Towards Specification and Verification Frameworks for Concurrent Real-Time Systems

David Pereira, André Pedro, Luís Miguel Pinho, Jorge Sousa Pinto
{dmrpe,anmap,lmp}@isep.ipp.pt, jsp@di.uminho.pt

The Problem

- Concurrent real-time systems are growing dramatically, both in size and complexity
- Verification, already challenging, is highly impacted from this growth
- Integrated frameworks are fundamental to tackle all the intricacies of these systems
- Formal languages that specify both timed and functional properties (at the source-level)

Proposed Approach

- Support the use of several techniques in cooperation
- Hybrid frameworks: both static and runtime verification
- Address mainly the temporal correctness of source-level, real-time programs
- Programming language independency
- Fostering the use of tools that have been proved valuable (theorem provers, model checkers, deductive verification frameworks)

Example Specification

- Example using temporal logic as underlying method:
  ```
  mon Monitor_A
    head <...>
    gen model l.mtl of X as lmtl; -- Construct Model
    spec
      smemory is lmtl.sat[sread implies true until<=10 mwrite];
      oper
      set sampled 5 to smemory;
      change smemory period to 5 in checkpoint_1;
  ```

Preliminary Ideas

- Regular expressions as formally verified models for lightweight and expressive runtime monitoring systems
- Timed and hybrid logics as a high-level specification for monitoring synthesis
- Integration of both methods (and possibly others in the future) in a single formal specification language
- Focus on real-time design patterns

Final Remarks

- First prototype of the specification language
- Model of runtime monitor system based on timed regular expressions extended with Boolean assertions
- Currently defining a formal logic to express and reason about lazy linear hybrid automata