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Abstract

This tutorial explores the rminer package of the R statistical tool. Following a learning by ex-
ample approach, several code recipes are presented and the obtained results analyzed. The goal
is to demonstrate the package capabilities for executing classification and regression (including
time series forecasting) data mining tasks. A special focus is provided to three Cross Industry
Standard Process for Data Mining (CRISP-DM) stages: data preparation, modeling and evalu-
ation.

Keywords: Automated Machine Learning (AutoML), Classification, Computational Intelli-
gence, Data Mining, Regression, R tool, Time Series.
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Chapter 1

Introduction

This tutorial explores the rminer package of the R tool. Rather than providing state-of-the-
art predictive performances and producing code that might require an heavy computation, the
goal is to show simple demonstration code examples for executing classification and regres-
sion (including time series forecasting) data mining tasks. Once these code examples are un-
derstood by users, then the code can be extended and adapted for more complex uses. All
code examples presented in this tutorial are available at: https://drive.google.com/
file/d/11pi5BQpDDQO8cO9yiP4WRZ_bzFXY6p—MzT/view?usp=sharing. This tu-
torial assumes previous knowledge about the R tool and data mining basic concepts. More
details about these topics can be found in: R tool — (Paradis, 2002; [Zuur et al., 2009; Venables
et al.l [2013); data mining, classification and regression — (Hastie et al., [2009; |Witten et al.,
2017).

The rminer package (https://cran.r-project.org/package=rminer) goal is
to provide a reduced and coherent set of R functions to perform classification and regression.
The package is particularly suited for non R expert users, as it allows to perform the full data
mining process using very few lines of code. Figure[I.I|shows the suggested use of the rminer
package and its relation with the Cross Industry Standard Process for Data Mining (CRISP-
DM) methodology (Chapman et al.,|2000). As shown by the figure, the rminer package includes
functions that are useful in three CRISP-DM stages: data preparation, modeling and evaluation.
Also, the advised rminer use implies writing a distinct R file or script for each CRISP-DM
phase, with each R file receiving inputs and generating outputs (e.g., such as file 2b-math-1.R
used for the data preparation of the student performance analysis, as shown in Section [2.4).
The next tutorial chapters are devoted to these three stages (Chapters and [)). Then, the
particular case of time series forecasting is addressed in Chapter 5] Finally, closing conclusions
are drawn (Chapter [6).

The rminer package has been adopted by users with distinct domain expertises and in a
wide range of applications. From 2th May of 2013 to 15th December of 2020, the package
has been downloaded 23,306 times from the RStudio CRAN servers (cran.rstudio.com).
The rminer package has been used by both information technology (IT) and non IT users (e.g.,
managers, biologists or civil engineers). There is a large list of rminer applications performed
by the author of this tutorial, including (among others):

Classification:

— mortality prediction (Silva et al., 2006) and rating organ failure in intensive care units
(Silva et al., [2008));


https://drive.google.com/file/d/1lpi5BQpDDQ8c9yiP4WRZ_bzFXY6p-MzT/view?usp=sharing
https://drive.google.com/file/d/1lpi5BQpDDQ8c9yiP4WRZ_bzFXY6p-MzT/view?usp=sharing
https://cran.r-project.org/package=rminer
cran.rstudio.com
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Figure 1.1: The CRISP-DM methodology and suggest rminer package use, adapted from
(Cortez, [2010a).

— predicting secondary school student performance (Cortez and Silva, |2008));
— spam email detection (Lopes et al., 2011)); and
— bank telemarketing (Moro et al., [2014).

Regression:

— lamb meat quality assessment (Cortez et al., 2006);
— estimating wine quality (Cortez et al., 2009);

— studying the impact of topology characteristics on wireless mesh networks (Calcada
et al.,[2012);

— time series forecasting (Stepnicka et al., 2013);
— predicting jet grouting columns uniaxial compressive strength (Tinoco et al., 2014);
— predicting hospital Length of Stay (Caetano et al., 2014);

— estimating earthworks and soil compaction equipment performance (Parente et al.,
2015);

— stock market prediction based on microblogging data (Oliverra et al., 2017);

— estimating the number of sales of smartphone devices by eBay sellers (Silva et al.,
2018)); and

— multivariate time series demand forecasting (Gongalves et al., 2021)).

The package has also been used by other researchers. A few examples such applications
are: bioinformatics (Fortino et al.,|2014)), marketing (Nachev and Hogan, [2014)), oceanography
(Cortese et al., [2013)), software project costs (Mittas and Angelis, 2013), medicine (Sanchis-
Sanchez et al., 2016) and river flow forecasting (Zhang et al., | 2020)).
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1.1 Installation and Usage

The R is an open source and multi-platform tool that can be downloaded from the official
web site: http://www.r—project.orqg/ (arecent and stable version should be selected).
The rminer package can be easily installed by opening the R program and using its package
installation menus or by typing the command after the prompt: install.packages("rminer").
Only one package installation is needed for a particular R version.

The rminer functions and help are available once the package is loaded, by using the com-
mand: library(rminer). Even if the package is not loaded, the package is still accessible by
using the :: (double colon) operator. Such operator can also be used to disambiguate functions
from distinct packages. An example of the use of rminer is:

library (rminer) # load the package

help (package=rminer) # full list of rminer functions
help (mmetric) # help on rminer mmetric function
help(fit) # help on modeltools::fit and rminer::fit
help (fit, package=rminer) # direct help on fit
?rminer::fit # same direct help

# any rminer function can be called, such as mmetric:
cat ("MAE:", mmetric(l:5,5:1,metric="MAE"), "\n")

The next example uses rminer without calling the library function:

# any rminer function can be called if package was installed

# and the :: operator is used:

help (package=rminer) # full list of rminer functions

help (mmetric, package=rminer) # help on rminer mmetric function
?rminer::fit # direct help

# any rminer function can be called with rminer::, such as mmetric:
cat ("MAE:", rminer::mmetric(1:5,5:1,metric="MAE"),"\n")

1.2 Help

Once the package is loaded, the full list of the rminer functions is made available by execut-
ing: help(package=rminer), as shown in the codes examples of Section Examples of a
direct help for some of its main functions are: help(fit,package=rminer), help(predict.fit),
help(mining), help(mmetrics) and help(mgraph).

1.3 Citation

If you find the rminer package useful, please cite it in your publications. The full reference is:

Cortez, P. (2010). Data Mining with Neural Networks and Support Vector Machines using the
R/rminer Tool. In Perner, P., editor, Advances in Data Mining Applications and Theoretical
Aspects, 10th Industrial Conference on Data Mining, pages 572583, Berlin, Germany. LNAI
6171, Springer.

The bibtex reference can be found here: https://dblp.uni—-trier.de/rec/conf/
incdm/Cortezl0.html?view=bibtex


http://www.r-project.org/
https://dblp.uni-trier.de/rec/conf/incdm/Cortez10.html?view=bibtex
https://dblp.uni-trier.de/rec/conf/incdm/Cortez10.html?view=bibtex
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Chapter 2

Data Preparation

The data preparation stage of CRISP-DM can include several tasks, such as data selection,
cleaning and transformation.

2.1 Loading Data

The rminer package assumes that a dataset is available as a data.frame R object. This can easily
be achieved by using the data or read.table R functions. The former function loads datasets
already made available in R packages, while the latter can load tabulated data files (e.g., CSV
format). One important aspect is that categorical attributes need to be converted into factors.
When using the read.table function, this is achieved by seting the argument stringsAsFac-
tors=TRUE. As an demonstrative example, file 2-prep-1.R loads several datasets, including the
famous Iris and some University California Irvine (UCI) Machine Learning (ML) repository
(Asuncion and Newman, |2007) datasets donated by the author of this document, namely: Wine
Quality (Cortez et al., 2009), Forest Fires (Cortez and Morais, 2007), Bank Marketing (Moro
et al., [2014)) and Student Performance (Cortez and Silval, [2008)).

### 2-prep—-1.R: data loading example
### saves math2.csv into current working directory, as defined by getwd()

# simple show rows x columns function
nelems=function (d) paste (nrow(d),"x",ncol(d))

# load the famous Iris dataset:

data (iris) # load the data

cat ("iris:",nelems (iris), "\n")

print (class(iris)) # show class
print (names (iris)) # show attributes

### load all my UCI ML datasets ###

# White Wine Quality dataset:

URL="http://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/
winequality-white.csv"

wine=read.table (file=URL, header=TRUE, sep=";")

cat ("wine quality white:",nelems (wine), "\n")

print (class(wine)) # show class
nelems (wine) # show rows x columns
print (names (wine)) # show attributes

# forest fires dataset:
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URL="http://archive.ics.uci.edu/ml/machine-learning-databases/forest-fires/
forestfires.csv"

fires=read.table (file=URL, header=TRUE, sep=", ", stringsAsFactors=TRUE)

cat ("forest fires:",nelems (fires),"\n")

print (class(fires)) # show class

print (names (fires)) # show attributes

# load bank marketing dataset (in zip file):

URL="http://archive.ics.uci.edu/ml/machine-learning-databases/00222/bank-
additional.zip"

temp=tempfile () # temporary file

download.file (URL, temp) # download file to temporary

# unzip file and load into data.frame:

bank=read.table (unz (temp, "bank-additional/bank—-additional.csv"), sep=";",
header=TRUE, stringsAsFactors=TRUE)

cat ("bank marketing:",nelems (bank),"\n")

print (class (bank)) # show class

print (names (bank)) # show attributes

# student performance dataset (in zip file):

URL="http://archive.ics.uci.edu/ml/machine-learning-databases/00320/student
.zip"

temp=tempfile () # temporary file

download.file (URL, temp) # download file to temporary

# unzip file and load into data.frame:

math=read.table (unz (temp, "student-mat.csv"), sep=";", header=TRUE,
stringsAsFactors=TRUE)

cat ("student performance math:",nelems (math), "\n")

print (class (math)) # show class

print (names (math)) # show attributes

# save data.frame to csv file:

write.table (math, file="math.csv", row.names=FALSE, col.names=TRUE)

The obtained output is:

> source ("2-prep-1.R")
iris: 150 x 5

[1] "data.frame"
[1] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width" "Species"
wine quality white: 4898 x 12
[1] "data.frame"
[1] "fixed.acidity" "volatile.acidity" "citric.acid"
[4] "residual.sugar" "chlorides" "free.sulfur.dioxide"
[7] "total.sulfur.dioxide" "density" "pH"
[10] "sulphates" "alcohol" "quality"
forest fires: 517 x 13
[1] "data.frame"
[1] "X" "y" "month" "day" "FEMC" "DMC" "pCc" "ISI" "temp"
"w RH "
[11] "wind"™ "rain" T"area"

trying URL 'http://archive.ics.uci.edu/ml/machine-learning-databases/00222/
bank-additional.zip’
Content type ’application/x-httpd-php’ length 444572 bytes (434 KB)

downloaded 434 KB

bank marketing: 4119 x 21
[1] "data.frame"
[1] "age" "job" "marital" "education" "
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default"
[6] "housing" "loan" "contact" "month" "
day_of_week"
[11] "duration" "campaign" "pdays" "previous" "
poutcome"
[16] "emp.var.rate" "cons.price.idx" "cons.conf.idx" "euribor3m" "
nr.employed"
[21] "y"
trying URL ’'http://archive.ics.uci.edu/ml/machine-learning—databases/00320/
student.zip’
Content type ’application/x-httpd-php’ length 20478 bytes (19 KB)

downloaded 19 KB

student performance math: 395 x 33

[1] "data.frame"
[1] "school" "sex" "age" "address" "famsize" "
Pstatus" "Medu"
[8] "Fedu" "Mjob" "EFjob" "reason" "guardian" "
traveltime" "studytime"
[15] "failures" "schoolsup" "famsup" "paid" "activities" "
nursery" "higher"
[22] "internet" "romantic" "famrel" "freetime" "goout" "Dalc
" "Walc"
[29] "health" "absences" "G1" "G2" "G3"

2.2 Data Selection and Transformation

Data selection and transformation is a crucial step for achieving a successful data mining project
and it includes may several operations, such as outlier detection and removal, attribute and
instance selection, assuring data quality, transforming attributes, etc. For further details, consult
(Witten et al.| [2017)).

A data.frame can be easily manipulated as a matrix using standard R operations (e.g., cut,
tt sample, cbind, nrow). The rminer package includes some useful preprocessing functions, such
as:

delevels —reduce or replace factor levels;
imputation — missing data imputation and;

CasesSeries — create a data.frame from a time series (vector) using a sliding window. A sliding
window contains a set of time lags that are used to define variable inputs from a series. For
example, let us consider the series 61, 10,, 143, 184,235,27¢ (y; values) with 6 elements. If
the {1,3} sliding window is used, then three training examples can be created (each exam-
ple with 2 inputs and one output): 6,14 — 18, 10,18 — 23 and 14,23 — 27. This simple
example can be tested by using the command: CasesSeries(c(6,10,14,18,23,27),c(1,3)).

These functions will be applied to the datasets loaded in Section [2.1]in the next and subsequent
demonstration files. Some initial selection and transformation operations are executed in file
2-prep-2.R!

### 2-prep-2.R: data selection and transformation example
### saves prep2-1.pdf, wine3.csv and bank2.csv file into working directory
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library (rminer) # load rminer package

### row and column selection examples:

# select only virginica data rows:

print ("-- 1lst example: selection of virginica rows —--")
iris2=iris[iris$Species=="virginica", ]

cat ("iris2",nelems (iris2),"\n")

print (table(iris2$Species))

# select a random subsample of white wine dataset:

print ("-- 2nd example: selection of 500 wine samples —-")
set.seed (12345) # set for replicability

s=sample (l:nrow(wine), 500) # random with 500 indexes
wine2=wine[s,] # wine2 has only 500 samples from wine
cat ("wine2",nelems (wine2), "\n")

# column (attribute) selection example:

print ("-- 3rd example: selection of 5 wine columns —--")
att=c(3,6,8,11,12) # select 5 attributes
wine3=wine2 [, att]

cat ("wine3",nelems (wine3), "\n")

print (names (wine3))

### attribute transformation examples:

# numeric to discrete:

# three classes poor=[1 to 4], average=[5 to 6], good=[6 to 10]

print ("-- 4th example: numeric to discrete transform (wine) —--")
wine3$quality=cut (wine3S$Squality,c(1,4,6,10),c("poor", "average", "good"))
print (table (wine2S$Squality))

print (table (wine3Squality))

# save new data.frame to csv file:

write.table (wine3, file="wine3.csv", row.names=FALSE, col.names=TRUE)

# numeric to numeric:

# log transform to forest fires area (positive skew)

print ("-- 5th example: numeric to numeric transform (forest fires) —--")
logarea=log(fires$Sarea+l)

pdf ("prep2-1.pdf") # create pdf file

par (mfrow=c(2,1))

hist (firesS$area,col="gray")

hist (logarea,col="gray")

dev.off () # end of pdf creation

# discrete to discrete (factor to factor)

# transform month into trimesters

print ("-- 6th example: discrete to discrete (bank marketing) --")
print (table (bankSmonth) )

tri=delevels (bank$Smonth, levels=c ("jan", "feb", "mar"), label="1st")
tri=delevels (tri, levels=c("apr", "may", "jun"), label="2nd")
tri=delevels (tri, levels=c("jul", "aug", "sep"), label="3rd")
tri=delevels (tri, levels=c ("oct", "nov","dec"), label="4th")

# put the levels in order:

tri=relevel (tri,"1lst")

print (table(tri))

# create new data.frame with bank and new atribute:
bank2=cbind(bank([1:9],tri,bank[10:ncol (bank)])

cat ("bank2", nelems (bank2), "\n")

print (names (bank2))
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# save into a csv file:
write.table (bank2, file="bank2.csv", sep=";", row.names=FALSE, col.names=TRUE)

# load the airline passengers data:
data (AirPassengers)

print ("-- 6th example: time series to data.frame (AirPassengers) —--")
dtraffic=CasesSeries (AirPassengers,c(1,12,13),1,18) # 1lst five training
examples

print (dtraffic)

The execution result is:

> source ("2-prep-2.R")
[1] "-— 1lst example: selection of virginica rows —--—
iris2 50 x 5

setosa versicolor virginica

0 0 50
[1] "-- 2nd example: selection of 500 wine samples ——"
wine2 500 x 12
[1] "-— 3rd example: selection of 5 wine columns —--"
wine3 500 x 5
[1] "citric.acid" "free.sulfur.dioxide" "density" "
alcohol"
[5] "gquality"
[1] "-— 4th example: numeric to discrete transform (wine) —--"

3 4 5 6 7 8
1 17 151 221 95 15

poor average good
18 372 110
[1] "-— 5th example: numeric to numeric transform (forest fires) —--"
[1] "-— 6th example: discrete to discrete (bank marketing) —-"

apr aug dec Jjul Jjun mar may nov oct sep
215 636 22 711 530 48 1378 446 69 64
tri
1st 2nd 3rd 4th
48 2123 1411 537
bank2 4119 x 22

[1] "age" "job" "marital" "education" "
default"
[6] "housing" "loan" "contact" "month" "
tri"
[11] "day_of_week" "duration" "campaign" "pdays" "
previous"
[16] "poutcome" "emp.var.rate" "cons.price.idx" "cons.conf.idx" "
euribor3m"
[21] "nr.employed" "y"
[1] "-— 6th example: time series to data.frame (AirPassengers) —--"

lagl3 lagl2 lagl vy
112 118 115 126
118 132 126 141
132 129 141 135
129 121 135 125
121 135 125 149

g w N

Figure [2.1] shows the result of the two created histograms. Turning to the rminer functions,
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the delevels function is used to reduce the number of levels of the bank$month attribute, replac-
ing the month labels by their respective trimester. Also, the CasesSeries function is used to
build a data.frame from the AirPassengers time series (numeric vector). In the example, the
sliding window is made of the {1,12,13} time lags and only applied to the first 18 elements of
the series, generating a tabular object with five examples.
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Figure 2.1: Histogram for the forest fires area (top) and its logarithm transform (bottom).

2.3 Missing Data

Missing data is quite common in some domains, such as questionnaire responses. There are
several methods for handing missing data, such as: case or attribute deletion; value imputation;
and hot deck (Brown and Kros|, 2003)).

The first method can be easily adopted in R by using the na.omit R function. The imputation
function from rminer implements the other methods. Additional R missing data handling meth-
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ods can be found at: https://cran.r—-project.org/web/views/MissingData.
html. An example for the bank data is provided in file 2-prep-3.R:

### 2-prep-3.R: missing data example
### saves prep3-1l.pdf into current working directory

require (kknn) # needed by hotdeck

# missing data example

bank3=read.table ("bank2.csv", sep=";", header=TRUE, stringsAsFactors=TRUE, na.
strings="unknown")

NRbank=nrow (bank3)

cat ("rows:",NRbank, "\n")

# 1st method: case deletion

print ("-- 1st method: case deletion —--")

bank4=na.omit (bank3)

cat ("bank4:",nelems (bank4), "\n")

cat ("NA values:",sum(is.na (bank4)),"\n")

# deleted %:

cat ("deleted percentage:", round (100 (1-nrow (bank4) /NRbank), 1), "%$\n")

# 2nd method: average imputation for age, mode imputation for Jjob:
bank3$age[1:500]1=NA # insert 500 NA values into age

# substitute NA values by the mean:

print ("-- 2nd method: value imputation --")

print ("original age summary:")

print (summary (bank3S$age))

meanage=mean (bank3$age, na.rm=TRUE)

bank5=imputation ("value",bank3, "age", Value=meanage)

cat ("mean imputation age summary: mean=",meanage, "\n")

print (summary (bank5$age))

# substitute NA values by the mode (most common value of bank$job) :
print ("original job summary:")

print (summary (bank3$job))
jobmode=names (which.max (table (bank$job)))

bank5=imputation ("value",bank5, "job", Value=jobmode)

cat ("mode imputation job summary: mode=", jobmode, "\n")

print (summary (bank5$job))

# 3rd method: hot deck

# substitute NA values by the values found in most similar case (l-nearest
neighbor) :

print ("-- 3rd method: hotdeck imputation --")

print ("original age summary:")

print (summary (bank3S$age))

bank6=imputation ("hotdeck", bank3, "age")

print ("hot deck imputation age summary:")

print (summary (bank6S$Sage) )

# substitute NA values by the values found in most similar case:

print ("original job summary:")

print (summary (bank3$job))

bank6=imputation ("hotdeck", bank6, "job")

print ("hot deck imputation job summary:")

print (summary (bank6$job) )

cat ("bank6:",nelems (bank6), "\n")

cat ("NA values:",sum(is.na (bank6)),"\n")

# full hotdeck:

bank7=imputation ("hotdeck",bank3)



https://cran.r-project.org/web/views/MissingData.html
https://cran.r-project.org/web/views/MissingData.html
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print ("full hot deck imputation summary:")
print (summary (bank7))

cat ("bank7:",nelems (bank7), "\n")

cat ("NA values:",sum(is.na (bank7)),"\n")

# comparison of age densities (mean vs hotdeck) :
library (ggplot2)

methl=data.frame (length=bank4$age)
meth2=data.frame (length=bank5$age)
meth3=data.frame (length=bank6$age)
methl$Smethod="original"

meth2$method="average"

meth3$method="hotdeck"

all=rbind (methl,meth2,meth3)

ggplot (all, aes (length, fill=method) ) +geom_density (alpha = 0.2)
ggsave (file="prep3-1.pdf")

The read.table command reads all “unknown” values as NA (the R constant value for missing
data). The numeric age attribute does not contain missing data, however for demonstration
purposes, the R file replaces the first 500 values by the NA constant. Then, three missing
data handling methods are applied: case deletion, average and mode imputation, and hot deck
imputation. In the example code, there are two instructions for using the hot deck method, one
for each attribute (age and job). The same hot deck method can be applied to all data under a
single execution, as exemplified by the code that generates object bank7. Under this use of the
imputation function, the hotdeck imputation is applied to all attributes with missing data. The
result of executing file 2-prep-3.R is:

> source ("2-prep-3.R")

rows: 4119

[1] "-- 1st method: case deletion —-"
bank4: 3090 x 22

NA values: O

deleted percentage: 25 %

[1] "-- 2nd method: value imputation —-"
[1] "original age summary:"
Min. 1lst Qu. Median Mean 3rd Qu. Max . NA’ s
18.00 32.00 38.00 40.05 47.00 88.00 500
mean imputation age summary: mean= 40.04532
Min. 1st Qu. Median Mean 3rd Qu. Max.
18.00 33.00 40.00 40.05 46.00 88.00
[1] "original job summary:"
admin. blue-collar entrepreneur housemaid management
retired self-employed
1012 884 148 110 324
166 159
services student technician unemployed NA’ s
393 82 691 111 39
mode imputation job summary: mode= admin.
admin. blue-collar entrepreneur housemaid management
retired self-employed
1051 884 148 110 324
166 159
services student technician unemployed
393 82 691 111
[1] "-- 3rd method: hotdeck imputation --"

[1] "original age summary:"
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Min. 1lst Qu. Median Mean 3rd Qu. Max . NA’ s
18.00 32.00 38.00 40.05 47.00 88.00 500
[1] "hot deck imputation age summary:"
Min. 1st Qu. Median Mean 3rd Qu. Max.
18.00 32.00 38.00 40.02 47.00 88.00
[1] "original Jjob summary:"
admin. blue-collar entrepreneur housemaid management
retired self-employed
1012 884 148 110 324
166 159
services student technician unemployed NA’ s
393 82 691 111 39
[1] "hot deck imputation job summary:"
admin. blue-collar entrepreneur housemaid management
retired self-employed
1019 890 148 112 329
168 161
services student technician unemployed
399 82 697 114

bank6: 4119 x 22
NA values: 1191

[1] "full hot deck imputation summary:"
age job marital education
default housing
Min. :18.00 admin. :1023 divorced: 448 basic.4y

445 no :4118 no :1891
1st Qu.:32.00 blue-collar: 890 married :2514 basic. b6y

240 yes: 1 yes:2228
Median :38.00 technician : 694 single :1157 basic.9y
591
Mean :40.02 services : 399 high.school
972
3rd Qu.:47.00 management : 325 illiterate
1
Max. :88.00 retired : 169 professional.course:
557
(Other) : 619 university.degree
:1313
loan contact month tri day_of_week
duration campaign
no :3436 cellular :2652 may :1378 l1st: 48 fri:768 Min.
0.0 Min. : 1.000
yes: 683 telephone:1467 Jul 0 711 2nd:2123 mon:855 1st Qu.:
103.0 Ist Qu.: 1.000
aug : 636 3rd:1411 thu:860 Median
181.0 Median : 2.000
jun : 530 4th: 537 tue:841 Mean
256.8 Mean : 2.537
nov : 446 wed:795 3rd Qu.:
317.0 3rd Qu.: 3.000
apr : 215 Max.
:3643.0 Max. :35.000
(Other): 203
pdays previous poutcome emp.var.rate
cons.price.idx
Min. : 0.0 Min. :0.0000 failure : 454 Min. :=3.40000 Min
:92.20

1st Qu.:999.0 1st Qu.:0.0000 nonexistent:3523 1st Qu.:-1.80000 1st
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Qu.:93.08
Median :999.0 Median :0.0000 success : 142 Median : 1.10000
Median :93.75
Mean :960.4 Mean :0.1903 Mean : 0.08497
Mean :93.58
3rd Qu.:999.0 3rd Qu.:0.0000 3rd Qu.: 1.40000 3rd
Qu.:93.99
Max. :999.0 Max . :6.0000 Max . : 1.40000 Max
:94.77
cons.conf.idx euribor3m nr.employed y
Min. :=-50.8 Min. :0.635 Min. :4964 no :3668
1st Qu.:-42.7 l1st Qu.:1.334 1st Qu.:5099 yes: 451
Median :-41.8 Median :4.857 Median :5191
Mean :—=40.5 Mean :3.621 Mean :5166
3rd Qu.:-36.4 3rd Qu.:4.961 3rd Qu.:5228
Max. :—26.9 Max. :5.045 Max. :5228

bank7: 4119 x 22
NA values: 0
Saving 7 x 7 in image

The density graph for attribute age and the distinct missing handling methods is plotted in
Figure 2.2 Such graph confirms the disadvantage of the average substitution method, which
tends to increase the density of points near the average of the attribute, as expected. In contrast,
the hotdeck replacement method leads to an attribute distribution that is very similar to the
original data (when analyzing the non missing values).

2.4 [Example with the Student Performance Dataset

As a case study, and for demonstrating the classification and regression capabilities of the rminer
package, the student performance dataset (Cortez and Silva, 2008)) is adopted. The goal is to pre-
dict one of the dataset course grades (Mathematics) taught in secondary education Portuguese
schools. The data was collected using school reports and questionnaires and it includes dis-
crete and numeric attributes related with demographic, social and school characteristics. The
last attribute ("G3"), contains the target variable (Mathematics grade) and it ranges from 0 to
20, where a positive score means a value higher or equal to 10. Such numeric attribute will be
directly used, in case of regression, and transformed into binary ("pass") and five-level ("five")
attributes, in case of classification. The preprocessing R code, which creates the binary and
five-level attributes, is presented in file 2-math.R:

### 2-math.R: math data preparation example

### creates math-grades.pdf with histograms for the 3 tasks,

### binary classification (pass or fail), five grades (A to F) and

### G3 (final scores from 0 to 20, numeric target)

### saves math2.csv into current working directory (with G3, pass and five)

# data preparation:
math=read.table (file="math.csv", header=TRUE, stringsAsFactors=TRUE) # read
previously saved file

# binary task:
pass=cut (math$G3,c(-1,9,20),c("fail", "pass"))
# five—-level system:
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Figure 2.2: Density graphs for the two missing age imputation methods.
five=cut (math$G3,c(-1,9,11,13,15,20),c("F","D","C","B","A")) # Ireland
grades

# create pdf:

pdf ("math—-grades.pdf")

par (mfrow=c (1, 3))

plot (pass,main="pass")

plot (five,main="five")

hist (math$G3, col="gray",main="G3",xlab="")
dev.off () # end of pdf creation

# creating the full dataset:
d=cbind (math, pass, five)
write.table (d, "math2.csv", row.names=FALSE, col.names=TRUE) # save to file

The code produces a new data frame that is saved into file "math2.csv" and creates a pdf with
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the distinct output histograms (Figure [2.3).
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Figure 2.3: Histograms for the Mathematics student’s grades (binary, five-level and numeric
attributes).



Chapter 3
Modeling

The rminer includes a total of 14 classification and 15 regression methods, all directly available
through its fit, predict and mining functions:

fit — adjusts a selected model to a dataset; if needed, it can automatically tune the model
hyperparameters;

predict — given a fitted model, it computes the predictions for a (often new) dataset; and

mining — performs several fit and predict executions, according to a validation method and given
number of runs.

By default, the type of rminer modeling (probabilistic classification or regression) is dependent
of the output target type: if factor (categorical or discrete), then a probabilistic classification
is assumed; else if numeric (e.g., integer, numeric), then a regression task is executed. Such
default modeling is stored in the task argument/object of the fit and mining functions. Further
technical details about these functions can be found in (Cortez, [2010a)) and in the rminer helﬂﬂ

3.1 C(lassification

The rminer package includes several classification methods, which can be listed by using the
command: help(fit). When performing a classification task, the output variable needs to be
categorical or discrete (a factor). By default, the package assumes a probabilistic modeling of
such output (task="prob"), where the sum of all outputs equals 1. Using probabilities is more
advantageous, as it allows to perform a receiver operating characteristic (ROC) (Fawcett, [2006)
or accumulated LIFT (Witten et al., [2011) curve analysis (shown in Chapter E]) Moreover,
class probabilities can easily be transformed into class labels by setting a decision threshold
D € [0, 1], such that the class is positive if its probability is higher than D. In case of multiclass
tasks, the final label can be associated with the highest proability class.

3.1.1 Binary Classification

The first modeling code is given in file 3-math-1.R:

### 3-math-1.R: modeling math binary classification example
### note: models are fit to all data, predictions are computed using all
data

!For instance, by executing: help(fit,package=rminer)

17
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### creates 2 pdf files: trees-1.pdf and trees-2.pdf
### saves mlpe-pass.model

library (rminer)

# read previously saved file
math=read.table (file="math2.csv", header=TRUE, stringsAsFactors=TRUE)

# select inputs:
inputs=2:29 # select from 2 ("sex") to 29 ("health")

# select outputs: binary task "pass"
bout=which (names (math)=="pass")
cat ("output class:",class (math[,bout]),"\n")

# two white-box examples:

Bl=fit (pass~.,math[, c(inputs,bout)],model="rpart") # fit a decision tree
print (Bl@object)

pdf ("trees—-1.pdf")

# rpart functions:

plot (Bl@object,uniform=TRUE, branch=0, compress=TRUE)

text (Bl@object, xpd=TRUE, fancy=TRUE, fwidth=0.2, fheight=0.2)

dev.off ()

B2=fit (pass~.,math[, c(inputs, bout) ], model="ctree") # fit a conditional
inference tree

print (Bl@object)

pdf ("trees-2.pdf")

# ctree function:

plot (B2@object)

dev.off ()

# two black-box examples:

B3=fit (pass~.,math[,c(inputs,bout) ], model="mlpe") # fit a multilayer
perceptron ensemble

print (B3@object)

B4=fit (pass~.,math[, c(inputs,bout) ], model="ksvm") # fit a support vector
machine
print (B4@object)

# save one model to a file:
print ("save B3 to file")
savemodel (B3, "mlpe-pass.model")

print ("load from file into B5")

B5=loadmodel ("mlpe-pass.model") # load from file
print (class (B5Q@objectSmlp([[1]11]))

# saves to file

The code fits two white-box ("rpart" and "ctree") and two black-box models ("mlpe" and
"ksvm"). To simplify the understanding of the code, only a modeling task is executed, where
each data mining or machine learning model is fit to all data examples. If the goal is to measure
the predictive performance of the fitted models, then a generalization validation method should
be used, such as described in Section[3.2](e.g., holdout or k-fold). The arguments used by the fit
function in the code example are: a formula of the model to be fit, a data.frame with the training
data, and a character that selects the type of learning model. The formula defines the output
(variable “’pass”) to be modeled ( ~ ) from the inputs (. means all other data.frame variables).
The data.frame includes the selected inputs and output variables. This is the typical use of fit,
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where formula is always in the format variable ~ . and the selection of the inputs is executed in
the data.frame fed as training data (as shown in the code examples). The third argument defines
the learning model. The rminer package includes several classification and regression models,
such as decision trees ("rpart"), conditional inference trees ("ctree"), neural networks (e.g.,
"mlpe" — ensemble of multilayer perceptrons) and support vector machines ("ksvm"). In general,
the rminer package uses the original function names for the model argument, as implemented
in their packages. For instance, decision trees use the rpart() function of the rpart package,
while ksvm() is the function of the kernlab package that implements a support vector machine.
Finally, it should be noted that the £it function includes other optional arguments, as described
in in the help (e.g., execute ?rminer::fit) to get the full details and more examples).
The result of executing file math-2.R is:

> source ("3-math-1.R")
output class: factor
n= 395

node), split, n, loss, yval, (yprob)
* denotes terminal node

1) root 395 130 pass (0.3291139 0.6708861)
2) failures>=0.5 83 31 fail (0.6265060 0.3734940)
4) failures>=1.5 33 7 fail (0.7878788 0.2121212) =
5) failures< 1.5 50 24 fail (0.5200000 0.4800000)
10) age>=16.5 37 14 fail (0.6216216 0.3783784)
20) guardian=father,mother 26 6 fail (0.7692308 0.2307692) =
21) guardian=other 11 3 pass (0.2727273 0.7272727) *
11) age< 16.5 13 3 pass (0.2307692 0.7692308) =
3) failures< 0.5 312 78 pass (0.2500000 0.7500000)
6) schoolsup=yes 40 18 pass (0.4500000 0.5500000)
12) studytime>=1.5 31 14 fail (0.5483871 0.4516129)
24) reason=course 11 2 fail (0.8181818 0.1818182) =«
25) reason=home, other, reputation 20 8 pass (0.4000000 0.6000000)
50) Fedu< 2.5 7 2 fail (0.7142857 0.2857143) =«
51) Fedu>=2.5 13 3 pass (0.2307692 0.7692308) =
13) studytime< 1.5 9 1l pass (0.1111111 0.8888889) =«
7) schoolsup=no 272 60 pass (0.2205882 0.7794118)
14) guardian=other 10 4 fail (0.6000000 0.4000000) =
15) guardian=father,mother 262 54 pass (0.2061069 0.7938931) =
n= 395

node), split, n, loss, yval, (yprob)
+ denotes terminal node

1) root 395 130 pass (0.3291139 0.6708861)
2) failures>=0.5 83 31 fail (0.6265060 0.3734940)
4) failures>=1.5 33 7 fail (0.7878788 0.2121212) =
5) failures< 1.5 50 24 fail (0.5200000 0.4800000)
10) age>=16.5 37 14 fail (0.6216216 0.3783784)
20) guardian=father,mother 26 6 fail (0.7692308 0.2307692) =«
21) guardian=other 11 3 pass (0.2727273 0.7272727) *
11) age< 16.5 13 3 pass (0.2307692 0.7692308) =
3) failures< 0.5 312 78 pass (0.2500000 0.7500000)
6) schoolsup=yes 40 18 pass (0.4500000 0.5500000)
12) studytime>=1.5 31 14 fail (0.5483871 0.4516129)
24) reason=course 11 2 fail (0.8181818 0.1818182) =
25) reason=home, other, reputation 20 8 pass (0.4000000 0.6000000)
50) Fedu< 2.5 7 2 fail (0.7142857 0.2857143) =«
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51) Fedu>»=2.5 13 3 pass (0.2307692 0.7692308) =
13) studytime< 1.5 9 1 pass (0.1111111 0.8888889) =
7) schoolsup=no 272 60 pass (0.2205882 0.7794118)
14) guardian=other 10 4 fail (0.6000000 0.4000000) =
15) guardian=father,mother 262 54 pass (0.2061069 0.7938931) =«
Smlp
S$mlp[[1]]
a 37-10-1 network with 391 weights
inputs: sexM age addressU famsizeLE3 PstatusT Medu Fedu Mjobhealth
Mjobother Mjobservices Mjobteacher Fjobhealth Fjobother Fjobservices
Fjobteacher reasonhome reasonother reasonreputation guardianmother
guardianother traveltime studytime failures schoolsupyes famsupyes
paildyes activitiesyes nurseryyes higheryes internetyes romanticyes
famrel freetime goout Dalc Walc health
output (s) : pass
options were - entropy fitting

smlp[[2]]

a 37-10-1 network with 391 weights

inputs: sexM age addressU famsizeLE3 PstatusT Medu Fedu Mjobhealth
Mjobother Mjobservices Mjobteacher Fjobhealth Fjobother Fjobservices
Fjobteacher reasonhome reasonother reasonreputation guardianmother
guardianother traveltime studytime failures schoolsupyes famsupyes
paidyes activitiesyes nurseryyes higheryes internetyes romanticyes
famrel freetime goout Dalc Walc health

output (s) : pass

options were - entropy fitting

Smlp[[3]]

a 37-10-1 network with 391 weights

inputs: sexM age addressU famsizeLE3 PstatusT Medu Fedu Mjobhealth
Mjobother Mjobservices Mjobteacher Fjobhealth Fjobother Fjobservices
Fjobteacher reasonhome reasonother reasonreputation guardianmother
guardianother traveltime studytime failures schoolsupyes famsupyes
paidyes activitiesyes nurseryyes higheryes internetyes romanticyes
famrel freetime goout Dalc Walc health

output (s) : pass

options were - entropy fitting

Scx
[1] 0.0000000 16.6962025 0.0000000 0.0000000 0.0000000 2.7493671
[7] 2.5215190 0.0000000 0.0000000 0.0000000 0.0000000 1.4481013
[13] 2.0354430 0.3341772 0.0000000 0.0000000 0.0000000 0.0000000
[19] 0.0000000 0.0000000 0.0000000 0.0000000 3.9443038 3.2354430
[25] 3.1088608 1.4810127 2.2911392 3.5544304 0.0000000
Ssx
[1] 0.0000000 1.2760427 0.0000000 0.0000000 0.0000000 1.0947351
[7] 1.0882005 0.0000000 0.0000000 0.0000000 0.0000000 0.6975048
[13] 0.8392403 0.7436510 0.0000000 0.0000000 0.0000000 0.000000O0
[19] 0.0000000 0.0000000 0.0000000 0.0000000 0.8966586 0.9988620
[25] 1.1132782 0.8907414 1.2878966 1.3903034 0.0000000
Scy
[11 O
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[11 0O
Snr
[11 3

Support Vector Machine object of class "ksvm"

SV type: C-svc (classification)
parameter : cost C = 1

Gaussian Radial Basis kernel function.
Hyperparameter : sigma = 0.0367265122478637

Number of Support Vectors : 294

Objective Function Value : -206.4452
Training error : 0.217722
Probability model included.

[1] "save B3 to file"

[1] "load from file into B5"

[1] "nnet.formula" "nnet"

The £it function returns a model object, which contains several slots that are accessible us-
ing the e operator. The full list of slots can be easily accessed by using the str R function
(e.g., str(M1)). In particular, the slot eobject stores the fitted model, which is dependent of
the selected model argument. For instance, class(Mi@object) iS "rpart", class(M2@object) is
“BinaryTree”, class(M2@object), while both class(M3@object) and class(M4@object) return a
list. The first two models are white-box, i.e., they are often easy to be understood by humans,
as shown in Figure [3.1] The last two models are black-box, i.e., they are more complex than
the previous ones (Chapter {] shows how to “open” these models using rminer). In the rminer
implementation, these two models are lists because they can be made of several components
or models. For instance, M3 includes an ensemble of 3 multilayer perceptrons, where each neu-
ral network is stored in a vector list (e.g., M3@objectSmlp[[1]] contains the first multilayer
perceptron, of class nnet.). The support vector machine is accessible using M4a@object$svm
(e.g., class(M4@object$svm returns "ksvm"). The last code lines show how a fit model can be
saved (savemodel) to and load from (1oadmodel) a file.

3.1.2 Multiclass Classification

For the five-level classification, three classification models are adopted, namely bagging, boost-
ing and random forest, as shown in file 3-math-2.R:

### 3-math-2.R: modeling math multiclass classification example

### an external holdout is used: 2/3 random samples for training, 1/3 for
testing

### bagging, boosting and randomForest machine learning algorithms

### this demonstration requires some computational effort

library (rminer)

# read previously saved file
math=read.table (file="math2.csv", header=TRUE, stringsAsFactors=TRUE)

# select inputs:
inputs=2:29 # select from 2 ("sex") to 29 ("health")
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failures
p <0.001
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Figure 3.1: Modeled decision trees using rpart (left) and ctree (right) models.

# select outputs: multiclass task "five"
cout=which (names (math)=="five")

cmath=math[,c(inputs,cout)] # for easy typing, new data.frame
cat ("output class:",class (cmath$five),"\n")

# auxiliary function:

showres=function (M, data, output)

{

output=which (names (data)==output)

Y=datal[,output] # target values

P=predict (M, data) # prediction values

acc=round (mmetric(Y,P,metric="ACC"),2) # get accuracy

cat (class (M@object), "> time elapsed:",M@time,", Global Accuracy:",acc,"\n"

)
cat ("Acc. per class", round (mmetric(Y,P,metric="ACCLASS"),2),"\n")

# bagging example:
Cl=fit (five~.,cmath,model="bagging") # bagging from adabag package
showres (Cl, cmath, "five")

# boosting example:
C2=fit (five~.,cmath,model="boosting") # boosting from adabag package
showres (C2, cmath, "five")

# randomForest example:
C3=fit (five~.,cmath,model="randomForest") # from randomForest package
showres (C3, cmath, "five")

In this example, an auxiliary function is defined for showing the object class, time elapsed,
overall classification accuracy (in %) and classification accuracy for each class ({A,B,C,D,F}).
The classification metrics are achieved by using the predict and mmetric rminer functions. The
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former function uses a fitted model and a data.frame for estimating the model predictions (see
help(predict.£fit) for more details), while the latter function uses the target and predicted val-
ues in order to compute the desired metrics (see help(mmetric)). The output is of executing the
file is:

> source ("3-math-2.R")

output class: factor

bagging > time elapsed: 30.22 , Global Accuracy: 74.94

Acc. per class 95.19 92.66 91.39 85.82 84.81

boosting > time elapsed: 30.635 , Global Accuracy: 74.43

Acc. per class 95.7 93.16 91.39 86.08 82.53

randomForest.formula randomForest > time elapsed: 0.995 , Global Accuracy:
100

Acc. per class 100 100 100 100 100

In this example, the randomForest is the fastest fitting model, while also providing the best
classification accuracy. However, it should be noted that accuracy on training data (as shown
in this example) is not very meaningful, since complex models, such as random forests and
others (e.g., neural networks, support vector machines) can easily fit to every training example,
thus overfitting the data. In effect, the true predictive capability of a classifier should always
be measured on unseen test data (e.g., use of an external holdout or k-fold cross-validation
method), as shown in the Section @

3.2 Regression

For the regression demonstration, a random forest was selected (model=randomForest"), as pro-
vided in file 3-math-3.R:

### 3-math-3.R: modeling math regression (G3) example

### an external holdout is used: 2/3 random samples for training, 1/3 for
testing

### randomForest machine learning algorithm is adopted

### saves rf-1.pdf imp-1.pdf

### then an external 10-fold cross-validation is executed using "rpart" (
decision tree = regression tree)

### saves rf-2.pdf

library (rminer)

# read previously saved file
math=read.table (file="math2.csv", header=TRUE, stringsAsFactors=TRUE)

# select inputs:
inputs=2:29 # select from 2 ("sex") to 29 ("health")

# select outputs: regression task
g3=which (names (math)=="G3")
cat ("output class:",class (math[,g3]),"\n")

# fit holdout example:

H=holdout (math$G3, ratio=2/3, seed=12345)

print ("holdout:")

print (summary (H))

R1=£fit (G3~.,math[HStr,c(inputs, g3)],model="randomForest")
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# get predictions on test set (new data)

Pl=predict (R1l,math[HSts,c(inputs,g3)])

# show scatter plot with quality of the predictions:

targetl=math[HSts, ]$G3

el=mmetric(targetl,Pl,metric=c ("MAE","R22"))

error=paste ("RF, holdout: MAE=",round(el[l],2),", R2=",round(el[2],2),sep="
")

pdf ("rf-1.pdf")

mgraph (targetl,Pl,graph="RSC",Grid=10,main=error)

dev.off ()

cat (error, "\n")

# RF example with k-fold cross-validation

print ("10-fold:")

R2=crossvaldata (G3~.,math[, c(inputs,g3) ], fit,predict, ngroup=10, seed=123,
model="randomForest", task="reg")

P2=R2$%cv.fit # k-fold predictions on full dataset

e2=mmetric (math$G3,P2,metric=c ("MAE", "R22"))

error2=paste ("RF, 10-fold: MAE=",round(e2[1],2),", R2=",round(e2[2],2),sep=
"

pdf ("rf-2.pdf")

mgraph (math$G3,P2, graph="RSC",Grid=10, main=error2)

dev.off ()

cat (error2, "\n")

A better evaluation method is used in this example, by means of two distinct generalization
validation schemes [Kohavi (1995): a random holdout train/test split (using 2/3 of the data for
training and 1/3 for testing); and a 10-fold cross-validation. It should be noted that while the
code presented in this section explicitly performs the holdout and 10-fold validations, rminer
provides a mining function that allows to perform several holdout or k-fold runs using a single
line of code.

The holdout rminer function receives an output target variable and returns a list with training
(with 263 examples, 2/3 of the data) and testing (132 instances, 1/3 of the data) indices. Such
H list can then be used for fitting (£it ) and testing (e.g., predict, mmetric) the model. By us-
ing additional optional arguments in holdout (), it is possible to produce other holdout variants,
such as example order split, using a fixed random seed, use of stratification (for factor targets)
and even a more sophisticated incremental or rolling windows validation (see help(holdout)
and the mode argument description for full details and examples). Similarly, the rminer func-
tion crossvaldata executes a k-fold cross-validation, which is more robust than the holdout,
although it requires a higher computation effort (around k times more). The function requires
several arguments, including fit and predict functions, and a task type (e.g., it can be set to
task="reg" for regression and task="prob" for classification). The function returns a list, where
the element $cv. £it contains the k-fold predictions (use help(crossvaldata) for further details).
This example also introduces the mgraph rminer function, which is capable of plotting several
types of graph results. In this case, it produces a scatter plot (graph="RSC"). The previously
explained rminer mmetric() is also used to compute two popular regression metrics, the mean
absolute error (MAE) and the coefficient of determination (R?).

The obtained output is:

output class: integer
[1] "holdout:"
Length Class Mode
tr 263 -none— numeric
itr 0 -none— NULL
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val 0 -none— NULL

ts 132 -none- numeric

RF, holdout: MAE=3.31, R2=0.12
[1] "10-fold:"

RF, 10-fold: MAE=3.19, R2=0.13

This example clearly exemplifies the need for measuring predictive performance on test data.
As shown in the obtained scatter plots (Figure [3.2)), the quality of the predictions is not good.
In effect, a large number of points are far from the diagonal line (in gray), which denotes the
perfect forecast. Also, the R? values are close to zero and thus far away from the ideal model
(R2=1.0).

3.3 Model Parametrization

In most cases, data mining algorithms include parameters that need to be set by the user and that
are often termed hyperparameters, to distinguish from the normal model parameters that are fit
to the data. Yet, for the sake of simplicity, these will be called parameters in this document.
This section explains some basic parameter configuration in rminer, for further details consult
help(fit,package=rminer).

When no additional parameters are used, rminer assumes a default parametrization. Such
default corresponds to what is defined in the packages that implement the learning algorithms.
For instance, by default: ntree=500 for the randomForest () function of the randomForest pack-
age; and mfinal=100 for the bagging () function of the adabag package. Any of these defaults can
be changed by adding the new parameter values as arguments of the fit or mining functions (see
examples from file 3-math-5.R). Some R learning implementations do not have default values
some some parameters, such as the number of hidden nodes (size) of the multilayer perceptron
(nnet function and package). In such cases, the default is search="heuristic", as explained in
help(fit,package=rminer).

The code file 3-math-5.R shows examples of simple parameter adjustments:

### 3-math-5.R: model parameterization example
### sets hyperparameters for "rpart" and "ksvm"
### modeling example, all data is used to fit the models

library (rminer)
math=read.table(file="math2.csv", header=TRUE, stringsAsFactors=TRUE)

# select inputs and output (regression):

inputs=2:29; g3=which (names (math)=="G3")

rmath=math[, c(inputs, g3) ]

# for simplicity, this code file assumes a fit to all math data:

print ("examples that set some parameters to fixed values:")

print ("mlp model with decay=0.1:")
R4=fit (G3~., rmath,model="mlp", decay=0.1)
print (R4@mpar)

print ("rpart with minsplit=10")

R5=fit (G3~., rmath,model="rpart", control=rpart::rpart.control (minsplit=10))
print (R5@mpar)

print ("rpart with minsplit=10 (simpler fit code)")
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RF, holdout: MAE=3.31, R2=0.12

o ]
3%
I-f‘_') -
.
.
° ® o o
. .
o s, td N
- ° ° ° ! [ . ° o
Q ° . ‘ L[] ’ ° ® °
S o ' L] ; o o
S — . L o o s ' °
o o o (] * 3 . °
a ' ® o 0 * e .
H o o . ° )
[ $ [} H
D . ® .
o o
)
)
o -
o 4
T T T T I
0 5 10 15 20
Observed
RF, 10-fold: MAE=3.19, R2=0.13
o _|
3%
o)
— 7 ° °
.
14 .
i L] ° hd ‘ ] Y ° b
. L4 [ ]
s . e ® o § ° . . ®
[J () ' °
o ° el ' : : e o
° [}
Q
5 o ‘ § S o l : i °
S = o & o [ ] ! L ]
: : < e LI
= .
o ‘ o ® Y e o ]
° [ ] o 8
° L[]
° s e 8 o .
H ] ° ° .
. : .
0w - H
o -
T T T T I
0 5 10 15 20
Observed

Figure 3.2: Scatter plot of randomForest (RF) predicted vs observed values using holdout (top)
and 10-fold (bottom) evaluation methods.
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RS5b=fit (G3~., rmath, model="rpart",control=1ist (minsplit=10))
print (R5b@mpar)

print ("ksvm with kernel=vanilladot and C=10")
R6=fit (G3~., rmath, model="ksvm", kernel="vanilladot",C=10)
print (R6@mpar)

print ("ksvm with kernel=tanhdot, scale=2 and offset=2")

# fit already has a scale argument, thus the only way to fix scale of "
tanhdot"

# is to use the special search argument with the "none" method:

s=1list (smethod="none", search=1ist (scale=2,o0ffset=2))

R7=fit (G3~., rmath, model="ksvm", kernel="tanhdot", search=s)

print (R7@mpar)

The setting of parameters is highly dependent on the R function implementation and thus any
change in these parameters should be performed by informed R data mining users, preferably
after consulting the help of such R function or package. The obtained output of file 3-math-5.R
is:

> source ("3-math-5.R")

[1] "examples that set some parameters to fixed values:"
[1] "mlp model with decay=0.1:"
Sdecay

[1] 0.1

Ssize

[1]1 14

Stask

[11 "reg"

Sscale

[1]1 "all"

Stype

[11 1

Snr

[11 3

[1] "rpart with minsplit=10"
$Scontrol

Scontrol$minsplit

[1] 10

Scontrol$Sminbucket

(1] 3
Scontrol$cp
[1] 0.01

Scontrol$maxcompete
[1] 4

Scontrol$maxsurrogate
[11 5
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Scontrol$usesurrogate
[11 2

Scontrol$surrogatestyle
(11 O

Scontrols$maxdepth
[1] 30

Scontrols$xval
[1] 10

Smethod
[1] "anova"

[1] "rpart with minsplit=10
Scontrol

Scontrol$minsplit

[1] 10

(simpler fit code)"

Smethod
[1] "anova"

[1] "ksvm with kernel=vanilladot and C=10"
Skernel
[1] "vanilladot™

sC
[1] 10
Skpar
list ()

Stask
[1] "reg"

Sepsilon
[1] 0.1

[1] "ksvm with kernel=tanhdot,
Skernel
[1] "tanhdot"

scale=2 and offset=2"

Skpar
Skpar$scale
(1] 2

SkparSoffset
[1] 2

Stask
[11 nregn

(1] 1

CHAPTER 3. MODELING
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Sepsilon
[1] 0.1

The parameters can have a strong impact in the model performance, as they can control for
instance the model complexity or learning capability. When no a priori knowledge is available
(which is often the case), the tuning of these parameters can be performed by using an internal
validation method, such as holdout or k-fold, applied using only the training data. The internal
test data, known as validation data, is used to select the parameter combination that provides the
best generalization capability. By default and when needed, rminer assumes an internal random
holdout split, with 2/3 for training and 1/3 for validation.

Non expert users can use an automatic search for these parameters by using the search
argument of £it and mining rminer functions. After rminer version 1.4.1, the new mparheuristic
function was introduced, which allows a simple definition of grid search values for some specific
parameters and models. The currently default search="heuristic" is equivalent to the advised
use of search=1ist(search=mparheuristic (/nodel)), where model denotes a rminer model. For
further details, please consult help(mparheuristic).

For any search option that includes more than one search, rminer selects the parameter
(or parameters) that provide the best metric value on the validation set. By default, rminer
assumes the metric sum of absolute errors ("SAE") for regression, global area of ROC curve for
probabilistic classification ( ("auc") and global accuracy for pure classification (*acc"). Then,
the model is refit using such parameter(s) and with all training data. The code file 3-math-6.R
exemplifies this easy search use:

### 3-math-6.R: hyperparameter search example (G3 regression task)

### randomForest machine learning algorithm

### uses all data for the fit (training data)

### last fit example explicitly uses an internal holdout for the grid
search

library (rminer)
math=read.table(file="math2.csv", header=TRUE, stringsAsFactors=TRUE)

# select inputs and output (regression):

inputs=2:29

g3=which (names (math)=="G3")

cat ("output class:",class (math[,g3]),"\n")

rmath=math[, c (inputs, g3) ]

# for simplicity, this code file assumes a fit to all math data:

m=c ("holdouto",2/3) # for internal validation: ordered holdout, 2/3 for
training

# 10 searches for the mty randomForest parameter:

# after rminer 1.4.1, mparheuristic can be used:

s=1list (search=mparheuristic ("randomForest",n=10),method=m)
print ("search values:")

print (s)

set.seed(123) # for replicability

R3=fit (G3~., rmath,model="randomForest", search=s, fdebug=TRUE)
# show the automatically selected mtry value:

print (R3@mpar)

# same thing but with more verbose and using the full search parameter:
m=c ("holdouto",2/3) # internal validation: ordered holdout, 2/3 for
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training

s=1list (smethod="grid", search=1list (mtry=1:10), convex=0,method=m, metric="SAE"
)

set.seed (123) # for replicability

R3b=fit (G3~., rmath, model="randomForest", search=s, fdebug=TRUE)

print (R3b@mpar)

The result of executing file 3-math-6.R is:

> source ("3-math-6.R")
output class: integer
[1] "search values:"
$Ssearch
$search$mtry
(1] 1 2 3 4 5 6 7 8 910

Smethod
[1] "holdouto" "0.666666666666667"
with: 10 searches (SAE values)

«Q

R
o
Q.

i: 1 eval: 441.3125 best: 441.3125
i: 2 eval: 452.7913 best: 441.3125
i: 3 eval: 464.2826 best: 441.3125
i: 4 eval: 470.2803 best: 441.3125
i: 5 eval: 470.8582 best: 441.3125
i: 6 eval: 474.8368 best: 441.3125
i: 7 eval: 472.4557 best: 441.3125
i: 8 eval: 478.4884 best: 441.3125
i: 9 eval: 478.3065 best: 441.3125
i: 10 eval: 480.4731 best: 441.3125
Smtry

[11 1

Simportance

[1] TRUE

grid with: 10 searches (SAE values)
i: 1 eval: 441.3125 best: 441.3125
i: 2 eval: 452.7913 best: 441.3125
i: 3 eval: 464.2826 best: 441.3125
i: 4 eval: 470.2803 best: 441.3125
i: 5 eval: 470.8582 best: 441.3125
i: 6 eval: 474.8368 best: 441.3125
i: 7 eval: 472.4557 best: 441.3125
i: 8 eval: 478.4884 best: 441.3125
i: 9 eval: 478.3065 best: 441.3125
i: 10 eval: 480.4731 best: 441.3125
Smtry

[11 1

S$importance

[1] TRUE

In this example, the mtry parameter of randomForest was automatically set to 1. The first fit
performs an automatic search for the best mtry parameter of the randomForest method under an
easy to use code. The second fit executes the same search but with a more explicit definition
of the search argument. The verbose (optional argument of £debug=TRUE) allows to see that the
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value of mtry=1 provides the lowest "SAE" metric value on the internal holdout validation set (in
this case, using an ordered split). Also, the set.seed R command was used to warranty the same
execution in both fits, since randomForest learning algorithm is stochastic.

For advanced users, the rminer package provides several types of internal parameter searches,
such as

* "matrix" —assumes search$search contains several parameters (say p), each with n searches
(thus it corresponds to a kind of a matrix of size n X p));

* "grid" search — tests all combinations of several search parameters, each one changed
according to a grid; and

* nested 2-Level grid ("2L") — two levels of a grid search, where first level is set by $search
and second level performs a fine tuning around the best first level value.

Such flexibility is obtained by setting the search argument as a list. More advanced parameter
searches, such as use of evolutionary computation, are not currently available at rminer but can
be implemented in R by installing other packages, as shown in (Cortez, 2021).

File 3-math-7.R provides several examples of how to use the search argument for automati-
cally searching for the best parameters:

### 3-math-7.R: provides several examples of how to use the search argument
### for automatically searching for the best hyperparameters (G3 task):

### an internal 3-fold cross-validation is used by the grid search

### fit assumes all data to fit the models

### examples with several machine learning models: "mlpe", "ksvm", "rpart"

library (rminer)
math=read.table(file="math2.csv", header=TRUE, stringsAsFactors=TRUE)

# select inputs and output (regression):

inputs=2:29; g3=which (names (math)=="G3")

rmath=math[, c(inputs, g3) ]

# for simplicity, this code file assumes a fit to all math data:

mint=c ("kfold",3,123) # internal 3-fold, same seed
print ("more sophisticated examples for setting hyperparameters:")

cat ("mlpe model, grid for hidden nodes (size):",seq(0,8,2),"\n")

s=1list (smethod="grid", search=1ist (size=seq(0,8,2)),method=mint, convex=0)

R9=fit (G3~., rmath,model="mlpe", decay=0.1,maxit=25,nr=5, search=s, fdebug=TRUE
)

print (R9@mpar)

cat ("mlpe model, same grid using mparheuristic function:",seq(0,8,2),"\n")

s=list (search=mparheuristic("mlpe", lower=0, upper=38,by=2),method=mint)

R9b=fit (G3~., rmath,model="mlpe",decay=0.1,maxit=25,nr=5, search=s, fdebug=
TRUE)

print (R9b@mpar)

cat ("mlpe model, grid for hidden nodes:",1:2,"x decay:",c(0,0.1),"\n")

s=1list (smethod="grid", search=1ist (size=1:2,decay=c(0,0.1)),method=mint,
convex=0)

R9c=fit (G3~., rmath,model="mlpe", maxit=25, search=s, fdebug=TRUE)

print (R9c@mpar)
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cat ("mlpe model, same search but with matrix method:\n")

s=list (smethod="matrix", search=1ist (size=rep(l:2,times=2),decay=rep(c
(0,0.1),each=2)),method=mint, convex=0)

R9d=fit (G3~., rmath,model="mlpe", maxit=25, search=s, fdebug=TRUE)

print (R9d@mpar)

# 2 level grid with total of 8 searches

# note of caution: some "2L" ranges may lead to non integer (e.g. 1.3)
values at

# the 2nd level search. And some R functions crash if non integer values
are used for

# 1integer parameters.

cat ("mlpe model, 2L search for size:\n")

s=1ist (smethod="2L", search=1list (size=c(4,8,12,16)),method=mint, convex=0)

R9d=fit (G3~., rmath,model="mlpe", maxit=25, search=s, fdebug=TRUE)

print (R9d@mpar)

print ("ksvm with kernel=rbfdot: sigma, C and epsion (3A3=27 searches) :")

s=list(smethod="grid",search=list(sigma=2Ac(—8,—4,O),C=2Ac(—l,2,5),epsilon
=2"Nc (-9,-5,-1)),method=mint, convex=0)

R10=fit (G3~., rmath,model="ksvm", kernel="rbfdot", search=s, fdebug=TRUE)

print (R10@mpar)

# even rpart or ctree parameters can be searched:

# example with rpart and cp:

print ("rpart with control= cp in 10 values in 0.01 to 0.18 (10 searches):")

s=1list (search=mparheuristic("rpart",n=10, lower=0.01, upper=0.18) ,method=mint
)

R11=fit (G3~., rmath,model="rpart", search=s, fdebug=TRUE)

print (R11l@mpar)

# same thing, but with more explicit code that can be adapted for

# other rpart arguments, since mparheuristic only works for cp:

# a vector list needs to be used for the search$search parameter
print ("rpart with control= cp in 10 values in 0.01 to 0.18 (10 searches):")
# a vector list needs to be used for putting 10 cp values
lcp=vector ("list",10) # 10 grid values for the complexity cp

names (lcp)=rep ("cp",10) # same cp name
scp=seq(0.01,0.18,length.out=10) # 10 values from 0.01 to 0.18

for(i in 1:10) lcpl[i]l=scpli] # cycle needed due to [[]] notation
s=1list (smethod="grid", search=1ist (control=1lcp),method=mint, convex=0)
Rllb=fit (G3~., rmath,model="rpart", search=s, fdebug=TRUE)

print (R11bGmpar)

# check ?rminer::fit for further examples

After executing file 3-math-7.R, one output example is (results might change since "mlpe" is a
stochastic method):

> source ("3-math-7.R")

[1] "more sophisticated examples for setting hyperparameters:"
mlpe model, grid for hidden nodes (size): 0 2 4 6 8

grid with: 5 searches (SAE values)

i: 1 eval: 1322.123 best: 1322.123
i: 2 eval: 1472.887 best: 1322.123
i: 3 eval: 1542.438 best: 1322.123
i: 4 eval: 1567.747 best: 1322.123
i: 5 eval: 1744.021 best: 1322.123
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Sdecay
[1] 0.1

Smaxit
[1] 25

Snr
[1] 3

Ssize
[1] O

Stask
[11 "reg"

Sscale
[11 LERRRL

Stype
[1] 2

mlpe model,
grid with:
1 eval:
2 eval:
3 eval:
4 eval:
5 eval:
decay

1] 0.1

Smaxit
[1] 25

Snr
[11 3

Ssize
[11 0O

Stask
[11 "reg"

Sscale
[11 LERRRL

Stype
(1] 2

mlpe model,
grid with:
i: 1 eval:
i: 2 eval:
i: 3 eval:
i: 4 eval:
Smaxit

[1] 25

same grid using mparheuristic function:

5 searches (SAE wvalues)

1322.123 best: 1322.123
1387.089 best: 1322.123
1734.731 best: 1322.123
1552.737 best: 1322.123
1690.302 best: 1322.123

grid for hidden nodes:
4 searches (SAE values)

1409.903 best: 1409.903
1377.669 best: 1377.669
1383.751 best: 1377.669
1391.683 best: 1377.669

1 2 x decay:

0

0.

02 46 8

1

33
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Ssize
[1] 2

Sdecay
[1]1 O

Stask
[11 "reg"

Sscale
[1] LERRRL

Stype
[1] 2

Snr
[11 3

mlpe model, same search but with matrix method:
matrix with: 4 searches (SAE values)

i: 1 eval: 1371.93 best: 1371.93

i: 2 eval: 1413.567 best: 1371.93

i: 3 eval: 1390.079 best: 1371.93

i: 4 eval: 1397.966 best: 1371.93

Smaxit

[1] 25

Ssize
[171 1

Sdecay
[11 O

Stask
[11 "reg"

Sscale
[1] LERRRL

Stype
[1] 2

Snr
[11 3

mlpe model, 2L search for size:

[1] "™ 1st level:"

2L with: 4 searches (SAE values)
i: 1 eval: 1518.898 best: 1518.898

i: 2 eval: 1799.608 best: 1518.898
i: 3 eval: 1789.155 best: 1518.898
i: 4 eval: 1753.907 best: 1518.898
[1] " 2nd level:"

2L with: 4 searches (SAE values)
i: 1 eval: 1371.975 best: 1371.975
i: 2 eval: 1508.179 best: 1371.975
i: 3 eval: 1569.905 best: 1371.975
i: 4 eval: 1629.394 best: 1371.975
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end eval best: 1371.975

Smaxit

[1] 25

Ssize

[11 1

Stask

[11 nregn

$scale

[1] "all"

Stype

[11 2

Snr

[11 3

[1] "ksvm with kernel=rbfdot: sigma,
grid with: 27 searches (SAE values)
i: 1 eval: 1261.186 best: 1261.186
i: 2 eval: 1246.095 best: 1246.095
i: 3 eval: 1351.187 best: 1246.095
i: 4 eval: 1240.226 best: 1240.226
i: 5 eval: 1379.571 best: 1240.226
i: 6 eval: 1362.906 best: 1240.226
i: 7 eval: 1298.342 best: 1240.226
i: 8 eval: 1448.426 best: 1240.226
i: 9 eval: 1362.906 best: 1240.226
i: 10 eval: 1261.891 best: 1240.226
i: 11 eval: 1246.106 best: 1240.226
i: 12 eval: 1352.071 best: 1240.226
i: 13 eval: 1243.662 best: 1240.226
i: 14 eval: 1379.525 best: 1240.226
i: 15 eval: 1362.913 best: 1240.226
i: 16 eval: 1302.973 best: 1240.226
i: 17 eval: 1443.571 best: 1240.226
i: 18 eval: 1362.913 best: 1240.226
i: 19 eval: 1266.911 best: 1240.226
i: 20 eval: 1260.116 best: 1240.226
i: 21 eval: 1350.944 best: 1240.226
i: 22 eval: 1254.508 best: 1240.226
i: 23 eval: 1376.628 best: 1240.226
i: 24 eval: 1385.42 best: 1240.226
i: 25 eval: 1315.634 best: 1240.226
i: 26 eval: 1392.545 best: 1240.226
i: 27 eval: 1385.42 best: 1240.226
Skernel

[1] "rbfdot"

Skpar

Skpar$sigma

[1] 0.00390625

C and epsion

(3A3=27 searches) :

35
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Sepsilon
[1] 0.001953125

Stask
[1] "regn

[1] "rpart with control= cp in 10 values in 0.01 to 0.18 (10 searches):"

grid with: 10 searches (SAE values)
i: 1 eval: 1439.228 best: 1439.228

i: 2 eval: 1324.147 best: 1324.147

i: 3 eval: 1296.989 best: 1296.989

i: 4 eval: 1296.989 best: 1296.989

i: 5 eval: 1296.989 best: 1296.989

i: 6 eval: 1296.989 best: 1296.989

i: 7 eval: 1317.588 best: 1296.989

i: 8 eval: 1360.909 best: 1296.989

i: 9 eval: 1362.891 best: 1296.989

i: 10 eval: 1362.891 best: 1296.989
Scontrol

Scontrols$cp

[1] 0.04777778

Smethod
[1] "anova"

[1] "rpart with control= cp in 10 values in 0.01 to 0.18 (10 searches):"

grid with: 10 searches (SAE values)
i: 1 eval: 1439.228 best: 1439.228

i: 2 eval: 1324.147 best: 1324.147

i: 3 eval: 1296.989 best: 1296.989

i: 4 eval: 1296.989 best: 1296.989

i: 5 eval: 1296.989 best: 1296.989

i: 6 eval: 1296.989 best: 1296.989

i: 7 eval: 1317.588 best: 1296.989

i: 8 eval: 1360.909 best: 1296.989

i: 9 eval: 1362.891 best: 1296.989

i: 10 eval: 1362.891 best: 1296.989
Scontrol

ScontrolScp

[1] 0.04777778

Smethod
[1I] "anova"

In all examples, fdebug=TRUE was added to the fit for proving more verbose. In real-world prac-
tical examples, this argument should be omitted for presenting a more clear and short console
output. Please check the help(fit,package=rminer) for more details and examples of how to
use the powerful search argument.

3.4 Automated Machine Learning

Since its 1.4.4 version, the rminer package can perform an automated machine learning (Au-
toML) (Ferreira et al., 2021)), which adopts a grid search to automatically select the best machine
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learning (ML) algorithm (and its hyperparameters) among several possibilities. The advantage
of AutoML is that no expert ML modeling knowledge is needed. However, it should be noted
that in some cases (e.g., large datasets) the computational effort is high, requiring a substan-
tial fit time. This section briefly exemplifies the rminer AutoML execution. Further details are
available by accessing the help of functions fit and mparheuristic (€.g., help (mparheuristic)).

By default, rminer provides 3 AutoML modes (argument model of function mparheuristic):

* "automl" - executes a simple search with 5 ML algorithms using default hyperparameters:
generalized linear model (GLM, via cv.glmnet), support vector machine (SVM, via ksvm),
multilayer perceptron (MLP, via mlpe), random forest (RF, via randomForest) and extreme
gradient boosting (XG, via xgboost).

* "automl2" — similar to previous mode except that now 10 (or 13 for SVM) hyperparameter
searches are performed for each ML algorithm;

* "automl3" —similar to "autom12" except that includes an extra stacking ensemble (model="SE")
in the search and that uses the 5 best tuned ML algorithms (one for each family type).

A demonstration of the simplest AutoML mode ("autom1") is provided in file 3-math-9.R:

### 3-math-8.R: Automated Machine Learning (AutoML) for G3:
### for the sake of simplicity, the fit assumes all data to fit the models

library (rminer)
math=read.table (file="math2.csv", header=TRUE, stringsAsFactors=TRUE)

# select inputs and output (regression):
inputs=2:29; g3=which (names (math)=="G3")
rmath=math [, c(inputs, g3) ]

task="reg" # regression

metric="MAE" # mean absolute error

# this code file assumes a fit to all math data:

mint=c ("kfold",3,123) # internal 3-fold, same seed

# 5 machine learning (ML) algorithms, 1 heuristic hyperparameter per
algorithm:

sm=mparheuristic (model="automl", task=task, inputs=inputs)

search=1list (search=sm, smethod="auto",method=mint, metric=metric, convex=0)

M=fit (G3~., rmath,model="auto", search=search, fdebug=TRUE)

P=predict (M, rmath) # in this example, predictions for training data

# show leaderboard:

cat ("> leaderboard models:",M@mparS$LBSmodel, "\n")

cat ("> wvalidation values:", round (M@mpar$LBSeval,4),"\n")

cat ("best model is:",M@model, "\n")

cat (metric, "=", round (mmetric (rmath$G3,P,metric=metric),2),"\n")

# check ?rminer::fit and ?rminer::mparheuristic for further examples

An execution example of the code is:

> source ("3-math-8.R")

auto with: 5 models (MAE values)

grid with: 1 searches (MAE values)

i: 1 eval: 3.314423 best: 3.314423

m: 1 model: cv.glmnet bmodel: cv.glmnet eval: 3.314423 best: 3.314423 time:
0.417

grid with: 1 searches (MAE values)
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i: 1 eval: 3.182032 best: 3.182032

m: 2 model: ksvm bmodel: ksvm eval: 3.182032 best: 3.182032 time: 0.569

grid with: 1 searches (MAE values)

i: 1 eval: 4.601473 best: 4.601473

m: 3 model: mlpe bmodel: ksvm eval: 4.601473 best: 3.182032 time: 3.653

grid with: 1 searches (MAE values)

i: 1 eval: 3.273599 best: 3.273599

m: 4 model: randomForest bmodel: ksvm eval: 3.273599 best: 3.182032 time:

7.802

grid with: 1 searches (MAE values)

i: 1 eval: 5.972064 best: 5.972064

m: 5 model: xgboost bmodel: ksvm eval: 5.972064 best: 3.182032 time: 7.887
>> best: 5 model: ksvm best: 3.182032

> leaderboard models: ksvm randomForest cv.glmnet mlpe xgboost

> wvalidation values: 3.182 3.2736 3.3144 4.6015 5.9721

best model is: ksvm

MAE = 2.13

In this execution, the best validation error, the lowest mean absolute error (MAE), was provided
by the ksvm model. The second best model was randomForest, followed by cv.glmnet, mlpe and
xgboost. Then the selected model is trained with all data, the returned MAE is 2.13.
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Evaluation

The rminer package includes a large range of evaluation metrics and graphs that can be used
to evaluate the quality of the fitted models and extract knowledge learned from the data-driven
models. The metrics and graphs can be obtained by using the mmetric and mgraph() func-
tions, as exemplified in the next subsections. Other examples are available in the help (e.g.,
help(mmetric); help(mgraph)). The mmetric and mgraph functions compute several metrics or
graphs once they receive: y - target variable, x — predictions; or only y — the result of the mining
function or a vector list with mining() results. Other useful rminer functions are: Importance(),
which allows the extraction of knowledge from fitted models in terms of input importance and
average input effect; and mining(), which executes several fit and predict runs according to a
user defined external validation scheme. In particular, the Importance() function provides an
explainable artificial intelligence (XAI) by means of an sensitivity analysis (Cortez and Em-
brechts, [2013)).

4.1 Classification

4.1.1 Binary Classification

The code in eval-1.R shows some simple binary classification evaluations:

### 4-eval-1.R: math binary classification
### fit using all data

### predict using all data

### saves roc-1l.pdf and lift-1.pdf

library (rminer)
# read previously saved file
math=read.table (file="math2.csv", header=TRUE, stringsAsFactors=TRUE)

# select inputs:
inputs=2:29 # select from 2 ("sex") to 29 ("health")
# select outputs: binary task "pass"

bout=which (names (math)=="pass")
cat ("output class:",class (math[,bout]),"\n")
bmath=math [, c(inputs,bout)] # for easy use

y=bmath$pass # target
# fit rpart to all data, pure class modeling (no probabilities)

Bl=fit (pass~.,bmath,model="rpart", task="class") # fit a decision tree
Pl=predict (Bl,bmath) # class predictions
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print (P1[1]) # show 1lst prediction
m=mmetric(y,Pl,metric=c ("ACC", "ACCLASS"))
print (m) # accuracy,
m=mmetric(y,Pl,metric=c ("CONEF"))
print (m$conf) # confusion matrix
m=mmetric (y,Pl,metric=c ("ALL"))
print (round(m, 1))

accuracy per class

# a)

# all pure class metrics
# fit rpart to all data,

P2=predict (B2, bmath)
print (P2[1,]) # show 1lst prediction
m=mmetric(y,P2,metric=c("ACC"),TC=2,D=0.5)
print (m) # accuracy, accuracy per class
m=mmetric(y,P2,metric=c ("CONF"),TC=2,D=0.1)

print (m$conf)

# confusion matrix
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default probabilistic modeling
B2=fit (pass~.,bmath,model="rpart", task="prob")
# predicted probabilities

# fit a decision tree

# equal to a)

m=mmetric (y,P2,metric=c ("AUC", "AUCCLASS"))
print (m) # AUC, AUC per class
m=mmetric(y,P2,metric=c("ALL"))

print (round(m, 1)) # all prob metrics

# ROC and LIFT curve:

txt=paste (levels(y) [2],"AUC:", round (mmetric(y,P2,metric="AUC",TC=2),2))
mgraph (y, P2, graph="ROC",baseline=TRUE, Grid=10, main=txt, TC=2,PDF="roc-1")
txt=paste(levels(y) [2], "ALIFT:", round (mmetric(y,P2,metric="ALIFT",TC=2),2))
mgraph (y,P2,graph="LIFT",baseline=TRUE, Grid=10,main=txt, TC=2,PDF="1ift-1")

The obtained result is:

> source ("4-eval-1.R")

output class: factor
[1] fail
Levels: fail pass

ACC ACCLASS1 ACCLASS2
78.48101 78.48101 78.48101

pred
target fail pass
fail 66 64
pass 21 244
ACC CE BER KAPPA CRAMERV ACCLASS1
ACCLASS2 BAL_ACC1 BAL_ACC2 TPR1 TPR2
78.5 21.5 28.6 46.8 0.5 78.5
78.5 71.4 71.4 50.8 92.1
TNR1 TNR2 PRECISION1 PRECISION2 Fl1 Fl12
MCC1 MCC2
92.1 50.8 75.9 79.2 60.8 85.2
0.6 0.6
fail pass
0.8181818 0.1818182
[1] 78.48101
pred
target FALSE TRUE
FALSE 0 130
TRUE 0 265
AUC AUCCLASS1 AUCCLASSZ2
0.7266183 0.7266183 0.7266183
ACC CE BER KAPPA CRAMERV ACCLASS1
ACCLASS2 BAL_ACC1 BAL_ACC2 TPR1
78.5 21.5 28.6 46.8 0.5 78.5




4.1. CLASSIFICATION 41

78.5 71.4 71.4 50.8
TPR2 TNR1 TNR2 PRECISION1 PRECISION2 F11
Fl2 MCC1 MCC2 BRIER
92.1 92.1 50.8 75.9 79.2 60.8
85.2 0.6 0.6 0.2
BRIERCLASS1 BRIERCLASS2 AUC AUCCLASS1 AUCCLASS2 NAUC
TPRATFPR ALIFT NALIFT ALIFTATPERC
0.2 0.2 0.7 0.7 0.7 0.7
1.0 0.6 0.6 1.0

As previously explained, using probabilities allows for more flexibility when deciding if a class
is positive or not. This is controlled in rminer by setting the arguments: D - acceptance thresh-
old and Tc — target class. In this example, each mgraph function creates a PDF file, since the PDF
argument was used. Both graphs are shown in Figure[d.1] For a better understanding of the met-
rics computed, readers should consult help(mmetric) and (Witten et al., |2011). The ROC curve
suggests a predictive model that is much better than the random classifier baseline (AUC=0.7
vs AUC=0.5). The code also creates the accumulated LIFT curve, which is often used in the
marketing domain (Moro et al., [2014). The LIFT graph shows that it is possible to get 60% of
the "a" math grades by selecting 50% of the students with the highest predictive probabilities.
Some caution needs to be used when analyzing these results, since as previously explained the
generalization capability of a classifier should always be conducted using test and not training
data (training data was used for the sake of simplicity of code in this example).

pass AUC.: 0.73 pass ALIFT: 0.58
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Figure 4.1: ROC (left) and acummulated LIFT (right) curves for the "pass" class.

4.1.2 Multiclass Classification

In this example, an external holdout is used, by using function holdout (), in order to compute
some multiclass metrics and graphs (file 4-eval-2.R):

### 4-eval-2.R: math multiclass classification

### external holdout (2/3 for training, 1/3 for testing)
### randomForest machine learning

### saves roc-2.pdf, imp-1.pdf and vec-1.pdf

library (rminer)
# read previously saved file
math=read.table(file="math2.csv", header=TRUE, stringsAsFactors=TRUE)
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inputs=1:32 # all except G3 and pass

fout=which (names (math)=="five")
cat ("output class:",class (math[, fout]),"\n")
cmath=math[,c(inputs, fout)] # for easy use

H=holdout (cmath$five, 2/3,123)
y=cmath[HS$ts, ]$five # target

# simple fit of randomForest

Cl=fit (five~.,cmath[HStr, ],model="randomForest")
Pl=predict (Cl,cmath[HSts,]) # class predictions
print (P1[1,]) # show lst prediction
m=mmetric(y,Pl,metric=c ("AUC", "AUCCLASS"))

print (m) # global AUC, AUC per class
m=mmetric(y,Pl,metric=c("CONF")) # a)

print (m$conf) # confusion matrix

m=mmetric (y,Pl,metric=c ("ALL"))

print (round(m, 1)) # all prob. metrics

# ROC curve for class "A"

TC=1

txt=paste ("class", levels(y) [TC], "AUC:", round (mmetric (y,P1l,metric="AUC", TC=
TC),2))

mgraph (y,P1l, graph="ROC",baseline=TRUE, Grid=10, main=txt, TC=2,PDF="roc-2")

I=Importance (Cl,cmath[HS$tr, 1)
print (round (I$imp,digits=2))
imax=which.max (I$imp)

L=1list (runs=1, sen=t (I$imp), sresponses=IS$sresponses) # create a simple
mining list

par (mar=c(2.0,2.0,2.0,2.0)) # enlarge PDF margin

mgraph (L, graph="IMP", leg=names (cmath), col="gray",Grid=10,PDF="imp-1")

txt=paste ("VEC curve for",names (cmath) [imax],"influence on class", levels (y)
[IC])

mgraph (L, graph="VEC", xval=imax, Grid=10,data=cmath[HS$tr, ], TC=1, main=txt, PDF=
"vec—-1")

The output of executing file 4-eval-2.R is:

> source ("4-eval-2.R")
output class: factor
A B C D F
0.016 0.026 0.022 0.134 0.802
AUC AUCCLASS1 AUCCLASS2 AUCCLASS3 AUCCLASS4 AUCCLASSS
0.9372570 0.9882660 0.9299550 0.9199134 0.8908429 0.9704017

pred
target A B C D F
A 8 5 0 0 O
B 016 4 0 O
c 0 310 8 O
D 0 1 2 23 8
F 0 O 0 4 39
ACC CE BER KAPPA
CRAMERV ACCLASS1
73.3 26.7 30.5 64.8
0.7 96.2
ACCLASS2 ACCLASS3 ACCLASS4 ACCLASSS

BAL_ACC1 BAL_ACC2
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90.1 87.0 82.4 90.8
80.8 85.9
BAL_ACC3 BAL_ACC4 BAL_ACCS TPR1
TPR2 TPR3
71.1 77.6 90.8 61.5
80.0 47.6
TPR4 TPRS TNR1 TNR2
TNR3 TNR4
67.6 90.7 100.0 91.9
94.5 87.6
TNRS PRECISION1 PRECISIONZ2 PRECISION3
PRECISION4 PRECISIONS
90.9 100.0 64.0 62.5
65.7 83.0
Fl1 F12 F13 F14
F15 MCC1
76.2 71.1 54.1 66.7
86.7 0.8
MCC2 MCC3 MCC4 MCC5
BRIER BRIERCLASS1
0.7 0.5 0.6 0.8
0.1 0.0
BRIERCLASS?2 BRIERCLASS3 BRIERCLASS4 BRIERCLASSS
AUC AUCCLASS1
0.1 0.1 0.1 0.1
0.9 1.0
AUCCLASS2 AUCCLASS3 AUCCLASS4 AUCCLASSS
NAUC TPRATFPR
0.9 0.9 0.9 1.0
1.0 1.0
ALIFT NALTFET ALIFTATPERC macroTNR
microTNR weightedTINR
0.8 0.8 1.0 93.0
93.3 91.7
macroPRECISION weightedPRECISION macroTPR weightedTPR
macroF1l weightedF1
75.0 74.0 69.5 73.3
70.9 72.8
macroACC weightedACC
89.3 88.5

(1] 0.00 0.01 0.01 0.01 0.03 0.02 0.02 0.02 0.03 0.03 0.01 0.01 0.01 0.02
0.05 0.02 0.01 0.01 0.00 0.00 0.06 0.02 0.05
[24] 0.02 0.04 0.03 0.03 0.01 0.02 0.01 0.14 0.23 0.00

In the example, all math2.csv inputs are fed into the random forest, including the previous
trimester grades (G2 and G1) that are correlated with the final grade G3. Thus, high quality
prediction results are achieved. For instance, the global AUC value is 0.95 and the AUC for class
"A" is 0.96, which corresponds to a high quality discrimination, as shown by the ROC curve of
Figure 4.2l The rminer Importance function uses a sensitivity analysis method for extracting
input relevance and variable effect characteristic (VEC) curves. The Importance function can
be applied to virtually any supervised learning method, thus being useful for opening black-box
models. This usage is detailed in (Cortez and Embrechts, 2013)), where several XAl sensitivity
analysis methods and visualization techniques are also discussed, such as input pair relevance
and overall effect on the output (e.g., via VEC surface and contour plots). For some additional
code examples, please check help(Importance). The result of Importance is put in a simple
mining list, such that it can be used by mgraph (). The left of Figure 4.3|shows a barplot with the
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input relevance values, confirming the importance of G2 and 61 grades. In the right of Figure[d.3]
the VEC curve for G2 corresponds to the solid line, while the gray bars denote the G2 histogram.
This plot allows to verify that high G2 values are less frequent. Also, a high G2 increases the
probability for the "A" by more than 0.15 points.

class A AUC: 0.99

1.0

TPR

0.0 0.2 0.4 0.6 0.8 1.0

FPR

Figure 4.2: ROC curve for class "aA".
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Figure 4.3: Input importance (left, in %) and Variable Effect Curve for the G2 input average
effect on class "A".

4.2 Regression

The powerful mining function will be adopted in the regression evaluation example. This func-
tion executes several fit and predict runs under a user defined external validation method, re-
turning a mining list with useful execution indicators. In order to reduce the usage of memory,
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the function does not store individual fit models, since for some external validation methods
and selected number of runs, the total number of fitted models can be high. More details are
given in: help(mining). The regression example is provided in file 4-eval-3.R:

### 4-eval3.R: demonstration of mining function for regression (G3)
### 20 runs x external 3-fold: requires some computation

### 2 ML algorithms: randomForest vs mr

### saves rsc-1l.pdf and rec-1l.pdf

library (rminer)
math=read.table(file="math2.csv", header=TRUE, stringsAsFactors=TRUE)

inputs=1:32 # all except pass and five

g3=which (names (math)=="G3")
cat ("output class:",class (math[,g3]),"\n")
rmath=math[,c(inputs,g3)] # for easy use

y=rmath$g3 # target

# mining for randomForest, external 3-fold, 20 Runs (=60 fitted models)
Ml=mining (G3~., rmath,model="randomForest",method=c ("kfold",3,123),Runs=20)
m=mmetric (Ml,metric=c ("MAE", "RMSE")) # 2 metrics:

print (m) # show metrics for each run
mi=meanint (m[,1])
cat ("RF MAE values:",round (mi$mean,2),"+-", round (miSint,2),"\n")

# regression scatter plot:
txt=paste ("G3 MAE:", round (mi$mean, 2))
mgraph (M1, graph="RSC",Grid=10,main=txt, PDF="rsc-1")

# REC curve, comparison with multiple regression: "mr":

M2=mining (G3~., rmath,model="mr",method=c ("kfold",3,123),Runs=20)

L=vector ("list",2) # list of minings

Lif11]1=M1

Li[2]]1=M2

mgraph (L, graph="REC", leg=c ("randomForest", "mr") ,main="REC curve",xval=10,
PDF="rec-1")

The obtained result is:

> source ("4-eval-3.R")
output class: integer

MAE RMSE
1 1.191093 1.815548
2 1.203746 1.823500
3 1.238816 1.875031
4 1.278862 1.980725
5 1.205809 1.852967
6 1.192323 1.806255
7 1.205364 1.829047
8 1.203903 1.828953
9 1.243389 1.882187
10 1.208198 1.813607
11 1.174015 1.769573
12 1.230345 1.860536
13 1.193067 1.790573
14 1.206698 1.827090
15 1.179501 1.805789
16 1.211689 1.837586
17 1.199138 1.822167
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18 1.229448 1.865620
19 1.194857 1.785262
20 1.250204 1.860416
RF MAE values: 1.21 +- 0.01

Using a single line of code, the mining function executes 20 runs of an external 3-fold cross-
validation procedure. If needed, the mining function can be replaced by a cycle for executing the
several runs and that uses the fit and predict functions within an external validation scheme
(e.g., use of holdout Or crossvaldata functions, as shown in example 3-math-4.R from Sec-
tion[3.2)).

The result of mining () is a list that contains, among others, the target values and predictions
for each run. Such list can be directly used by the mmetric and mgraph functions, as shown
in the example code. The graphs created by mgraph() are shown in Figure The left of
Figure 4.4) shows an interesting (but not perfect) observed (x-axis) versus predicted (y—axis)
scatter plot, while the right of Figure 4.4 compares the regression error characteristic (REC)
performance (Bi and Bennett, 2003) of two methods (randomForest vs mr). The latter graph
confirms a slightly better performance of the randomForest method, which presents a higher
REC area when compared with the multiple regression method.
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Figure 4.4: Scatter plot for randomForest (left) and REC curve (right).
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Time Series Forecasting

This chapter is devoted to time series forecasting (TSF), which is a special case of regression
and involves the analysis of a time ordered phenomenon. In particular, it covers univariate TSF,
where there is access to only one times series variable. There are several classical pure uni-
variate TSF methods, such as Holt-Winters and ARIMA, which are available in the forecast
package. As explained in Section[2.2] the rminer package includes the useful casesSeries func-
tion, which transforms a time series into a data.frame (with inputs and a target output variable),
thus facilitating the modeling of time series by machine learning methods (e.g., regression).

The example file 5-passengers.R assumes that the forecast and rminer packages are installed
and contains the code:

### 5-passengers-1.R: time series forecasting demonstration
### uses AirPassengers data
### saves air.pdf, hw.pdf, ar.pdf and nn.pdf

library (forecast)
library (rminer)

# example with R data AirPassengers

# other time series could be read from a CSV file via read.table

data (AirPassengers)

yrange=diff (range (AirPassengers)) # range for all values, used by NMAE

H=12 # number of ahead predictions

L=length (AirPassengers)

LTR=L-H # length of the training set

# time series monthly object:

# start means: year of 1949, 1lst month (since frequency=K=12)
TR=ts (AirPassengers[1l:LTR], frequency=12, start=c(1949,1))

pdf ("air.pdf")
tsdisplay (TR)
dev.off ()

# holt winters method
HW=HoltWinters (TR)
F=forecast (HW,h=H) # 1 to H ahead forecasts
Pred=F$mean[1l:H] # HW predictions
Target=AirPassengers| (L-H+1) : L]
txt=paste ("HW NMAE:", round (mmetric (Target,Pred,metric="NMAE",val=yrange), 2)
,"\n")
mgraph (Target,Pred, graph="REG",Grid=10,col=c("black", "blue"),
leg=list (pos="topleft",leg=c("target", "predictions")),main=txt, PDF="

47
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hw")

# arima method:
AR=auto.arima (TR)
Fl=forecast (AR, h=H) # 1 to H ahead forecasts
Predl=Fl$mean[l:H] # AR predictions
txt=paste ("AR NMAE:", round (mmetric (Target,Predl, metric="NMAE", val=yrange)
,2),"\n")
mgraph (Target,Predl, graph="REG", Grid=10, col=c ("black", "blue"),
leg=list (pos="topleft", leg=c("target", "predictions")),main=txt, PDF="
ar")

# neural network modeling:
d=CasesSeries (AirPassengers,c(1,12,13)) # data.frame from time series
LD=nrow (d)
dtr=1: (LD-H) # train indices
NN=fit (y~.,d[dtr, ], model="mlpe")
# from 1 to H ahead forecasts:
Pred2=1forecast (NN, d, start=(LD-H+1), horizon=H)
txt=paste ("NN NMAE:", round (mmetric(Target,Pred2,metric="NMAE",val=yrange)
,2),"\n")
mgraph (Target,Pred2, graph="REG", Grid=10,col=c ("black", "blue"),
leg=list (pos="topleft",leg=c("target", "predictions")),main=txt, PDF="
nn")

First, the code loads the AirPassengers time series. This is a famous series that corresponds to
the number of passengers (in thousands) of an airline company from 1949 to 1960. Then, it
sets the training data (TR) with the first 132 elements from the series. Next, it plots the training
series data and its autocorrelation (ACF) and partial autocorrelation (PACF) values (Figure[5.1).
The top graph reveals a series with a monthly seasonal behavior. This is also confirmed by the
autocorrelation values, which have local peaks for the 12th and 24th time lags. The dashed
horizontal blue lines in the ACF and PACF graphs denote the boundaries of a purely random
series. Given that several ACF and PACF values are above and below these blue lines, this
series is predictable.

The example code fits then three TSF models: Holt-Winters, ARIMA and a neural network
ensemble (rminer "mlpe" model). In particular, the fitting of ARIMA requires some compu-
tational effort (function auto.arima from package forecast). For using data mining methods,
the CaseSeries function needs to be used with a selected sliding time window (W), in order to
create a training dataset (data.frame) (Cortez, 2010b; |Stepnicka et al., 2013). For this exam-
ple, a priori knowledge was used to set W=c(1,12,13), namely by using the time lags commonly
adopted by ARIMA method for monthly series. The resulting data.frame has 131 examples,
from which the first 119 samples are used as the training set (d[dtr,]1). While the length of
dtr is lower than TR (it corresponds to nrow(d)-H), the last training data value is the same, 1.e.,
d[dtr[119],1$y==TR[132] (value of 405). To create the one to H ahead forecasts, the long term
forecast rminer 1forecast() was used . The 1forecast function only uses past training data
(called in-samples) to compute the forecasts (also termed out-of-samples). Multi-step ahead
forecasts are built by iteratively using 1-ahead predictions as inputs of the data mining model
(Cortezl, 2010b). The 1forecast is set to predict up to H ahead forecasts, starting on the example
LD-H+1=120 from object d. If the predict rminer function was used instead of the 1forecast
function, then only 1-ahead forecasts (i.e., predict # + 1 knowing all data elements up to time #)
could be estimated.

The results are presented in Figure [5.1] in terms of regression plots and the normalized
mean absolute error (NMAE) metric. The quality of the forecasts can be visually inspected in
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the regression plots, where the predictions should be close to the target values. The NMAE
is a scale independent metric that can be interpreted as a percentage error, where lower values
correspond to better forecasts (Oliveira et al., 2017). The plots and also NMAE metric values
from Figure [5.2] confirming that for this experiment the best forecasts were provided by the
Holt-Winters method, followed by the neural network ensemble.
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Figure 5.1: Plot of the airline passenger training data (top) and its ACF (bottom left) and PACF
(bottom right) statistics.
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Conclusions

The goal of this tutorial was to present some simple rminer code recipes that demonstrate the
package capabilities for executing classification and regression (including time series forecast-
ing) tasks. The tutorial started with a brief introduction. Then, three CRISP-DM stages were
approached: data preparation, modeling (including model parametrization) and evaluation. Fi-
nally, a time series forecasting example was shown for the airline passengers series.

Rather than detailing every rminer function, which is available by calling its documenta-
tion, such as by executing help(package=rminer), this tutorial followed a learning by example
approach. Once the rminer recipes are understood and executed, it is expected that a better
knowledge of the rminer package is gained, allowing a more easy writing of code that adopts
the package to fulfill the user’s needs. Any feedback about the package can be given by sending
a message to the package owner: pcortez@dsi.uminho.pt.

Readers that found this document useful might also be interest in this Springer book, which
is written from a practical point of view and explains how to approach modern optimization or
metaheuristics (e.g., simulated annealing; tabu search; genetic algorithms; differential evolu-
tion; and particle swarm optimization) with R: https://link.springer.com/book/
10.1007/978-3-030-72819-9 (Cortez, [2021).
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