty word, the first (resp.
last) letter of ui (resp. ui−1) does not lie in Ai.

• if ui (1 ≤ i ≤ n− 1) is the empty word, then

– Ai and Ai+1 are ⊆-incomparable;
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– the first letter of wi+1 does not lie in Ai;

– if c(w′
i) ⊆ Ai+1, then w′

i = u−∞ and wi+1 = v+∞ where u and v are the least
linear (i.e., such that each letter occurs exactly once) words in alphabetical
order of content, respectively, Ai ∩Ai+1 and Ai+1 such that the first letter of
v does not lie in Ai.

Proposition 4.1 Every element of F̂A(DA ∩ LJ) admits a normal factorization.

Proof. Let x ∈ F̂A(DA ∩ LJ). As a consequence of Proposition 2.4, x admits a
factorization of the form x = u0(w1, A1, w

′
1)u1 · · ·un−1(wn, An, w

′
n)un as a product of

words ui ∈ A∗ and idempotents (wi, Ai, w
′
i), such that for each 1 ≤ i ≤ n such that ui

(resp. ui−1) is not the empty word, the first (resp. last) letter of ui (resp. ui−1) does
not lie in Ai and, if ui (1 ≤ i ≤ n − 1) is the empty word, then Ai and Ai+1 are
⊆-incomparable.

Now suppose that 1 ≤ i ≤ n − 1 is such that ui = 1. Then either one of c(w′
i)

and c(wi+1) is contained in Ai ∩ Ai+1, or c(w′
i) and c(wi+1) are both not contained in

Ai ∩ Ai+1. In the first case, letting u and v be the least linear words in alphabetical
order of content, respectively, Ai ∩Ai+1 and Ai+1 such that the first letter of v does not
lie in Ai, we have from Proposition 3.3 that the factor (wi, Ai, w

′
i)(wi+1, Ai+1, w

′
i+1) is

equal to (wi, Ai, u
−∞)(v+∞, Ai+1, w

′
i+1). In the second case, wi+1 = zz′ for some words

z ∈ A∗
i+1 and z′ ∈ AN

i+1 such that c(z) ⊆ Ai (if z ̸= 1) and the first letter of z′ does not
lie in Ai. Furthermore, (wi, Ai, w

′
i)(wi+1, Ai+1, w

′
i+1) = (wi, Ai, w

′
iz)(z

′, Ai+1, w
′
i+1) by

Proposition 3.3. So, for each 1 ≤ i ≤ n− 1 such that ui = 1, substituting in the facto-
rization of x the factor (wi, Ai, w

′
i)(wi+1, Ai+1, w

′
i+1) by (wi, Ai, u

−∞)(v+∞, Ai+1, w
′
i+1) in

the first case and by (wi, Ai, w
′
iz)(z

′, Ai+1, w
′
i+1) in the second case, we obtain a normal

factorization of x. 2

We now describe some automata which we will use to construct test semigroups
(the syntactic semigroups of the languages recognized by these automata) to separate
distinct factorizations of elements of F̂A(DA ∩ LJ).

Let r, n ≥ 0 be two integers and let u0, . . . , un ∈ A∗ and ∅ ̸= A1, . . . , An ⊆ A be such
that, for all 1 ≤ i ≤ n− 1: if ui ̸= 1 then c(ui) is not contained in either Ai or Ai+1; if
ui = 1 then Ai and Ai+1 are ⊆-incomparable. Let A = A(r;u0, A1, u1, . . . , An, un) be
the following automaton

q0����
- q1����

-u0 A1

�
�

�
�q′1����

q2�����
�

�
�A2 q′2����

-X1 . . . qn−1�����
�

�
�An−1 q

′
n−1����

qn�����
An

-
Xn−1

qn+1����
--un

where, for each 1 ≤ i ≤ n− 1,

Xi =

{
ui if ui ̸= 1
Ai+1 \Ai if ui = 1

and the automaton Ai is either

qi�����
Ai

or qi�����
Ai

qi,0����
-

Ai\Ai+1
qi,1����

-
Ai ∩Ai+1

qi,2����
. . . qi,r����

-
Ai ∩Ai+1

�

Ai ∩Ai+1

when, respectively, ui ̸= 1 or ui = 1. Note that the state q′i is qi in the first case and is
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qi,r in the second one. Note also that Ai is an automaton on the alphabet Ai. In the
figure of automaton A, the initial, q0, and final, qn+1, states are pointed out by arrows.
We will follow this convention throughout the paper.

Lemma 4.2 Let L be the language recognized by the automaton A above. Then S(L)
lies in DA ∩ LJ. Moreover, if w ∈ A+, k > |u0 · · ·un| + 3n − 2 + lr (where l is the
number of indices 1 ≤ i ≤ n− 1 such that ui = 1) and wk is the label of a path T in A,
then there exists 1 ≤ i ≤ n such that w ∈ A+

i and T visits state qi (or state qi,r when it
exists) and does not visit either state qi−1, if i > 1, or state qi+1, if i < n.

In particular, if r = 0 and the first letter of uj (1 ≤ j ≤ n) does not lie in Aj, then
S(L) ∈ R. In this case, if w, k and T are as above, then T ends in state qi (or state
qi,0), with i as above.

Proof. Because of the choice of k, it is clear that the path T visits a state p having
a loop and stays in p for at least |w| steps. If p = qi,r for some 1 ≤ i ≤ n − 1, then
w ∈ (Ai ∩ Ai+1)

+ and so, in particular, w ∈ A+
i . Otherwise, p = qi for some 1 ≤ i ≤ n

and so w ∈ A+
i . In both cases T does not visit either state qi−1 (when i > 1) or state

qi+1 (when i < n) because in that case T would contain a transition labeled with a word
not in A+

i .

Let us now show that S(L) lies in DA ∩ LJ. For that, it suffices to show that, for
all x, y, z ∈ A+ and m large enough, (xy)m(yx)m(xy)m ∼L (xy)m, xm+1 ∼L xm and
(xmyxmzxm)m ∼L (xmzxmyxm)m. Without loss of generality, we may suppose that m
is an exponent of S(L) (so that, for all w ∈ A+, wm ∼L wmwm, that is, the syntactic
image of wm is an idempotent of S(L)).

Let x, y, z ∈ A+. To prove that (xy)m(yx)m(xy)m ∼L (xy)m it suffices to show the
following condition:

(xy)m(yx)m(xy)m is the label of a path P in A (say from a state p to a state
q) if and only if there is a path Q in A labeled (xy)m and co-terminal with
P (that is, from p to q).

So let us first suppose that P exists. Then from the above, xy ∈ A+
i for some 1 ≤ i ≤ n

and P visits state qi or state qi,r (when it exists) and does not visit either state qi−1 (if
i > 1) or state qi+1 (if i < n). Suppose that qi,r exists (i.e., that 1 ≤ i < n and ui = 1)
and that P visits the states of the form qi,j (0 ≤ j ≤ r) for at least |xy| steps. Then
xy ∈ (Ai ∩ Ai+1)

+ and so P is entirely between the states qi,0 and qi,r. Therefore, the
subpath of P labeled (yx)m(xy)m is entirely in qi,r and so the existence of Q is clear.
Now suppose that P visits the states of the form qi,j (0 ≤ j ≤ r) for at most |xy| − 1
steps so that P visits state qi. Therefore, since P does not visit state qi−1 (when i > 1)
and, as above, it can not visit the states of the form qi−1,j (0 ≤ j ≤ r), if they exist, for
more than |xy|− 1 steps, we deduce that at most max{|xy|, |ui−1|}− 1 of the steps of P
take place strictly between the states qi−1 and qi. Hence, the subpath of P labeled (yx)m

is entirely in qi. So the existence of Q is also clear in this case. (In fact, what is clear
is the existence of a path labeled (xy)m(xy)m co-terminal with P. But, since we are
considering m such that (xy)m ∼L (xy)m(xy)m, the existence of Q is guaranteed.) The
case when qi,r does not exist can be treated analogously. Similarly, one can show that
the existence of Q implies the existence of P, proving that (xy)m(yx)m(xy)m ∼L (xy)m.
That xm+1 ∼L xm can be proved analogously.
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Now suppose that P is a path in A labeled (xmyxmzxm)m so that c(x)∪c(y)∪c(z) ⊆
Ai for some 1 ≤ i ≤ n. Then either i < n, ui = 1 and P takes place entirely between the
states qi,0 and qi,r, and the existence of a path Q in A co-terminal with P and labeled
(xmzxmyxm)m is immediate, or at least |xmyxmzxm| steps of P take place in state qi
and at most |yxmzxm|(= |xmyxmz|) steps of P take place strictly between the states
qi and qi+1 (resp. between the states qi−1 and qi). In this case, let P1, P2 and P3 be
the subpaths of P labeled, respectively, xmyxmz, xm(xmyxmzxm)m−2xm and yxmzxm.
Hence, P2 is entirely in qi so that P1 ends in qi and P3 begins in qi. Moreover, the
subpath of P1 labeled yxmz begins in qi or in qi−1,r (when it exists). In both cases it
is clear that there is a path P ′

1 co-terminal with P1 and labeled xmzxmy. Analogously,
there is a path P ′

3 co-terminal with P3 and labeled zxmyxm. Since, trivially, there
is a path labeled xm(xmzxmyxm)m−2xm, entirely in qi, we deduce the existence of a
path Q (co-terminal with P and labeled (xmzxmyxm)m). By symmetry, we deduce that
(xmyxmzxm)m ∼L (xmzxmyxm)m.

Finally, suppose that r = 0 and that the first letter of uj (1 ≤ j ≤ n) does not lie in
Aj . As above, these conditions clearly imply that, for some 1 ≤ i ≤ n, w ∈ A+

i and T
ends in state qi or state qi,0 (in this case i < n). To prove that S(L) ∈ R, let us show
that (xy)mx ∼L (xy)m. For that, let P be a path in A labeled (xy)mx. This path ends
in some state qi or state qi,0. In the first case, the assertion that there is some path
Q in A labeled (xy)m and co-terminal with P is immediate. In the second case, either
xy ∈ (Ai ∩ Ai+1)

+, and so P is entirely in qi,0 (and the existence of such a path Q is
trivial), or there is at least a letter of xy in Ai \ Ai+1 and P stays in qi,0 for at most
|yx|−1 steps. In this case, the existence of the desired path Q is also ensured (this path
can pass from state qi to state qi,0 using, for instance, the last occurrence not in Ai+1

of a letter of the word (xy)m). The proof of the converse is similar and so we conclude
that (xy)mx ∼L (xy)m, proving that S(L) ∈ R. 2

Now we are able to prove the following characterization of the semigroups of implicit
operations on DA ∩ LJ.

Theorem 4.3 Let x, y ∈ F̂A(DA ∩ LJ) and let x = u0(w1, A1, w
′
1)u1 · · · (wn, An, w

′
n)un

and y = v0(z1, B1, z
′
1)v1 · · · (zm, Bm, z′m)vm be factorizations in normal form. Then

x = y if and only if n = m, ui = vi, wi = zi, Ai = Bi and w′
i = z′i for all i.

Proof. Let r ≥ 1 be an integer such that r > |vi| for every 1 ≤ i ≤ n and c(sr(w
′
i)) ̸⊆

Ai+1 for every 1 ≤ i ≤ n−1 such that ui = 1 and c(w′
i) ̸⊆ Ai+1. Consider the automaton

A = A(r;u0pr(w1), A1, u
′
1, . . . , u

′
n−1, An, sr(w

′
n)un) where, for each 1 ≤ i ≤ n − 1, u′i is

equal to:

• sr(w
′
i)uipr(wi+1) if ui ̸= 1, or ui = 1 and c(w′

i) ̸⊆ Ai+1;

• 1 if ui = 1 and c(w′
i) ⊆ Ai+1.

Note that by definition of normal factorization of x, for each 1 ≤ i ≤ n − 1, if u′i = 1
then Ai and Ai+1 are ⊆-incomparable and if u′i ̸= 1 then c(u′i) ̸⊆ Ai, Ai+1.

Let L be the language recognized by A and let µ : A+ → S be its syntactic homo-
morphism. By Lemma 4.2, S ∈ DA ∩ LJ. So let µ̂ : F̂A(DA ∩ LJ) → S be the unique
continuous homomorphic extension of µ, and let k > |u0 · · ·un|+3n− 2+ lr (where l is
the number of indices 1 ≤ i ≤ n− 1 such that u′i = 1) be an exponent of S (so that for
all w ∈ A+ the syntactic image of wk is an idempotent of S).
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For each 1 ≤ i ≤ n, let w̄i ∈ AN
i and w̄′

i ∈ A−N
i be such that wi = pr(wi)w̄i

and w′
i = w̄′

isr(w
′
i) so that (wi, Ai, w

′
i) = pr(wi)(w̄i, Ai, w̄

′
i)sr(w

′
i). Since (w̄i, Ai, w̄

′
i)

is idempotent, its image in S, µ̂(w̄i, Ai, w̄
′
i) is also idempotent. By density of A+ in

F̂A(DA ∩ LJ), there is a word xi such that c(xi) = Ai and µ̂(w̄i, Ai, w̄
′
i) = µ(xki ). Now

it is not very difficult to verify that

w = u0pr(w1)x
k
1sr(w

′
1)u1pr(w2)x

k
2 · · · sr(w′

n−1)un−1pr(wn)x
k
nsr(w

′
n)un

is a word recognized by A, whence w ∈ L. On the other hand, we have µ̂(x) = µ(w).

Consider now words z̄i ∈ BN
i (1 ≤ i ≤ m) and z̄′i ∈ B−N

i such that zi = pr(zi)z̄i and
z′i = z̄′isr(z

′
i) so that (zi, Bi, z

′
i) = pr(zi)(z̄i, Bi, z̄

′
i)sr(z

′
i). Consider also words yi such

that c(yi) = Bi and µ̂(z̄i, Bi, z̄
′
i) = µ(yki ). Let

w′ = v0pr(z1)y
k
1sr(z

′
1)v1pr(z2)y

k
2 · · · ykmsr(z

′
m)vm.

We have µ̂(y) = µ(w′) and, as x = y, µ̂(x) = µ̂(y). Therefore, µ(w) = µ(w′) whence
w′ ∈ L and so w′ is recognized by A.

Let P be a successful path in A (i.e., which goes from q0 to qn+1) labeled w′ and,
for each 1 ≤ i ≤ m, let Pi be the subpath of P labeled v0pr(z1)y

k
1sr(z

′
1)v1pr(z2)y

k
2 · · · yki .

From Lemma 4.2, we deduce that the path Pi visits state qji — for some 1 ≤ ji ≤ n such
that Bi ⊆ Aji — and does not visit state qji+1 (if ji < n). Furthermore, the subpath P ′

i

of Pi labeled pr(zi)y
k
i does not visit state qji−1 (if ji > 1).

In particular, the path P1 visits state q1 and so the word u0pr(w1) is a prefix of
v0pr(z1)y

k
1 . Now since r > |v0|, also the path P ′

1 visits state q1. Hence, j1 = 1 and
B1 ⊆ A1. By symmetry it follows that A1 = B1. Now since the last letter of u0 (if it
exists) does not lie in A1 = B1, we deduce that u0 is a prefix of v0. Again by symmetry
it follows that u0 = v0 and consequently that pr(w1) = pr(z1). Since this holds for r
arbitrarily large, we conclude that w1 = z1.

Now as the first letter of the word v1pr(z2) does not lie in B1 = A1 (note that, as
the factorization of y is normal, if v1 = 1 then the first letter of z2 does not belong to
B1) we have j2 > 1. Let us consider the two possible cases for u′1.

First case Suppose, first, that u′1 ̸= 1, i.e., that u1 ̸= 1, or u1 = 1 and c(w′
1) ̸⊆ A2.

Then automaton A begins like this

q0����
- q1�����

A1

-u0
q2����

-
sr(w

′
1)u1pr(w2) �

A2

Therefore, the word sr(w
′
1)u1pr(w2) is a factor of yk1sr(z

′
1)v1pr(z2)y

k
2 . Since the

first letters of u1pr(w2) and v1pr(z2), respectively, do not lie in A1 = B1, we deduce
that sr(w

′
1) = sr(z

′
1) and that u1pr(w2) is a prefix of v1pr(z2)y

k
2 . Now as above,

this implies that w′
1 = z′1, j2 = 2 and B2 ⊆ A2. Moreover, since the last letter of

u1 (if it exists) does not lie in A2, and so does not lie also in B2, we deduce that
u1 is a prefix of v1. If v1 ̸= 1 we can apply symmetry to deduce that u1 = v1. If
v1 = 1, we have trivially u1 = v1. Now this equality implies that pr(w2) is a prefix
of pr(z2)y

k
2 so that pr(w2) = pr(z2). Therefore, as above w2 = z2. Note that, in

this case, it remains to prove the inclusion A2 ⊆ B2.
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Second case Suppose now that u′1 = 1, i.e., that u1 = 1 and c(w′
1) ⊆ A2. In particular,

w′
1 = u−∞ and w2 = v+∞ where u and v are the least linear words in alphabetical

order of content, respectively, A1 ∩ A2 and A2 such that the first letter of v does
not lie in A1. We may also suppose that v1 = 1 since otherwise, we could apply
an argument as above to deduce that v1 would be a prefix of u1 and so u1 would
not be equal to the empty word. In this case, the beginning of the automaton A
is the following.

q0����
- q1����

-u0
�

A1

q1,0����
-

A1\A2
q1,1����

-A1 ∩A2 q1,2����
. . . q1,r����

-A1 ∩A2
�

A1 ∩A2

q2����
-

A2\A1 �

A2

Therefore, in path P2, the first letter of pr(z2) is read in the transition from state
q1,r to state q2, and sr(z

′
1) is read in the transitions between state q1,0 and state

q1,r. This means, in particular, that j2 = 2 so that B2 ⊆ A2. So in both cases
(u′1 = 1 and u′1 ̸= 1) we have B2 ⊆ A2. Hence, B2 ⊆ A2 and applying symmetry we
deduce that A2 = B2. In the case u′1 = 1 we are considering, we also deduce that
c(sr(z

′
1)) ⊆ A1 ∩ A2. Since r is arbitrarily large, this implies that c(z′1) ⊆ A2. So

since we are dealing with normal factorizations and v1 = 1, we have z′1 = u−∞ = w′
1

and z2 = v+∞ = w2.

Therefore, we have proved that w′
1 = z′1, u1 = v1, w2 = z2 and A2 = B2. Iterating the

above argument, we deduce that n = m, ui = vi, wi = zi, Ai = Bi and w′
i = z′i for all i.

2

This last proof shows, in particular, that the syntactic semigroups of the languages
recognized by the automataA(r;u0, A1, . . . , An, un), as above, suffice to separate distinct
implicit operations on DA ∩ LJ.

Corollary 4.4 The pseudovariety DA ∩ LJ is generated by the syntactic semigroups of
the languages recognized by the automata A(r;u0, A1, . . . , An, un) where r, n ≥ 0 and,
for some alphabet A, u0, . . . , un ∈ A∗ and ∅ ̸= A1, . . . , An ⊆ A are such that, for each
1 ≤ i ≤ n− 1: if ui ̸= 1 then c(ui) is not contained in either Ai or Ai+1; if ui = 1 then
Ai and Ai+1 are ⊆-incomparable. 2

Almeida and Azevedo [4] showed that R ∨ L = [[(xy)ωx(zx)ω = (xy)ω(zx)ω]]. If a, b
and c are distinct letters of an alphabet A, in F̂A(DA ∩ LJ) we have

(ab)ωa(ca)ω = ((ab)+∞, {a, b}, (ab)−∞)a((ca)+∞, {a, c}, (ca)−∞)

= ((ab)+∞, {a, b}, (ba)−∞)((ca)+∞, {a, c}, (ca)−∞)

and

(ab)ω(ca)ω = ((ab)+∞, {a, b}, (ab)−∞)((ca)+∞, {a, c}, (ca)−∞).

Hence, by Theorem 4.3, (ab)ωa(ca)ω ̸= (ab)ω(ca)ω and so DA ∩ LJ does not satisfy the
pseudoidentity (xy)ωx (zx)ω = (xy)ω(zx)ω. This proves that (R ∨ L) ∩ LJ ̸= DA ∩ LJ.

Let us now consider the case R ∩ LJ. Let x ∈ F̂A(R ∩ LJ). We say that a factori-
zation of x of the form x = u0(w1, A1)u1 · · ·un−1(wn, An)un is normal if
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• ui ∈ A∗, u0 ̸= 1 if x = u0;

• for each 1 ≤ i ≤ n such that ui (resp. ui−1) is not the empty word, the first (resp.
last) letter of ui (resp. ui−1) does not lie in c(xi).

• if ui (1 ≤ i ≤ n− 1) is the empty word, then

– Ai and Ai+1 are ⊆-incomparable;

– if Ai ∩ Ai+1 ̸= ∅, then wi+1 = v+∞ where v is the least linear word in alpha-
betical order of content Ai+1 such that the first letter of v does not lie in
Ai.

Using the (R ∩ LJ)-recognizable languages described on Lemma 4.2 and applying
similar arguments as those of the proof of Theorem 4.3, one can show that the implicit
operations on R ∩ LJ are characterized by the following result.

Theorem 4.5 Every element of F̂A(R ∩ LJ) admits a normal factorization. Let x, y ∈
F̂A(R ∩ LJ) and let x = u0(w1, A1)u1 · · · (wn, An)un and y = v0(z1, B1)v1 · · · (zm, Bm)vm
be factorizations in normal form. Then x = y if and only if n = m, ui = vi, wi = zi
and Ai = Bi for all i. 2

Naturally, a left-right dual of this last theorem could be stated for the pseudovariety
L ∩ LJ.

5 Implicit operations on DReG ∩ LECom

In this section, we concentrate our attention on subpseudovarieties of DReG ∩ LECom,
namely the pseudovarieties of the form W ∩ LECom where H is a pseudovariety of
groups and W is one of DReH, DRH and DH. Note that DReG ∩ LECom is a
subpseudovariety of DReG ∩ LDG. Indeed, we have

DReG ∩ LECom ⊆ L(DReG ∩ ECom) = L(DG ∩ ECom) ⊆ LDG,

since DReG ∩ ECom = DG ∩ ECom. Also note that J is not a subpseudovariety of
LECom because it does not satisfy the pseudoidentity (exe)ω(eye)ω = (eye)ω(exe)ω

which defines LECom.

Besides the properties given by Proposition 3.3, the regular elements of the semigroup
F̂A(DReG ∩ LECom) enjoy also the following important one.

Proposition 5.1 Let A be an alphabet and let B and C be subalphabets of A such that
B ∩ C ̸= ∅. In F̂A(DReG ∩ LECom), if one of c(w′) and c(z) is contained in B ∩ C,
then [w,B, g, w′][z, C, h, z′] = [w,B ∪ C, gh, z′].

In particular, F̂A(DRG ∩ LECom) satisfies [w,B, g][z, C, h] = [w,B ∪ C, gh] for
every z ∈ CN.

Proof. Put p = [w,B, g, w′] and q = [z, C, h, z′]. Suppose first that both c(w′) and
c(z) are contained in B ∩ C. Also let r be the idempotent [z,B ∩ C, 1, w′]. Then
(rpr)ω(rqr)ω is idempotent since V ⊆ LECom and so (rpr)ω(rqr)ω = [z,B ∪ C, 1, w′]
by Corollary 3.2. Moreover, p = p(rpr)ω and q = (rqr)ωq by Proposition 3.3. Thus,
pq = p(rpr)ω(rqr)ωq = p[z,B ∪ C, 1, w′]q = [w,B ∪ C, gh, z′] again by Proposition 3.3.
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Suppose now that, for instance, c(z) ⊆ B ∩ C (and not necessarily c(w′) ⊆ B ∩ C)
and let a ∈ B ∩ C. Then by Proposition 3.3, q = [z,B ∩ C, 1, a−∞][a+∞, C, h, z′]. So
pq = p[z,B∩C, 1, a−∞][a+∞, C, h, z′] = [w,B, g, a−∞][a+∞, C, h, z′] = [w,B∪C, gh, z′] since
c(a−∞) = c(a+∞) = {a} ⊆ B ∩ C.

The second part of the result is a natural consequence of the first one. 2

The second part of this result says that the product of any two regular elements
of F̂A(DRG ∩ LECom) with non-disjoint contents, is a regular element. In the case
of the product xy of two regular elements x and y of F̂A(DReG ∩ LECom) with non-
disjoint contents, we only are sure to obtain a regular element if one of c(x′) and c(y′) is
contained in c(x)∩ c(y), where x′ and y′ are, respectively, the restrictions of x and y to
D and K. As we shall see, only under these conditions will the product xy be a regular
element.

We begin by considering the cases DReH ∩ LECom where H is a pseudovariety of
groups. We say that a factorization of an element x ∈ F̂A(DReH ∩ LECom) of the
form

x = u0[w1, A1, g1, w
′
1]u1 · · ·un−1[wn, An, gn, w

′
n]un

is normal if: ui ∈ A∗, u0 ̸= 1 if x = u0; if ui (1 ≤ i ≤ n − 1) is the empty word, then
the first letter of wi+1 does not lie in Ai and c(w′

i) ̸⊆ Ai+1; for each 1 ≤ i ≤ n such that
ui (resp. ui−1) is not the empty word, the first (resp. last) letter of ui (resp. ui−1) does
not lie in c(xi).

Propositions 2.4 and 5.1 guarantee that every element of F̂A(DReH ∩ LECom)
admits a normal factorization. In order to separate distinct factorizations, we will need
some adequate automata which we now describe.

For n ≥ 0, let u0, . . . , un ∈ A∗ and ∅ ̸= A1, . . . , An ⊆ A be such that ui ̸= 1 (1 ≤ i ≤
n−1). Let l ∈ {1, . . . , n}, let Al be a permutation automaton on the alphabet Al with set
of states Ql and let ql, q

′
l ∈ Ql. Finally, let C = C(u0, A1, u1, . . . ,Al; q

′
l; ql, ul, . . . , An, un)

be the following automaton.

q0����
- q1�����

A1

. . . ql−1�����
Al−1

q′l����
ql�����

�
�
�Al

-u0 -
ul−1

ql+1����
-ul

�

Al+1

. . . qn�����
An

qn+1����
--un

In order to simplify notations, we denote Qi = {qi} for all 1 ≤ i ≤ n with i ̸= l.

Before the proof of a lemma, note that LECom = [[e(exe)ω(eye)ωe = e(eye)ω(exe)ωe]].

Lemma 5.2 Let L be the language recognized by the automaton C above, and suppose
that it satisfies the following extra condition: for each 1 ≤ i ≤ n − 1, c(ui) is not
contained in either Ai or Ai+1. Then S(L) lies in DReG ∩ LECom and its subgroups
lie in the pseudovariety generated by the transition group S(Al).

Moreover, if w ∈ A+, k is an exponent of S(L) such that k > |u0 · · ·un|+ n and wk

is the label of a path in C, then there exists i ∈ {1, . . . , n} such that w ∈ A+
i and the

path visits Qi but does not visit either Qi−1 (if i > 1) or Qi+1 (if i < n).

Proof. The second part of the lemma and the fact that S(L) verifies the pseudoidentity
(xy)ω(yx)ω(xy)ω = (xy)ω defining DReG can be proved as in Lemma 4.2. Now from
the remark immediately before the lemma, to show that S(L) lies in LECom it suffices
to show that xk(xkyxk)k(xkzxk)kxk ∼L xk(xkzxk)k(xkyxk)kxk for all x, y, z ∈ A+. For
this, it suffices to prove that
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xk(xkyxk)k(xkzxk)kxk is the label of a path P in C if and only if there is
a path Q in C labeled xk(xkzxk)k(xkyxk)kxk co-terminal with P.

Let x, y, z ∈ A+, suppose that P exists and consider the two subpaths P1 and P2 of
P labeled, respectively, xk(xkyxk)k and (xkzxk)kxk. By the second part of the lemma,
since P is a path in C, there are 1 ≤ i ≤ j ≤ n such that P1 (resp. P2) visits Qi (resp.
Qj) and does not visit Qi−1 nor Qi+1 (resp. Qj−1 nor Qj+1). Since P1 and P2 are
consecutive paths, it follows that either i = j or i+1 = j. We claim that i = j. Indeed,
let us suppose that i+1 = j. Then c(x)∪ c(y) ⊆ Ai, c(x)∪ c(z) ⊆ Ai+1 and, because of
the choice of k, the subpath of P labeled v = yxkxkz is a path from Qi to Qi+1. Hence,
ui is a factor of v whence it is a factor of one of yxkxk and xkxkz. But this contradicts
the hypothesis on the content of ui since in that case, c(ui) ⊆ Ai or c(ui) ⊆ Ai+1. Hence
i = j and so the existence of path Q is clear. Indeed, the subpath P ′ of P labeled
(xkyxk)k(xkzxk)k is entirely in Qi. Therefore, if Qi = {qi} this is immediate. If Qi is
not singular (so that i = l and Ql is the state set of automaton Al), we deduce, since
k is an exponent of S(L), that P ′ is a path in Al from a state q ∈ Ql to the same
state q. We also deduce that there is a path labeled (xkzxk)k(xkyxk)k from q to q.
By symmetry, it follows that xk(xkyxk)k(xkzxk)kxk ∼L xk(xkzxk)k(xkyxk)kxk proving
that S(L) ∈ LECom.

To conclude the proof, consider the syntactic morphism µ : A+ → S(L). Let w ∈ A+

and suppose that µ(w) is a regular element of S(L) so that µ(w) = µ(wk+1). Now let
w′ ∈ A+ be such that µ(ww′w) = µ(w) and µ(w′ww′) = µ(w′). Then as above, one
can show that, for every 1 ≤ i ≤ n, w ∈ A+

i if and only if w′ ∈ A+
i . Hence, the

subsemigroup of S(L) consisting of its regular elements divides the direct product of
the subsemilattice of 2A generated by the Ai with the semigroups of the form u′i−1Giu

′
i,

where Gi is the trivial group if i ̸= l and is the group S(Al) otherwise, and u′i−1 (resp.
u′i) is a sufix of ui−1 (resp. prefix of ui) with content contained in Ai. The subgroups of
these semigroups are subgroups of S(Al) and so the proof is concluded. 2

Before we present the characterization of the implicit operations onDReH ∩ LECom,
we recall the notion of the Cayley graph of a group. Let G be an A-generated group.
The Cayley graph of G is the labeled graph whose set of vertices is G, and, for every
g ∈ G and a ∈ A, there exists an edge, labeled a, from vertex g to vertex ga.

Theorem 5.3 Let H be a pseudovariety of groups, let x, y ∈ F̂A(DReH ∩ LECom) and
let x = u0[w1, A1, g1, w

′
1]u1 · · ·un−1[wn, An, gn, w

′
n]un and y = v0[z1, B1, h1, z

′
1]v1 · · · vm−1

[zm, Bm, hm, z′m]vm be factorizations in normal form. Then x = y if and only if n = m,
ui = vi, wi = zi, Ai = Bi, gi = hi and w′

i = z′i for all i.

Proof. Consider the following automaton C

q0����
- q1�����

A1

q2�����
A2

-
u0pr(w1) -

sr(w′
1)u1pr(w2)

qn�����
An

qn+1����
--

sr(w′
n)un

. . .

where r ≥ 1 is an integer such that r > |vj | for all 1 ≤ j ≤ m and such that, for all
1 ≤ i ≤ n− 1 with ui = 1, the content of the word sr(w

′
i) is not contained in Ai+1. This

guarantees that the content of the word sr(w
′
i)uipr(wi+1) is not contained in either Ai

or Ai+1 and that the automaton C is as in the conditions of Lemma 5.2. Hence, the
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syntactic semigroup S of the language L recognized by C is in DA ∩ LECom and so
S ∈ DReH ∩ LECom. Now using similar (and somewhat simpler) arguments to those
in the proof of Theorem 4.3, one can show that n = m, ui = vi, wi = zi, Ai = Bi and
w′
i = z′i for all i.

Now note that H = (DReH ∩ LECom) ∩G. For every 1 ≤ i ≤ n, let w̄i ∈ AN
i ,

w̄′
i ∈ A−N

i and ḡi, h̄i ∈ F̂Ai(H) be such that [wi, Ai, gi, w
′
i] = pr(wi)[w̄i, Ai, ḡi, w̄

′
i]sr(w

′
i)

and [wi, Ai, hi, w
′
i] = pr(wi)[w̄i, Ai, h̄i, w̄

′
i]sr(w

′
i). Set x̄i = [w̄i, Ai, ḡi, w̄

′
i] and ȳi =

[w̄i, Ai, h̄i, w̄
′
i].

Let us now fix an i ∈ {1, . . . , n} and consider an Ai-generated group G of H. Let Ai

be the Cayley graph of G over Ai. Note that the transition semigroup of Ai is G. Let
Ai = {ai,1, . . . , ai,ni} and let C′ be the following automaton

q0���
- q1����A1

. . . qi−1����Ai−1

q′i���
qi����� ��Ai

-
u0pr(w1) -

sr(w′
i−1)ui−1pr(wi)

qi+1���
-

sr(w′
i)uipr(wi+1) �

Ai+1

. . . qn����An

qn+1���
--

sr(w′
n)un

where the states q′i and qi are, respectively, the elements 1 and (x̄i)G(ai,1, . . . , ai,ni) of G.
Denote by µ : A+ → S the syntactic homomorphism of the language recognized by C′

and by µ̂ its continuous homomorphic extension to F̂A(DReH ∩ LECom) (which exists
by Lemma 5.2).

Moreover, consider an exponent k > |u0 · · ·un| + n of S and, for all j ∈ {1, . . . , n},
words xj and yj such that c(xj) = c(yj) = Aj , µ̂(x̄j) = µ(xkj ) and µ̂(ȳj) = µ(ykj ). We
then have

• µ̂(u0pr(w1)ȳ1sr(w
′
1)u1pr(w2) · · · ȳi−1sr(w

′
i−1)ui−1pr(wi)) =

µ(u0pr(w1)y
k
1sr(w

′
1)u1pr(w2) · · · yki−1sr(w

′
i−1)ui−1pr(wi)),

• µ̂(sr(w
′
i)uipr(wi+1)ȳi+1 · · · ȳnsr(w′

n)un) = µ(sr(w
′
i)uipr(wi+1)y

k
i+1 · · · yknsr(w′

n)un),

• µ̂(x) = µ(u0pr(w1)x
k
1 · · ·xknsr(w′

n)un).

Using the equalities proved so far, one can verify that

• u0pr(w1)y
k
1 · · · yki−1sr(w

′
i−1)ui−1pr(wi),

• sr(w
′
i)uipr(wi+1)y

k
i+1 · · · yknsr(w′

n)un,

• u0pr(w1)x
k
1 · · ·xknsr(w′

n)un,

are the labels of paths in C′ from, respectively, q0 to q′i, qi to qn+1 and q0 to qn+1.
Since µ̂(x) = µ̂(y) = µ̂(u0pr(w1)ȳ1 · · · ȳnsr(w′

n)un) and Ai is a permutation automaton,
it follows that (ȳi)G(ai,1, . . . , ai,ni) = (x̄i)G(ai,1, . . . , ai,ni), which shows that ḡi = h̄i.
Hence, gi = hi and the proof is concluded. 2

One can verify, similarly to the case LJ above, that the equality (R ∨ L) ∩ LECom =
DA ∩ LECom does not hold.

Let now V be one of the pseudovarieties DRH ∩ LECom and DH ∩ LECom. We
say that a factorization of an element x ∈ F̂A(V) of the form x = u0x1u1 · · ·un−1xnun
is normal if: ui ∈ A∗, u0 ̸= 1 if x = u0; xi ∈ F̂A(V) (1 ≤ i ≤ n) is regular; if ui
(1 ≤ i ≤ n − 1) is the empty word, then c(xi) ∩ c(xi+1) = ∅; for each 1 ≤ i ≤ n such
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that ui (resp. ui−1) is not the empty word, the first (resp. last) letter of ui (resp. ui−1)
does not lie in c(xi). Propositions 2.4 and 5.1 guarantee that every element of F̂A(V)
admits a normal factorization.

We begin by describing the semigroups F̂A(DH ∩ LECom). For that we are going to
consider the following automata. For n ≥ 0, let u0, . . . , un ∈ A∗ and ∅ ̸= A1, . . . , An ⊆ A
be such that, if ui = 1 (1 ≤ i ≤ n − 1) then Ai ∩ Ai+1 = ∅ and, for each 1 ≤ i ≤ n
such that ui (resp. ui−1) is not the empty word, the first (resp. last) letter of ui
(resp. ui−1) does not lie in Ai. Let l ∈ {1, . . . , n} and let Al be either the automa-

ton
q′l���

ql���
-Al

Y
Al , or a non-trivial permutation automaton on the alphabet

Al with set of states Ql and we let q′l, ql ∈ Ql be two distinct states. Finally, let
D = D(u0, A1, u1, . . . , ul−1,Al; q

′
l; ql, ul, . . . , An, un) be the following automaton

q0����
- q′1����

q1����
-u0 -A1

�

A1

. . . ql−1�����
Al−1

q′l����
-

ul−1
ql����

Al

�
�

�
�q′l+1����

ql+1����
-ul -

Al+1
�

Al+1

. . . qn����
qn+1����

--un
�

An

An analysis of the structure of D can be made like in Lemmas 4.2 and 5.2, proving
the following lemma.

Lemma 5.4 Consider the automaton D above and let L be the language recognized by
D. Then S(L) lies in DG ∩ LECom and its subgroups lie in the pseudovariety generated
by the transition group S(Al).

Moreover, if w ∈ A+, k is an exponent of S(L) such that k > |u0 · · ·un|+ n and wk

is the label of a path in D not beginning nor ending by a transition labeled by the empty
word, then there exists i ∈ {1, . . . , n} such that w ∈ A+

i and that path begins in q′i or qi
(in Ql if i = l) and ends in qi (in Ql if i = l). 2

Now we are able to prove the following characterization.

Theorem 5.5 Let H be a pseudovariety of groups, let x, y ∈ F̂A(DH ∩ LECom) and
let x = u0[A1, g1]u1 · · ·un−1[An, gn]un and y = v0[B1, h1]v1 · · · vm−1[Bm, hm]vm be fac-
torizations in normal form. Then x = y if and only if n = m, ui = vi, Ai = Bi and
gi = hi for all i.

Proof. Consider the following automaton D.

q0����
- q′1����

q1����
-u0 -A1

�

A1

q′2����
q2����

-u1 -A2
�

A2

. . . qn�����
An

qn+1����
--un

Let L be the language recognized by D and let µ : A+ → S be its syntactic ho-
momorphism. By Lemma 5.4, S ∈ J ∩ LECom and so S ∈ DH ∩ LECom. So let
µ̂ : F̂A(DH ∩ LECom) → S be the unique continuous homomorphic extension of µ.

Let k > |u0 · · ·un|+n be an exponent of S and let 1 ≤ i ≤ n. Since [Ai, gi] is regular,
its image in S, µ̂([Ai, gi]) is idempotent. By density of A+ in F̂A(DH ∩ LECom), there
is a word xi such that c(xi) = Ai and µ̂([Ai, gi]) = µ(xki ). Now it is immediate that
w = u0x

k
1u1 · · ·xknun is a word recognized by D, whence w ∈ L. On the other hand, we

have µ̂(x) = µ(w).
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Consider now words yi (1 ≤ i ≤ m) such that c(yi) = Bi and µ̂([Bi, hi]) = µ(yi
k).

Let w′ = v0y
k
1v1 · · · ykmvm. We then have that µ̂(y) = µ(w′) and, as x = y, µ̂(x) = µ̂(y).

So w′ ∈ L. Let P be a successful path in D labeled w′ and, for each 1 ≤ i ≤ m, let Pi

be the subpath of P labeled v0pr(z1)y
k
1v1y

k
2 · · · yki . By Lemma 5.4, the path Pi ends in

state qji , for some 1 ≤ ji ≤ n such that Bi ⊆ Aji . Furthermore, if ji > 1, the subpath
P ′
i of Pi labeled yki , whose first transition is not labeled by the empty word, does not

visit state qji−1.

In particular, the path P1 visits state q1. Therefore u0 is a prefix of v0y
k
1 . Further-

more, if j1 > 1, the path P ′
1 does not visit state qj1−1. Hence, if j1 > 1, u0 is clearly a

prefix of v0. In the case that j1 equals 1, we have B1 ⊆ A1 and, as the last letter of u0
does not lie in A1 (and so does not belong to the content of yk1 ), we also deduce that
u0 is a prefix of v0. By symmetry it follows that u0 = v0 so that j1 = 1 and B1 ⊆ A1.
Again by symmetry we deduce A1 = B1.

Now the path P2 ends in state qj2 , for some 1 ≤ j2 ≤ n such that B2 ⊆ Aj2 . Since the
first letter of the word v1y

k
2 does not belong to B1 = A1 (note that as the factorization

of y is normal, if v1 = 1 then B1 ∩ B2 = ∅), it follows that j2 > 1. Now as above one
can show that j2 = 2, u1 = v1 and A2 = B2.

Iterating the above argument, we deduce that n = m, ui = vi and Ai = Bi for all i.

The proof of the equalities gi = hi is similar to the proof of the same equalities in
Theorem 5.3. We only point out the fact that after choosing an Ai-generated group G
(non-trivial) of H and considering its Cayley graph Ai over Ai, we have to choose in
Ai two distinct states. One of them is 1. Now letting xi = [Ai, gi] and yi = [Ai, hi], if
r = (yi)G(ai,1, . . . , ai,ni) and s = (xi)G(ai,1, . . . , ai,ni) are both equal to 1, then there is
nothing to prove. So without loss of generality, we may suppose that s ̸= 1 and so we
choose s to be the other state. The proof continues like in Theorem 5.3, proving that r
and s must be equal and so gi and hi too. 2

Similar results hold for the pseudovarieties DRH ∩ LECom.

Lemma 5.6 Consider an automaton C = C(u0, A1, . . . ,Al; q
′
l; ql, . . . , An, un) as defined

after Proposition 5.1 above, satisfying the following extra conditions: for each 1 ≤ i ≤ n,
the first letter of ui does not lie in Ai; for each 1 ≤ i ≤ n − 1 the last letter of ui lies
in Ai+1 and if c(ui) ⊆ Ai+1, then Ai ∩Ai+1 = ∅. Let L be the language recognized by C.
Then S(L) lies in DRG ∩ LECom and its subgroups lie in the pseudovariety generated
by the transition group S(Al).

Moreover, if w ∈ A+, k > |u0 · · ·un| + n is an exponent of S(L) and wk is the label
of a path T in C, then there exists i ∈ {1, . . . , n} such that w ∈ A+

i and T ends in Qi.
Furthermore, either T does not visit Qi−1 (if i > 1), or T begins in Qi−1 and it leaves
Qi−1 at the first step.

Proof. The lemma can be proved like other similar results. We only note that a
path labeled v = (xkyxk)k(xkzxk)k stays for at least one step in at most one Qi. So
c(xyz) ⊆ A+

i and the path stays out of qi for at most |ui−1| steps. 2

Example 5.7 Notice that the condition “for each 1 ≤ i ≤ n− 1 the last letter of ui lies
in Ai+1” on the automaton C of last lemma avoids, for instance, a situation like this

q0���
- q1����

c

q2���
-

�

a

�

b, c, d

-b -c
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where a, b, c and d are distinct letters of an alphabet A. The syntactical semigroup of the
language recognized by this automaton does not verify the equality (cωbcω)ω(cωdcω)ω =
(cωdcω)ω(cωbcω)ω and so does not lie in LECom.

Theorem 5.8 Let H be a pseudovariety of groups, let x, y ∈ F̂A(DRH ∩ LECom) and
let x = u0[w1, A1, g1]u1 · · · [wn, An, gn]un and y = v0[z1, B1, h1]v1 · · · [zm, Bm, hm]vm be
factorizations in normal form. Then x = y if and only if n = m, ui = vi, wi = zi,
Ai = Bi and gi = hi for all i.

Proof. Using the canonical projection of F̂A(DRH ∩ LECom) onto F̂A(DH ∩ LECom),
we deduce immediately that n = m, ui = vi, Ai = Bi and gi = hi for all i. To prove the
equality pr(wi) = pr(zi) for each 1 ≤ i ≤ n and each r ≥ 1, it suffices to consider the
following automaton

q0����
- q1�����

A1

q2�����
A2

-
u0pr(w1) -

u1pr(w2)
qn�����
An

qn+1����
--un

. . .

— which recognizes a language whose syntactical semigroup belongs to R ∩ LECom,
by Lemma 5.6 —, and to proceed like in the proof of Theorem 5.3. This shows that
wi = zi for all i. 2

A dual result is valid for the pseudovarieties DLH ∩ LECom.

6 Implicit operations on DReG ∩ LZE and DReG ∩ L(Sl ∨G)

This section is devoted to the study of the semigroups F̂A(V) where V is a pseudovariety
of the form V = W ∩ LZE or V = W ∩ L(Sl ∨G) with W ∈ {DReH,DRH,DH}. As
in the previous sections, we describe “normal” forms for the elements of F̂A(V) and prove
that they are unique. We apply these results to the computation of certain joins.

Let CR = [[xω+1 = x]] be the pseudovariety of completely regular semigroups, i.e.,
semigroups whose H-classes are all groups. It is well-known that the pseudovariety
ZE ∩CR = Sl ∨G and that ZE ⊆ ECom. Therefore, it follows immediately that
L(Sl ∨G) ⊆ LZE ⊆ LECom.

In the last section, where we studied the semigroups of the form F̂A(W ∩ LECom),
we had to separate the description of the normal factorizations into two cases. The case
DReH ∩ LECom on the one hand and the cases DRH ∩ LECom and DH ∩ LECom
on the other. As we shall see, this is not necessary for the semigroups F̂A(W ∩ LZE)
(nor for F̂A(W ∩ L(Sl ∨G))). The normal factorizations x = u0x1u1 · · ·xnun described
for elements x ∈ F̂A(DReG ∩ LZE) will be such that, if π : F̂A(DReG ∩ LZE) →
F̂A(W ∩ LZE) is the canonical projection, then π(x) = u0π(x1)u1 · · ·π(xn)un is a nor-
mal factorization of the element π(x) ∈ F̂A(W ∩ LZE). The definition of normal facto-
rization will be “inspired” by the following result.

Proposition 6.1 Let A be an alphabet, let B,C ⊆ A be such that B ∩ C ̸= ∅ and let
x ∈ F̂A(DReG ∩ LZE)1. Then, in F̂A(DReG ∩ LZE),

[w,B, g, w′]x[z, C, h, z′] = [w,B ∪ C, g, w′]x[z,B ∪ C, h, z′].

In particular, [w,B, g, w′][z, C, h, z′] = [w,B ∪ C, gh, z′].
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Furthermore, if x ∈ F̂A(DReG ∩ L(Sl ∨G))1, then in F̂A(DReG ∩ L(Sl ∨G)) we
have that [w,B, g, w′]x[z, C, h, z′] = [w,B ∪ c(x) ∪ C, gx′h, z′] where x′ is the restriction
of x to G.

Proof. Let us first suppose that C ⊆ B and put p = [w,B, g, w′] and q = [z, C, h, z′].
We have p = ppω(qωpωqω)ωqωpω and q = qωq from Proposition 3.3. So

pxq = ppω(qωpωqω)ωqωpωxqωq = ppωqωpωxqω(qωpωqω)ωq

since DReG ∩ LZE ⊆ LZE. Hence, again from Proposition 3.3, it follows that pxq =
[w,B, g, w′]x[z,B, h, z′]. It can be proved analogously that the result also holds when
B ⊆ C.

Let us now prove the particular case x = 1. Let a ∈ B ∩ C. Then p = paωaωpω

from Proposition 3.3. Hence, pq = paωaωpωq = p[a+∞, C, 1, a−∞][a+∞, B, 1, a−∞]pωq from
the above since c(aω) = {a} ⊆ B ∩ C. Similarly, one can prove that the product
[a+∞, C, 1, a−∞][a+∞, B, 1, a−∞] is an idempotent element. So by Corollary 3.2, it is equal
to [a+∞, B ∪ C, 1, a−∞]. The equality pq = [w,B ∪ C, gh, z′] is now a simple consequence
of Proposition 3.3.

Finally, we prove the general case. We have, p = paωpω and q = qωaωq. Therefore,
from the particular cases proved above, we deduce

pxq = paωpωxqωaωq

= p[a+∞, C, 1, a−∞]pωxqω[a+∞, B, 1, a−∞]q

= p[a+∞, B ∪ C, 1, w′]x[z,B ∪ C, 1, a−∞]q

= [w,B ∪ C, g, w′]x[z,B ∪ C, h, z′].

To conclude the proof it remains to show the result for DReG ∩ L(Sl ∨G). With
the same notations as above, we have pxq = paωpωxqωaωq. Now aωpωxqωaω is a group
element since DReG ∩ L(Sl ∨G) ⊆ LCR. So it is a regular element of content B ∪
c(x) ∪ C and the result follows from Proposition 3.3. 2

Almeida and Weil [8] proved that, for each pseudovariety H of groups, the join
DRH ∨ DLH is strictly contained in DReH. Indeed, they proved that

DRH ∨ DLH = [[(xy)ωxω(zx)ω = (xy)ω(zx)ω]] ∩ DReH.

However, when intersected with LZE, we obtain an equality, which is an easy con-
sequence of Proposition 6.1.

Corollary 6.2 For each pseudovariety of groups H, the equality (DRH ∨ DLH) ∩ LZE
= DReH ∩ LZE holds.

Proof. The inclusion (DRH ∨ DLH) ∩ LZE ⊆ DReH ∩ LZE is clear. Now to prove
the inverse inclusion, it suffices to prove that DReH ∩ LZE satisfies the pseudoidentity
(xy)ωxω(zx)ω = (xy)ω(zx)ω. For that, it suffices to show that this equality holds in
F̂A(DReH ∩ LZE) when x, y and z are letters of A. In F̂A(DReH ∩ LZE), (xy)ω =
[(xy)+∞, {x, y}, 1, (xy)−∞] and (zx)ω = [(zx)+∞, {x, z}, 1, (zx)−∞]. Hence, it follows from
Proposition 6.1, that (xy)ωxω(zx)ω = [(xy)+∞, {x, y, z}, 1, (zx)−∞] = (xy)ω(zx)ω. 2
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Another consequence of Proposition 6.1 is that if x = u0x1u1 · · ·un−1xnun is a
factorization of an element x of F̂A(DReG ∩ LZE) (resp. F̂A(DReG ∩ L(Sl ∨G))) in
terms of words ui and regular elements xi, then we may suppose that the contents
of the regular elements are pairwise equal or disjoint (resp. pairwise disjoint). So we
will consider the following notion of normal factorization for the implicit operations on
pseudovarieties of the form V = W ∩ LZE (resp. V = W ∩ L(Sl ∨G)), with W ∈
{DReH,DRH,DH}.

In the cases where V = W ∩ LZE, we say that a factorization of an element x ∈
F̂A(V) of the form x = u0x1u1 · · ·un−1xnun is normal if:

• ui ∈ A∗, u0 ̸= 1 if x = u0;

• xi ∈ F̂A(V) (1 ≤ i ≤ n) is regular;

• for each pair 1 ≤ i, j ≤ n, c(xi) = c(xj) or c(xi) ∩ c(xj) = ∅;

• if ui (1 ≤ i ≤ n− 1) is the empty word, then c(xi) ∩ c(xi+1) = ∅;

• for each 1 ≤ i ≤ n such that ui (resp. ui−1) is not the empty word, the first (resp.
last) letter of ui (resp. ui−1) does not lie in c(xi).

In the cases where V = W ∩ L(Sl ∨G), the definition of normal factorization of an
element x of F̂A(V) is the same as that above except that the condition “for each pair
1 ≤ i, j ≤ n, c(xi) = c(xj) or c(xi) ∩ c(xj) = ∅” is replaced by the condition “for each
pair 1 ≤ i, j ≤ n with i ̸= j, c(xi) ∩ c(xj) = ∅”.

Note that these definitions of normal factorization differ from that of elements of
F̂A(W ∩ LECom), with W ∈ {DRH,DH}, only in the imposition of the following
condition (putting c(xi) = Ai)

Ai = Aj or Ai ∩Aj = ∅ for each pair 1 ≤ i, j ≤ n (1)

for the cases F̂A(W ∩ LZE) and of the condition

Ai ∩Aj = ∅ for each pair i ̸= j (2)

for the cases F̂A(W ∩ L(Sl ∨G)).

Proposition 6.3 Let V = W ∩ LZE or V = W ∩ L(Sl ∨G), where W is one of
DReH, DRH and DH. Every element of F̂A(V) admits a normal factorization. 2

With this notion of normal factorization, a study entirely similar to that conducted
for the subpseudovarieties of DReG ∩ LECom can be made for the subpseudovarieties
of DReG ∩ LZE and DReG ∩ L(Sl ∨G), leading to the following results. They will
be presented usually without proofs because they are analogous to other, similar results.

The automata used to separate distinct factorizations of elements of a semigroup
of the form F̂A(DReH ∩ LZE) (resp. F̂A(DReH ∩ L(Sl ∨G))) are the automata C =
C(u0, A1, . . . ,Al; q

′
l; ql, . . . , An, un) as in Lemma 5.2 where, of course, the Ai’s must sat-

isfy condition (1) (resp. condition (2)).

Lemma 6.4 Let C = C(u0, A1, . . . ,Al; q
′
l; q

′
l, . . . , An, un) be an automaton as defined

after Proposition 5.1 above, satisfying the extra conditions: Ai = Aj or Ai ∩ Aj = ∅
for all 1 ≤ i, j ≤ n and, for each 1 ≤ i ≤ n − 1, c(ui) is not contained in either Ai or
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Ai+1. Let L be the language recognized by C. Then S(L) lies in DReG ∩ LZE and its
subgroups lie in the pseudovariety generated by the transition group S(Al). If Ai∩Aj = ∅
for each pair i ̸= j, then S(L) ∈ L(Sl ∨G).

Moreover, if w ∈ A+, k > |u0 · · ·un| + n is an exponent of S(L) and wk is the label
of a path in C, then there exists i ∈ {1, . . . , n} such that w ∈ A+

i and this path visits Qi

but does not visit either Qi−1 (if i > 1) or Qi+1 (if i < n).

Proof. We only recall the proof that S(L) lies in LZE. Admitting that S(L) ∈ DReG
is already proved, to show that S(L) ∈ LZE it suffices, as in Lemma 5.2, to show that
xk(xkyxk)kxkzxk ∼L xkzxk(xkyxk)kxk for all x, y, z ∈ A+, or more generally that

xk(xkyxk)kxkzxk is the label of a path P in C if and only if there is a
path P ′ in C labeled xkzxk(xkyxk)kxk and co-terminal with P.

Let x, y, z ∈ A+ and suppose that P exists. Consider the three subpaths P1, P2 and P3

of P labeled, respectively xk(xkyxk)kxk, z and xk. To prove the existence of P ′ it suffices
to show that there are paths P ′

1 and P ′
3 labeled xk and xk(xkyxk)kxk, respectively, co-

terminal with P1 and P3. Since P is a path, there are 1 ≤ i ≤ j ≤ n such that
c(x) ∪ c(y) ⊆ Ai, c(x) ⊆ Aj and i and j are, respectively, the least and the greatest
indices such that P visits Qi and Qj . In particular, Ai ∩ Aj ̸= ∅ and consequently
Ai = Aj . Furthermore, the path P1 does not visit either Qi−1 or Qi+1. So it is clear
that P ′

1 exists. Analogously, since the path P3 does not visit either Qj−1 or Qj+1 and
c(x) ∪ c(y) ⊆ Aj , P ′

3 exists, proving the existence of P ′. By symmetry, we deduce that
xk(xkyxk)kxkzxk ∼L xkzxk(xkyxk)kxk whence S(L) ∈ LZE. 2

Theorem 6.5 Let H be a pseudovariety of groups and let V be one of DReH ∩ LZE
and DReH ∩ L(Sl ∨G). Let x, y ∈ F̂A(V) and let x = u0[w1, A1, g1, w

′
1]u1 · · ·un−1

[wn, An, gn, w
′
n]un and y = v0[z1, B1, h1, z

′
1]v1 · · · vm−1[zm, Bm, hm, z′m]vm be factoriza-

tions in normal form. Then x = y if and only if n = m, ui = vi, wi = zi, Ai = Bi,
gi = hi and w′

i = z′i for all i. 2

Similar results hold for the pseudovarieties DRH ∩ LZE (and DRH ∩ L(Sl ∨G)).
To separate two distinct normal factorizations with respect to DRH ∩ LZE it suffices
to consider again the automata C = C(u0, A1, . . . ,Al; q

′
l; ql, . . . , An, un), defined after

Proposition 5.1 and impose the adequate conditions.

Lemma 6.6 Let C = C(u0, A1, . . . ,Al; q
′
l; ql, . . . , An, un) be an automaton, as defined

after Proposition 5.1, satisfying the extra conditions: for all 1 ≤ i, j ≤ n, Ai = Aj or
Ai ∩ Aj = ∅, the first letter of ui does not lie in Ai and, for each 1 ≤ i ≤ n − 1, if
c(ui) ⊆ Ai+1, then Ai∩Ai+1 = ∅. Let L be the language recognized by C. Then S(L) lies
in DRG ∩ LZE and its subgroups lie in the pseudovariety generated by the transition
group S(Al). If Ai ∩Aj = ∅ for each pair i ̸= j, then S(L) ∈ L(Sl ∨G). 2

Observe that the automaton C in this last lemma is not obtained from the automaton
of Lemma 5.6 by the imposition of the extra condition (1). Indeed, the automaton of
Lemma 5.6 satisfies also the condition “for each 1 ≤ i ≤ n − 1 the last letter of ui
lies in Ai+1”. Note that the syntactical semigroup of the language recognized by the
automaton of Example 5.7 does not lie in LZE. This happens because the automaton
does not verify the condition “Ai = Aj or Ai∩Aj = ∅ for all 1 ≤ i, j ≤ n” of last lemma.
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Theorem 6.7 Let H be a pseudovariety of groups and let V be one of DRH ∩ LZE and
DRH ∩ L(Sl ∨G). Let x, y ∈ F̂A(V) and let x = u0[w1, A1, g1]u1 · · ·un−1[wn, An, gn]un
and y = v0[z1, B1, h1]v1 · · · vm−1[zm, Bm, hm]vm be factorizations in normal form. Then
x = y if and only if n = m, ui = vi, wi = zi, Ai = Bi and gi = hi for all i. 2

In Corollary 6.2, we proved that (DRH ∨ DLH) ∩ LZE = DReH ∩ LZE (and so
also (DRH ∨ DLH) ∩ L(Sl ∨G) = DReH ∩ L(Sl ∨G)). Now note that from Theo-
rem 6.5 and from the last theorem and its analogue for DLH ∩ LZE, if x and y are
two elements of F̂A(DReH ∩ LZE), then x and y are equal if and only if their restric-
tions to both DRH ∩ LZE and DLH ∩ LZE are equal. A similar argument is valid for
L(Sl ∨G). So, from Reiterman’s Theorem, we have also the following equalities.

Corollary 6.8 Let H be a pseudovariety of groups. Then

• (DRH ∩ LZE) ∨ (DLH ∩ LZE) = DReH ∩ LZE;

• (DRH ∩ L(Sl ∨G)) ∨ (DLH ∩ L(Sl ∨G)) = DReH ∩ L(Sl ∨G). 2

In order to conclude the study of this section, we consider now the cases DH ∩ LZE
and DH ∩ L(Sl ∨G). The automata used to separate distinct factorizations of elements
of F̂A(DH ∩ LZE) (resp. F̂A(DH ∩ L(Sl ∨G))) are the automata D = D(u0, A1, . . . ,Al;
q′l; ql, . . . , An, un) as in Lemma 5.4, where the Ai’s satisfy also the condition (1) (resp.
condition (2)).

Lemma 6.9 Consider the automaton D = D(u0, A1, . . . ,Al; q
′
l; ql, . . . , An, un) as in

Lemma 5.4 with Ai = Aj or Ai ∩ Aj = ∅ for each pair 1 ≤ i, j ≤ n. Let L be the
language recognized by the automaton D. Then S(L) lies in DG ∩ LZE and its sub-
groups lie in the pseudovariety generated by the transition group S(Al). If Ai ∩ Aj = ∅
for each pair i ̸= j, then S(L) ∈ L(Sl ∨G). 2

Theorem 6.10 Let H be a pseudovariety of groups and let V be one of DH ∩ LZE
and DH ∩ L(Sl ∨G). Let x, y ∈ F̂A(V) and let x = u0[A1, g1]u1 · · ·un−1[An, gn]un and
y = v0[B1, h1]v1 · · · vm−1[Bm, hm]vm be factorizations in normal form. Then x = y if
and only if n = m, ui = vi, Ai = Bi and gi = hi for all i. 2

In the case of the pseudovarieties involving L(Sl ∨G), we can also deduce the fol-
lowing join decompositions.

Corollary 6.11 Let H be a pseudovariety of abelian groups. Then

• DReH ∩ L(Sl ∨G) = (DA ∩ LSl) ∨H;

• DRH ∩ L(Sl ∨G) = (R ∩ LSl) ∨H;

• DH ∩ L(Sl ∨G) = (J ∩ LSl) ∨H.

To prove this result we will use the following known result.

Proposition 6.12 Let A = {a1, . . . , an} be an alphabet and let V be a pseudovariety of
commutative semigroups. Then F̂A(V)1 is isomorphic to the direct product F̂{a1}(V)1×
. . .× F̂{an}(V)1. 2
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Proof of Corollary 6.11. We give, for instance, the proof of the first equality. Let
x, y ∈ F̂A(DReH ∩ L(Sl ∨G)). From Reiterman’s Theorem, it suffices to prove that
if DA ∩ LSl and H satisfy x = y, then x = y. So let x = u0[w1, A1, g1, w

′
1]u1 · · ·un−1

[wn, An, gn, w
′
n]un and y = v0[z1, B1, h1, z

′
1]v1 · · · vm−1[zm, Bm, hm, z′m]vm be factoriza-

tions in normal form and suppose that DA ∩ LSl and H satisfy x = y. The restric-
tions of x and y to DA ∩ LSl are, respectively, u0[w1, A1, w

′
1]u1 · · · [wn, An, w

′
n]un and

v0[z1, B1, z
′
1]v1 · · · [zm, Bm, z′m]vm and these factorizations are in normal form. Then by

Theorem 6.5, we deduce immediately n = m, ui = vi, wi = zi, Ai = Bi and w′
i = z′i for

all i.

Now since H = (DReH ∩ L(Sl ∨G)) ∩G and H satisfies x = y, we have in F̂A(H),
u0g1u1g2 · · ·un−1gnun = v0h1v1h2 · · · vn−1hnvn. From the above we know that ui = vi
for all i. Hence, by commutativity and cancellativity of F̂A(H) we deduce, g1g2 · · · gn =
h1h2 · · ·hn. Therefore, since the contents of the regular elements are pairwise disjoint,
we deduce from Proposition 6.12 that gi = hi for all i. This shows that x = y and
concludes the proof. 2

Notice that a similar result does not hold for LZE. For instance, the equality
DReH ∩ LZE = (DA ∩ LZE) ∨H does not hold for any non-trivial pseudovariety of
groups H. Indeed, let x, y ∈ F̂A(DReH ∩ LZE) be such that c(x) ∩ c(y) = ∅ and x
be a regular element that is not idempotent. Then both DA ∩ LZE and H satisfy
xyωxω = xωyωx but, by Theorem 6.5, DReH ∩ LZE does not.

Note that V ∩ L(Sl ∨G) = V ∩ LSl for any aperiodic pseudovariety V. The aperi-
odic cases DA ∩ LSl, R ∩ LSl and J ∩ LSl, considered in this section, are the object of
the author’s article [12].

7 Implicit operations on DReG ∩ (Com ∗D)

This section is concerned with the structure of the semigroups of implicit operations on
subpseudovarieties V of DReG ∩ (Com ∗D) of the form V = W ∩ (Com ∗D) with
W as usual. Remark that Com ∗D is a subpseudovariety of LZE. Indeed, it is clear
that Com ∗D ⊆ LCom ⊆ LZE. Once again we describe “normal” factorizations, in
terms of words and regular elements, for the elements of F̂A(V). Contrary to the cases
considered so far, these factorizations are not necessarily unique. However, we prove
that given two elements of F̂A(V), written in such a “normal” form, we can decide if
they are equal or not.

Naturally, the definition of normal form for an element of F̂A(W ∩ (Com ∗D))
is obtained from the same notion for an element of F̂A(W ∩ LZE) making a small
adjustment, “dictated” by the following result.

Proposition 7.1 Let A be an alphabet, let x, y, z ∈ F̂A(DReG ∩ (Com ∗D))1 and let
B,C ⊆ A. Then, in F̂A(DReG ∩ (Com ∗D)),

(1) [w1, B, g1, w
′
1]x[w2, B, g2, w

′
2] = [w1, B, g1g2, w

′
1]x[w2, B, 1, w′

2] =

[w1, B, 1, w′
1]x[w2, B, g1g2, w

′
2];

(2) [w1, B, g1, w
′
1]x[z1, C, h1, z

′
1]y[w2, B, g2, w

′
2]z[z2, C, h2, z

′
2] =

[w1, B, g1, w
′
2]z[z2, C, h1, z

′
1]y[w2, B, g2, w

′
1]x[z1, C, h2, z

′
2].
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In particular, letting [z1, C, h1, z
′
1] = [w2, B, 1, w′

2], [z2, C, h2, z
′
2] = [w3, B, g3, w

′
3] and

y = 1, we see that

[w1, B, g1, w
′
1]x[w2, B, g2, w

′
2]z[w3, B, g3, w

′
3] =

[w1, B, g1, w
′
2]z[w3, B, g2, w

′
1]x[w2, B, g3, w

′
3].

Proof. Put V = DReG ∩ (Com ∗D), pi = [wi, B, gi, w
′
i] and qi = [zi, C, hi, z

′
i]

for i = 1, 2. We have p1 = p1p
ω
1 p

ω
2 p

ω
1 and p2 = pω2 p2p

ω
2 from Proposition 3.3, since

c(p1) = c(p2) = B. Therefore, p1xp2 = p1p
ω
1p

ω
2 p

ω
1xp

ω
2 p2p

ω
2 = p1p

ω
1p

ω
2 p2p

ω
2 p

ω
1xp

ω
2 since

V ⊆ LCom. It follows that p1xp2 = [w1, B, g1g2, w
′
1]x[w2, B, 1, w′

2]. The second equa-
lity of (1) can be proved symmetrically. Now we have

p1xq1yp2zq2 = p1p
ω
1 xq

ω
1 q1yp2p

ω
1 p

ω
2 zq

ω
2 q

ω
1 q

ω
2 q2

since c(p1) = c(p2) = B and c(q1) = c(q2) = C

= p1p
ω
1 p

ω
2 zq

ω
2 q

ω
1 q1yp2p

ω
1 xq

ω
1 q

ω
2 q2 since V ⊆ Com ∗D

= [w1, B, g1, w
′
2]z[z2, C, h1, z

′
1]y[w2, B, g2, w

′
1]x[z1, C, h2, z

′
2].2

If V is one of the pseudovarieties W ∩ (Com ∗D), with W ∈ {DReH,DRH,DH},
we say that a factorization x = u0x1u1 · · ·un−1xnun of an element x ∈ F̂A(V) is normal
if:

• ui ∈ A∗, u0 ̸= 1 if x = u0;

• xi ∈ F̂A(V) (1 ≤ i ≤ n) is regular;

• for each 1 ≤ i ≤ n such that ui (resp. ui−1) is not the empty word, the first (resp.
last) letter of ui (resp. ui−1) does not lie in c(xi);

• for each pair 1 ≤ i, j ≤ n, c(xi) = c(xj) or c(xi) ∩ c(xj) = ∅;

• if ui (1 ≤ i ≤ n− 1) is the empty word, then c(xi) ∩ c(xi+1) = ∅;

• if c(xi) = c(xj) for some i ̸= j, then one of xi and xj is idempotent (i.e., with the
same content, there is at most one regular element that is not idempotent).

Note that this definition of normal factorization differs from that of elements of
F̂A(W ∩ LZE) only in the imposition of the following condition:

if c(xi) = c(xj) for some i ̸= j, then one of xi and xj is idempotent. (3)

The imposition of this condition is a natural consequence of point (1) of Proposi-
tion 7.1.

Proposition 7.2 Let V = W ∩ (Com ∗D) with W ∈ {DReH,DRH,DH}. Every
element of F̂A(V) admits a normal factorization. 2

Example 7.3 Let V be one of the pseudovarieties W ∩ (Com ∗D). We note that a
normal factorization of an element x ∈ F̂A(V) is not necessarily unique. For instance,
suppose that x is of the form x = yωazωayωa2zω for some y, z ∈ F̂A(V) and a ∈ A such
that c(y) ∩ c(z) = ∅ and a ̸∈ c(y), c(z). Then this factorization of x is in normal form
and, since V ⊆ Com ∗D, x = yωa2zωayωazω is another normal factorization of x.
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The first semigroups of implicit operations to be described in this section will be
the semigroups F̂A(DH ∩ (Com ∗D)). Note that for any pseudovariety H of groups,
(Com ∗D) ∩H = H ∩Ab, where Ab is the pseudovariety of all abelian groups. So in
this section, it suffices to considerH a pseudovariety of abelian groups. We will see, given
two elements x = u0x1u1 · · ·xnun and y = v0y1v1 · · · ymvm of F̂A(DH ∩ (Com ∗D)),
written in normal form, that to decide whether x and y are the same element, it does
not suffice to look at each factor ui and xi (and vj and yj) by itself. We also have to
compare the factors of x and y of the form xiuixi+1 and yjvjyj+1. The result we want
to prove is the following.

Theorem 7.4 Let H be a pseudovariety of abelian groups, let x and y be two elements
of F̂A(DH ∩ (Com ∗D)) and let x = u0[A1, g1]u1 · · · [An, gn]un and y = v0[B1, h1]v1 · · ·
[Bm, hm]vm be factorizations in normal form. Then x = y if and only if

(1) n = m, u0 = v0, A1 = B1, An = Bm, un = vm;

(2) if n ≥ 2, then there is a permutation α of the set {1, . . . , n − 1} such that, for
every 1 ≤ i ≤ n− 1, the triple (Bi, vi, Bi+1) is equal to (Aα(i), uα(i), Aα(i)+1);

(3) for every 1 ≤ i ≤ n, hi = gβ(i) for some permutation β of the set {1, . . . , n}.

To prove this result we need, as usual, to define some suitable automata to separate
factorizations of distinct elements of F̂A(DH ∩ (Com ∗D)). Evidently, these automata
are not supposed to separate, for instance, the normal factorizations

x = yωazωayωa2zω and x = yωa2zωayωazω,

as in Example 7.3, of an element x ∈ F̂A(DH ∩ (Com ∗D)). Each such automaton, say
G, is constructed as a “union” of a finite number of certain forms of automata D as in
Lemma 6.9 (in the sense that the language recognized by G is the union of the languages
recognized by these automata D). Roughly speaking, this automaton G will be obtained

from a unique automaton D but we have to permit the transitions qi
ui−→ q′i+1 to be

traversed by a path in an order different from their “natural” order (naturally, not all
orders will be allowed). Let us be more precise.

Let D = D(u0, A1, u1, . . . , ul−1,Al; q
′
l; ql, ul, . . . , An, un) be the automaton

q0����
- q′1����

q1����
-u0 -A1

�

A1

. . . ql−1�����
Al−1

q′l����
-

ul−1
ql����

Al

�
�

�
�q′l+1����

ql+1����
-ul -

Al+1
�

Al+1

. . . qn����
qn+1����

--un
�

An

as in Lemma 6.9, where u0, . . . , un ∈ A∗ and ∅ ̸= A1, . . . , An ⊆ A are such that: for
each 1 ≤ i ≤ n such that ui (resp. ui−1) is not the empty word, the first (resp. last)
letter of ui (resp. ui−1) does not lie in Ai; if ui = 1 (1 ≤ i ≤ n− 1) then Ai ∩Ai+1 = ∅;
Ai = Aj or Ai∩Aj = ∅ for each pair 1 ≤ i, j ≤ n; Al (1 ≤ l ≤ n) is either the automaton

q′l���
ql���

-Al

Y
Al , or a non-trivial permutation automaton on the alphabet Al with

state set Ql and q′l, ql ∈ Ql two distinct states. Now consider the following automaton
D′.
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p0����
-

q′1����

p′1����
q1����

p1����
-u0

-A1

6ε
?
ε

�

A1

q′2����

p′2����
q2����

p2����
-u1

-A2
�

A2

6ε
?
ε . . .

q′l����

p′l����
ql����

pl����
Al

�
�

�
�q′l+1����

p′l+1����
ql+1����
pl+1����

-ul

-
Al+1

�

Al+1

. . .

qn����

pn����
p′n+1����

--un

�

An

6ε
?
ε 6ε

?
ε

?
ε

Notice that the language recognized by D′ is the same as the language recognized by
D. Finally, let G = G(u0, A1, u1, . . . , ul−1,Al; q

′
l; ql, ul, . . . , An, un) be the automaton

obtained from D′ by the addition of the following transitions: if Ai = Aj for some i ̸= j,

then there are in G transitions p′i
ε−→ q′j , p

′
j

ε−→ q′i, qi
ε−→ pj and qj

ε−→ pi.

For each 1 ≤ i ≤ n with i ̸= l, denote the automaton
q′i���

qi���
-Ai

Y
Ai by Ai. We

say that a word w ∈ A+ is recognized by the automaton G if w is the label of a path P in
the automaton which goes from p0 to p′n+1 and which passes in each state pi (0 ≤ i ≤ n)

and q′j (1 ≤ j ≤ n) exactly once (i.e., it goes through each transition pi
ui−→ p′i+1 and

each automaton Aj exactly once). Such a path is said to be successful. Notice that the
path P is of the form

p0
u0−→p′1

ε−→q′j1

wj1
−−→qj1

ε−→pr1
ur1−→p′r1+1

ε−→q′j2

wj2
−−→qj2 ··· q′jn

wjn
−−→qjn

ε−→pn
un−→p′n+1

where q′jk

wjk

−−→ qjk represents a path in automaton Ajk labeled wjk . Hence w is of the

form w = u0wj1ur1wj2ur2 · · ·wjnun and wjk ∈ A+
jk

for all 1 ≤ k ≤ n. Notice also that
A1 = Aj1 = Ar1 , Ark−1+1 = Ajk = Ark for all 2 ≤ k ≤ n− 1 and An = Ajn = Arn−1+1.

Example 7.5 Let A = {a, b, c, d}, let A =
q′2
k? q2k6z

b

y
b k

a
s

a
be a permutation

automaton on the alphabet {a, b}, and consider the automaton

G = G(1, {a, b}, d,A; q′2; q2, cab, {c}, a, {c}, 1, {d}, b2, {c}, ac).

The automaton G can be represented as follows

p0���
-

q′1���
q1���

q′2���
q2����� ��A q′3���

q3���
q′4���

q4���
q′5���

q5���
q′6���

q6���
p′7���

-p′1���
p1���

p′2���
p2���

p′3���
p3���

p′4���
p4���

p′5���
p5���

p′6���
p6���

-1

-a, b

-d -cab

-c

-a

-c

-1

-d

-b
2

-c

-ac
6ε ?ε 6ε ?ε 6ε ?ε 6ε ?ε 6ε ?ε 6ε ?ε

�

a, b

�

c

�

c

�

d

�

c

where we omit the ε-transitions p′1 → q′2, p
′
2 → q′1, q1 → p2, q2 → p1, p

′
3 → q′4, etc. The

language recognized by G is

L = ({a, b}+dL′ ∪ L′d{a, b}+)cabc+(ac+d+b2 ∪ d+b2c+a)c+ac,

where L′ = a∗ba∗(ba∗ba∗)∗ is the language recognized by A. Note that L is the union of
four (DG ∩ LZE)-recognizable languages. For instance, L′d{a, b}+cabc+d+b2c+ac+ac
is the language recognized by the automaton

q0���
- q′1���

q1���
q′2���

q2���
q′3���

q3���
q′4���

q4���
q′5���

q5���
q′6���

q6���
q7���
--1 zb

y
b

-d -a, b -cab -c -1 -d -b
2

-c -a -c -ac
�

a

�

a

�

a, b

�

c

�

d

�

c

�

c
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which is as in the conditions of Lemma 6.9.

Lemma 7.6 Consider the automaton G above and let L be the language recognized by G.
Then S(L) lies in DG ∩ (Com ∗D) and its subgroups lie in the pseudovariety generated
by the transition group S(Al).

Moreover, if w ∈ A+, k > |u0 · · ·un|+ n is an exponent of S(L) and wk is the label
of a path in G, then there exists a path P and i ∈ {1, . . . , n} such that: P is labeled wk

and contains no ε-transitions; w ∈ A+
i and the path P begins in q′i or qi (in Ql if i = l)

and ends in qi (in Ql if i = l). 2

Now we are able to prove the announced result.

Proof of Theorem 7.4. Suppose first that x = y. Let l ∈ {1, . . . , n} and let G be
the automaton G(u0, A1, u1, . . . , ul−1,Al; q

′
l; ql, ul, . . . , An, un) where Al is the automa-

ton
q′l���

ql���
-Al

Y
Al , let L be the language recognized by G and let S be the

syntactic semigroup of L. By Lemma 7.6, S lies in J ∩ (Com ∗D) and so also is in
DH ∩ (Com ∗D).

Let k > |u0 · · ·un| + n be an exponent of S. Like in the proof of Theorem 5.5, one
can show that G recognizes a word w′ of the form w′ = v0y

k
1v1y

k
2 · · · ykmvm where, for

each 1 ≤ i ≤ m, yi is a word of content Bi. Let P be a successful path in A labeled
w′. In particular, for each 1 ≤ i ≤ m, yi

k is the label of a subpath Q of P and, by
Lemma 7.6, there exists 1 ≤ ji ≤ n such that yi ∈ A+

ji
whence Bi ⊆ Aji . By symmetry,

we also have Aji ⊆ Br for some 1 ≤ r ≤ m. This implies Bi ⊆ Br and so by definition of
normal factorization, we deduce Bi = Br. Then Bi = Aji . Now as the last (resp. first)
letter of the word yki−1vi−1 (resp. viy

k
i+1) does not lie in Bi, we may suppose without loss

of generality that the path Q is of the form t1
ε−→ q′ji

yki
−− → qji

ε−→ t2 for some states
t1 and t2. This implies that m ≤ n and, by symmetry, it follows that n = m. Hence,
the path P is of the form

p0
u0−→p′1

ε−→q′j1

yk1
−−→qj1

ε−→pr1
ur1−→p′r1+1

ε−→q′j2

yk2
−−→qj2 ··· q′jn

ykn
−−→qjn

ε−→pn
un−→p′n+1

and the correspondence i 7→ ri is a permutation of the set {1, . . . , n − 1}. Now as in
the other proofs, we deduce that u0 = v0, un = vn, A1 = Aj1 = B1, An = Ajn = Bn

and vi = uri for every 1 ≤ i ≤ n− 1. Furthermore, since uri is the label of a transition
from pri to p′ri+1, meaning that yki (resp. yki+1) is a word of content Ari (resp. Ari+1),
we deduce that Bi = Ari and that Bi+1 = Ari+1 which shows that points (1) and (2)
hold.

Now put xi = [Ai, gi] and yi = [Ai, hi] for all 1 ≤ i ≤ n. To show that point (3)
holds, let us suppose that xi is not idempotent for some 1 ≤ i ≤ n, i.e., that gi ̸= 1.
Recall that with content Ai and not idempotent, there is no other xj and there is at
most one yj . Using similar arguments as those of the proof of Theorem 5.5, one can
show that, for each Ai-generated group G of H, (xi)G coincides with (yj)G for some
1 ≤ j ≤ n such that Ai = Aj . Now since xi is not idempotent, we deduce that there is
some 1 ≤ k ≤ n such that yk is not idempotent and that (xi)G coincides with (yk)G for
every G. Hence gi = hk and point (3) holds. (Note that, alternatively, we could prove
that (3) holds using analogous arguments as those used in the proof of Corollary 6.11,
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since (DH ∩ (Com ∗D)) ∩G is a pseudovariety of abelian groups and there is at most
one xi and one yj with a fixed content C and not idempotent.)

Let us now prove the converse. If n ≤ 1 or n = 2 and A1 ̸= A2 it is clear that
x = y. If n = 2 and A1 = A2, then the equality x = y is a simple consequence of point
(1) of Proposition 7.1. So suppose that n ≥ 3. In the sequel we will say that a normal
factorization of y of the form y = w0[C1, f1]w1 · · ·wn−1[Cn, fn]wn satisfies condition (∗)
if it satisfies conditions (1) to (3) of the statement with wi, Ci and fi in the place
of vi, Bi and hi respectively. In order to simplify notation we will also denote by C̄
(with C ⊆ A) all regular elements of F̂A(DH ∩ (Com ∗D)) with a fixed content C.
This notation is somewhat ambiguous since it “hides” the restriction of the element to
H. Nevertheless, since we are dealing with normal factorizations, there is at most one
regular element with content C (for C ⊆ A) that is not idempotent. Moreover, by point
(1) of Proposition 7.1, two regular elements with the same content in a factorization can
exchange their positions.

We will begin by proving that y admits a normal factorization of the form

y = u0Ā1u1Ā2w2C̄3 · · · C̄n−1wn−1Ānun (4)

satisfying condition (∗).
Suppose that u1 ̸= v1 or A2 ̸= B2. By hypothesis, there exists some 2 ≤ k ≤ n − 1

such that A1 = Bk, u1 = vk and A2 = Bk+1. So

y = u0Ā1v1B̄2 · · · B̄k−1vk−1Ā1u1Ā2vk+1B̄k+1 · · · B̄n−1vn−1Ānun. (5)

If A2 = A1, we deduce from point (2) of Proposition 7.1, that

y = u0Ā1v1B̄2 · · · vk−1Ā1u1Ā1vk+1 · · · B̄n−1vn−1Ānun

= u0Ā1u1Ā1v1B̄2 · · · vk−1Ā1vk+1 · · · B̄n−1vn−1Ānun

= u0Ā1u1Ā2v1B̄2 · · · vk−1Ā1vk+1 · · · B̄n−1vn−1Ānun

and this factorization is of form (4) and clearly satisfies condition (∗).
Suppose now that A2 ̸= A1. Since the case B2 = B1(= A1) can be treated the same

way as the case A2 = A1, we may also suppose B2 ̸= A1. In this case, k > 2 necessarily
holds. If A2 = B2, using point (2) of Proposition 7.1, we deduce from (5) that

y = u0Ā1v1Ā2v2 · · · vk−1Ā1u1Ā2vk+1 · · · vn−1Ānun

= u0Ā1u1Ā2v2 · · · vk−1Ā1v1Ā2vk+1 · · · vn−1Ānun.

Suppose now that A2 ̸= B2. If there exists k + 1 < i ≤ n such that A1 = Bi, we
have that

y = u0Ā1v1B̄2 · · · vk−1Ā1u1Ā2vk+1 · · · vi−1Ā1vi · · · B̄n−1vn−1Ānun

= u0Ā1u1Ā2vk+1 · · · vi−1Ā1v1B̄2 · · · vk−1Ā1vi · · · B̄n−1vn−1Ānun.

Let us now assume that, for all k + 1 < i ≤ n, A1 ̸= Bi. If there exists 2 ≤ i < k
such that A2 = Bi, we have that

y = u0Ā1v1B̄2 · · · vi−1Ā2vi+1 · · · vk−1Ā1u1Ā2vk+1 · · · B̄n−1vn−1Ānun

= u0Ā1u1Ā2vi+1 · · · vk−1Ā1v1B̄2 · · · vi−1Ā2vk+1 · · · B̄n−1vn−1Ānun.
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Assume now that for all 2 ≤ i < k, A2 ̸= Bi. Since B1 = A1 and A1 ̸= A2, the triple
(A1, v1, B2) is equal to the triple (Al, ul, Al+1) for some 3 ≤ l ≤ n− 1. So

x = u0Ā1u1Ā2 · · · Āl−1ul−1Ā1v1B̄2ul+1Āl+1 · · ·un−1Ānun.

More precisely, l cannot equal 3. Indeed, suppose by way of contradiction that l = 3.
Then

x = u0Ā1u1Ā2u2Ā1v1B̄2u4Ā5 · · ·un−1Ānun,

and there exists some 3 ≤ i ≤ n−1 such that A2 = Bi and A1 = Bi+1 (and u2 = vi). As
a consequence, there is either some k+ 1 < i ≤ n such that A1 = Bi, or some 2 ≤ i < k
such that A2 = Bi. But this contradicts our assumptions that we have been considering.
So l > 3.

Now we claim that there exists 3 ≤ h ≤ l − 1 such that Ah = Br = Bs ̸= A1 for
some 2 ≤ r < k and k + 1 < s ≤ n. Indeed, we have

∀i ∈ {2, . . . , l − 1}∃j ∈ {1, . . . , n− 1}, Ai = Bj and Ai+1 = Bj+1. (6)

In particular, for i = 2, we have A2 = Bj and A3 = Bj+1 for some 1 ≤ j ≤ n − 1.
Since, by hypothesis, A2 ̸= Bj for all 2 ≤ j < k we have j ≥ k. Furthermore, Bk =
A1 ̸= A2. So j ̸= k and we have A3 = Bj for some k+1 < j ≤ n. Note that this implies
A3 ̸= A1 by the assumptions we have made. Consider now i = l − 1 in (6). We have
Al−1 = Bj and (A1 =)Al = Bj+1 for some 1 ≤ j ≤ n − 1. But Bk+1 = A2 ̸= A1. So
j ̸= k and since A1 ̸= Bj for all j > k+1, we deduce that Al−1 = Bj for some 1 ≤ j < k.
Now it is clear by (6) that the claim is valid. Hence, y is equal to

u0Ā1v1B̄2 · · · vr−1Āhvr+1 · · · vk−1Ā1u1Ā2vk+1 · · · vs−1Āhvs+1 · · · vn−1Ānun

= u0Ā1u1Ā2vk+1 · · · vs−1Āhvr+1 · · · vk−1Ā1v1B̄2 · · · vr−1Āhvs+1 · · · vn−1Ānun.

So in all cases y admits a normal factorization of form (4) satisfying condition (∗).
Iterating the above argument, one proves that y admits a factorization of the form

u0Ā1u1Ā2u2Ā3 · · ·un−1Ānun satisfying condition (∗). Now using point (3) of the state-
ment, we deduce from point (1) of Proposition 7.1 that x = y. 2

This last proof shows, in particular, that given two elements of F̂A(DH ∩ (Com ∗D))
written in normal form, these elements are the same if and only if we can pass from one
normal form to the other using a finite number of times the following “rewriting rules”

x1[B, g1]x2[C, h1]x3[B, g2]x4[C, h2]x5 7→ x1[B, g1]x4[C, h1]x3[B, g2]x2[C, h2]x5

x1[B, g1]x2[B, g2]x3[B, g3]x4 7→ x1[B, g1]x3[B, g2]x2[B, g3]x4

x1[B, 1]x2[B, g]x3 7→ x1[B, g]x2[B, 1]x3

x1[B, g]x2[B, 1]x3 7→ x1[B, 1]x2[B, g]x3

given by Proposition 7.1.

The previous results can be easily adapted to the cases V = DReH ∩ (Com ∗D)
and V = DRH ∩ (Com ∗D). The automata used to separate factorizations of distinct
elements of F̂A(V) are the following. Let C = C(u0, A1, u1, . . . ,Al; q

′
l; ql, . . . , An, un) be

an automaton
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q0����
- q1�����

A1

. . . ql−1�����
Al−1

q′l����
ql�����

�
�
�Al

-u0 -
ul−1

ql+1����
-ul

�

Al+1

. . . qn�����
An

qn+1����
--un

as defined after Proposition 5.1, where u0, . . . , un ∈ A∗, ∅ ̸= A1, . . . , An ⊆ A are such
that ui ̸= 1 (1 ≤ i ≤ n − 1) and Al is a permutation automaton on the alphabet Al

with state set Ql and ql, q
′
l ∈ Ql (contrary to the case DH ∩ (Com ∗D), in this case the

states ql and q′l may coincide). Let also Ai = Aj or Ai∩Aj = ∅ for each pair 1 ≤ i, j ≤ n.
Now consider the following automaton C′

p0����
- p′1����

q1����

p1����
-u0

��
��ε BBBN

ε

�

A1

p′2����
q2����

p2����
-u1

�

A2

��
��ε BBBN

ε . . .

q′l����

p′l����
ql����

pl����
Al

�
�

�
�

p′l+1����
ql+1����

pl+1����
-ul

�

Al+1

. . .

qn����

pn����
p′n+1����

--un

�

An

6ε
?
ε

��
��ε BBBN

ε CCCW
ε

Finally, let H = H(u0, A1, u1, . . . ,Al; q
′
l; ql, . . . , An, un) be the automaton obtained

from C′ by the addition of the following transitions: if Ai = Aj for some i ̸= j, then

there are in H the following transitions p′i
ε−→ qj (resp. p′i

ε−→ q′l if j = l), qi
ε−→ pj and

vice-versa.

Lemma 7.7 Consider an automaton H = H(u0, A1, . . . ,Al; q
′
l; ql, . . . , An, un) as above

satisfying the following extra condition (∗): for each 1 ≤ i ≤ n − 1, c(ui) is not con-
tained in either Ai or Ai+1. Let L be the language recognized by H. Then S(L) lies in
DReG ∩ (Com ∗D) and its subgroups lie in the pseudovariety generated by the tran-
sition group S(Al). If instead of the condition (∗), H satisfies the condition “for each
1 ≤ i ≤ n, the first letter of ui does not lie in Ai and, if c(ui) ⊆ Ai+1 (1 ≤ i ≤ n− 1),
then Ai ∩Ai+1 = ∅”, then S(L) ∈ DRG ∩ (Com ∗D). 2

Naturally, the pseudovarieties DReH ∩ (Com ∗D) and DRH ∩ (Com ∗D) admit
the following analogues of Theorem 7.4. Their proofs can be easily adapted from the
proof of Theorem 7.4 and others and so we omit them.

Theorem 7.8 Let H be a pseudovariety of abelian groups, let x and y be two elements
of F̂A(DReH ∩ (Com ∗D)) and let x = u0[w1, A1, g1, w

′
1]u1 · · · un−1[wn, An, gn, w

′
n]un

and y = v0[z1, B1, h1, z
′
1]v1 · · · vm−1[zm, Bm, hm, z′m]vm be factorizations in normal form.

Then x = y if and only if

(1) n = m, u0 = v0, w1 = z1, A1 = B1, An = Bm, w′
n = z′m, un = vm;

(2) if n ≥ 2, then (Bi, z
′
i, vi, zi+1, Bi+1) = (Aα(i), w

′
α(i), uα(i), wα(i)+1, Aα(i)+1) for some

permutation α of the set {1, . . . , n− 1} and for all 1 ≤ i ≤ n− 1;

(3) for every 1 ≤ i ≤ n, hi = gβ(i) for some permutation β of the set {1, . . . , n}. 2

Theorem 7.9 Let H be a pseudovariety of abelian groups, let x and y be two elements
of F̂A(DRH ∩ (Com ∗D)) and let x = u0[w1, A1, g1]u1 · · ·un−1[wn, An, gn]un and y =
v0[z1, B1, h1]v1 · · · vm−1[zm, Bm, hm]vm be factorizations in normal form. Then x = y if
and only if
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(1) n = m, u0 = v0, w1 = z1, A1 = B1, An = Bm, un = vm;

(2) if n ≥ 2, then (Bi, vi, zi+1, Bi+1) = (Aα(i), uα(i), wα(i)+1, Aα(i)+1) for some permu-
tation α of the set {1, . . . , n− 1} and for all 1 ≤ i ≤ n− 1;

(3) for every 1 ≤ i ≤ n, hi = gβ(i) for some permutation β of the set {1, . . . , n}. 2

One can verify from Theorem 7.8 that if x, y ∈ F̂A(DReH ∩ (Com ∗D)), then x = y
if and only if DA ∩ (Com ∗D) and H satisfy x = y. Analogous remarks are valid for
DRH ∩ (Com ∗D) and DH ∩ (Com ∗D), proving the following join decompositions.

Corollary 7.10 Let H be a pseudovariety of abelian groups. Then

• DReH ∩ (Com ∗D) = (DA ∩ (Com ∗D)) ∨H;

• DRH ∩ (Com ∗D) = (R ∩ (Com ∗D)) ∨H;

• DH ∩ (Com ∗D) = (J ∩ (Com ∗D)) ∨H. 2

A left-right dual of Theorem 7.9 is valid for the pseudovarieties DLH ∩ (Com ∗D).
From Corollary 6.2, we deduce that (DRH ∨ DLH) ∩ (Com ∗D) = DReH ∩ (Com ∗D).
Now we show that (DRH ∩ (Com ∗D)) ∨ (DLH ∩ (Com ∗D)) is strictly contained in
(DRH ∨ DLH) ∩ (Com ∗D).

Corollary 7.11 Let H be a pseudovariety of abelian groups. Then

(DRH ∩ (Com ∗D)) ∨ (DLH ∩ (Com ∗D)) ̸= DReH ∩ (Com ∗D).

Proof. Let, for instance, A = {a, b, c}, B = {a, b}, w ∈ BN, w′ ∈ B−N and x, y ∈
F̂A(DReH ∩ (Com ∗D)) with x = [w,B, 1, a−∞b]c[a+∞, B, 1, a−∞]c[ba+∞, B, 1, w′] and
y = [w,B, 1, a−∞b]c[ba+∞, B, 1, a−∞]c[a+∞, B, 1, w′].

Then x and y are different by Theorem 7.8 but their restrictions to both DRH
∩(Com ∗D) and DLH ∩ (Com ∗D) are equal. Indeed, the restrictions of x and y to
DRH ∩ (Com ∗D), for instance, are respectively [w,B, 1]c[a+∞, B, 1]c[ba+∞, B, 1] and
[w,B, 1]c[ba+∞, B, 1]c[a+∞, B, 1], which are clearly the same by Theorem 7.9. So the
result follows from Reiterman’s Theorem. 2

8 Implicit operations on DG ∩ LZE ∩ ECom

Consider the pseudovariety ECom of all finite semigroups in which the idempotents com-
mute. Observe that DS ∩ ECom = DG ∩ ECom. Recall that in a semigroup having
commuting idempotents, the product of regular elements is again a regular element, since
the product of two idempotents in such a semigroup is a regular element. This allows
us to consider a notion of normal factorization for elements of F̂A(DH ∩W ∩ ECom)
(where W is one of LZE, L(Sl ∨G) and Com ∗D) by imposing the extra condition

ui ̸= 1 for every 1 ≤ i ≤ n− 1

in the definition of normal factorization for elements of F̂A(DH ∩W). Note that
ECom ⊆ LECom and that the semigroups F̂A(DH ∩ ECom) were studied by Almeida
and Weil [6, 7].
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With this definition of normal factorization for the implicit operations on DH ∩W∩
ECom, and doing a study absolutely similar to that conducted for DH ∩W, one can
show that the analogous statements, obtained from Theorems 6.10 and 7.4 by a simple
substitution of DH ∩W by DH ∩W ∩ ECom, are valid.

Note that LZE ∩ ECom is the pseudovariety intermediate between ZE and ECom,
defined by the pseudoidentity (exe)f = f(exe).

Recall (see [6]) that a non-trivial pseudovariety of groupsH is arborescent if (H ∩Ab)
∗H = H. As examples of arborescent pseudovarieties of groups, we can mention the
pseudovarieties closed under semidirect product (see Gildenhuys and Ribes [14]). On
the other hand, the pseudovariety Ab, for instance, is not arborescent. The condition
“ui ̸= 1 for every 1 ≤ i ≤ n−1” in the definition of normal factorization of the elements
of F̂A(DH ∩W ∩ ECom) permits the following join decompositions.

Corollary 8.1 Let W be one of the pseudovarieties LZE, L(Sl ∨G) and Com ∗D
and let H be an arborescent pseudovariety of groups. In the cases W = L(Sl ∨G) and
W = Com ∗D, H can also be abelian. Then

DH ∩W ∩ ECom = (J ∩W ∩ ECom) ∨H.2

The proof of the “arborescent” part of this result can be done exactly as in the
proof of Theorem 4.1 in [6]. The “abelian” part is similar to Corollaries 6.11 and 7.10.
Note that the “arborescent” condition in the case W = Com ∗D is superfluous since
(Com ∗D) ∩G = Ab.

9 The corresponding varieties of languages

In this section we give combinatorial descriptions of the varieties of languages associated,
via Eilenberg’s Theorem, with the pseudovarieties studied in the previous sections. We
present, for each of these varieties, a set of generators. In this section we fix an alphabet
A.

9.1 (DA ∩ LJ)-recognizable languages

Denote by K(DA ∩ LJ) (resp. K(R ∩ LJ)) the class of all languages of the form

u0A
∗
1X1A

∗
2 . . . Xn−1A

∗
nun

such that n, r ≥ 0, u0, . . . , un ∈ A∗, ∅ ̸= A1, . . . , An ⊆ A and for all 1 ≤ i ≤ n− 1:

Xi =

{
ui if ui ̸= 1
(Ai \Ai+1)(Ai ∩Ai+1)

≥r if ui = 1;

if ui ̸= 1 then c(ui) is not contained in either Ai or Ai+1; if ui = 1 then Ai and Ai+1

are ⊆-incomparable (resp. r = 0 and for all 1 ≤ j ≤ n such that uj ̸= 1, the first letter
of uj does not lie in Aj).

Note that the languages of the class K(DA ∩ LJ) are precisely the languages recog-
nized by the automata A(r;u0, A1, u1, . . . , An, un) as in Lemma 4.2, and thus they are
(DA ∩ LJ)-recognizable. The description of the class of all (DA ∩ LJ)-recognizable lan-
guages of A+ is now an easy consequence of Eilenberg’s correspondence and of Corol-
lary 4.4. Similar results hold for R ∩ LJ.
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Theorem 9.1 Let A be an alphabet. The class of languages in A+ which are recog-
nized by semigroups in DA ∩ LJ (resp. R ∩ LJ), is the Boolean algebra generated by
K(DA ∩ LJ) (resp. K(R ∩ LJ)). 2

9.2 (DReG ∩W)-recognizable languages, W = LECom,LZE,L(Sl ∨G)

Denote by K(DReH ∩ LECom) (resp. K(DRH ∩ LECom)) the class of all languages
of the form

u0A
∗
1u1 . . . A

∗
l−1ul−1LlulA

∗
l+1 . . . A

∗
nun

such that:

• n ≥ 0, 1 ≤ l ≤ n, u0, . . . , un ∈ A∗, ui ̸= 1 for all 1 ≤ i ≤ n− 1;

• Ll is a group language over Al whose syntactic semigroup lies in H and whose
minimal automaton has only one terminal state;

• ∅ ̸= A1, . . . , An ⊆ A and, for each 1 ≤ i ≤ n − 1, c(ui) is not contained in either
Ai or Ai+1 (resp. for each 1 ≤ i ≤ n, the first letter of ui does not lie in Ai and,
for each 1 ≤ i ≤ n − 1, the last letter of ui lies in Ai+1 and, if c(ui) ⊆ Ai+1 then
Ai ∩Ai+1 = ∅).

Then just as above we have the following result.

Theorem 9.2 Let H be a pseudovariety of groups. The class of languages in A+,
recognized by semigroups in DReH ∩ LECom (resp. DRH ∩ LECom), is the Boolean
algebra generated by K(DReH ∩ LECom) (resp. K(DRH ∩ LECom)). 2

Now denote by K(DH ∩ LECom) the class of all languages of the form

u0A
+
1 u1 . . . A

+
l−1ul−1LlulA

+
l+1 . . . A

+
n un

with:

• n ≥ 0, 1 ≤ l ≤ n, u0, . . . , un ∈ A∗;

• Ll is either A+
l or is a group language over Al whose syntactic semigroup lies in

H and whose minimal automaton is not trivial and has only one terminal state,
distinct from the initial one;

• ∅ ̸= A1, . . . , An ⊆ A;

• if ui = 1 then Ai∩Ai+1 = ∅ and for each 1 ≤ i ≤ n such that ui (resp. ui−1) is not
the empty word, the first (resp. last) letter of ui (resp. ui−1) does not lie in Ai.

Theorem 9.3 Let H be a pseudovariety of groups. The class of languages in A+ which
are recognized by semigroups in DH ∩ LECom, is the Boolean algebra generated by
K(DH ∩ LECom). 2

A similar situation arises when we consider the pseudovariety LZE (resp. L(Sl ∨G))
in the place of LECom. The corresponding languages are obtained by the addition of
the condition “Ai = Aj or Ai ∩Aj = ∅ for all 1 ≤ i, j ≤ n” (resp. “Ai ∩Aj = ∅ for each
pair i ̸= j”). In the case of the (DRH ∩ LZE)- and (DRH ∩ L(Sl ∨G))- recognizable
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languages, we also have to drop the condition “for each 1 ≤ i ≤ n− 1, the last letter of
ui lies in Ai+1” in the definition of the (DRH ∩ LECom)-recognizable languages.

One can also use the join decompositions of Corollaries 6.8 and 6.11 to give alterna-
tive descriptions of those languages. For instance, denote by K(DLH ∩ LZE) the left-
right dual of K(DRH ∩ LZE). Then the join decomposition (DRH ∩ LZE) ∨ (DLH
∩LZE) = DReH ∩ LZE given by Corollary 6.8 permits us to give the alternative des-
cription of the following result.

Theorem 9.4 Let H be a pseudovariety of groups. The class of languages in A+ which
are recognized by semigroups in DReH ∩ LZE, is the Boolean algebra generated by
K(DRH ∩ LZE) ∪ K(DLH ∩ LZE). 2

Also, in the case of DReH ∩ L(Sl ∨G), for instance, we deduce from Corollary 6.11
the following alternative description.

Theorem 9.5 Let H be a pseudovariety of groups. The class of languages in A+,
recognized by semigroups in DReH ∩ L(Sl ∨G), is the Boolean algebra generated by
K(DA ∩ LSl) and by the languages recognized by semigroups in H. 2

9.3 (DReG ∩ (Com ∗D))-recognizable languages

Let H be a pseudovariety of abelian groups and consider a language of the form

u0A
∗
1u1 . . . A

∗
l−1ul−1LlulA

∗
l+1 . . . A

∗
nun

such that:

• n ≥ 0, 1 ≤ l ≤ n, u0, . . . , un ∈ A∗, ui ̸= 1 for all 1 ≤ i ≤ n− 1;

• Ll is a group language over Al whose syntactic semigroup lies in H and whose
minimal automaton (say Al) has only one terminal state;

• ∅ ̸= A1, . . . , An ⊆ A;

• Ai = Aj or Ai ∩Aj = ∅ for all 1 ≤ i, j ≤ n;

• for each 1 ≤ i ≤ n− 1, c(ui) is not contained in either Ai or Ai+1.

Now denote by L(u0, A1, . . . , Al−1, ul−1, Ll, ul, Al+1, . . . , An, un) the (finite) union of
all languages of the form

u0K1v1K2 · · · vn−1Knun

such that:

• for each 1 ≤ i ≤ n, Ki is a language over a subalphabet Bi of A;

• B1 = A1, Bn = An and, if n ≥ 2, there is a permutation α of the set {1, . . . , n−1}
such that (Bi, vi, Bi+1) = (Aα(i), uα(i), Aα(i)+1) for all 1 ≤ i ≤ n− 1;

• Kj = Ll for some 1 ≤ j ≤ n and Ki = B∗
i for every i ̸= j.

Note that the language L(u0, A1, . . . , Ll, ul, . . . , An, un) is precisely the language
recognized by the automaton H(u0, A1, . . . ,Al; q

′
l; ql, . . . , An, un), where q′l and ql are,

respectively, the initial and the final states of Al. Thus it is (DReH ∩ (Com ∗D))-
recognizable, by Lemma 7.7. Now denote by K(DReH ∩ (Com ∗D)) the class of all
the languages L(u0, A1, . . . , Ll, ul, . . . , An, un).
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Theorem 9.6 Let H be a pseudovariety of abelian groups. The class of languages in
A+, recognized by semigroups in DReH ∩ (Com ∗D), is the Boolean algebra generated
by K(DReH ∩ (Com ∗D)). 2

The (DRH ∩ (Com ∗D))-recognizable languages are described analogously. It suf-
fices to substitute the condition “for each 1 ≤ i ≤ n− 1, c(ui) is not contained in either
Ai or Ai+1” in the definition of K(DReH ∩ (Com ∗D)) above, by the condition “for
each 1 ≤ i ≤ n, the first letter of ui does not lie in Ai and if c(ui) ⊆ Ai+1 (1 ≤ i ≤ n−1),
then Ai ∩Ai+1 = ∅”.

Consider now a language of the form

u0A
+
1 u1 . . . A

+
l−1ul−1LlulA

+
l+1 . . . A

+
n un

with:

• n ≥ 0, 1 ≤ l ≤ n, u0, . . . , un ∈ A∗;

• Ll is either A
+
l or is a group language over Al whose syntactic semigroup lies in H

and whose minimal automaton (say Al) is not trivial and has only one terminal
state, distinct from the initial one;

• ∅ ̸= A1, . . . , An ⊆ A;

• Ai = Aj or Ai ∩Aj = ∅ for all 1 ≤ i, j ≤ n;

• if ui = 1 then Ai ∩Ai+1 = ∅;

• for each 1 ≤ i ≤ n such that ui (resp. ui−1) is not the empty word, the first (resp.
last) letter of ui (resp. ui−1) does not lie in Ai.

Denote by L′(u0, A1, . . . , Al−1, ul−1, Ll, ul, Al+1, . . . , An, un) the (finite) union of all
languages of the form

u0K1v1K2 · · · vn−1Knun

such that:

• for each 1 ≤ i ≤ n, Ki is a language over a subalphabet Bi of A;

• B1 = A1, Bn = An and, if n ≥ 2, there is a permutation α of the set {1, . . . , n−1}
such that (Bi, vi, Bi+1) = (Aα(i), uα(i), Aα(i)+1) for all 1 ≤ i ≤ n− 1;

• Kj = Ll for some 1 ≤ j ≤ n and Ki = B+
i for every i ̸= j.

The language L′(u0, A1, . . . , Ll, ul, . . . , An, un) is the language recognized by the au-
tomaton G(u0, A1, . . . ,Al; q

′
l; ql, . . . , An, un), where q′l and ql are, respectively, the initial

and the final states of Al. Thus by Lemma 7.6, it is (DH ∩ (Com ∗D))-recognizable.
Denote by K(DH ∩ (Com ∗D)) the class of all the languages L′(u0, A1, . . . , An, un).

Theorem 9.7 Let H be a pseudovariety of abelian groups. The class of languages in
A+, recognized by semigroups in DH ∩ (Com ∗D), is the Boolean algebra generated by
K(DH ∩ (Com ∗D)). 2

In the case, for instance, of the pseudovarieties DReH ∩ (Com ∗D), Corollary 7.10
permits the following alternative description.
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Theorem 9.8 Let H be a pseudovariety of abelian groups. The class of languages in
A+, recognized by semigroups in DReH ∩ (Com ∗D), is the Boolean algebra generated
by K(DA ∩ (Com ∗D)) and by the languages recognized by semigroups in H. 2

The (DH ∩W ∩ ECom)-recognizable languages (whereW is one of LZE, L(Sl ∨G)
or Com ∗D) are described likewise to (DH ∩W)-recognizable languages: it suffices to
add on the condition that “ui ̸= 1 for all 1 ≤ i ≤ n− 1”.

9.4 Comparative tables

We summarize in two tables some of the results of this section. We restrict ourselves
to aperiodic pseudovarieties. We present first varieties of languages which are Boolean
combinations of languages of the form

u0A
∗
1u1A

∗
2u2 · · ·A∗

nun

where n ≥ 0, u0, . . . , un ∈ A∗ with ui ̸= 1 (1 ≤ i ≤ n − 1) and ∅ ≠ A1, . . . , An ⊆ A.
These varieties are described, furthermore, by the imposition of certain conditions on
the ui’s and the Ai’s.

Pseudovariety Conditions

DA ∩ LECom c(ui) ̸⊆ Ai, Ai+1 (1 ≤ i ≤ n− 1)

c(ui) ̸⊆ Ai, Ai+1 (1 ≤ i ≤ n− 1)
DA ∩ LZE

Ai = Aj or Ai ∩Aj = ∅
c(ui) ̸⊆ Ai, Ai+1 (1 ≤ i ≤ n− 1)

DA ∩ LSl
Ai ∩Aj = ∅ (i ̸= j)

p1(ui) ̸∈ Ai (1 ≤ i ≤ n)

R ∩ LECom s1(ui) ∈ Ai+1 (1 ≤ i ≤ n− 1)

if c(ui) ⊆ Ai+1 (1 ≤ i ≤ n− 1), then Ai ∩Ai+1 = ∅
p1(ui) ̸∈ Ai (1 ≤ i ≤ n)

R ∩ LZE if c(ui) ⊆ Ai+1 (1 ≤ i ≤ n− 1), then Ai ∩Ai+1 = ∅
Ai = Aj or Ai ∩Aj = ∅
p1(ui) ̸∈ Ai (1 ≤ i ≤ n)

R ∩ LSl
Ai ∩Aj = ∅ (i ̸= j)

Now we present varieties of languages which are Boolean combinations of languages
of the form

u0A
+
1 u1A

+
2 u2 · · ·A

+
n un

where n ≥ 0, u0, . . . , un ∈ A∗, ∅ ̸= A1, . . . , An ⊆ A, and for every 1 ≤ i ≤ n such that
ui (resp. ui−1) is not the empty word, the first (resp. last) letter of ui (resp. ui−1) does
not lie in Ai.
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Pseudovariety Conditions

J ∩ LECom if ui = 1 (1 ≤ i ≤ n− 1), then Ai ∩Ai+1 = ∅
if ui = 1 (1 ≤ i ≤ n− 1), then Ai ∩Ai+1 = ∅

J ∩ LZE
Ai = Aj or Ai ∩Aj = ∅

J ∩ LSl Ai ∩Aj = ∅ (i ̸= j)

ui ̸= 1 (1 ≤ i ≤ n− 1)
J ∩ LZE ∩ ECom

Ai = Aj or Ai ∩Aj = ∅
ui ̸= 1 (1 ≤ i ≤ n− 1)

J ∩ LSl ∩ ECom
Ai ∩Aj = ∅ (i ̸= j)
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[21] D. Thérien and A. Weiss, Graph congruences and wreath products, J. Pure Appl.
Algebra 36 (1985), 205-215.

[22] P. Trotter and P. Weil, The lattice of pseudovarieties of idempotent semigroups and
a non-regular analogue, Algebra Universalis 37 (1997), 491-526.

[23] M. Volkov, On a class of semigroup pseudovarieties without finite pseudoidentity
basis, Int. J. Algebra and Computation 5 (1995), 127-135.

[24] P. Weil, Implicit operations on pseudovarieties: an introduction, in Semigroups and
Monoids and Applications, ed. J. Rhodes, World Scientific, Singapore, 1991, pp.
89-104.

[25] M. Zeitoun, Opérations implicites et variétés de semigroupes finis, Ph.D. Thesis,
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