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“Would you tell me, please, which way I ought to go from here?" 

"That depends a good deal on where you want to get to," said the Cat. 

"I don't much care where –" said Alice. 

"Then it doesn't matter which way you go," said the Cat. 

"– so long as I get somewhere," Alice added as an explanation. 

"Oh, you're sure to do that," said the Cat, "if you only walk long enough." 

"But I don't want to go among mad people," Alice remarked. 

"Oh, you can't help that," said the Cat: "We're all mad here. I'm mad. You're mad." 

"How do you know I'm mad?" said Alice. 

"You must be," said the Cat, "otherwise you wouldn't have come here." 

 

Lewis Carroll's novel, Alice's Adventures in Wonderland 
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Abstract 

Iron deficiency is the most prevalent nutrient deficiency affecting all age groups 

worldwide. Deleterious alterations on cognition, psychological morbidity and physical 

performance have been observed in several reports; however, the main body of literature focuses 

on infants, children, adolescents or women of childbearing age. These groups are considered to 

be at high risk due to physiologic conditions. Nonetheless, several pathological conditions are 

also risk factors for iron deficiency, with many of them highly prevalent in older individuals. In a 

growing older society, considering that older individuals are at greater risk of cognitive decline, 

neuropsychological morbidity, decrements in physical performance and impaired functional 

ability, the study of the factors influencing these outcomes are of utmost importance. Still, 

despite of all the evidence pointing for a role of iron deficiency in cognition, mood and physical 

functional ability, there is a worrying small amount of research in older individuals.  

In this work, by first using a cross-sectional analysis, we investigated the association of 

low iron status with cognitive performance, neuropsychological morbidity and physical functional 

ability in a cohort of older individuals (n=151). Next, using a quasi-experimental study design 

(n=12, intervention; n=10, non-intervention), namely intervention via an iron-fortified fruit–based 

dessert, we addressed if low dosage iron fortification of foods is feasible and effective in altering 

(and/or correcting for) the effects of low iron status.  

In order to reduce the number of multiple comparisons, principal component analysis of 

cognitive, psychological, physical variables and iron biomarkers was performed and the obtained 

dimensions used for analysis. We observed that the storage [body iron, soluble serum transferrin 

receptor (sTFR), ratio of sTFR to the logarithmic value of ferritin (sTFR – Log(FT)) index  and 

ferritin (FT)] and erythropoiesis [red cells blood Count (RBC), hemoglobin and hematocrit] 

dimensions were significant predictors of the memory dimension [selective reminding test (SRT) - 

consistent long term retrieval (CLTR), - long term storage (LTS) and - delayed recall (DR) and the 

Consortium to establish a registry for Alzheimer's disease (CERAD) (total hits and DR)], along 

with the interaction of storage and nutritional status. The geriatric depression scale (GDS) score 

was predicted by the transport [serum iron (Fe) and transferrin saturation (TF sat.)], transport 

saturation [transferrin (TF) and total iron binding capacity (TIBC)] and erythropoiesis dimensions. 

The functional tiredness (mobility-, lower limb- and upperlimb-tiredness) dimension was predicted 

by the storage, transport, red cells composition [mean corpuscular volume (MCV), mean cell 

hemoglobin (MCH), mean cell hemoglobin concentration (MCHC) and red cell distribution width 

(RDW)] and erythropoiesis dimensions.  After 12 weeks (+/- 2 weeks) of intervention, the daily 

consumption of an iron fortified dessert was associated with an improvement of the total and 
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sub-scores of performance-oriented mobility assessment, along with hand grip strength and lower 

limb tiredness.  

Our observations indicate that lower iron status is associated with poorer memory ability, 

depressive mood and functional tiredness from activities of daily living. Furthermore, results 

indicate that the physical negative effects of low iron status seem to be recovered by iron 

supplementation, highlighting the importance of prevention. Identification of molecular bases of 

the associations here reported is paramount and further research is needed.  
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Resumo 

A deficiência de ferro é o deficit nutricional mais prevalente em todo o mundo, afetando 

todas as faixas etárias. Vários estudos têm demonstrado um impacto negativo da deficiência de 

ferro sobre a cognição, a morbidade psicológica e desempenho físico; no entanto, os referidos 

estudos debruçam-se essencialmente em crianças, adolescentes ou mulheres em idade fértil, 

nos quais várias condições fisiológicas concorrem para que estes grupos sejam considerados de 

alto risco. No entanto não devemos descurar, igualmente, que várias condições patológicas são 

fatores de risco para deficiência de ferro, sendo muitas delas altamente prevalentes em idosos. 

Numa sociedade cada vez mais envelhecida, e onde os indivíduos mais velhos apresentam risco 

acrescido de declínio cognitivo, morbidade neuropsicologia, decréscimos no desempenho físico e 

capacidade funcional comprometida, o estudo dos fatores que influenciam estas consequências 

do envelhecimento são de extrema importância. Apesar de todas as evidências apontarem para 

um papel da deficiência de ferro na cognição, humor e capacidade física funcional, a 

investigação em idosos é escassa.   

Neste trabalho, utilizando uma análise transversal, investigámos as associações de 

baixos níveis de ferro com o desempenho cognitivo, a morbidade neuropsicológica e a 

capacidade funcional física em idosos. Através de um estudo quasi-experimental, investigamos, 

ainda, se a fortificação de alimentos com pequenas doses de ferro é viável e eficaz para 

melhorar a capacidade cognitiva, o humor e a condição física.  

Com o objetivo de reduzir o número de comparações múltiplas foi realizada a análise 

dos componentes principais das variáveis cognitivas, psicológicas, físicas e dos biomarcadores 

de ferro e os componentes obtidos utilizados para análise estatística. Observou-se que os 

componentes armazenamento [ferro corporal, receptor solúvel da transferrina (sTFR), indice do 

rácio do sTFR para a transformação logarítmica da ferritina (sTFR – Log(FT)) e ferritina (FT)] e 

eritropoiese [eritrócitos (RBC), hemoglobina e hematócrito], bem como a interação do 

componente armazenamento com estado nutricional, foram preditores significativos do 

componente memória [teste de memoria selectiva (SRT) – evocação da memória a longo prazo 

(CLTR), - armazenamento na memória a longo prazo (LTS) e – evocação tardia (DR); e o 

Consórcio para estabelecer um registro para a doença de Alzheimer (CERAD) (total de respostas 

certas e DR)]. O valor da escala de depressão geriátrica (GDS) foi previsto pelos componentes 

transporte [ferro sérico (Fe) e saturação da transferrina (TF sat.)], saturação do transporte 

[transferrina (TF) e capacidade total de ligação do ferro (TIBC)] e da eritropoiese. Os 

componentes armazenamento, transporte, composição células vermelhas [volume corpuscular 

médio (MCV), hemoglobina corpuscular média (MCH), concentração de hemoglobina 
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corpuscular média (MCHC) e a anisocitose (RDW)] e eritropoiese foram preditores significativos 

do componente obtido para o cansaço associado às atividades funcionais diárias. Observámos, 

ainda, que após 12 semanas (+ / - 2 semanas), o consumo diário de uma sobremesa fortificada 

em ferro se associa a uma melhoria no total e subtotais de avaliação da mobilidade orientada 

para o desempenho, juntamente com força de preensão manual e menor cansaço dos membros 

inferiores.  

Estes resultados indicam que os níveis de ferro estão associados a menor memória, a 

humor depressivo e a cansaço funcional nas atividades da vida diária. Além disso, os resultados 

sugerem que os efeitos negativos de baixo nível de ferro a nível físico melhoram com a 

suplementação de ferro, destacando a importância da prevenção do declínio nos níveis de ferro. 

Importa no futuro a confirmação destes resultados em estudos de base populacional, assim 

como a identificação das bases moleculares que lhes estão subjacentes.  
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Iron is essential for several biochemical/biological processes. Namely, it is a component 

and cofactor of various enzymes, participating in oxygen transport and storage, mitochondrial 

electron transport, catecholamine metabolism and neurotransmitters and DNA synthesis, among 

others (J. L. Beard, Connor, & Jones, 1993; Hill, 1985; IOM, 2001; M. B. Youdim & Green, 

1978). In normal conditions, healthy adults have approximately 35 to 45 mg of iron per kilogram 

of body weight (premenopausal females have lower iron stores due to recurrent menstrual blood 

losses), being more than two thirds incorporated in hemoglobin (Nancy C. Andrews, 1999). 

Imbalance in iron homeostasis, both excess and deficiency, are deleterious to human health and 

are associated with conditions such as hemochromatosis, neurodegenerative disorders (i.e. 

Parkinson and Alzheimer diseases), type II diabetes and anemia (Iron Deficiency Anemia – IDA) 

(Hentze, Muckenthaler, & Andrews, 2004; Jiang et al., 2004; Zecca, Youdim, Riederer, Connor, 

& Crichton, 2004; Zhao et al., 2012).  

Paradoxically, although iron is one of the most abundant elements on the planet, iron 

deficiency is the most common nutritional deficiency (Boccio & Iyengar, 2003). While several 

causes can be present in the etiology of the disorder, it can, in general, be explained as an 

imbalance between iron intake, absorption and losses (Cook, 2005; Zimmermann & Hurrell, 

2007). The inability to maintain, for a long period of time, adequate plasma iron levels and/or 

body iron stores, leads to iron deficiency (ID) anemia (IDA) (De Domenico, McVey Ward, & 

Kaplan, 2008), the most common hematological disorder (McLean, Cogswell, Egli, Wojdyla, & de 

Benoist, 2009; Mukhopadhyay & Mohanaruban, 2002). In fact, the World Health Organization 

(WHO) estimates that, worldwide, more individuals have IDA than any other health problem 

(Mathers, Fat, Boerma, & Organization, 2008; McLean et al., 2009). Although all age groups are 

vulnerable to ID, infants, adolescents, women of childbearing age or pregnant, and middle-

aged/older individuals (defined as age ≥ 60 years) are particularly susceptible (De Benoist, 

Cogswell, Egli, & McLean, 2008; McLean et al., 2009; WHO, 2001). In adults, ID and IDA can 

result or be associated with a wide range of adverse effects, including: fatigue, reduced work 

performance, diminished exercise capacity, impaired thermoregulation, immune dysfunction, 

gastrointestinal disturbances, and neurocognitive impairment (Susan F. Clark, 2008; Haas & 

Brownlie, 2001; Zimmermann & Hurrell, 2007). 

Of particular concern, the raise of life expectancy in the last century has led to an 

increase of the aged population worldwide (Christensen, Doblhammer, Rau, & Vaupel, 2009). 

Specifically, in the last 160 years women’s life expectancy has increased 3 months per year in an 
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almost linear trend, with the same trend observed for men, albeit at a slower pace (Oeppen & 

Vaupel, 2002). ‘Normal’ healthy aging is associated with a degree of cognitive decline, termed 

“age-related cognitive decline/aging” (defined as no dementia, mild cognitive impairment or 

other specific cognitive decline-associated syndromes/diseases), as well as with physical 

challenges and decrements (Beddington et al., 2008; Deary et al., 2009; Guralnik, Fried, & 

Salive, 1996; Janssen, Heymsfield, & Ross, 2002). Despite being indisputable that life 

expectancy increase should be celebrated, this current demographic and societal phenomenon 

will result in an increasing number of older individuals with various age-associated health 

concerns/problems and pathologies (including, for example, cancer, fractured hips, strokes, 

dementia), which may occur concurrently (that is, co- or multi-morbidities) (Rechel et al., 2013; 

The, 2012). Furthermore, aged individuals are also the largest consumers of prescribed drugs or 

medication (Qato et al., 2008), with age-associated disease burden and medication consumption 

accounting for significant health care needs, which is reflected by an increase in the expenditure 

of the health and welfare systems of nations (Rechel et al., 2013). Of relevant note, several 

morbidities and therapeutic drugs that are highly prevalent in older individuals are also possible 

causes of ID (see 1.2.1 – From basics to clinics) (Susan F. Clark, 2008).  

Taken together, aging and ID can be deleterious for health and wellbeing, particularly in 

cognition and physical ability. Notably, however, extremely little focused research has been 

conducted in this population strata. A systematic review and meta-analysis found an increased 

risk of incident dementia in anemic individuals; however, the type of anemia was not addressed 

(Peters et al., 2008). Although anemia is used as an indicator of ID and the terms anemia, ID 

and IDA are used interchangeably, it should be noticed that anemia can also be caused by 

vitamin B12 deficiency, which is a well-known cause of dementia (Reynolds, 2006; WHO, 2001). 

Furthermore, physical functional ability in the elder has been associated with anemia (Chaves, 

2008; Denny, Kuchibhatla, & Cohen, 2006; Penninx et al., 2003; Penninx et al., 2004; Mya 

Thein et al., 2009). Still, to the best of our knowledge no study has addressed associations with 

ID.  

The growing older population and the potential reversibility, amelioration or prevention of 

the delirious effects of ID in cognition and physical functionality dictate the need of studies that 

multi-disciplinarily address and explore the association between iron status, cognitive ability and 

physical functional performance in middle-aged/older individuals.  
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1.1. Iron homeostasis  

The physiology of iron metabolism has been known for more than a half a century, 

mostly by means of human and animal studies using iron isotopes. More recently, the 

discoveries of key molecules that are involved in intestinal iron absorption allowed a better 

understanding of this process at the molecular level (Frazer & Anderson, 2005; T. Ganz, 2008). 

Iron is a nutrient classified as an essential trace element with the ability to easily gain and loose 

electrons (inter-conversion between ferric [Fe3+] and ferrous [Fe2+] forms) (De Domenico et al., 

2008; T. Ganz, 2008; Hentze et al., 2004). This chemical property of iron makes it an useful 

component of oxygen binding molecules, cytochromes and non-heme enzymes, largely explaining 

its biological importance, but also underlying the reasons for its deleterious and toxic effects 

when in excess (Hentze et al., 2004). Iron can catalyze a “fenton-type” redox reaction where the 

ferrous form interacts with hydrogen peroxide or lipid peroxidases originating free radicals (i.e. 

superoxide anions and the hydroxyl radical) that ‘attack’ and damage cellular membranes, 

nucleic acids and proteins (Nancy C. Andrews, 1999; Hentze et al., 2004). In humans, there is 

no known physiological regulated form to actively excrete iron, and since both iron overload and 

deficiency lead to several disorders, iron homeostasis must be tightly regulated via absorption 

and storage mechanisms (Nancy C. Andrews, 1999; De Domenico et al., 2008; Zimmermann & 

Hurrell, 2007). Daily, 1 to 2 mg of iron is absorbed from dietary sources, with similar amounts 

lost by epithelial cell shedding (skin, gastrointestinal and urinary tract cells) and fluids loses 

(menstruation, minor bleeding, tears and sweat) (T. Ganz, 2008; Miret, Simpson, & McKie, 

2003). Despite of the small amounts that renew (and/or ‘recycle’) the iron pool, the erythron (all 

the erythrocyte, their precursors and organs involved in their production) has daily requirements 

of 20 to 30 mg (Nancy C. Andrews, 1999; Miret et al., 2003). 

 

1.1.1. Iron absorption and metabolism 

As mentioned, although 1 to 2 mg of iron are absorbed by enterocytes each day to 

compensate the losses, these amounts only represent a small portion of the body iron daily 

needs. The mean dietary intake of iron for an adult ranges from 12 to 18 mg/day, which is 

sufficient to meet the dietary reference allowance (8 mg/day for men and post-menopausal 

women and 18mg/day for pre-menopausal women) (IOM, 2001). Dietary iron can be divided in 
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two components: (i) heme iron (protoporfirin IX – from hemeproteins) and (ii) nonheme iron 

(dietary ferritin and iron salts and chelates). These have distinct bioavailabilities. Heme iron is 

found mainly in meat food sources and corresponds to up to 15% of the dietary iron, the 

remaining is nonheme iron which is found mainly in vegetable sources (Hallberg, 2001). Heme 

and nonheme iron are absorbed in the small intestine, where a gradient for absorption occurs, 

with higher rate at the duodenum and decreasing in the jejunum and in the ileum (De Domenico 

et al., 2008; Gibson, 2005; Miret et al., 2003). The enterocytes (polarized intestinal epithelial 

cells) are responsible for all iron absorption (Nancy C. Andrews, 1999). These cells, which derive 

from stem cells in the intestinal crypts (crypts of Lieberkuhn) and migrate up the villus, are 

characterized by an apical side (presenting the brush-border) and a basolateral side that are in 

contact with the intestinal lumen and the blood stream, respectively (Fuqua, Vulpe, & Anderson, 

2012). Even though not all the processes involved in the intestinal iron absorption are clearly 

understood, it is know that absorption occurs through the transport across the apical membrane, 

translocation across the cytosol and release to the circulation through the basolateral membrane 

(De Domenico et al., 2008; Han, 2011). Heme and nonheme iron are absorbed by different 

mechanisms in an independent and not mutually exclusive manner (Nancy C. Andrews, 1999; 

Han, 2011; West & Oates, 2008), with much of what is known about iron absorption being 

limited to nonheme iron, despite of heme iron being far more efficiently absorbed and having 

outmost importance from the nutritional point of view (Miret et al., 2003; Wienk, Marx, & Beynen, 

1999).  

Evidence sustains two hypotheses for heme iron absorption: (i) iron binds to a receptor in 

the brush-border membrane of duodenal enterocytes and is translocated by endocitosys across 

the apical membrane, and (ii) iron is transported from the intestinal lumen to the cytoplasm of 

the enterocyte through the heme carrier protein 1/proton coupled folate transporter 

(HCP1/PCFT), whose physiological relevance is unclear (Figure 1) (Shayeghi et al., 2005; West & 

Oates, 2008; Zimmermann & Hurrell, 2007).  Evidence also indicates that heme iron can, as 

well, be absorbed by receptor-mediated endocytosis, but a high-affinity receptor for heme iron 

has yet to be identified (Fuqua et al., 2012; West & Oates, 2008). Morphological studies using 

electron microscopy report the appearance of secondary lysosomes containing heme, in rats and 

dogs, upon administration of heme or hemoglobin close to the duodenal loops (West & Oates, 

2008). 
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Absorption of dietary ferritin, a protein that binds inorganic iron, has begun to be recently 

more studied than all other nutritional forms of iron (E. C. Theil, 2004; Elizabeth C Theil, 2011). 

However, although there is some evidence that it is taken into the enterocyte by a phytate-

resistent clathrin (receptor)-dependent endocytosis, mediated by a not yet identified high affinity 

receptor, the precise mechanism is unknown (Fuqua et al., 2012; Elizabeth C Theil, 2011). With 

exception for the dietary ferritin, nonheme iron is transported across the brush-border membrane 

via the divalent metal transporter 1 (DMT1) (Nancy C. Andrews, 1999; De Domenico et al., 

2008; Miret et al., 2003; Zhang & Enns, 2009a, 2009b). The DMT1 co-transports hydrogen and 

iron and, as the name indicates, iron must be in its ferrous state (Fe2+) (De Domenico et al., 

2008; Mackenzie & Garrick, 2005; Zhang & Enns, 2009b). Most of the dietary iron is present in 

the intestinal lumen in the ferric form (Fe3+), so it must be reduced prior to transportion by a 

brush-border ferric reductase. The duodenal cytochrome b (DCYTB) is a major reducing agent, 

but other reductases, such as the six transmembrane epithelial antigen of the prostate 2 

(STEAP2), and ascorbic acid, also contribute (Nancy C. Andrews & Schmidt, 2007; Fuqua et al., 

2012; T. Ganz, 2008; Han, 2011; Hentze et al., 2004; Zimmermann & Hurrell, 2007). Ascorbic 

acid can exert the effect of a reducing agent in itself or hypothetically act as a cofactor of the 

DCYTB (Mackenzie & Garrick, 2005; McKie et al., 2001).     

Intestinal nonheme iron absorption can be affected by several factors that range from the 

physiologic status of the individual (discussed further ahead) to dietary factors. In fact, although it 

is now possible to shed light and/or explore several of the luminal aspects that affect iron 

absorption, the establishment of a quantitative model for it remains complex (Hallberg, 2001; 

Miret et al., 2003). Once iron is released from food components, ferric iron will remain soluble as 

long as the environment favors an acidic pH, which is not a problem in the stomach but can be 

at the intestinal lumen. The acidic microenvironment of the duodenal surface, along with the cell 

surface reductase activity from the DCYTB will maintain significant levels of soluble and ferrous 

iron (Miret et al., 2003). Furthermore, several luminal reactions can occur with food components 

or secreted molecules that will enhance or inhibit nonheme iron absorption. From the dietary 

components that affect iron absorption citric acid, ascorbic acid and some amino acids (e.g.: 

cysteine) will favor iron absorption either by maintaining iron soluble (citric acid) or by reducing 

ferric iron to ferrous iron (ascorbic acid and cysteine). On the contrary, the presence of phytate, 

polyphenols and tannic acid will result in the formation of complexes with iron (booth ferric and 

ferrous iron) and inhibit its absorption (Han, 2011). Calcium, copper and lead, due to absorptive 
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competition, are also involved in the inhibition of nonheme iron (Nancy C. Andrews, 1999; 

Pasricha et al., 2010). Furthermore, gastroferrin, a stomach glycoprotein, is probably an 

important iron absorption regulator by the formation of iron complexes; although, the direction of 

the regulation is still debatable (Miret et al., 2003).  On the other hand, heme iron is far more 

bioavailable than nonheme iron and therefore its absorption is less affected by the external 

factors here addressed for nonheme iron (Han, 2011).  

 

 

Figure 1 - Summary diagram of the established and putative iron absorption pathways in the 

intestinal enterocyte.  

 

After entering the enterocyte, iron has two possible fates: (i) stored in ferritin (FT), or (ii) 

exported and reach circulation (Nancy C. Andrews, 1999). Again, there is some lack of 

knowledge regarding heme iron metabolism. It is known that it is absorbed, appearing in 
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membrane bound vesicles where it is degraded by heme oxigenase (HO), splitting it into bilirubin 

and ferrous iron. These will then enter the labile iron pool in the enterocyte, although the 

mechanism by which iron leaves the vesicle is unknown (Shayeghi et al., 2005; West & Oates, 

2008). In support, it has been shown that 90% of the iron from radio-labeled hemoglobin 

administered via enteral route is recovered after 3 hours from the portal circulation as nonheme 

iron (West & Oates, 2008). This mechanism is plausible for the heme iron that enters the 

enterocyte by endocytosis. The heme iron that is thought to enter via the heme transporter 

HCP1/PCFT is still hypothetically considered to be exported via the feline leukemia virus 

subgroup C receptor (FLVCR), a cell surface protein capable of actively exporting heme. 

Nonetheless, no studies have yet determined the FLVCR function and localization in the 

enterocyte (Latunde-Dada, Simpson, & McKie, 2006; West & Oates, 2008).   

With regard to nonheme iron more is known. After the uptake by the enterocyte it will 

either constitute, with the iron released from heme, the (i) intracellular labile iron pool (having a 

molecular nature that is not known but probably consists of low molecular weight chelates or 

chaperone proteins that bind to and transport iron) (Dunn, Suryo Rahmanto, & Richardson, 

2007), or (ii) it can be stored in FT, a cytosolic iron-storage protein (De Domenico et al., 2008). 

Iron stored as FT will be lost with the senescent enterocytes and the iron from the enterocyte 

labile iron pool will be, if needed and possible, exported to the plasma through the basolateral 

membrane transporter ferropotin (FPN) where it will bind to plasma transferrin (TF) (De 

Domenico et al., 2008; R. E. Fleming & Ponka, 2012; Fuqua et al., 2012; Munoz, Garcia-Erce, & 

Remacha, 2011). 

Ferropotin is the only iron exporter in the duodenal mucosa, macrophages and 

hepatocytes (De Domenico et al., 2008; Dunn et al., 2007; Zhang & Enns, 2009a). It is likely 

that FPN exports iron in the ferrous form; however, TF only binds ferric iron (Fuqua et al., 2012; 

Munoz et al., 2011). In the basolateral membrane, iron export through the FPN is dependent of 

hephaestin (HP), a ferroxidase that converts ferrous iron to ferric iron and allows it to bind to TF 

(Zhang & Enns, 2009a). While other cells rely on the circulating ferroxidase ceruloplasmin (CP) 

for iron oxidation, enterocyte FPN relies on the membrane-bounded paralog HP. Independently of 

the cell, the feroxidase activity is indispensable for the FPN, since without feroxidase activity FPN 

is internalized and degraded, preventing iron from being exported and leading to its accumulation 

in the cell, stored by the FT (De Domenico et al., 2008; Fuqua et al., 2012; Miret et al., 2003).   



 

10 
 

As previously mentioned, nearly all of the iron exported from the enterocyte is bound to 

TF, which can bind two molecules of ferric iron. This mechanism of iron chelation dampens the 

toxicity of the free iron and maintains iron in a soluble form. Under normal circumstances 20 to 

30% of the circulating TF binds iron, which is ensured by the high binding affinity of TF to iron 

and the high concentration of apo-transferrin (apo-TF, iron free form of TF). TF is also responsible 

for delivering iron to the cells that express TF receptors (Nancy C. Andrews & Schmidt, 2007; De 

Domenico et al., 2008).   

Several mechanisms have been identified to be involved in the cellular TF-dependent iron 

uptake. The ubiquitously expressed transferrin receptor 1 (TFR1) is the major vehicle for cellular 

iron uptake and is also the most well studied mechanism of internalization of the diferric-TF 

complex. Other cellular iron importers have been identified, including the transferrin receptor 2 

(TFR2 – expressed in hepathocytes, erythroid cells and duodenal crypt cells) and cubilin 

(expressed in epithelial cells of the kidney)(Hentze et al., 2004; Hentze, Muckenthaler, Galy, & 

Camaschella, 2010; Sheftel, Mason, & Ponka, 2012). TFR1 is presented in the cell surface to the 

plasma as a dimer and binds two diferric-TF molecules. The complex formed by the differic-TF 

and TFR1 localizes in clathrin-coated pits that are endocytosed. A proton-pump acidifies the early 

endosome containing the diferric-TF/TFR1 complex, promoting conformational changes in both 

and releasing iron. Thereafter, the ferric iron released from the complex is reduced to ferrous iron 

by the ferriredutase STEAP3 and transported to the cytosol by DMT1 (Gkouvatsos, Papanikolaou, 

& Pantopoulos, 2012; Hentze et al., 2004; Sheftel et al., 2012; Zhang & Enns, 2009a). After the 

release of the ferric iron, the complex apo-TF/TFR1 returns to the cell surface, the apo-TF is 

released, and the cycle restarts (N. C. Andrews, 2008; Gkouvatsos et al., 2012; Mayle, Le, & 

Kamei, 2012).  

Once iron enters the cell, the amount of iron that is not needed for immediate use is 

sequestered from the iron labile iron pool by FT (Hentze et al., 2004; Sheftel et al., 2012). The 

labile iron pool represents approximately 3 to 5 % of the cellular iron stores and is composed of 

iron associated to low molecular weight chelates (Gkouvatsos et al., 2012). FT is an 

heteropolymer of 24 subunits H (heavy or heart) and L (light or liver) types that can encapsulate 

up to 4500 iron atoms, solubilizing and maintaining them in a less reactive form. Iron stored in 

FT is readily available for cellular utilization. Thus, in addition to the storage function, FT also has 

enzymatic properties (oxidization of ferrous iron to ferric iron) (N. C. Andrews, 2008; Nancy C. 

Andrews & Schmidt, 2007; De Domenico et al., 2008; Hentze et al., 2004).  
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Intracellular iron can be directed to several sites (for example, to the nucleus, FT or the 

labile iron pool), but much of it is directed to the mitochondria where the synthesis of heme and 

iron-sulfur (Fe-S) clusters takes place. Despite of the great biological significance of this process, 

the mechanism responsible for the traffic of iron to the mitochondria remains unclear (Hentze et 

al., 2004; Napier, Ponka, & Richardson, 2005). Nonetheless, it is accepted that mitochondrial 

iron export requires Fe-S cluster biosynthesis. Fe-S clusters and heme are exported from the 

mitochondria by specific transporters; for Fe-S clusters these are postulated to be the ATP-

binding cassette, subfamily B, member 7 (ABCB7) (Dunn et al., 2007; Napier et al., 2005). After 

being exported from the mitochondria, heme will be used for insertion in several proteins such as 

hemoglobin and cytochromes, although the mechanism for heme release from the mitochondria 

remains unclear (Dunn et al., 2007; Hentze et al., 2010; Munoz et al., 2011). 

As previously mentioned, in normal conditions, 1 to 2 mg of iron are absorbed by 

enterocytes each day to compensate the losses, but these amounts only represent a small 

portion of the body iron daily needs. A total of 3000 to 5000 mg of iron can be present in a 

healthy adult. The erythron incorporates more than two thirds of the total body iron as 

hemoglobin; approximately 1800 mg of iron are incorporated in circulating erythrocytes and near 

300 mg are present in the bone marrow and in erythroid precursors. Hemoglobin synthesis is 

responsible for nearly 80% of the iron demands in humans (20 to 25 mg/day) (Hentze et al., 

2004; Zhang & Enns, 2009b). The amount of iron that is present in the erythron normally 

exceeds the iron that is present in iron-stores, which are mainly the hepatocytes (approximately 

1000 mg) and the reticuloendothelial macrophages (estimated in nearly 600 mg). A small 

amount is also present in other cells and tissues, such as muscle cells (300 mg incorporated into 

myoglobin) and circulating bounded to TF (3 mg) (Nancy C. Andrews, 1999; T. Ganz, 2008; 

Hentze et al., 2004). The daily demands of iron are supported mainly by the macrophages in the 

liver and spleen, which phagocytize the senescent erythrocytes and recycle the iron. The iron in 

the hemoglobin is released, as previously mentioned, by the HO, and exported into circulation 

through FPN (relying on CP as a ferroxidase) or directly by the FLVCR  (Donovan & Andrews, 

2004; Munoz et al., 2011; Zhang & Enns, 2009a, 2009b). The circulating heme can be 

transported to the hepatocytes by the hemopexin and, subsequently, degraded for iron release 

(Zhang & Enns, 2009a). 
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Figure 2 – Adult iron distribution and daily whole body iron metabolism. 

 

Since there is no known mechanism of iron excretion, a highly regulated mechanism of 

absorption and release from the stores is needed to maintain iron homeostasis at the cellular and 

systemic levels (Nancy C. Andrews, 1999; T. Ganz, 2008; Hentze et al., 2004). Still, the 

molecular basis of the complex homeostatic network has only recently been uncovered (T. Ganz, 

2008; Simpson & McKie, 2009).  

At a cellular level, iron homeostasis is maintained through transcriptional, translational 

and post-translational mechanisms. The messenger ribonucleic acid (RNA) of several iron related 

proteins has untranslated regions denoted as iron-responsive elements (IRE). The IREs are found 

in the 5’ untranslated region of the messenger RNA that encodes for FPN, TF chains, 

mitochondrial aconitase and erythroid 5-aminolevulinic acid synthase (enzyme of heme 

biosynthesis); whereas, the messenger RNA that encodes for TFR1 and DMT1 have IRE at the 3’ 

untranslated region. The cytosolic proteins iron-regulatory proteins (IRP) recognize and bind to 

IRE, exerting regulatory effects. The binding of IRP to the IRE in the 5’ untranslated regions 

precludes translation; while the formation of the IRP/IRE complex in 3’ untranslated regions 
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stabilizes the messenger RNA and prevents its degradation (De Domenico et al., 2008; Hentze et 

al., 2004). Two IRPs have been identified, IRP1 and IRP2, with share sequence homology but 

have different properties (N. C. Andrews, 2008). In iron-depleted cells the IRP binds to IRE, a 

process that does not happen in iron-replete cells (T. A. Rouault, 2006). This is possible due to 

the iron sensing properties of the IRPs. In the presence of high cellular iron levels, a Fe-S cluster 

will assemble in the IRP1 converting it to an aconitase, inhibiting the binding of IRP1 to IRE. On 

the contrary, in iron depleted cells the absence of the Fe-S cluster allows IRP1 to be in its RNA-

binding form. The IRP2 does not contain the Fe-S cluster and seems to have lost the aconitase 

activity along the evolutionary process. While in iron-depleted cells the IRP2 accumulates, in iron-

replete cells it is targeted for degradation (N. C. Andrews, 2008; De Domenico et al., 2008; 

Hentze et al., 2004; T. A. Rouault, 2006). Iron cytosolic concentration is rapidly adjusted by the 

IRP/IRE regulatory system and the function of several iron-dependent components and processes 

is therefore optimized (T. A. Rouault, 2006). 

At a systemic level several signals such as iron absorption (“mucosal block”), oxygen 

tension (hypoxia regulator), iron levels (stores regulator) and systemic iron needs (erythroid 

regulator) regulate iron absorption, storage and transfer (R. E. Fleming & Ponka, 2012; Hentze et 

al., 2004; Simpson & McKie, 2009). Circulating iron status is maintained at balanced levels by 

two main mechanisms: (i) absorption regulation, and (ii) regulation of release by the 

macrophages and hepatocytes (T. Ganz, 2008). In 1960, the hypothesis that a humoral 

substance was responsible for match iron absorption to the iron demands was put forward by 

Beutler et al. (Beutler & Buttenwieser, 1960). However, only in 2001 Nicolas et al. (Nicolas et al., 

2001) demonstrated that hepcidin, the peptide sequenced in 1998 by Ganz and collaborators 

(Park, Valore, Waring, & Ganz, 2001), had an iron regulator function that made it a leading 

candidate for the long-sought iron-regulatory hormone (Robert E. Fleming & Sly, 2001). The small 

size of its gene, the lack of shared sequence motifs with other iron related genes and the rarity of 

mutations prevented the discovery of hepcidin by genetic methods, but several serendipitous 

events helped to bring hepcidin and its function to the knowledge of the scientific community 

(Tomas Ganz, 2011). Hepcidin, a 25 amino acid peptide hormone is the principal systemic 

regulator of intestinal iron absorption and iron efflux from macrophages. This hormone is 

primarily produced by the hepatocytes in the liver and in smaller amounts by other cell types 

upon cleavage of a pro-peptide hormone with 84 amino acids by the convertase furin. The 

biological action of hepcidin is exerted by its binding to FPN, which leads to FPN phosphorylation, 
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internalization and ubiquitin-mediated lysossomal degradation. Since FPN is the only exporter of 

iron from enterocytes, macrophages and hepatocytes, its degradation results in a decrease of the 

delivery of iron from the enterocytes and the reticulo-endothelial system to the plasma (N. C. 

Andrews, 2008; Fuqua et al., 2012; T. Ganz & Nemeth, 2006; Gkouvatsos et al., 2012). A 

similar mechanism has been recently proposed to occur at the barriers of the brain, in this case 

regulating iron delivery into the central nervous system (Marques et al., 2009). 

Hepcidin is negatively regulated by iron (circulating and stores), erythropoietic needs, 

inflammation and hypoxia. (Tomas Ganz, 2011; Gkouvatsos et al., 2012).  Specific conditions, 

such as inflammation, are potent suppressors of iron absorption by enterocytes and release by 

macrophages. There is evidence that this effect is mediated by hepcidin since inflammatory 

cytokines, with special emphasis on IL-6, activate hepcidin expression. This mechanism is the 

major contributor to the anemia of chronic disease (ACD – also called anemia of chronic 

inflammation) (T. Ganz & Nemeth, 2006; Hentze et al., 2010). Iron absorption is regulated in 

several different manners, being the iron from diet the first regulator. After the ingestion of a 

significant amount of dietary iron, the enterocyte becomes refractory to iron absorption. This 

phenomena, so-termed “mucosal block”, probably results from an accumulation of intracellular 

iron that will change the levels of DMT1 and DCYTB, which will prevent further iron uptake 

(Nancy C. Andrews, 1999; De Domenico et al., 2008). Iron absorption is also regulated in cases 

of normoxia and hypoxia by the hypoxia inducible factor (HIF), a nuclear transcription factor first 

described as the major oxygen regulated transcription factor through the control of erythropoietin 

expression and, therefore, of oxygen supply to red cell production (Simpson & McKie, 2009). HIF 

is also described to regulate Hepcidin expression. Recently, compelling data has indicated that 

DCYTB, DMT1 and possibly FPN genes, which are highly up regulated in hypoxia and iron 

deficiency, are also HIF-2α dependent for expression (Mastrogiannaki et al., 2009; Shah, 

Matsubara, Ito, Yim, & Gonzalez, 2009).  (Nancy C. Andrews, 1999; Han, 2011).  

In summary, iron homeostasis is a very highly regulated process for which several 

pathways and molecular players participate. 
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1.1.2. Assessment of iron status  

Bone marrow  

Bone marrow grading is the gold standard for iron deficiency assessment and provides 

the definitive diagnosis. The major limitations of this method are the high invasiveness, cost 

(expensive) and pain incurred by the assessment procedure. Therefore, bone marrow aspiration 

is rarely performed and alternative sensitive and less invasive tests are used (Fairweather-Tait, 

Wawer, Gillings, Jennings, & Myint, 2013; Gale, Torrance, & Bothwell, 1963; G. H. Guyatt et al., 

1992; Raiten et al., 2011; Rimon, Levy, Sapir, & et al., 2002).  

 

Hemoglobin 

The assessment of the prevalence of ID in developed countries is commonly obtained 

from representative samples with specific indicators of iron status, such as serum FT, TF 

saturation and free erythrocyte protoporphyrin; whereas, estimates from developing countries are 

commonly based in hemoglobin measurements (Zimmermann & Hurrell, 2007). Iron 

homeostasis is a continuum that ranges from iron overload to iron depletion being ID and IDA 

intermediate states (Figure 3), (WHO, 2001).  

 

 

Figure 3 - Conceptual diagram of the relationship between iron deficiency and/or anemia in a 

hypothetical population. Adapted from WHO (2001). 

 

Despite of the low sensitivity and specificity of hemoglobin as an indicator of ID, its levels 

are commonly used in surveys of anemia (of all causes) (Lynch, 2010). Nevertheless, anemia (of 

all causes) surveys for assessment of ID are inadequate since they do not properly correlate with 

each other, which may justify the limited success of public health programs based on 

hemoglobin levels (Cook, Flowers, & Skikne, 2003; Mei et al., 2005). Underlying this may be that 

anemia has multiple precipitating factors in addition to iron deficiency, such as genetic disorders, 
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infectious diseases and other nutritional deficiencies (McLean et al., 2009; Pang & Schrier, 

2012; Patel, 2008), which may differ between places. Therefore, anemia, IDA and ID are 

commonly, although not correctly, used as synonymous. Despite this, the overall prevalence of ID 

is estimated to be equal to the prevalence of anemia (of all causes), since it is assumed that IDA 

represents 50% of all anemias and the prevalence of ID alone is considered equal to that of IDA 

(Susan F Clark, 2009; De Benoist et al., 2008; Lynch, 2010; McLean et al., 2009). As previously 

mentioned, the assessment of iron status in developing countries is mainly preformed using 

hemoglobin measurements and anemia as a proxy; accordingly, it is thus stated that iron 

deficiency is the main cause of anemia in underprivileged environments (WHO, 2001).   

Inadequate supply of iron to the erythroid marrow over time will lead to an inadequate 

support for optimal erythropoiesis in the developing red cell mass, which will reduce hemoglobin 

concentrations to below-optimal levels and, consequently, cause anemia (Bainton & Finch, 

1964). Specifically, the WHO classifies hemoglobin values under 12 and 13 g/dL for adult non-

pregnant women and adult males, respectively, as defining anemia. These values were defined 

as under two standard deviations (-2SD) of the distribution mean for hemoglobin in a normal 

population of the same gender and age living at the sea level. As such, anemia definition is 

largely a statistical definition rather than a physiological definition (WHO, 2001). It also important 

to note that a hemoglobin value overlap can occur between persons with iron deficiency and 

normal non-anemic individuals. Taking into account all the limitations of hemoglobin levels (or 

anemia cutoff points) for ID assessment it is clear that hemoglobin should not be used as a 

stand-alone indicator (Gibson, 2005).  

 

Hematocrit and red cell indices  

Hematocrit (or packaged cell volume) and red cells indices are often used for differential 

diagnosis of anemia, which include also iron deficiency anemia. Hematocrit, along with 

hemoglobin, is used for anemia diagnosis. In cases of early ID a nearly normal hematocrit value 

can be observed; whereas, in cases of mild to severe ID, both hemoglobin and hematocrit are 

below the threshold of normality. Several limitations are described for hematocrit use in ID 

determination. Briefly, hematocrit falling only occurs in a later stage of ID, thus resulting in poor 

sensitivity. Furthermore, the same factors that affect hemoglobin also affect hematocrit, so lower 

values of hematocrit can be observed due to causes other than ID, resulting in a poor specificity, 

and several internal and external factors can affect its value resulting in poor precision. Cutoff 
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points for hematocrit values are also defined; however, and similarly to hemoglobin, they do not 

specifically identify iron deficient individuals (Gibson, 2005). 

Red cell indices are calculated with the values measured for hemoglobin, hematocrit and 

red cells blood Count (RBC) and include mean corpuscular volume (MCV), mean cell hemoglobin 

(MCH), mean cell hemoglobin concentration (MCHC) and red cell distribution width (RDW). MCV 

can be manually calculated as the hematocrit (volume fraction) divided by the RBC (1012/L) and 

therefore is a measure of the average size of red blood cells (expressed in femtoliters – fL). In 

iron deficiency, red cells can be small (microcytosis). However, other nutritional disorders can 

also affect MCV such as vitamin B12 and folic acid deficiencies (both causing abnormal large cells 

- macrocytosis) and vitamin B6 (also causing small red blood cells). The ratio of hemoglobin (g/L) 

to RBC defines the MCH and is expressed in picograms (pg). Changes in MCH occur in the same 

direction as MCV either in iron deficiency or in vitamin B12 and folic acid deficiencies. MCHC can 

be obtained dividing the hemoglobin by hematocrit and is a measure of the mean hemoglobin 

amount in each red blood cell. This is the red cell index less affected by age; nonetheless, it is 

also the least useful for iron deficiency identification because it is the last value to fall. RDW is a 

measure of the variation of size in red cells and is usually increased in iron deficiency. Again, 

alterations in RDW can occur in several pathologies and nutritional deficiencies, so RDW is also 

not a specific indicator of iron deficiency (Gibson, 2005).  

 

Serum iron, total iron binding capacity and transferrin saturation 

In the fasting state serum iron levels reflect the migration of iron to bone marrow from 

the reticulo-endothelial system indicating the iron supply adequacy for erythropoiesis 

(Fairweather-Tait et al., 2013; Gibson, 2005). Reliability of serum iron is questionable since it is 

affected by diurnal rhythms, ingestion of iron and inflammatory states (Fairweather-Tait et al., 

2013). A useful indicator used for iron deficiency diagnosis is the total iron binding capacity 

(TIBC), which reflects the amount of serum iron binding sites that are not occupied. TIBC is 

increased early in iron deficiency (even before iron-deficient supply for erythropoiesis) as a result 

of the increase in TF production needed for higher iron transport and uptake. TF saturation is 

calculated from serum iron and TIBC [as follows: serum iron (µg/dL) / TIBC (µg/dL)] and, 

similarly to serum iron, is a measure of iron supply to erythropoietic tissues (Fairweather-Tait et 

al., 2013; Gibson, 2005).  
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Serum ferritin 

Tissue ferritin is an intracellular protein involved in iron storage. Serum ferritin is slightly 

different than tissue ferritin and contains little or no iron (Worwood, 1990). Serum FT function in 

the serum is unknown, however it seems to be released from the reticulo-endothelial system 

(Gibson, 2005). Serum FT is the only iron status indicator that can be used to identify normal, 

deficient and excessive iron status because its concentration is closely related to body iron 

storage (1 µg/L of serum FT correspond to 8-10 mg of iron stored). Despite of this close 

correlation, when iron stores are depleted serum FT remain low but no longer directly reflects the 

severity of tissue iron deficiency (Gibson, 2005; Raiten et al., 2011; Zhu, Kaneshiro, & Kaunitz, 

2010). This is also considered to be the single best laboratory test for the diagnosis of iron 

deficiency since its predictive value is of 0.95 (G. H. Guyatt et al., 1992; Zhu et al., 2010). Due to 

its high predictive value, simple cutoff points have been established for iron deficiency diagnosis: 

values lower than 15 µg/L define iron deficiency, while values higher than 100 µg/L rule out iron 

deficiency and the intermediate values need further investigation (G. H. Guyatt et al., 1992). 

However, serum FT is influenced by age and is also an acute phase protein and, thus, in case of 

inflammation serum FT should not be used as an iron status marker (Fairweather-Tait et al., 

2013; Raiten et al., 2011; Zhu et al., 2010). For older individuals values lower than 45 µg/L 

should be used for iron deficiency diagnosis (Gordon H Guyatt et al., 1990). A cutoff point of 30 

µg/L for the general population is usually used in the majority of the diagnostic studies of iron 

deficiency (Johnson-Wimbley & Graham, 2011).   

 

Soluble serum transferrin receptors  

As previously described, when an insufficiency of intracellular iron occurs, the expression 

of TFR-1 on the cell surface is up-regulated and allows for a higher iron uptake. In human serum 

the concentration of the soluble serum TFR (sTFR), a soluble form of the transmembrane TFR, is 

proportional to the expression of TFR (Gibson, 2005), rendering it possible to use sTFR as marker 

of iron deficiency and erythropoietic activity (Fairweather-Tait et al., 2013). Bone marrow 

erythroid precursors are the main source (75 to 80%) of sTFR and, unlike serum ferritin, sTFR 

levels are not affected by age or inflammatory conditions (Susan F Clark, 2009; R. Stewart & 

Hirani, 2012; Zhu et al., 2010). Despite of the usefulness and reliability of sTFR, the assay is not 

standardized, is expensive and not widely available, which prevents its clinical application (Choi et 

al., 2005; Zhu et al., 2010). Furthermore, folate and/or vitamin B12 affect erythropoiesis and 
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consequently sTFR concentrations, confounding the interpretation of the assay for iron status 

assessment (Gibson, 2005).  

 

Ratios and algorithms  

The ratio of sTFR to the logarithmic value of ferritin (sTFR – Log(FT) ratio) is also 

considered a good indicator for the diagnosis of iron deficiency, especially in cases where iron 

deficiency occurs in combination with other morbidities that elicit an acute phase reaction (for 

example, elevation of C-reactive protein) (Susan F Clark, 2009; Punnonen, Irjala, & Rajamaki, 

1997).  

The Cook algorithm (Cook et al., 2003) for body iron calculation (body iron (mg/kg) = -

[log(sTFR*1000/serum FT) – 2.8229/0.1207]) is an index for iron status alterations. It is 

relatively new and can be used as an epidemiological measure for monitoring populations where 

inflammation has been excluded or is rare, and it can also be used as a measure of effectiveness 

in intervention studies (Fairweather-Tait et al., 2013). 

 

Use of multiple indicators of iron status  

Indicators of iron deficiency have limitations and the use of a single measurement can 

lead to an erroneous classification of the iron status due to the overlap of normal and abnormal 

values of the measurement depending on the confounding factors (e.g.: age, inflammatory states 

or nutritional deficiencies). Thus, the use of multiple indices can be a more reliable alternative to 

identify abnormalities of iron metabolism. Usually, a combination of three indicators is used and 

abnormal values for at least two rules in iron deficiency (Gibson, 2005). However, due to the high 

predictive value, low values of ferritin have been used as a single indicator for iron deficiency in 

the absence of inflammation (G. H. Guyatt et al., 1992; Raiten et al., 2011; Rimon et al., 2005). 

Furthermore, serum ferritin concentration is the most powerful test for iron deficiency (Goddard, 

McIntyre, & Scott, 2000). Table 1 provides a summary of the principal indices used for iron 

assessment, the normal values and the cutoff points for iron deficiency. 
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Table 1 - Cut off points for ID diagnosis. Adapted from Susan F Clark, 2009; Gibson, 2005; G. 

H. Guyatt et al., 1992; Gordon H Guyatt et al., 1990; Herbert, 1987; Johnson-Wimbley & 

Graham, 2011; Punnonen et al., 1997; Rimon et al., 2002; Zhu et al., 2010; Zimmermann & 

Hurrell, 2007 

Measurements  Normal I. D. 

MCV(fL) 80-100 <80 

MCHC (g/L) 320-360 <320 

RDW (%) ≤14 >14 

Serum iron (µg/dL) 115±50 <71 

Serum ferritin (µg/L) 100±60 <30/<45 a 

Transferrin saturation (%) 35±15 <20 

TIBC (µg/dL) 330±30 ≥360 

sTFR (mg/L) ≤1.76 >1.76 

sTFR – Log(FT) ratio ≤1.5 >1.5 

a Aged individuals    

 

1.2. Iron deficiency 

1.2.1. From basics to clinics  

In 1937, McCance and Widdowson observed that there is no mechanism for iron 

excretion, implying that homeostasis is maintained by the regulation of absorption (Hallberg, 

2001; Miret et al., 2003). It is estimated that daily 1 to 2 mg of dietary iron is absorbed, which is 

enough to compensate the continuum losses that results from cell shedding and fluids loses. As 

previously mentioned, iron homeostasis is narrowly regulated at the absorptive level; although, 

even in iron overload, 0.5 mg of iron are absorbed and in iron deficiency, despite of the increase 

in absorption, only 2 to 4 mg are absorbed (Miret et al., 2003). Inadequate iron intake and 

absorption are the main causes of ID, particularly when they are insufficient to overcome 

physiologic needs and/or pathologic conditions (i.e.: blood losses) (see Table 2 for details). Each 

1 ml of blood contains approximately 0.5 mg of iron, therefore the occurrence of significant blood 

losses (due to hemorrhagic events or excessive menorrhea) markedly increases the risk of iron 

deficiency (Zimmermann & Hurrell, 2007) and the small amounts of iron absorbed make it time 

consuming to revert.  
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Table 2 - Physiologic and pathologic conditions that can cause ID or IDA. Adapted from Nancy 

C. Andrews, 1999; Susan F. Clark, 2008; Susan F Clark, 2009; Munoz, Garcia-Erce, & Remacha, 

2011b 

Physiologic conditions Pathological conditions 

 Increased iron/dietary demands  Chronic inflammatory states 

  Pregnancy   Chronic renal disease 

  Lactation   Congestive heart failure 

  Infants   Obesity 

  Children and adolescents  Medications  

  Menstrual losses   Proton-pump inhibitors  

     H2 antagonists 

     Antacids 

     Aspirin 

     NSAIDs 

    Gastrointestinal conditions  

     Ulcer (gastric/duodenal/peptic) 

     Gastritis (Erosive/H. pylori) 

     Chronic atrophic gastritis  

     Esophagititis  

     Celiac/Chrohn’s disease 

     Malabsorptive states  

     Gastrectomy 

     Colonic adenoma  

     Carcinoma 

    Blood losses  

     Excessive menstrual losses  

     Blood donation  

     Excessive surgical blood losses  

     Inflammatory bowel disease 

    Other 

     Hepatic disease  

     Restless leg syndrome 

     Athletic induced ID 

     Intestinal helminthes 

     Erythropoiesis-stimulating agents 

     Malaria 

     Human Immunodeficiency Virus 

 

Previous studies on ID mainly focused on infants, children and women of childbearing 

age. Only a handful of studies on the elderly have been conducted (Hsu et al., 2013). In aging, 

although unlikely that physiologic conditions will be responsible for the development of ID late in 

life, several of the iron-related/caused pathological conditions are highly prevalent in older 

individuals (Susan F. Clark, 2008). Hypochlorhydria can be a substantial cause of iron deficiency 

given the low production of acid in the stomach (needed to keep iron soluble); it is highly 
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prevalent in older individuals due to several causes, such as atrophic gastritis, medication (e.g.: 

proton-pump inhibitors, antacids and H2 antagonists) and Helicobacter pylori (Annibale et al., 

1999; Susan F. Clark, 2008; Zimmermann & Hurrell, 2007). The mismatch between iron 

absorption and iron demands is also observed in gastrointestinal conditions, including ulcers, 

inflammatory bowel diseases, both by bleeding or absorption impairment (Annibale et al., 1999; 

Gasche, Lomer, Cavill, & Weiss, 2004).  

In hepatic conditions, iron deficiency has also been observed since the liver is the main 

storage place of iron as FT and the site of TF synthesis. Ultimately, in liver diseases iron may 

become trapped and therefore not released for transportation to other tissues (Susan F. Clark, 

2008; Intragumtornchai, Rojnukkarin, Swasdikul, & Israsena, 1998). Also, in cirrhotic patients 

the absorption of some micronutrients is compromised, contributing for nutritional deficiencies 

among which iron deficiency is common (Susan F. Clark, 2008; Peng et al., 2007).  

The inadequate delivery of iron for incorporation in the erythroid precursors despite of an 

adequate storage of iron in the bone marrow is termed functional iron deficiency. This type of 

“iron deficiency” is present in some cases such as malignancy, anemia of chronic disease (ACD 

– also called anemia of chronic inflammation) or chronic kidney disease (Thomas et al., 2013). 

ACD is observed both in infectious and noninfectious diseases. The linkage between ACD and 

iron deficiency is mediated by hepcidin and inflammatory cytokines (such as interleukin-6). In 

infection and inflammation the production of hepcidin is upregulated resulting in hypoferremia 

(Nancy C. Andrews, 1999; N. C. Andrews, 2008; Brugnara, 2003; T. Ganz & Nemeth, 2006). 

The risk to develop chronic kidney disease is higher in older individuals, and subjects with 

chronic kidney disease are at a higher risk of developing iron deficiency, especially if under 

hemodialysis (due to increased iron loses) or treatment with erythropoiesis stimulating agent (due 

to the increased iron demands) (Susan F. Clark, 2008; Wittwer, 2013). Recently, it was also 

demonstrated that patients with heart failure may be more susceptible to iron deficiency due to 

depletion of iron stores, defective iron absorption and/or reduced availability of iron recycled in 

the reticuloendothelial system (Nanas et al., 2006; Opasich et al., 2005). 

Among others, all of the above-mentioned factors may be highly prevalent in older 

individuals and, individually or by their interaction can alter iron homeostasis and mediate the 

development of iron deficiency. 
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1.2.2. Epidemiology of iron deficiency  

Iron deficiency is the major cause of anemia. The WHO Department of Nutrition for 

Health and Development, based on the Vitamin and Mineral Nutrition Information System 

(VMNIS), has estimated anemia prevalence at global, regional and national levels (De Benoist et 

al., 2008; Mathers et al., 2008). The most recent data available regarding IDA prevalence was 

published in the WHO report The Global Burden of Disease: 2004 Update (2008) (Mathers et al., 

2008)), in which it is estimated that IDA corresponds to 60% of all anemias in non-malaria areas 

and 50% in areas were malaria is prevalent (given the high hemolysis present) (Mathers et al., 

2008). In fact, IDA, at any moment, is the most prevalent health condition. A prevalence equal or 

higher than 5% is considered a public health problem (WHO, 2001). In 2004, it was estimated 

that 1 159 millions (in a population of 6 437 millions) of individuals across the world have IDA, 

which accounts for a prevalence rate of 18% (Table 3). Despite of Africa and South East Asia 

contributing to more than a half (56.6%) of the cases, IDA is highly prevalent in every WHO 

region. Europe presents the second lowest prevalence of IDA. These estimates are made based 

on nonspecific markers, such as hemoglobin and predictive equations (McLean et al., 2009) and, 

therefore, data should be interpreted with caution. 

 

Table 3 - Prevalence of IDA in WHO regions, 2004 

 Cases of IDA (millions) Population (millions) Prevalence (%) 

World 1 159.3 6 437 18.0 

Africa 193.8 738 26.3 

South East Asia 462.4 1 672 27.7 

The Americas 66.4 874 7.6 

Eastern Mediterranean 88.5 520 17.0 

Europe 77.7 883 8.8 

Western Pacific 269.0 1 738 15.5 

 

The main body of literature regarding irons status in European countries dates back to 

the 80s and early 90s, with authors basing their estimates in hemoglobin determination and only 

a few reporting data from southern European countries. Also, no data are available for older 

individuals probably due to the high number of confounding factors present in this population 

group (Hercberg, Preziosi, & Galan, 2001). In the United States of America, the Centers for 

Diseases Control and Prevention, using specific markers of iron status (serum FT, TF saturation 

and free erythrocyte protoporphyrin), in the population sample examined in the National Health 
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and Nutrition Examination Survey (NHANES) 1988-1994 and 1999-2000, reported a prevalence 

of iron deficiency in older individuals that ranged from 3% to 9% and a significant increase in iron 

deficiency prevalence in females between the ages of 50 to 70 years (Control & Prevention, 

2002).   

Epidemiological data regarding death and disability adjusted life years (DALY) was 

recently updated in the Global Health Estimates for the years 2000–2012 ("WHO | Estimates for 

2000–2012," 2014). In Europe, IDA as a cause of death only overcomes the barrier of 

thousands in aged individuals strata (60 or years or older), with a higher expression in females, 

which is expected since there are more females in that age group (Table 4). Interestingly, despite 

of being in older individuals that ID is more life threatening, this is the population group in which 

the effects of ID are less studied. 

 

Table 4 - Deaths (population in thousands) due to IDA by age and sex, in WHO regions. Global 

health estimates 2012 ("WHO | Estimates for 2000–2012," 2014). 

 Males Females 
Total 

 0-14 15-59 60+ 0-14 15-59 60+ 

World 
8.711 

(963.536) 
14.686 

(2.230.904) 
16.692 

(371.994) 
9.062 

(899.757) 
17.030 

(2.167.894) 
23.980 

(441.372) 
90.160 

(7.075.457) 

Africa 
6.863 

(191.908) 
10.576 

(233.995) 
5.092 

(20.234) 
7.192 

(187.547) 
12.137 

(234.858) 
7.070 

(23.986) 
48.930 

(892.528) 

South East Asia 
330 

(276.787) 
564 

(588.968) 
847 

(71.593) 
391 

(253.799) 
1.045 

(561.881) 
2.034 

(80.333) 
5.212 

(1.833.361) 

The Americas 
890 

(119.163) 
1.512 

(293.118) 
4.799 

(58.664) 
769 

(114.236) 
1.420 

(299.602) 
6.157 

(71.996) 
15.546 

(956.779) 

Eastern 
Mediterranean 

275 
(104.502) 

397 
(191.473) 

316 
(19.011) 

305 
(98.971) 

468 
(178.161) 

415 
(20.252) 

2.175 
(612.370) 

Europe 
54 

(81.140) 
152 

(279.788) 
1.773 

(76.324) 
37 

(77.066) 
158 

(283.617) 
3.504 

(106.549) 
5.678 

(904.484) 

Western Pacific 
298 

(186.954) 
1.448 

(633.244) 
3.781 

(123.978) 
366 

(165.275) 
1.778 

(599.502) 
4.704 

(135.797) 
12.374 

(1.844.750) 

 

Since iron deficiency is more prevalent in Africa and South East Asia the burden of iron 

deficiency (Table 5) is higher in these regions. Cost effectiveness of public health strategies and 

the burden of iron deficiency are measured in cost per DALY saved (Horton, 2006; Longfield, 

Smith, Gray, Ngamkitpaiboon, & Vielot, 2013), therefore low income countries will be the ones in 

which fortification will result in higher economic gains. Interventions to improve iron status have 

also been proposed to improve human capital since work capacity is reduced in iron deficiency 

(Haas & Brownlie, 2001).  
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Table 5 - Burden of disease in DALYs (population in thousands) due to IDA by age and sex, in 

WHO regions. Global health estimates 2012 ("WHO | Estimates for 2000–2012," 2014). 

 Males Females 
Total 

 0-14 15-59 60+ 0-14 15-59 60+ 

World 
14.596.920 
(963.536) 

5.215.420 
(2.230.904) 

1.163.788 
(371.994) 

12.790.183 
(899.757) 

12.033.058 
(2.167.894) 

1.827.788 
(441.372) 

47.627.157 
(7.075.457) 

Africa 
4.286.630 
(191.908) 

1.752.296 
(233.995) 

238.619 
(20.234) 

3.758.726 
(187.547) 

2.640.851 
(234.858) 

301.709 
(23.986) 

12.978.831 
(892.528) 

South East Asia 
5.358.228 
(276.787) 

2.104.376 
(588.968) 

451.869 
(71.593) 

4.821.630 
(253.799) 

5.781.635 
(561.881) 

751.513 
(80.333) 

19.269.251 
(1.833.361) 

The Americas 
1.168.139 
(119.163) 

418.009 
(293.118) 

169.581 
(58.664) 

743.312 
(114.236) 

518.521 
(299.602) 

143.455 
(71.996) 

3.161.017 
(956.779) 

Eastern 
Mediterranean 

1.753.883 
(104.502) 

542.680 
(191.473) 

99.294 
(19.011) 

1.478.751 
(98.971) 

1.205.345 
(178.161) 

123.502 
(20.252) 

5.203.455 
(612.370) 

Europe 
612.534 
(81.140) 

212.935 
(279.788) 

108.048 
(76.324) 

493.197 
(77.066) 

698.247 
(283.617) 

203.093 
(106.549) 

2.328.054 
(904.484) 

Western Pacific 
1.391.653 
(186.954) 

177.884 
(633.244) 

93.408 
(123.978) 

1.466.129 
(165.275) 

1.153.815 
(599.502) 

296.026 
(135.797) 

1.662.945 
(944.176) 

 

1.2.3. General health  

Iron deficiency will lead to iron deficient erythropoiesis, which ultimately will result in iron 

deficiency anemia. Therefore, the health outcomes of iron deficiency include the ones associated 

with anemia. Traditionally, iron deficiency has been considered to have clinical consequences 

only in the presence of anemia (Anker et al., 2009). However, several examples demonstrate 

beneficial effects of iron treatment even in non-anemic patients; such is the case of iron 

treatment in non-anemic subjects with restless leg syndrome who presented greatly reduced 

symptomatology (Satija & Ondo, 2008).  

In older individuals, several deleterious health consequences are associated with anemia 

including physical performance decline, frailty, higher risk of falling, diminished quality of life, 

cardiovascular disease, cognitive impairment, morbidity, hospitalization and mortality (Beghe, 

Wilson, & Ershler, 2004; Chaves, 2008; Fairweather-Tait et al., 2013; Hsu et al., 2013; Pang & 

Schrier, 2012; Patel, 2008; Peters et al., 2008; Price, Mehra, Holmes, & Schrier, 2011; Roy, 

2011; M. Thein et al., 2009; Van Puyvelde, Cytryn, Mets, & Beyer, 2009). Evidence clearly and 

consistently demonstrates the existence of an anemia association with poor health outcomes. 

However, the inference about causality is restricted due to the inherent limitations of 

observational studies, which compose the main body of literature on this topic (Chaves, 2008). 

For example, Hsu et al. (Hsu et al., 2013) found that iron deficiency, measured by serum iron, 

was associated with cardiovascular disease and all causes of mortality; although, several 
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limitations make the interpretation and causality of this study difficult. Using a more specific, but 

limited, set of iron biomarkers in a larger cohort, Morkedal et al. (Mørkedal, Laugsand, 

Romundstad, & Vatten, 2011) reported an association of low iron status with an higher risk of 

death by ischemic heart disease, particularly if low iron status was observed in earlier stages of 

the follow-up. The authors suggested that low iron status may be a late sign of ischemic heart 

disease or that unknown prevalent disease at baseline could influence the associations between 

low iron status and death. In a prospective study in Finland (Marniemi et al., 2005), the relative 

risk of acute myocardial infarction was diminished in individuals in the highest tertile of baseline 

serum iron and the ones in the middle tertile had a reduced risk of stroke. The ones in the 

highest tertile of serum TF presented an increased risk of stroke. Of note, other reports have 

failed in demonstrating these associations (Jia, Aucott, & McNeill, 2007). 

For the observed associations, several factors/indicators/mechanisms can plausibly 

explain the association of iron deficiency and cardiovascular disease and mortality. Iron 

deficiency may reflect undiagnosed conditions since iron deficiency is associated with renal 

failure, cancer and inflammation that per se are associated with higher mortality rates. 

Malnutrition is associated with increased mortality and an iron deficient state could be a 

surrogate marker for it (Fairweather-Tait et al., 2013; Hsu et al., 2013). 

Iron deficiency has also been implied in regulation of body temperature related to 

secretion and utilization of thyroid hormones (Boccio & Iyengar, 2003). It is also known that iron 

deficiency impacts on immune function and in resistance to infections; however, the results on 

this topic are somehow conflicting. Some studies suggest beneficial effects of mild iron deficiency 

on resistance to infection while others report that, independently from the severity, iron deficiency 

is always deleterious for immune function (Oppenheimer, 2001; Walter, Olivares, Pizarro, & 

Muñoz, 1997).  

 

1.2.4. Physical performance and functional ability 

The association of anemia and physical functional ability has been highlighted in several 

reports in the last years (Denny et al., 2006; Lucca et al., 2008; Onem et al., 2010; Penninx et 

al., 2003; Penninx et al., 2004; M. Thein et al., 2009). Although hemoglobin is used as a marker 

for iron status, no conclusions can be drawn from these studies on the impact of iron deficiency 

in physical functional ability. Still, theoretically, iron deficiency can impair physical functioning of 

older adults. Also of interest, subjects with iron deficiency present a 50% decrease in muscle 
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myoglobin content, electron transport capacity and cytochorme oxidase activity  and the delivery 

of oxygen to muscle is limited in anemia (J. L. Beard, 2001; P. Dallman, 1982; P. R. Dallman, 

1986; Davies, Maguire, & Brooks, 1982).  

The effects of iron deficiency per se in the physical performance and functional ability of 

older individuals have yet to be elucidated. A critical review (Haas & Brownlie, 2001) of the 

effects of iron deficiency on work capacity hypothesized that severe and moderate iron deficiency 

anemia has a causal effect on reduced work capacity. Endurance capacity was also 

compromised in severe and moderate iron deficiency anemias and energetic efficiency was 

affected in all levels of iron deficiency (severe and moderate iron deficiency anemia and iron 

deficiency without anemia).  

 

1.2.5. Brain and cognition 

The central nervous system, along with retina and the testis, is independent of the liver 

regulatory axis of iron homeostasis (Tracey A. Rouault & Cooperman, 2006). The movement of 

iron from plasma to cerebrospinal fluid seems to be regulated by the blood-brain and the choroid 

plexus-cerebrospinal fluid barriers (Marques et al., 2009). Similar to the intestinal absorption, 

iron uptake to the brain is decreased when the iron status is high and increased when it is low, in 

a process that is highly selective (J. Beard, 2003; Ke & Qian, 2007).  Also, the distribution of iron 

in the brain is not equal in all regions with some (namely: basal ganglia, substantia nigra and 

deep cerebellar nuclei) particularly rich in iron, some even richer than the liver (J. Beard, 2003; 

M. H. Youdim, 2008). Iron homeostasis is paramount for normal brain function and brain iron 

deficiency will disrupt several important processes, possibly altering neurochemistry and 

conducting to a pathological state. Still, studies on the effects of iron deficiency on brain function 

only in recent years have received attention from the scientific community (Hare, Ayton, Bush, & 

Lei, 2013; M. H. Youdim, 2008), with the majority of these with focus in infants and in animal 

models (J. Beard, 2003; Ke & Qian, 2007; Mesquita et al., 2012). 

Within the brain, iron has an important role in metabolism, including in processes such 

as synthesis, packaging, uptake and degradation of neurotransmitters. Furthermore, it can 

indirectly affect brain function through peroxide reduction, amino acid metabolism and 

membrane functioning alteration by fat desaturation (J. L. Beard, 2001). Although the molecular 

bases are not completely understood (Fretham, Carlson, & Georgieff, 2011; Muñoz & Humeres, 

2012), it is known that iron deficiency has time-, duration- and severity-dependent deleterious 
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effects on gene profiling, myelination, neurotransmission, learning and memory. The major body 

of human studies on this topic focuses in the developmental periods, but the effects of iron 

deficiency in later ages were not carefully examined (J. Beard, 2003). Still, in some cases, the 

effects of iron deficiency during developmental periods can be observed even in adults and are 

supported by the irreversible effects observed in animal models of development (J. Beard, 2003; 

Lozoff, 2007; Lozoff et al., 2006). Furthermore, although development seems to be a critical 

period, there is evidence that the deleterious effects of iron deficiency on neuronal function, 

behavior and cognitive function are not restricted to early ages (J. Beard, 2003; Bruner, Joffe, 

Duggan, Casella, & Brandt, 1996; Muñoz & Humeres, 2012). In older children and in adults, 

observational evidence suggests a strong link between iron deficiency and cognitive deficit, and 

the alterations can be reverted by the correction of iron deficiency, suggesting that time of iron 

deficiency matters (J. Beard, 2003; J. L. Beard et al., 2005; Bruner et al., 1996; Falkingham et 

al., 2010).  

Iron deficiency and its associations with cognition in older individuals remain largely 

unexplored. In fact, only one report on this age strata was found in the literature. In a cross 

sectional study, Yavuz et. al. (Yavuz et al., 2012) found an association between ID and mini-

mental state examination (MMSE); however, the statistical analysis was not controlled for 

confounding factors such as age and education. Falkingham et al. (Falkingham et al., 2010), in a 

systematic review and meta-analysis of randomized controlled trials of iron supplementation on 

cognition, found some evidence that iron supplementation improved attention, concentration and 

intelligence quotient, but no studies included men, post-menopausal women or the elderly.  

 

1.2.6. Mood 

It is widely accepted that certain micronutrient deficiencies can be associated with 

depression and/or depressive mood, and that psychological morbidity can affect appetite and 

nutritional ingestion (Sarris, Schoendorfer, & Kavanagh, 2009). In older individuals, anemia per 

se, even in the absence of iron deficiency, has been associated with depressive symptomatology 

(Hamer & Molloy, 2009; Onder et al., 2005). Iron deficiency has also been associated with 

depressive symptoms in premenopausal women (Laura E. Murray-Kolb, 2011). Yet, there is 

remarkably little research regarding neuropsychological morbidity and iron status especially in 

older subjects. To our knowledge, the only study measuring this association was conducted by 
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Stewart and Hirani (R. Stewart & Hirani, 2012), who reported a significantly higher depressive 

mood in individuals with anemia, low ferritin and high sTFR after controlling for age, sex, social 

class, multivitamin intake, smoking status and body mass index (BMI).  

 

1.3. T(h)reat(en) the iron deficiency  

Iron deficiency is treatable and preventable (Miller, 2013). While treating iron deficiency 

the focus should be targeting the underlying cause of it, which is often difficult to determine, and 

the main goal should be the repletion of iron stores (Goddard et al., 2000; Mahan, Escott-Stump, 

Raymond, & Krause, 2012). In order to replenish iron stores of adults, oral administration of iron 

is the first line of treatment and, depending on the severity of the case, 50 to 200 mg of 

inorganic iron, in the ferrous form, are daily prescribed and should be maintained 3 months after 

hemoglobin normalization (Mahan et al., 2012). Regarding efficiency and adverse effects, 

intermittent dosage and low dosage therapies have been also studied with promising results, with 

the latter being recommended by the WHO for developing countries (Pasricha et al., 2010; 

Stoltzfus, Dreyfuss, & Organization, 1998).  

The prevalence of adverse gastrointestinal symptoms due to oral iron therapy ranges 

from 10 to 20% and is more frequent when iron is taken in an empty stomach to maximize its 

absorption (Mahan et al., 2012; Rimon et al., 2005). Several forms of iron are available in the 

market (Table 6), although the most common preparations include iron sulphate, iron gluconate 

or iron fumarate (Alleyne, Horne, & Miller, 2008; Macdougall, 1999). Despite of the different 

molecular weights of the formulations, when given at equivalent dosages of elemental iron these 

have similar tolerability and efficacy (Pasricha et al., 2010). Adverse side effects of oral iron 

therapy are mainly gastrointestinal and include nausea, epigastric distention and discomfort, 

heartburn, diarrhea or constipation. In patients suffering from these side effects, dose reduction, 

interval alteration and changes in iron preparations are proposed (Alleyne et al., 2008; Susan F. 

Clark, 2008; Mahan et al., 2012).  

Parenteral iron administration can be used in patients who do not tolerate oral iron 

therapy, and/or do not comply with the prescribed treatment, have higher requirements due to 

bleeding or hemodialysis, or do not absorb iron secondarily to gastrointestinal disease or gastric 

resection (Susan F. Clark, 2008; Macdougall, 1999; Mahan et al., 2012). Parenteral iron therapy 

is a second line of treatment since the rise in hemoglobin levels is not faster than the one 

observed in oral therapies. Also, it is painful, expensive and can cause anaphylactic reactions and 
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adverse drugs reactions (Susan F. Clark, 2008; Goddard et al., 2000). Similar to oral iron 

administration, there are several formulations for parenteral iron administration which can be 

administered intravenously or intramuscularly (Table 6) (Alleyne et al., 2008; Susan F. Clark, 

2008; Macdougall, 1999; Pasricha et al., 2010). 

At a population level, several strategies can be used, alone or in combination, to prevent 

and correct iron deficiency. The main strategies used include (i) nutritional education with dietary 

modification or diversification, (ii) iron supplementation, and (iii) iron fortification of foods (Gera, 

Sachdev, & Boy, 2012; Zimmermann & Hurrell, 2007). Despite of all these strategies being 

effective, with some having an added beneficial indirect effect on problems such as malaria and 

helminth control or delayed clamping of the umbilical cord (Miller, 2013; Stoltzfus et al., 1998), 

here we will focus on food fortification.  

 

Table 6 – Common iron compounds used in iron deficiency treatment and prevention. Adapted 

from Dary & Hurrell, 2006; Macdougall, 1999  

Oral preparation Parenteral preparations  Food fortificants  

Ferrous sulfate Iron dextran Ferrous sulfate Ferrous fumarate 

Ferrous fumarate Iron dextrin Ferrous gluconate  Ferrous succinate 

Ferrous gluconate Iron hydroxisacharate Ferrous lactate  Ferric saccharate 

Ferrous succinate Iron sodium gluconate Ferrous bisglycinate Ferric orthophosphate  

Iron polymaltose  Iron polymaltose Ferric ammonium citrate  Ferric pyrophosphate  

Polysaccharide-iron complex  Iron sorbitol citrate Sodium iron EDTA Elemental iron 

 

Iron fortification is the central component of the efforts to control and prevent iron 

deficiency (Miller, 2013). It is also the most practical sustainable and cost-effective long term 

solution at the population level (Zimmermann & Hurrell, 2007). The average annual costs/person 

of food fortification can range from $0.06 (€0.04) in Southeast Asian sub-region to $0.15 (€0.11) 

in the European sub-region according to the WHO classification, indicating that the cost are not 

high when observed the beneficial effects obtained (Horton, 2006; Laxminarayan et al., 2006). 

Despite of the cost-effectiveness of iron fortification, iron is the most challenging nutrient to be 

used as a supplement. The iron compounds with the higher bioavailability are also the ones that 

strongly interact with food constituents and produce undesirable organoleptic alterations. 

However, there are several options (Table 6), with different properties that can be suitable 

depending on the food vehicle (Dary & Hurrell, 2006). Thus, success of iron fortification of foods 

is dependent of the food vehicle, the duration of storage, the fortificant and the composition of 

the food [for example: highly soluble (low molecular weight), high-affinity complexes such as Na-
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Fe-EDTA are suitable for food vehicles rich in phityc acid and for long shelf-life foods] (Dary & 

Hurrell, 2006; Mackenzie & Garrick, 2005). 

The effects of iron food fortification are unequivocal and beneficial for nutritional status 

and hemoglobin concentration, suggesting that iron fortification of foods is effective and can be a 

viable public health option to combat iron deficiency (Gera et al., 2012). Still, once again, the 

main body of literature assessing the effect of iron fortification is focused on children and we 

found no literature regarding the health impacts of iron fortification in older adults. Regarding 

children, there is no evidence that iron fortification improves growth (Sachdev, Gera, & Nestel, 

2006) or resistance to infections (Gera & Sachdev, 2002), albeit a significant moderated positive 

effect of iron fortification was observed in mental development (Sachdev, Gera, & Nestel, 2005).  
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2. Research objectives  
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Here we investigate whether a low iron status is associated with decrements in cognitive 

and/or physical performance in senior individuals. This derived from lines of evidence in other 

population groups (strata) showing that in children, women of child bearing age and pregnant 

women, and/or in cancer patients, there is an association between the iron status and  the 

cognitive and physical performances. Furthermore, the biochemical knowledge about the 

importance of iron to muscle proteins and to the oxygen transport system, particularly to the 

brain, which has high iron requirements, provides the molecular/biological basis for the research 

goals.  

 

Specifically, in a cohort of older individuals, using a cross-sectional analysis followed by a 

quasi-experimental (intervention) study, the objectives were to: 

1. Correlate cognition, mood, functional ability and physical performance with iron 

status (cross-sectional analysis); 

2. Assess the effectiveness and usefulness of low dosage of iron, through fortified foods 

(usually recommended for the prevention of nutritional deficiencies), to normalize 

iron status of aged individuals (intervention branch);  

3. Investigate whether cognition, mood, functional ability and physical performance 

could be ameliorated or normalized by the treatment of ID. 
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3. Material and methods 
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3.1. Subjects and procedures  

The n=162 participants enrolled in the study were recruited from health primary care 

centers (Braga and Guimarães/Vizela), internal medicine outpatient care (Hospital de Braga) and 

emergency department visits (Hospital de Braga). Participants were older community-dwelling 

individuals aged 55 years or more, males and females, with a general good health status, 

integrated in the community and with independency to perform the activities of the daily living. 

Exclusion criteria at enrollment included incapacity and/or inability to attend the assessment 

sessions, cognitive impairment, dementia diagnosis and/or inability to understand informed 

consent, disorders of the central nervous system and/or overt thyroid pathology. The cohort was 

established in accordance with the principles expressed in the Declaration of Helsinki and the 

work approved by the national ethical committee (Comissão Nacional de Protecção de Dados) 

and by local ethics review boards. All the participants gave voluntary informed signed consent. 

Blood samples were collected by venipuncture and a baseline characterization was 

conducted which comprised a clinical interview, nutritional status and body composition 

assessment and evaluation of physical functional ability (Moment A1, Figure 4). From the 

participants that were initially characterized, a subset (with and without ID) was selected for 

enrollment in the intervention study (n=41). Selection of participants was based on the results of 

the blood analysis [ID was defined as low serum FT level or two biomarkers (MCV, MCHC, RDW, 

Fe, TF sat., TIBC, sTFR sTFr-LogFT index)] indicating ID as described elsewhere (L. E. Murray-

Kolb & Beard, 2007; Rimon et al., 2005; Yavuz et al., 2012); the cutoff points used were: 

MCV<80 fL, MCHC<32 g/dL, RDW>14%, Fe<71 µg/dL, FT<45 ng/mL, TF sat.<20%, TIBC≥360 

µg/dL, sTFR>1.76 mg/dL and sTFr-LogFT index>1.5. Exclusion criteria at enrollment for the 

intervention branch included: severe anemia (hemoglobin<9 mg/dL), chronic renal disease 

(previously diagnosed or creatinine >2.5 mg/dL); celiac or Crohn disease; ongoing treatment for 

ID; TF saturation above 55%; and/or premenopausal women. Individuals that met the inclusion 

criteria for the iron fortification branch were invited to consume an iron fortified desert at 

breakfast (daily) or assigned to a non-iron fortification intervention branch and submitted to all 

the procedures that were performed in the iron fortification branch, with the exception of the daily 

intake of the iron fortified desert. A similar amount of individuals with iron deficiency (with or 

without anemia) was allocated to each branch (with or without iron-fortified food). For this subset 

of individuals [intervention with fortification (cases, n=12) and non-fortification (non 
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supplemented, n=10)] an additional assessment was performed in order to obtain a more 

detailed characterization regarding neurocognitive/psychological dimensions, functional ability 

and physical performance (Moment A2, Figure 4). 

The intervention had a duration of 14 weeks (+/- 2 weeks), after which a final endpoint 

assessment was performed (Moment B, Figure 4), with monitoring midpoints distributed 

throughout the study to guarantee and motivate the continued desert intake and/or participation 

in the study. The endpoint assessment consisted in a blood sample collection, nutritional status 

and body composition assessment, evaluation of physical performance and functional abilities, 

and neurocognitive/psychological assessment. 

Overall assessments were conducted at the local health care centers or in the Clinical 

Academic Center – Braga (CCA-B). 
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Figure 4 – Flow Diagram of the study. 

3.2. Iron food fortification 

Participants in the quasi-experimental intervention study that were assigned to the 

iron fortification branch consumed an iron and ascorbic acid fortified fruit based desert. 

Theoretical development of the deserts was performed by our team and accounted for the daily 
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requirements (recommended dietary allowance and upper limit for individuals with 50 years of 

age or older) of iron and ascorbic acid according to the data available from the Food and 

Nutrition Board of Institute of Medicine (IOM, 2000, 2001). Iron and ascorbic acid supplements 

were chosen in accordance with the “Guidelines on food fortification with micronutrients” (Dary & 

Hurrell, 2006) of the WHO and the FAO and based on bioavailability and physical characteristics 

of the food vehicle. Briefly, it was defined that each daily dose should contain 15 mg of elemental 

iron in the form of ethylenediaminetetraacetic acid ferric sodium salt [120 mg of Na(Fe3+)EDTA 

with 12.5% mass of iron] and 90 mg of vitamin C (ascorbic acid – E300) corresponding to a 2:6 

mass ratio (iron:ascorbic acid) described to increase iron absorption from foods 2- to 3-fold (Dary 

& Hurrell, 2006; Hurrell, 2002). Technical development was handled by Frutech (Frulact SGPS; 

Maia; Portugal) and sensory analysis was performed by Frutech technicians and our team. Two 

deserts of different flavors were chosen (apple and peach) and produced by Frulact Nutrição 

(Frulact Nutrição, Lda; Maia, Portugal). Apple and peach puree (50% of mass) were used as a 

major ingredient. After shelf life tests, bromatological analysis were performed by an independent 

laboratory (Silliker Portugal, S.A.; V. N. Gaia, Portugal), yielding 14.8 mg of iron and 158 mg of 

ascorbic acid per 120 g (daily dose) of apple desert and 13.26 mg of iron and 168 mg of 

ascorbic acid per 120 g (daily dose) of peach-based desert. Since ascorbic acid is easily lost 

during processing and storage, the higher amounts of ascorbic acid than the foreseen ensured 

that after storage losses and in the end of the shelf life a sufficient amount was still present. 

3.3. Laboratory analyses  

Blood samples were collected by venipuncture before the assessments and immediately 

sent to the Pathology Laboratory at the Hospital de Braga for analyses. Blood cells count and 

hemogram were performed using certified standardized methods and comprised RBC (1012/L), 

hemoglobin (mg/dL), hematocrit (%), MCV (fL), MCH (pg), MCHC (g/dL) and RDW (%). Serum 

iron (Fe; µg/dL) and TIBC (µg/dL) were determined by a colorimetric method using Dimension 

Vista System Flex reagent cartridge (Siemens, Frimley, Camberly, UK). High sensitive C-reactive 

protein (hsCRP; mg/dL), TF (mg/dL), FT (ng/mL) and serum concentration of sTFR (mg/dL) 

were measured by chemiluminescent immunoassays. Dimension Vista System Flex reagent 

cartridge (Siemens, Frimley, Camberly, UK) was used to measure TF, FT and sTFr; the BN* II 

and BN ProSpec System (Siemens, Frimley, Camberly, UK) was used to measure hsCRP. All 

determinations were performed following the manufacturers’ instructions. Detection limits for 
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hsCRP, Fe, TIBC, TF, FT and sTFR are 0.175 mg/dL, 5 µg/dL, 8 µg/dL, 8.75 mg/dL, 0.5 

ng/mL and 0.017 mg/L respectably. Serum TF saturation (%) was calculated as a percentage of 

serum total iron divided by TIBC. sTFR-LogFT index was calculated by sTFR divided by the 

logarithm of FT. Body iron was calculated using the Cook algorithm (Cook et al., 2003) as 

follows: body iron (mg/kg) = -[log(sTFR*1000/FT) – 2.8229/0.1207].  

3.4. Neurocognitive/psychological assessment  

Tests were selected to provide mood and cognitive (general cognitive status and 

executive and memory functions) profiles, as previously reported (Santos et al., 2013). The 

neurocognitive/psychological characterization was performed by a team of trained psychologists 

following the instructions provided in the Standard Operating Procedures (SOP) manual, which is 

a written  manual were all the procedures for test application are described and is used as 

guideline, ensuring the standardization of the test application and results comparability. 

3.4.1. Baseline characterization 

The following cognitive measures were used: global cognitive status was assessed with 

the MMSE (Folstein, Folstein, & McHugh, 1975) and the Montreal cognitive assessment (MOCA) 

(Nasreddine et al., 2005); short-term verbal memory with the digit span forward test (DS forward; 

subtest of the Wechsler adult intelligence test WAIS III), verbal working memory with the digit 

span backward test (DS backward; subtest of the Wechsler adult intelligence test WAIS III) and 

digit span total score (DS total; calculated by the summation of DS forward and DS backward) 

(Strauss, 2006); multiple trial verbal learning and memory with the selective reminding test [SRT 

– List A; parameters: consistent long term retrieval (CLTR), long term storage (LTS), delayed 

recall (DR) and intrusions] (Buschke, Sliwinski, Kuslansky, & Lipton, 1995), and the consortium 

to establish a registry for Alzheimer's disease-word list test [CERAD, parameters: Total hits and 

DR hits] (Morris et al., 1989); response inhibition/cognitive flexibility with the Stroop color and 

word test [Stroop, parameters: Words (W), Colors (C) and Words/colors (W&C)] (Strauss, 2006). 

The geriatric depression scale (GDS, long-version) (Yesavage et al., 1983) was used for 

depressive mood evaluation. 
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3.4.2. Additional assessment 

Additionally to the neurocognitive/psychological characterization preformed in moment 

A1, the Boston naming test 15-item version (BNT-15) test (Lansing, Ivnik, Cullum, & Randolph, 

1999; Mack, Freed, Williams, & Henderson, 1992) and the controlled oral word association test 

F-A-S (COWAT-FAS, FAS – Admissible) (Lezak, 2004) were performed in moment A2 for the 

subjects enrolled in the intervention study for additional neurocognitive characterization,. Also, 

further measures were added to the psychological assessment, namely: Beck anxiety inventory 

(BAI) (Beck & Steer, 1990), Beck depression inventory (BDI) (Beck, Ward, & Mendelson, 1961) 

and the perceived stress scale (PSS) (Cohen, Kamarck, & Mermelstein, 1983).  

3.4.3. Endpoint characterization  

At the endpoint assessment, since several neurocognitive tests do not possess test-retest 

validity, the Addenbrooke's cognitive examination-revised (ACER) (Mioshi, Dawson, Mitchell, 

Arnold, & Hodges, 2006) was used to assess general cognitive status and dimension specific 

scores. The SRT [SRT – List B; parameters: CLTR, LTS, DR and intrusions] and a different subset 

of images of the BNT-15 were also used; despite of differences in the lists and the subset of 

images, the results of SRT and BNT-15 from baseline characterization and endpoint 

characterization were directly comparable which avoids learning interference. Neuropsychological 

assessment was performed using depression, anxiety and stress scales – 21 items (DASS-21) 

(Lovibond & Lovibond, 1995).   

3.5. Assessment of functional ability and physical performance  

The questionnaire of functional ability (QoFA) was the only instrument used to assess 

functional ability at the baseline characterization (Moment A1). All the remaining tests, as nest 

described, were used in the additional characterization (Moment A2) and in the endpoint 

assessment (Moment B). Instructions provided in the SOP manual were followed. 

3.5.1. Questionnaire of functional ability  

The QoFA is a scale that measures the ability of older individuals to perform physical 

activities of daily living (Avlund, Kreiner, & Schultz-Larsen, 1996). The instrument is composed of 

16 questions, for each question two more are made regarding tiredness and help needed to 
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perform the task. The instrument is composed of 3 subscales in relation to tiredness, (i) mobility 

tiredness, (ii) lower limb tiredness and (iii) upper limb tiredness, and 2 subscales in relation to 

dependency, (iv) mobility help and (v) physical activities of daily living help. Higher values in each 

subscale represent higher functionality. The instrument was applied after a brief explanation of its 

structure and aims.  

3.5.2. Hand grip strength 

The Jamar hand dynamometer (Lafayette Instrument Company, USA) was used. This 

instrument is the most widely cited in the literature and accepted as the gold standard by which 

other dynamometers are evaluated. The dial reads force in kg with markings at intervals of 2 kg, 

allowing assessment to the nearest kg. Here we used an adaptation of the protocol of the 

American Society of Hand Therapists that was recently proposed (Roberts et al., 2011). The 

same procedure was used for left hand and three measurements for each hand, alternating 

sides, were taken. The recorded result was always the highest results in each trial. Hand 

dominance was recorded (right, left or ambidextrous – people who can genuinely write with both 

hands). The best of the six grip strength measurements was used for statistical analyses. 

3.5.3. 6-m timed walk 

The 6-m timed walk (6MTW) is an adaptation of the 10 m timed walk which is well 

established for use in assessment of patients with stroke. The validity and reliability of the 6MTW 

to assess walking ability has been demonstrated (Lam, Lau, Chan, & Sykes, 2010). Gait speed 

(m/min) and cadence (steps/min) was calculated from the data collected. 

3.5.4. Tinetti evaluation  

The performance oriented mobility assessment (POMA) is a simple and easy to 

administer test used to evaluate gait and balance (Tinetti, 1986). The test was originally 

proposed to assess the risk of falling in older individuals. It is composed by 2 scales, one with 9 

parameters for the assessment of static balance and a second with 10 parameters which assess 

gait balance.  
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3.6. Nutritional status and body composition assessment 

All the procedures described in this section were performed at the baseline 

characterization (Moment A1) and at the endpoint assessment (Moment B).  

3.6.1. Mini nutritional assessment  

The mini nutritional assessment (MNA) is a screening tool that helps to identify aged 

malnourished people or at risk of malnutrition before the development of alterations in weight or 

in serum proteins (Kondrup, Allison, Elia, Vellas, & Plauth, 2003).  The full MNA is composed of 

2 parts: (i) ‘Screening’ to identify malnourished people or at risk of malnutrition, and (ii) 

‘Assessment’ to allow for the determination of potential causes of malnutrition. All the questions 

of the MNA were applied in a face-to-face interview; data on body mass index (BMI), mid arm 

circumference and calf circumference were obtained during the anthropometric characterization. 

The malnutrition indicator score was calculated by the summation of the score obtained in the 

screening and assessment, which result in a classification in 3 categories: malnutrition, at risk of 

malnutrition and normal nutritional status.  

3.6.2. Weight and bioelectrical impedance analysis  

Weight and relative body fat mass (%BF) were measured with the participants wearing 

light wear using a Tanita® BF 350 Body Composition Analyzer (Tanita Corporation, Tokyo, 

Japan), which uses the foot-to-foot bioelectrical impedance analysis (BIA)(Yanovski, Hubbard, 

Heymsfield, & Lukaski, 1996) to estimate %BF. Participants were invited to stand on the scale 

without support and with the weight equal distributed in both legs. The output variables were 

calculated according to the manufacture’s embedded software. 

3.6.3. Anthropometric characterization  

Anthropometric characterization consisted in the measurements of height, waist 

circumference, hip circumference, mid arm circumference, calf circumference; and the thickness 

of: triceps skinfold, biceps skinfold, subscapular skinfold and suprailiac skinfold. All 

measurements were taken in accordance with the international standards for anthropometric 

assessment (A. Stewart, Marfell-Jones, Olds, & Ridder, 2011) from the International Society for 
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the Advancement of Kinanthropometry, in triplicate and the mean value used to calculate the 

derivate indexes. 

Briefly, height was measured without shoes using a stand-alone stadiometer Seca® 217 

(Seca GmBH & Co Kg, Hamburg, Germany). Circumferences were measured using an ergonomic 

and smooth measuring tape Seca® 201 (Seca GmBH & Co Kg, Hamburg, Germany) and only 

the minimal amount of pressure was made warranting that the tape was not excessively indented 

to the skin. Waist circumference was measured at the mid-point between the lower costal (10th 

rib) border and the iliac crest in the end of a normal expiration (end tidal). Hip circumference was 

taken in a horizontal plane at the level of the greatest posterior protuberance of the buttocks, 

which usually corresponds anteriorly to the level of the symphysis. Mid arm circumference was 

measured at the mid-point between acromial surface of the scapula and the olecranon process 

perpendicular to the longest axis of the arm. Calf circumference was measured with the subjects 

seated and the knee bent at 90º angle, the tape was slipped in order to measure the maximum 

girth of the calf perpendicular to the longest axis of the leg. BMI was calculated according to the 

weight (kg)/height (m)2 ratio. 

Skinfolds thickness was measured using the Lipotool (Liposoft 2008 & Adipsmeter V0) 

(Amaral et al., 2011). All participants were in the anatomical position and relaxed, the 

measurements were taken in the right side of the body. Triceps skinfold thickness was measured 

in the arm at the mid-point between acromial surface of the scapula and the olecranon process 

in the most posterior site of the triceps when viewed from the side. Biceps skinfold thickness was 

measured at the same level of the triceps skinfold in the most anterior site of the biceps when 

viewed from the side. Triceps and biceps skinfolds were measured parallel to the longest axis of 

the arm.  Subscapular skinfold thickness was measured at the point 2 cm from the subscapular 

point in a line 45° laterally downward determined by the natural fold of the skin. Suprailiac 

skinfold was taken when the right arm of the participant was abducted to the horizontal. This 

skinfold was measured at the line that defines the anterior-posterior division and immediately 

superior to the iliac crest. The direction of the fold runs slightly downwards anteriorly as 

determined by the natural fold of the skin. The mean value of the skinfold thickness was used to 

estimate body density taking into account that for individuals with age comprised between 50 and 

59 it was calculated using the Durnin and Womersley (Durnin & Womersley, 1974) sex-specific 

equations and for older individuals the Visser et al.(Visser, Heuvel, & Deurenberg, 1994) sex-
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specific equations. %BF was calculated from body density using the Brozek et al. (Brožek, 

Grande, Anderson, & Keys, 1963) (%BF-Brozek) equation.  

3.7. Statistical analysis 

Characteristics of participants are presented in mean and standard deviation (mean; SD) 

for normal distributed variables and in median and interquartile range for variables with a non-

normal distribution. To evaluate normal distribution of the variables, skewness and kurtosis 

values were calculated and the approximate normal distribution was defined for variables with 

absolute values of skewness below 3 and of kurtosis below 8 (Kline, 2011). Log transformations 

were performed to normalize the distribution of skewly distributed variables (hsCRP, FT; sTFR 

and sTFR-LogFT index). Independent samples t-test (for variables with normal distribution) and 

Mann-Whitney U test (for variables with non-normal distribution) were performed to analyze the 

differences in socio-demographic variables, anthropometric, psychological, neurocognitive and 

physical functional ability between men and women; individuals with or without ID in the cross-

sectional study and in the same variables at baseline between non supplemented and 

supplemented in the longitudinal study. To quantify the strength of the differences, Cohen´s d 

was calculated as a measure of effect size (.2 is considered a small effect size, .5 a medium 

effect size and .8 a large effect size) (Kotrlik & Williams, 2003); in Mann-Whitney U test r was 

calculated and reported as the measure of effect size. Differences in categorical variables were 

assessed using Chi squared test and effect size reported as Phi () or Cramer’s V (c). When 

assumptions for Chi-square tests on contingency tables were violated the two tailed significance 

level of Fisher exact test was used (P(Fisher exact test; 2 tailed)). 

All variables were converted into z-scores to express all variables in the same scale. 

Principal component analysis (PCA) was conducted to reduce the number of variables with a 

minimum loss of information and, therefore, reducing the number of comparisons. New 

component scores were obtained (using the regression method) and were used in subsequent 

analyses. The reliability of each component was analyzed using Cronbach’s alpha. Components 

were considered reliable when Cronbach’s alpha was higher than .6 (DeVellis, 2011). Variables 

not included in PCA were analyzed independently.  

Binary logistic regression analysis was used to test if nutritional status (MNA) and body 

composition (BMI, %BF-Tanita and %BF-Brozek) were significant predictors of ID when controlled 

for potential confounding factors (age, gender and hsCRP) using the enter method.  
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Analyses of covariance (ANCOVA) were used to test differences in dependent variables 

(psychological, neurocognitive and physical functional ability) between individuals with or without 

ID, controlling for the principal confounding factors (age, education, gender and hsCRP for 

psychological variables; the previous plus GDS score for neurocognitive variables and 

dimensions; and age, BMI and hsCRP for physical functional ability dimensions). Education 

(school years; <4=0; ≥4=1) was converted to a dummy variable due to the high concentration of 

individual in the 4 years.  

Hierarchical regression analysis was performed to compare different hematological 

dimensions (that resulted from PCA) as predictors of previously mentioned dependent variables 

controlling for the principal, above mentioned, confounding factors (using enter method). 

Interaction (mediator effect) between nutritional status and hematological dimensions was tested 

using a mean centered methodology and hierarchical regression analysis as previously described.  

Analysis of repeated measures (general linear model – repeated measures ANOVA) was 

used for comparison of variables across different time-points (when repeated measures were 

available) during the intervention study. For non-normal distributed variables (skewly distributed) 

(FT, sTFR and sTFR-LogFT index) logarithmic transformation was applied allowing the use of 

repeated measures ANOVA, therefore data are presented as geometric mean and back-

transformed 95% confidence intervals. Two independent sample t-tests (pre- and post-

intervention) were used to compare data from different variables measuring the same construct 

before and after intervention (no repeated measures available).  

Statistical analysis was conducted using the SPSS package v22 (IBM SPSS Statistics) 

and statistical significance was defined at p < .05 level. In the tables the most relevant significant 

results are highlighted in gray color. 

3.8. Team 

This thesis project is based on a larger study addressing predictors of healthy cognitive 

aging. As such, a multidisciplinary team participates and conducts the various aspects of the 

study. With respect to the data presented in this thesis: 

The design and supervision of the study was accomplished by Professor Joana Palha, 

Professor Nuno Sousa and Dr. Nadine Correia Santos. 

Measurement of blood parameters was done at the Pathology Laboratory at the Hospital 

de Braga.  
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Neurocognitive and neuropsychological assessments were performed by Teresa Costa 

Castanho, Liliana Amorim and Pedro Silva Moreira. 

Functional ability, physical performance, nutritional status evaluations and body 

composition assessments were performed by me. I was also responsible by data analysis, with 

the valuable support and insights of Professor Patricio Costa, Dr. Nadine Correia Santos and 

Pedro Silva Moreira, and writing of this report. 
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4. Results 
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4.1 Cross-sectional analysis: iron status correlates of cognition and physical 

status and performance 

4.1.1 Participants characterization  

The initial sample was composed by 162 individuals, from which 11 participants were 

excluded due to malnutrition (n=2), chronic kidney disease (n =1; creatinine >2.5 mg/dL), high 

inflammatory status (n=7; hsCRP> 10 mg/L) and iron overload (n=1; TF saturation>55%). After 

exclusion the study sample comprised 151 individuals [females, n=82 (54.3%); males, n=69 

(45.7%)]. Characteristics of the participants, for the all sample and by gender are shown in Table 

7. No significant differences were observed between females and males for age although, as 

expected and previously reported for similar samples (Santos et al., 2014), males had more 

years of formal education than females. No significant differences were observed in gender 

distribution by BMI classes or class of nutritional status. 

 

Table 7 - Socio-demographic, anthropometric and nutritional characteristics of participants.  

Variables (mean; SD) All  Females  Males   

Socio-demographic  
   

t(df); p; Cohen’s d 

 

Age (yrs) 66.30; 7.87 67.16; 7.66 65.29; 8.04 1.459(149); .147; .240 

 

Education (school yrs)  5.19; 3.83 4.40; 3.45 6.12; 4.08 -2.757(133.799); .007; .460 

Anthropometric 
   

t(df); p; Cohen’s d 

 

Weight (kg) a 72.88; 11.69 68.77; 10.65 77.48; 11.14 -4.762(140); <.001; .806 

 

Height (m) a 1.59; 0.09 1.53; 0.05 1.65; 0.07 -12.568(140); <.001; 2.128 

 

BMI (kg/m2) a 28.97; 3.86 29.48; 4.00 28.4; 3.64 1.664(140); .098; .282 

 

Waist circ. (cm) a 95.69; 10.58 93.65; 11.18 97.97; 9.43 -2.468(140); .015; .418 

 

Hip circ. (cm) a 101.46; 7.73 102.98; 8.15 99.75; 6.90 2.534(140); .012; .429 

 

%BF-BIA (%) b 32.70; 7.85 37.27; 5.49 27.41; 6.80 9.427(136); <.001; 1.621 

 

%BF-Brozek (%) a 34.54; 6.99 40.09; 2.99 28.33; 4.51 18.49(140); <.001; 3.130 

BMI class (n; %) 
   

2(df); p; c 

 

Normal 23; 16.20 12; 8.45 11; 7.75 2.744(2); .250; .139 

 

Overweight 67; 47.18 31; 21.83 36; 25.35  

 

Obesity 52; 36.62 32; 22.54 20; 14.08  

Nutritional status (n; %) 
   

2(df); p;  

 

Risk of malnutrition 20; 14.08 14; 9.86 6; 4.23 2.758(1); .146; .139 

 

Normal  122; 85.92 61; 42.96 61; 42.96  

a n=142 [females=75 (52.82%). males=67 (47.18%)]; b n=138 [females=74 (53.62%). males=64 (46.38%)]. Data 
presented for all sample and by gender. Statistical test performed between gender.  
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Descriptive statistics for neuropsychological and cognitive variables are presented in 

Table 8. Females scored significantly higher in neuropsychological variables indicative of higher 

depressive mood and perceived stress, and significantly lower in all neurocognitive variables 

Stroop W, Stroop W&C, MMSE and MOCA.  

From the PCA, two cognitive dimensions were obtained based on the neurocognitive 

variables (with less than 10% of missing values), termed: (i) executive dimension, and (ii) memory 

dimension (Figure 5). The executive dimension (executive functioning, Cronbach’s alpha: 0.880) 

was composed of the Stroop (W, C and W&C) and DS (backward and total) parameters. The 

variables DS forward and MMSE total score had low communalities in the solution and were 

excluded from the final model. The memory dimension (memory function, Cronbach’s alpha: 

0.933) was composed of the SRT (CLTR, LTS and DR) and the CERAD (total hits and DR) 

parameters. Intrusions in SRT were excluded due to low communalities. Significant differences 

were observed in the executive dimension with females scoring lower, and no differences were 

observed in the memory dimension (Table 8, Figure 6).  

 

 

Figure 5 – Diagram of neurocognitive dimensions formation by PCA. 
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Table 8 - Neuropsychological and neurocognitive variables in all sample and by gender. 

 Variables (mean; SD) All  Females  Males   

Psychological    t(df); p; Cohen’s d 

 GDS 11.25; 6.36 13.23; 6.10 8.88; 5.88 4.437(149); <.001; .730 

 PSS a 20.37; 7.52 22.73; 7.67 17.77; 6.46 4.093(137); <.001; .700 

Neurocognitive    t(df); p; Cohen’s d 

 DS – Forward  7.39; 2.24 6.84; 1.99 8.04; 2.35 .825(149); .411; .136 

 DS – Backward  4.16; 2.32 3.60; 1.91 4.81; 2.58 .825(149); .410; .136 

 DS – Total 11.55; 4.15 10.44; 3.43 12.86; 4.55 .733(149); .465; .120 

 Stroop – W b 65.29; 21.70 58.04; 21.23 73.73; 19.17 -4.640(143); <.001; .778 

 Stroop – C c 48.34; 14.79 46.99; 14.57 49.90; 15.00 -1.196(146); .234; .198 

 Stroop – W&C c 29.72; 12.99 27.44; 11.61 32.33; 14.04 -2.289(132.34); .024; .385 

 SRT – LTS  25.34; 13.77 23.43; 13.22 27.62; 14.15 -1.881(149); .062; .309 

 SRT – CLTR  15.58; 12.81 14.8; 12.46 16.51; 13.25 -.813(149); .418; .134 

 SRT – DR d 5.65; 2.85 5.55; 2.78 5.78; 2.94 -.497(140); .620; .084 

 CERAD – Total hits e 17.59; 4.93 17.24; 5.15 17.99; 4.68 -.898(140); .371; .152 

 CERAD – DR  e 5.77; 2.40 5.48; 2.42 6.09; 2.37 -1.515(140); .132; .256 

 MMSE 26.52; 3.27 25.67; 3.58 27.52; 2.54 -3.708(145.03); <.001; .593 

 MOCA f 18.06; 5.13 16.98; 5.17 19.45; 4.78 -2.644(115); .009; .497 

Cognitive dimensions     t(df); p; Cohen’s d 

 Executive g  0; 1.00 -.26; .91 .30; 1.02 -3.505(141); .001; .592 

 Memory h  0; 1.00 -.10; 1.00 .11; 1.00 -1.259(131); .210; .220 

a n=139 [females=73 (52.52%). males=66 (47.48%)]; b n=145 [females=78 (53.79%). males=67 (46.21%)]; c n=148 
[females=79 (53.38%). males=69 (46.62%)]; d n=142 [females=77 (54.23%). males=65 (45.77%)]; e n=142 
[females=75 (52.82%). males=67 (47.18%)]; f n=117 [females=66 (56.41%). males=51 (43.59%)]; g n=143 
[females=76 (53.15%). males=67 (46.85%)]; h n=133 [females=70 (52.63%). males=63 (47.37%)]. Data presented 
for all sample and by gender. Statistical test performed between gender.  
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Figure 6 – Mean value of neurocognitive and neurpsychological variables/dimensions by 

gender. 

 

Two dimensions were obtained from the subscales of the QoFA: (i) functional-T 

dimension (functional tiredness, Cronbach’s alpha: .763), composed by mobility tiredness, lower 

limb tiredness and upper limb tiredness subscales; and (ii) functional-H dimension (functional 

help, Cronbach’s alpha: .690), composed by mobility help and PADL help (Figure 7). Similar to 

the variables of origin, higher scores represent higher functionality, so higher scores on 

functional-T represent less tiredness and higher scores on functional-H represent less need of 

help. In all physical functional variables sub-scales and dimensions (Table 9, Figure 8) females 

scored significantly lower than males. 
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Figure 7 – Representation of functional dimension obtained by PCA. 

 

Table 9 - Physical functional ability sub-scales and functional dimensions. 

Variables (mean; SD) All  Females  Males   

Functional ability – QoFA a    t(df); p; Cohen’s d 

 Mobility tiredness 4.45; 1.94 3.77; 2.00 5.26; 1.52 -5.191(146.19); <.001; .838 

 Lower limb tiredness 4.24; 1.13 3.90; 1.29 4.64; .75 -4.351(131.4); <.001; .689 

 Upper limb tiredness 3.76; .77 3.57; 1.00 3.99; .12 -3.73(82.72); <.001; .569 

 Mobility help 11.05; 2.06 10.59; 2.48 11.59; 1.22 -3.211(120.32); .002; .504 

 PADL help 18.59; 2.87 17.98; 3.41 19.3; 1.84 -3.025(126.62); .003; .477 

Functional components a    t(df); p; Cohen’s d 

 Functional tiredness 0; 1.00 -.37; 1.14 .43; .57 -5.529(122.2); <.001; .869 

 Functional help 0; 1.00 -.25; 1.18 .29; .62 -3.600(124.31); <.001; .567 

a n=150 [females=81 (54%); males=69 (46%)]. Data presented for all sample and by gender. Statistical test 
performed between gender.  
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Figure 8 – Distribution of functional dimensions by gender. 

 

Hematologic variables are shown in Table 10. The hsCRP was measured to assess the 

inflammatory status of participants and no significant differences were observed between males 

and females. With exception for MCV and RDW, all the red cells indices and iron biomarkers 

variables were significantly different, with the direction of difference indicating a lower iron status 

of females (iron biomarkers: lower Fe, FT, TF Sat.; sTFR, sTFr-LogFT index and Body iron; higher 

TF and TIBC).  

Similar to previously described (L. E. Murray-Kolb & Beard, 2007), dimensions of 

hematologic variables were obtained (here using PCA). For these analyses, log-transformation of 

non-normal distributed variables was used and posteriorly transformed into z-scores (FT, sTFR 

and sTFr-LogFT index). In some cases z-scores of variables were inverted (multiplied by -1) in 

order to make higher values represent higher iron status (RDW, TF, TIBC, sTFR and sTFr-LogFT 

index). Five components were obtained using the hematologic factors: four of them using the 

same factors described by Murray-Kolb et al.(L. E. Murray-Kolb & Beard, 2007), (i) storage, (ii) 

transport, (iii) red cells characteristics (red cells C) and (iv) erythropoiesis; and a new one 

obtained from the remaining biomarkers, (iv) transport saturation (transport S) (Figure 9).  

 



 

59 
 

 

Figure 9 - Representation of hematological dimensions obtained by PCA. 

 

Table 10 - Hematologic variables and dimensions for iron status assessment. 

Variables (mean; SD) All  Females  Males  
 

Inflammatory indices 
   

Z(U); p; r 

 hsCRP (mg/dL)  a ¥ £ 1.90; 2.62 2.35; 2.80 1.60; 2.50 -1.430(2378); .152; .117 £ 

Red cells indices b    t(df); p; Cohen’s d 

 RBC (1012/L) 4.56; 0.43 4.37; 0.41 4.79; 0.35 -6.615(144); <.001; 1.108 
 Hemoglobin (mg/dL) 13.80; 1.60 13.01; 1.35 14.77; 1.34 -7.850(144); <.001; 1.314 
 Hematocrit (%) 40.37; 4.12 38.40; 3.66 42.76; 3.31 -7.478(144); <.001; 1.252 
 MCV (fL)  88.55; 4.33 87.92; 4.27 89.30; 4.31 -1.931(144); .056; .323 
 MCH (pg) 30.24; 1.84 29.78; 1.72 30.81; 1.83 -3.512(144); .001; .588 
 MCHC (g/dL) 34.15; 0.99 33.86; 0.94 34.50; 0.93 -4.123(144); <.001; .690 
 RDW (%) 13.37; 0.88 13.47; 0.91 13.25; 0.84 1.509(144); .134; .253 

Iron biomarkers c    t(df); p; Cohen’s d 

 Fe (µg/dL) 
c
 93.13; 29.46 86.58; 25.05 100.65; 32.41 -2.903(125.38); .004; .493 

 TF (mg/dL)  c 248.34; 42.63 255.74; 42.52 239.85; 41.45 2.279(144); .024; .381 
 FT (ng/mL) c ¥ £ 132.00; 204.25 84.50; 129.00 221.50; 235.75 -4.840(1418.5); <.001; .401 £ 
 TF sat. (%) c 27.93; 10.02 25.27; 8.45 30.97; 10.85 -3.501(125.89); .001; .595 
 TIBC (µg/dL) c 345.00; 55.32 354.10; 56.98 334.56; 51.82 2.156(144); .033; .360 
 sTFr (mg/L) d ¥ £ 1.11; .49 1.20; .60 1.01; .38 -3.420(1831); .001; .281 £ 
 sTFr-LogFT index c ¥ £ .55; .31 .63; .34 .45; .20 -4.880(1408); <.001; .404 £ 
 Body iron (mg/kg) c 14.91; 4.68 13.37; 4.33 16.67; 4.46 -4.524(144); <.001; .756 

Iron dimensions    t(df); p; Cohen’s d 

 Storage  c 0; 1.00 -.28; .93 .32; .98 -3.754(144); <.001; .627 
 Transport  c 0; 1.00 -.25; .84 .29; 1.09 -3.276(124.79); .001; .557 
 Transport S. c 0; 1.00 -.17; 1.01 .20; .96 -2.241(144); .027; .374 
 Red cells C.  b 0; 1.00 -.25; .97 .30; .96 -3.429(144); .001; .574 
 Erythropoiesis b 0; 1.00 -.49; .88 .59; .80 -7.639(144); <.001; 1.279 

a n=149 [(females=81 (54.36%). males=68 (45.64%)]; b n=146 [(females=80 (54.79%). males=66 (45.21%)]; c 
n=146 [(females=78 (53.42%). males=68 (46.58%)]; d n=148 [(females=80 (54.05%). males=68 (45.95%)]; ¥ 
Variables not normally distributed. data presented in median and interquartile range (median. IQR); £ Mann–Whitney 
U test. results presented in Z(U); p; r. Data presented for all sample and by gender. Statistical test performed between 
gender.  
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Figure 10 – Distribution of hematological dimensions by gender. 

 

Storage dimension (storage of iron; Cronbach’s alpha: .925) was composed by FT 

(inverted), body iron, sTFR (log-transformed and inverted) and sTFr-LogFT index (log-transformed 

and inverted). Transport dimension (iron transport in blood stream; Cronbach’s alpha: .856) 

included Fe and TF sat.. Transport S. dimension (saturation of iron carrying capacity in the blood 

stream; Cronbach’s alpha: .979) was obtained by the reduction of TF and TIBC (both inverted). 

Red cells C. dimension (composition, dimension and variability of red cells; Cronbach’s alpha: 

.822) constructed with MCV, MCH, MCHC and RDW (inverted). Erythropoiesis dimension 

(number and relative volume of red cells and hemoglobin sufficiency; Cronbach’s alpha: .967) 

composed by RBC, hemoglobin and hematocrit (Figure 9). Higher values in these dimensions 

represent higher iron status and, therefore, similar to the origin variables. Female presented a 

significantly lower iron status in all iron dimensions.  
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4.1.2 Relevance of iron deficiency for cognition, mood and physical 

performance 

ID was defined as low serum FT level or as the presence of two biomarkers indicating ID 

(MCV<80 fL, MCHC<32 g/dL, RDW>14%, Fe<71 µg/dL, FT<45 ng/mL, TF sat.<20%, TIBC≥360 

µg/dL, sTFR>1.76 mg/L and sTFr-LogFT index>1.5). Characterization data for iron sufficiency 

and ID individuals is presented in Table 11. From the 151 participants, 2 failed blood collection 

and therefore no data was available; from the remaining 149 participants, 44 individuals 

(29.53%) were classified as ID and 105 individuals (70.47%) as iron sufficiency. 

 

Table 11 - Characteristics of participants with and without ID 

Variables (mean; SD) Iron sufficiency ID  

Socio-demographic  
  

t(df); p; Cohen’s d 

 

Age (yrs) 66.37; 8.26 66.09; 7.11 .197(147); .844; .036 

 

Education (school yrs)  5.15; 3.87 5.18; 3.70 -.043(147); .966; .008 

Anthropometric 
  

t(df); p; Cohen’s d 

 

Weight (kg) a 73.94; 11.85 70.89; 1.73 1.426(138); .156; .267 

 

Height (m) a 1.60; .08 1.56; .08 2.218(138); .028; .415 

 

BMI (kg/m2) a 28.96; 3.75 29.13; 4.17 -.236(138); .814; .044 

 

Waist circ. (cm) a 96.58; 1.27 93.86; 11.06 1.397(138); .165; .261 

 

Hip circ. (cm) a 101.7; 7.73 101.22; 7.80 .333(138); .739; .062 

 

%BF-BIA (%) b 32.16; 7.76 34.24; 8.12 -1.394(134); .166; .266 

 

%BF-Brozek (%) a 33.70; 7.21 36.60; 6.20 -2.251(138); .026; .421 

Gender (n; %)   2(df); p;  

 Female  49; 32.89 32; 21.48 8.488(1); .004; -.239 

 Male 56; 37.58 12; 8.05  

BMI class (n; %)   2(df); p; c 

 

Normal 17; 12.14 5; 3.57 .756(2); .679; .073 

 

Overweight 47; 33.57 19; 13.57  

 Obesity 35; 25 17; 12.14  

Nutritional status (n; %)   2(df); p;  

 Risk of malnutrition 11; 7.86 8; 5.71 1.745(1); .277; -.112 

 Normal  88; 62.86 33; 23.57  

a  n=140 [Iron sufficiency =99 (70.71%). ID=41 (29.29%)]; b n=136 [Iron sufficiency =97 (71.32%). ID=39 (28.68%)]. 

 

Table 12 (Figure 11) shows neuropsychological and neurocognitive variables of 

participants by iron status classification. No significant differences were observed except for GDS, 

with a higher mean value in the ID group. Data from physical functional ability (Table 13, Figure 

12) did not show statistically significant differences between iron sufficiency and ID participants.  
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Table 12 - Neuropsychological and neurocognitive variables in iron sufficiency and ID. 

 Variables (mean; SD) Iron sufficiency ID  

Psychological   t(df); p; Cohen’s d 

 GDS  10.47; 5.89 13.20; 6.97 -2.449(147); .016; .443 

 PSS a 20.23; 8.04 20.78; 6.24 -.380(136); .704; .072 

Neurocognitive   t(df); p; Cohen’s d 

 DS – Forward  7.70; 2.24 6.7; 2.13 .714(147); .476; .129 

 DS – Backward  4.43; 2.50 3.48; 1.66 .711(147); .478; .129 

 DS – Total 12.13; 4.37 1.18; 3.34 .779(147); .437; .141 

 Stroop – W b 65.85; 21.27 63.51; 22.39 .586(141); .559; .109 

 Stroop – C  c 48.30; 15.10 47.70; 13.81 .225(144); .822; .041 

 Stroop – W&C c 3.12; 12.98 28.56; 13.10 .660(144); .511; .121 

 SRT – LTS  26.26; 13.73 22.7; 13.61 1.444(147); .151; .261 

 SRT – CLTR  16.04; 12.90 14.39; 12.91 .713(147); .477; .129 

 SRT – DR d 5.75; 2.85 5.39; 2.87 .705(139); .482; .129 

 SRT – Intrusions  2.70; 4.24 3.34; 3.49 -.879(147); .381; .159 

 CERAD – Total hits e 17.66; 4.79 17.35; 5.31 .335(138); .738; .063 

 CERAD – DR hits e 5.76; 2.47 5.70; 2.28 .133(138); .895; .025 

 MMSE 26.53; 3.45 26.52; 2.72 .018(147); .986; .003 

 MOCA f 17.95; 4.96 18.31; 5.57 -.349(115); .728; .071 

Cognitive dimensions    t(df); p; Cohen’s d 

 Executive  g .08; 1.04 -.21; .85 .852(146); .396; .291 

 Memory h .05; .99 -.14; 1.02 .754(146); .452; .183 

a n=138 [Iron sufficiency =98 (71.01%). ID=40 (28.99%)]; b n=143 [Iron sufficiency =102 (71.33%). ID=41 (28.67%)]; 
c n=146 [Iron sufficiency =103 (70.55%). ID=43 (29.45%)]; d n=141 [Iron sufficiency =97 (68.79%). ID=44 (31.21%)]; 
e n=140 [Iron sufficiency =100 (71.43%). ID=40 (28.57%)]; f n=117 [Iron sufficiency =82 (70.09%). ID=35 (29.91%)]; 
g n=141 [Iron sufficiency =100 (70.92%). ID=41 (29.08%)]; h n=132 [Iron sufficiency =92 (69.7%). ID=40 (30.3%)].  

 

Table 13 - Functional ability and functional dimensions regarding iron status classification 

Variables (mean; SD) Iron sufficiency ID  

Functional ability – QoFA a   t(df); p; Cohen’s d 

 Mobility tiredness 4.55; 1.98 4.30; 1.76 .732(146); .465; .133 

 Lower limb tiredness 4.35; 1.15 4.02; 1.05 1.608(146); .110; .291 

 Upper limb tiredness 3.76; .81 3.82; .54 -.441(146); .660; .080 

 Mobility help 11.08; 1.99 11.14; 2.00 -.166(146); .868; .030 

 PADL help 18.87; 2.49 18.14; 3.27 1.479(146); .141; .268 

Functional components a   t(df); p; Cohen’s d 

 Functional tiredness .06; 1.05 -.09; .75 .852(146); .396; .154 

 Functional help .06; .92 -.07; 1.02 .754(146); .452; .137 

a n=148 [Iron sufficiency =104 (70.27%); ID=44 (29.73%)]. 
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Figure 11 – Distribution of neurocognitive/neuropsychological dimensions by iron status 

groups. 

 

 

Figure 12 - Functional dimensions mean value by iron status groups. 
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Table 14 - Hematologic variables and dimensions in iron status groups. 

Variables (mean; SD) Iron sufficiency ID 
 

Inflammatory indices 
  

Z(U); p; r £ 

 hsCRP (mg/dL) ¥ £ 1.56; 2.42 2.90; 2.27 -2.880(1617.5); .004; .236 

Red cells indices  a   t(df); p; Cohen’s d 

 RBC (1012/L) 4.60; .43 4.45; .43 1.911(144); .058; .352 

 Hemoglobin (mg/dL) 14.17; 1.48 12.88; 1.56 4.702(144); <.001; .866 

 Hematocrit (%) 41.23; 3.83 38.23; 4.05 4.205(144); <.001; .774 

 MCV (fL) 89.61; 3.64 85.9; 4.78 5.076(144); <.001; .934 

 MCH (pg) 30.78; 1.44 28.92; 2.06 5.354(57.8); <.001; 1.144 

 MCHC (g/dL) 34.35; .92 33.65; .97 4.075(144); <.001; .750 

 RDW (%) 13.14; .64 13.95; 1.11 -4.439(52.49); <.001; 1.015 

Iron biomarkers b   t(df); p; Cohen’s d 

 Fe (µg/dL) 102.83; 24.85 70.64; 27.12 6.986(144); <.001; 1.269 

 TF (mg/dL) 232.34; 28.96 285.43; 46.29 -7.036(58.04); <.001; 1.525 

 FT (mg/mL) ¥ £ 173.00; 209.25 35.50; 41.25 -7.190(557.5); <.001; .595 

 TF sat. (%) 31.84; 8.06 18.87; 8.12 8.906(144); <.001; 1.617 

 TIBC (µg/dL) 326.30; 40,32 388.34; 61.23 -6.168(59.7); <.001; 1.314 

 sTFr (mg/L) c ¥ £ 1.02; .34 1.475; .80 -6.170(818); <.001; .507 

 sTFr-LogFT index ¥ £ .483; .19 .888; .77 -7.810(413); <.001; .646 

 Body iron (mg/kg) 17.02; 2.66 10.02; 4.70 9.249(55.2); <.001; 2.072 

Iron dimensions   t(df); p; Cohen’s d 

 Storage b .43; .49 -1.01; 1.15 7.997(49.73); <.001; 1.936 

 Transport b .37; .81 -.85; .87 8.156(144); <.001; 1.481 

 Transport S. b .36; .70 -.84; 1.10 6.666(58.55); <.001; 1.437 

 Red cells C. a .31; .72 -.77; 1.17 5.575(54.05); <.001; 1.247 

 Erythropoiesis a .19; .95 -.46; .98 3.707(144); <.001; .682 

a n=146 [Iron sufficiency =104 (71.23%). ID=42 (28.77%)]; b n=146 [Iron sufficiency =102 (69.86%). ID=44 
(30.14%)]; c n=148 [Iron sufficiency =104 (70.27%). ID=44 (29.73%)]; ¥ Variables not normally distributed. data 
presented in median and interquartile range (median. IQR); £ Mann–Whitney U test. results presented in Z(U); p; r. 

 

As expected, significant differences were observed for almost all of the hematologic 

variables between groups of iron status (Table 14, Figure 13), with the iron sufficiency group with 

higher values. Of notice, hsCRP was significantly higher in the ID group, which can impact on the 

levels of iron biomarkers. 
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Figure 13 - Hematological dimensions by iron status groups. 

 

Since several factors can contribute as confounding factors either for neurocognitive, 

neuropsychological or physical functional variables, ANCOVA was used to test differences in 

dependent variables (Executive, Memory, MMSE, MOCA, GDS, PSS, Functional-T and Functional-

H) in iron status groups (iron sufficiency versus ID). Data presented in tables -15, -16, -17 and -

18 indicate that there are no differences between groups of iron status when controlling for 

principal confounding factors, including for GDS which was significantly different before 

controlling. 

 

Table 15 – ANCOVA for neurocognitive dimensions  

 Executive Memory 

Source F(1; 134) p η2 partial F(1; 125) p η2 partial 

Age 20.674 <.001 .134 8.984 .003 .067 

Education a 16.926 <.001 .112 6.453 .012 .049 

Gender b .969 .327 .007 1.562 .214 .012 

hsCRP (Log) .261 .610 .002 .008 .931 <.001 

GDS 13.531 <.001 .092 21.386 <.001 .146 

ID c 2.971 .087 .022 .781 .378 .006 

R2; R2adjusted .398; .371 .296; .262 

a 4 years and less=0, more than 4 years=1; b female=0, male=1; c iron sufficiency=0, ID=1 
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Table 16 – ANCOVA for general cognition variables 

 MMSE MOCA 

Source F(1; 142) p η2 partial F(1; 110) p η2 partial 

Age 12.773 <.001 .083 10.028 .002 .084 

Education a 5.440 .021 .037 24.475 <.001 .182 

Gender b 3.105 .080 .021 .892 .347 .008 

hsCRP (Log) .028 .867 <.001 .020 .889 <.001 

GDS 9.868 .002 .065 9.235 .003 .077 

ID c .409 .523 .003 .014 .907 <.001 

R2; R2adjusted .271; .240 .395; .362 

a 4 years and less=0, more than 4 years=1; b female=0, male=1; c iron sufficiency=0, ID=1 

 

Table 17 - ANCOVA for neuropsychological variables 

 GDS PSS 

Source F(1; 149) p η2 partial F(1; 138) p η2 partial 

Age .003 .955 <.001 .040 .843 <.001 

Education a 3.583 .060 .024 .952 .331 .007 

Gender b 10.836 .001 .070 18.711 <.001 .124 

hsCRP (Log) .155 .695 .001 2.902 .091 .022 

ID c 3.792 .053 .026 .085 .771 .001 

R2; R2adjusted .148; .118 .138; .106 

a 4 years and less=0, more than 4 years=1; b female=0, male=1; c iron sufficiency=0, ID=1 

 

Table 18 – ANCOVA for functional dimensions 

 Functional-T Functional-H 

Source F(1; 139) p η2 partial F(1; 139) p η2 partial 

Age 4.228 .042 .030 4.718 .032 .034 

BMI 8.251 .005 .058 16.179 <.001 .107 

hsCRP (Log) .020 .887 <.001 .852 .358 .006 

ID a .697 .405 .005 .418 .519 .003 

R2; R2adjusted .116; .089 .153; .128 

a iron sufficiency=0, ID=1 

 

4.1.3 Nutritional risk factors for iron deficiency 

Dietary iron is the natural source of iron to the body; therefore, it is expected that ID is 

closely related to the individual’s nutritional status. To test if nutritional status (MNA) and/or body 

composition (BMI, %BF-Tanita and %BF-Brozek) were predictors of ID, a logistic regression was 

conducted and controlled using the enter method for the potential confounding factors (age, 

gender and hsCRP). Results from the binary logistic regression are presented in Table 19. From 
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the variables introduced in model 1 (equal to MNA, BMI and %BF-Brozek adjusted models; 

different for %BF-Tanita due to missing values), as expected, we observed that gender (Wald(1)= 

6.926; p= .008) and hsCRP (Log) (Wald(1)= 8.374; p= .004) were significant predictors of ID 

meaning that the odds of ID presence in males are 3.040 lower (OR = .329) than in females; and 

for each fold increase in hsCRP (Log) an increase of 5.278 (OR = 5.278) in the odds of the 

presence of ID is observed. After introducing nutritional status and body composition variables in 

the adjusted models 2 we observed slight differences in the previous mentioned control variables, 

but with the same tendency and significance as the previously mentioned. The Wald criterion 

demonstrated that nutritional status, measured by the MNA total score, made also a significant 

contribution to prediction of ID (Wald(1)= 5.389; p= .020). For each unit increase (1 point in the 

MNA total score) in nutritional status the odds of ID presence decreased 1.211 times (OR = 

.826). Body composition variables did not contribute significantly to the prediction of ID.  

 

Table 19 – Binary logistic regression of nutritional predictors for ID a 

Independent  
variables  

Model 1  Model 2 

B SE Wald(df); p OR (CI 95%)  B SE Wald(df); p OR (CI 95%) 

Age -.033 .026 1.643(1); .200 .967 (.919; 1.018)  -.028 .027 1.141(1); .285 .972 (.923; 1.024) 
Gender b -1.113 .423 6.926(1); .008 .329 (.143; .753)  -.920 .435 4.478(1); .034 .398 (.170; .934) 
hsCRP (Log) 1.663 .575 8.374(1); .004 5.278 (1.711; 16.284)  1.817 .598 9.236(1); .002 6.152 (1.906; 19.854) 
MNA      -.191 .082 5.389(1); .020 .826 (.704; .971) 

2
(df); p; R2 Nagelkerke 17.645(3); p=.001; .169  5.533(1); p=.019; .217 

Age -.033 .026 1.643(1); .200 .967 (.919; 1.018)  -.031 .026 1.365(1); .243 .970 (.921; 1.021) 
Gender b -1.113 .423 6.926(1); .008 .329 (.143; .753)  -1.211 .435 7.746(1); .005 .298 (.127; .699) 
hsCRP (Log) 1.663 .575 8.374(1); .004 5.278 (1.711; 16.284)  1.966 .634 9.625(1); .002 7.145 (2.063; 24.749) 
BMI      -.074 .058 1.624(1); .203 .929 (.830; 1.040) 

2
(df); p; R2 Nagelkerke 17.645(3); p=.001; .169  1.679(1); p=.195; .184 

Age -.028 .026 1.141(1); .285 .972 (.924; 1.024)  -.026 .026 .940(1); .332 .975 (.926; 1.027) 
Gender b -1.103 .431 6.554(1); .010 .332 (.143; .772)  -1.625 .602 7.294(1); .007 .197 (.061; .640) 
hsCRP (Log) 1.469 .577 6.478(1); .011 4.346 (1.402; 13.472)  1.742 .623 7.834(1); .005 5.711 (1.686; 19.347) 
%BF-Tanita      -.048 .036 1.775(1); .183 .953 (.887; 1.023) 

2
(df); p; R2 Nagelkerke 14.942(3); p=.002; .149 1.786(1); p=.181; .166 

Age -.033 .026 1.643(1); .200 .967 (.919; 1.018)  -.024 .028 .730(1); .393 .976 (.924; 1.032) 
Gender b -1.113 .423 6.926(1); .008 .329 (.143; .753)  -1.740 .868 4.023(1); .045 .175 (.032; .961) 
hsCRP (Log) 1.663 .575 8.374(1); .004 5.278 (1.711; 16.284)  1.825 .612 8.882(1); .003 6.203 (1.868; 20.602) 
%BF-Brozek      -.053 .063 .713(1); .398 .948 (.839; 1.073) 

2
(df); p; R2 Nagelkerke 17.645(3); p=.001; .169  .702(1); p=.402; .175 

a iron sufficiency=0, ID=1; b female=0, male=1;  

  



 

68 
 

4.1.4 Iron status as a possible predictor of cognition, mood and physical 

functional ability  

Hierarchical regression models were tested with the major confounding factor and known 

predictors as independent variables to predict dependent variables (block 1: model 0; tables -18, 

-19, -20 and -21). Using the enter method, hematological dimensions were tested as predictors 

(independent variable) of target variables (dependent variables) (block 2: Storage – model 1; 

Transport – model 2; Transport S. – model 3; Red cells C. – model 4; Erythropoiesis – model 5). 

Table 20 presents the results of hierarchical regression models for neurocognitive 

dimensions. Age, education (as a dummy variable), gender, hsCRP (log) and mood (GDS) were 

used in block 1, model 0 as independent variables, resulting in a significant predictor model for 

executive and memory dimensions. For the executive dimension, in block 1, model 0, age, 

education and mood were significant predictors and the model explained 37.1% (R2
adjusted) of the 

variance. This pattern was verified also in Block 1 for all the remaining models, although no 

significant improvement in executive dimension variance explanation was obtained from block 2 

(models 1 to 5), with the increment of executive dimension variance explanation near to 0% 

(∆R2
adjusted).  

For the memory dimension (Table 20, Figure 14), in block 1, model 0, age and mood were 

the sole significant predictors of memory dimension; however, the model with all the independent 

variables explained 26.9% (R2
adjusted) of the memory dimension variance. The addition of 

hematological dimensions in block 2, resulted in a significant predictor model 1, where age, 

education, mood and the storage dimension were significant predictors and a significant 

predictor model 5, where erythropoiesis was a significant predictor and in addition to the control 

variables of model 1, gender was also seen as a significant predictor. The addition of storage 

dimension (block 2, model 1) resulted in a significant increment of 2% (∆R2
adjusted) of the variance 

explanation when compared with model 0. Similar to model 1, the addition of erythropoiesis 

dimension (block 2, model 5) resulted in a significant increment of 2.6% (∆R2
adjusted) of the memory 

dimension variance explanation when compared with model 0.  
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Table 20 - Hierarchical regression models to predict neurocognitive dimensions. 

  Executive Memory 

Model B (CI 95%) SE β t; p B (CI 95%) SE β t; p 

0 Age -.342 (-.481; -.204) .070 -.351 -4.888; <.001 -.264 (-.418; -.109) .078 -.270 -3.376; .001 

 Education a .533 (.209; .856) .163 .238 3.261; .001 .343 (-.018; .703) .182 .155 1.880; .063 

 Gender b .219 (-.063; .502) .143 .112 1.534; .127 -.165 (-.478; .148) .158 -.085 -1.045; .298 

 hsCRP (Log) .013 (-.118; .145) .067 .014 .202; .840 -.001 (-.153; .151) .077 -.001 -.011; .991 

 GDS -.282 (-.422; -.142) .071 -.288 -3.994; <.001 -.388 (-.546; -.231) .079 -.395 -4.893; <.001 

R2adjusted; R2; ∆R2 .371; .394; .394 .269; .298; .298 

F(df1; df2) for ∆R2; p F(5; 132)=17.132; <.001 F(5; 123)=10.437; <.001 

1 Age -.329 (-.468; -.190) .070 -.338 -4.692; <.001 -.241 (-.395; -.087) .078 -.247 -3.096; .002 

 Education a .577 (.250; .903) .165 .258 3.493; .001 .407 (.046; .768) .182 .184 2.232; .027 

 Gender b .153 (-.141; .447) .149 .078 1.028; .306 -.251 (-.570; .068) .161 -.129 -1.559; .122 

 hsCRP (Log) .007 (-.124; .139) .066 .007 .109; .914 .000 (-.150; .150) .076 .000 -.001; .999 

 GDS -.265 (-.406; -.123) .071 -.270 -3.709; <.001 -.369 (-.525; -.213) .079 -.375 -4.689; <.001 

 Storage  .109 (-.033; .250) .071 .112 1.520; .131 .169 (.010; .329) .080 .167 2.105; .037 

R2adjusted; R2; ∆R2 .377; .404; .011 .289; .322; .025 

F(df1;df2) for ∆R2; p F(1; 131)=2.31; .131 F(1; 122)=4.431; .037 

2 Age -.343 (-.483; -.204) .071 -.352 -4.866; <.001 -.273 (-.427; -.118) .078 -.279 -3.497; .001 

 Education a .533 (.209; .857) .164 .238 3.252; .001 .358 (-.001; .718) .182 .162 1.972; .051 

 Gender b .213 (-.078; .504) .147 .108 1.449; .150 -.218 (-.537; .101) .161 -.112 -1.355; .178 

 hsCRP (Log) .017 (-.120; .153) .069 .017 .239; .811 .032 (-.125; .189) .079 .032 .406; .685 

 GDS -.280 (-.423; -.136) .072 -.286 -3.862; <.001 -.368 (-.527; -.210) .080 -.374 -4.595; <.001 

 Transport .013 (-.132; .158) .073 .014 .181; .857 .124 (-.039; .287) .082 .124 1.508; .134 

R2adjusted; R2; ∆R2 .366; .394; .000 .277; .311; .013 

F(df1;df2) for ∆R2; p F(1; 131)=.033; .857 F(1; 122)=2.273; .134 

3 Age -.344 (-.483; -.205) .070 -.353 -4.902; <.001 -.266 (-.420; -.111) .078 -.272 -3.395; .001 

 Education a .523 (.197; .848) .165 .234 3.178; .002 .320 (-.044; .685) .184 .145 1.740; .084 

 Gender b .208 (-.078; .494) .144 .106 1.441; .152 -.174 (-.488; .139) .158 -.089 -1.100; .273 

 hsCRP (Log) .018 (-.115; .152) .067 .019 .272; .786 .011 (-.143; .165) .078 .011 .142; .887 

 GDS -.276 (-.418; -.134) .072 -.282 -3.85; <.001 -.376 (-.536; -.216) .081 -.382 -4.661; <.001 

 Transport S. .043 (-.102; .189) .074 .042 .590; .556 .070 (-.089; .229) .080 .070 .875; .383 

R2adjusted; R2; ∆R2 .367; .395; .002 .268; .302; .004 

F(df1;df2) for ∆R2; p F(1; 131)=.348; .556 F(1; 122)=.765; .383 

4 Age -.313 (-.457; -.168) .073 -.315 -4.272; <.001 -.233 (-.394; -.071) .081 -.234 -2.856; .005 

 Education a .626 (.292; .960) .169 .273 3.704; <.001 .453 (.081; .825) .188 .200 2.413; .017 

 Gender b .149 (-.146; .443) .149 .074 .997; .320 -.236 (-.559; .088) .164 -.119 -1.440; .152 

 hsCRP (Log) .020 (-.115; .155) .068 .021 .298; .767 .006 (-.149; .161) .078 .006 .077; .938 

 GDS -.273 (-.416; -.129) .073 -.271 -3.753; <.001 -.378 (-.539; -.218) .081 -.375 -4.670; <.001 

 Red cells C. .093 (-.049; .234) .072 .094 1.299; .196 .085 (-.077; .247) .082 .084 1.040; .300 

R2adjusted; R2; ∆R2 .364; .391; .008 .266; .300; .006 

F(df1;df2) for ∆R2; p F(1; 131)=1.686; .196 F(1; 122)=1.082; .300 

5 Age -.324 (-.469; -.179) .073 -.327 -4.426; <.001 -.214 (-.373; -.056) .080 -.216 -2.677; .008 

 Education a .604 (.266; .942) .171 .264 3.535; .001 .523 (.154; .891) .186 .231 2.804; .006 

 Gender b .187 (-.143; .517) .167 .094 1.121; .264 -.416 (-.772; -.061) .180 -.210 -2.317; .022 

 hsCRP (Log) .017 (-.119; .154) .069 .018 .253; .801 -.008 (-.159; .143) .077 -.008 -.105; .917 

 GDS -.281 (-.429; -.132) .075 -.279 -3.738; <.001 -.336 (-.498; -.175) .082 -.333 -4.119; <.001 

 Erythropoiesis .008 (-.165; .180) .087 .007 .088; .930 .229 (.045; .412) .093 .227 2.470; .015 

R2adjusted; R2; ∆R2 .355; .384; .000 .295; .328; .034 

F(df1;df2) for ∆R2; p F(1; 131)=.008; .930 F(1; 122)=6.102; .015 

a Less than 4 school years=0, More than 4 school years=1 ; b Female=0, Male=1 
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Figure 14 - Summary model for the correlation between memory dimension and hematological 

dimensions and associated beneficial and detrimental factors. 

 

Hierarchical regression models to predict general cognition are presented in 21. 

Independent variables were the same as used in the hierarchical regression models for 

neurocognitive dimensions. The results obtained for general cognition were similar to those 

obtained for the executive dimension; block 1, model 0 (for MMSE and MOCA) had age, 

education and mood as significant predictors and the overall model explained 25.1% (R2
adjusted) and 

36.1% (R2
adjusted) of MMSE and MOCA variance respectively. The pattern of significant predictors 

was maintained with the addition of hematological variables in block 2 (models 1 to 5), but 

hematological dimensions did not increment significant variance explanation for the MMSE or 

MOCA.   
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Table 21 - Hierarchical regression models to predict general cognition. 

  MMSE MOCA 

Model B (CI 95%) SE β t; p B (CI 95%) SE β t; p 

0 Age -.278 (-.419; -.136) .072 -.295 -3.878; <.001 -.256 (-.415; -.098) .080 -.255 -3.206; .002 

 Education a .368 (.037; .698) .167 .169 2.199; .030 .927 (.560; 1.294) .185 .397 5.008; <.001 

 Gender b .217 (-.073; .508) .147 .115 1.478; .142 .133 (-.179; .446) .158 .067 .847; .399 

 hsCRP (Log) .036 (-.101; .173) .069 .038 .524; .601 -.004 (-.154; .145) .076 -.005 -.059; .953 

 GDS -.239 (-.383; -.095) .073 -.253 -3.284; .001 -.243 (-.397; -.089) .078 -.243 -3.127; .002 

R2adjusted; R2; ∆R2 .251; .277; .277 .365; .392; .392 

F(df1;df2) for ∆R2; p F(5; 140)=10.719; <.001 F(5; 109)=14.083; <.001 

1 Age -.273 (-.415; -.130) .072 -.290 -3.78; <.001 -.252 (-.411; -.093) .080 -.251 -3.136; .002 

 Education a .385 (.050; .720) .170 .177 2.270; .025 .952 (.576; 1.328) .190 .407 5.017; <.001 

 Gender b .191 (-.111; .493) .153 .101 1.250; .213 .113 (-.206; .433) .161 .057 .704; .483 

 hsCRP (Log) .033 (-.104; .171) .069 .035 .481; .631 -.005 (-.155; .145) .076 -.005 -.063; .950 

 GDS -.232 (-.378; -.086) .074 -.245 -3.146; .002 -.236 (-.392; -.081) .079 -.236 -3.007; .003 

 Storage  .049 (-.096; .194) .073 .051 .666; .506 .051 (-.109; .212) .081 .050 .637; .525 

R2adjusted; R2; ∆R2 .248; .279; .002 .361; .395; .002 

F(df1;df2) for ∆R2; p F(1; 139)=.444; .506 F(1; 108)=.406; .525 

2 Age -.287 (-.429; -.145) .072 -.305 -3.990; <.001 -.266 (-.426; -.105) .081 -.265 -3.286; .001 

 Education a .372 (.042; .702) .167 .171 2.227; .028 .945 (.575; 1.315) .187 .404 5.063; <.001 

 Gender b .181 (-.115; .477) .150 .095 1.208; .229 .101 (-.222; .423) .163 .050 .619; .537 

 hsCRP (Log) .057 (-.084; .197) .071 .060 .801; .425 .013 (-.143; .169) .079 .013 .164; .870 

 GDS -.223 (-.369; -.077) .074 -.236 -3.021; .003 -.230 (-.388; -.073) .079 -.230 -2.907; .004 

 Transport .091 (-.055; .238) .074 .096 1.230; .221 .067 (-.094; .228) .081 .069 .823; .413 

R2adjusted; R2; ∆R2 .254; .285; .008 .363; .396; .004 

F(df1;df2) for ∆R2; p F(1; 139)=1.514; .221 F(1; 108)=.677; .413 

3 Age -.279 (-.421; -.137) .072 -.296 -3.882; <.001 -.258 (-.416; -.100) .080 -.257 -3.238; .002 

 Education a .358 (.025; .692) .169 .165 2.124; .035 .903 (.536; 1.27) .185 .386 4.876; <.001 

 Gender b .211 (-.082; .504) .148 .111 1.425; .156 .117 (-.195; .429) .157 .059 .746; .457 

 hsCRP (Log) .040 (-.098; .178) .070 .043 .578; .564 .011 (-.140; .162) .076 .011 .142; .888 

 GDS -.232 (-.379; -.085) .074 -.245 -3.123; .002 -.226 (-.381; -.070) .078 -.226 -2.879; .005 

 Transport S. .036 (-.106; .178) .072 .038 .500; .618 .109 (-.050; .268) .080 .105 1.359; .177 

R2adjusted; R2; ∆R2 .247; .278; .001 .369; .403; .010 

F(df1;df2) for ∆R2; p F(1; 139)=.250; .618 F(1; 108)=1.847; .177 

4 Age -.269 (-.420; -.118) .076 -.275 -3.516; .001 -.255 (-.415; -.096) .080 -.252 -3.181; .002 

 Education a .429 (.081; .777) .176 .189 2.435; .016 .935 (.561; 1.308) .188 .395 4.961; <.001 

 Gender b .213 (-.096; .522) .156 .108 1.362; .175 .169 (-.151; .490) .162 .084 1.047; .297 

 hsCRP (Log) .033 (-.110; .176) .072 .034 .455; .650 -.016 (-.167; .135) .076 -.016 -.210; .834 

 GDS -.231 (-.381; -.080) .076 -.233 -3.032; .003 -.243 (-.398; -.088) .078 -.240 -3.101; .002 

 Red cells C. .050 (-.098; .199) .075 .051 .670; .504 -.026 (-.183; .130) .079 -.026 -.335; .739 

R2adjusted; R2; ∆R2 .243; .274; .002 .363; .396; .001 

F(df1;df2) for ∆R2; p F(1; 139)=.449; .504 F(1; 110)=.112; .739 

5 Age -.267 (-.418; -.116) .076 -.273 -3.492; .001 -.235 (-.392; -.077) .079 -.232 -2.957; .004 

 Education a .439 (.089; .790) .177 .193 2.480; .014 1.031 (.658; 1.404) .188 .436 5.484; <.001 

 Gender b .169 (-.173; .511) .173 .086 .976; .331 -.011 (-.362; .341) .177 -.005 -.060; .953 

 hsCRP (Log) .029 (-.114; .171) .072 .029 .399; .691 -.012 (-.160; .136) .074 -.012 -.161; .872 

 GDS -.218 (-.373; -.062) .079 -.220 -2.766; .006 -.205 (-.362; -.049) .079 -.203 -2.601; .011 

 Erythropoiesis .073 (-.102; .247) .088 .074 .822; .412 .175 (-.003; .353) .090 .174 1.951; .054 

R2adjusted; R2; ∆R2 .244; .276; .004 .383; .415; .020 

F(df1;df2) for ∆R2; p F(1; 139)=.676; .412 F(1; 110)=3.805; .054 

a Less than 4 school years=0, More than 4 school years=1 ; b Female=0, Male=1 
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For neuropsychological variables the same independent variables were used as control 

variables and predictors, with exception of GDS which was, along with PSS, a dependent variable. 

Results from the hierarchical regression models for neuropsychological variables are presented in 

Table 22. Regarding GDS (Table 22, Figure 15) variance explanation for block 1 model 0, from 

all the independent variables, gender was the only significant predictor. Overall, model 0 was 

significant and explained 10.3% (R2
adjusted) of GDS variance. The addition of hematological 

dimensions in block 2 resulted in the significant predictor models 2 (added transport), 3 (added 

transport S.) and 5 (added erythropoiesis). In block 2, model 2 the addition of storage 

component resulted in a significant increase in variance explanation of 2.1% (∆R2
adjusted). Transport 

s. dimension addition (block 2, model 3) increased GDS variance explanation in 2.5% with 

statistical significant relevance. Block 2, model 5 was composed by the variables of model 0 and 

erythropoiesis dimension and resulted in a significant predictor model, which increased 4.1% 

(∆R2
adjusted) the variance explanation when compared to Block 1 model 0. Of notice, gender is a 

significant predictor in all models with exception of model 5 where erythropoiesis is the only 

significant predictor with an impact that should be highlighted (β = -.301).  

In block 1, model 0, results obtained for PSS were similar to the ones obtained for PSS; 

gender was the only significant predictor and the overall model explained 11.5% (R2
adjusted) and 

36.1% (R2
adjusted) of PSS variance. Significance of gender as predictors was maintained with the 

addition of hematological variables in block 2 (models 1 to 5), but hematological dimensions did 

not increment significant variance explanation also for PSS.   
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Table 22  - Hierarchical regression models to predict neuropsychological dimensions. 

  GDS PSS 

Model B (CI 95%) SE β t; p B (CI 95%) SE β t; p 

0 Age -.009 (-.173; .154) .083 -.009 -.113; .910 -.004 (-.175; .168) .087 -.004 -.044; .965 

 Education a -.289 (-.668; .090) .192 -.126 -1.505; .135 .216 (-.175; .608) .198 .094 1.092; .277 

 Gender b -.628 (-.948; -.309) .162 -.313 -3.888; <.001 -.745 (-1.079; -.41) .169 -.369 -4.404; <.001 

 hsCRP (Log) .005 (-.153; .163) .080 .005 .067; .947 -.155 (-.325; .015) .086 -.151 -1.804; .074 

R2adjusted; R2; ∆R2 .103; .127; .127 .115; .141; .141 

F(df1;df2) for ∆R2; p F(4; 141)=5.143; .001 F(4; 130)=5.346; .001 

1 Age -.024 (-.187; .140) .083 -.024 -.289; .773 -.003 (-.176; .170) .087 -.003 -.031; .976 

 Education a -.334 (-.714; .046) .192 -.145 -1.735; .085 .220 (-.177; .618) .201 .096 1.097; .275 

 Gender b -.537 (-.871; -.203) .169 -.268 -3.179; .002 -.752 (-1.102; -.401) .177 -.372 -4.244; <.001 

 hsCRP (Log) .013 (-.144; .171) .080 .014 .170; .866 -.155 (-.326; .016) .086 -.151 -1.798; .075 

 Storage  -.144 (-.309; .020) .083 -.144 -1.733; .085 .013 (-.167; .192) .091 .012 .140; .889 

R2adjusted; R2; ∆R2 .115; .146; .018 .108; .141; 0 

F(df1;df2) for ∆R2; p F(1; 140)=3.002; .085 F(1; 129)=.020; .889 

2 Age .008 (-.154; .171) .082 .008 .101; .920 -.001 (-.175; .173) .088 -.001 -.015; .988 

 Education a -.288 (-.662; .087) .189 -.125 -1.519; .131 .215 (-.179; .608) .199 .093 1.079; .283 

 Gender b -.538 (-.865; -.212) .165 -.268 -3.257; .001 -.734 (-1.084; -.385) .177 -.364 -4.161; <.001 

 hsCRP (Log) -.035 (-.196; .126) .081 -.035 -.431; .667 -.161 (-.339; .018) .090 -.156 -1.779; .078 

 Transport -.177 (-.342; -.012) .084 -.176 -2.119; .036 -.019 (-.198; .160) .091 -.019 -.209; .835 

R2adjusted; R2; ∆R2 .124; .154; .027 .108; .142; .000 

F(df1;df2) for ∆R2; p F(1; 140)=4.491; .036 F(1; 129)=.044; .835 

3 Age -.003 (-.165; .158) .082 -.003 -.039; .969 -.002 (-.174; .17) .087 -.002 -.022; .982 

 Education a -.231 (-.609; .146) .191 -.101 -1.213; .227 .245 (-.153; .643) .201 .106 1.22; .225 

 Gender b -.574 (-.893; -.255) .161 -.286 -3.561; .001 -.728 (-1.065; -.39) .170 -.360 -4.269; <.001 

 hsCRP (Log) -.016 (-.173; .141) .079 -.016 -.200; .842 -.166 (-.338; .006) .087 -.162 -1.910; .058 

 Transport S. -.182 (-.341; -.023) .080 -.181 -2.261; .025 -.075 (-.248; .098) .088 -.072 -.855; .394 

R2adjusted; R2; ∆R2 .128; .158; .031 .113; .146; .005 

F(df1;df2) for ∆R2; p F(1; 140)=5.111; .025 F(1; 129)=.731; .394 

4 Age .000 (-.167; .168) .085 .000 .001; .999 -.037 (-.213; .139) .089 -.036 -.413; .680 

 Education a -.259 (-.643; .125) .194 -.113 -1.335; .184 .130 (-.270; .529) .202 .056 .642; .522 

 Gender b -.550 (-.881; -.220) .167 -.277 -3.291; .001 -.727 (-1.073; -.380) .175 -.360 -4.151; <.001 

 hsCRP (Log) -.004 (-.162; .155) .080 -.004 -.047; .962 -.157 (-.328; .014) .087 -.153 -1.817; .072 

 Red cells C. -.077 (-.241; .087) .083 -.078 -.929; .354 -.054 (-.235; .126) .091 -.052 -.596; .552 

R2adjusted; R2; ∆R2 .085; .116; .005 .114; .147; .002 

F(df1;df2) for ∆R2; p F(1; 140)=.863; .354 F(1; 129)=.356; .552 

5 Age -.026 (-.188; .136) .082 -.026 -.318; .751 -.035 (-.212; .142) .089 -.035 -.392; .696 

 Education a -.317 (-.689; .056) .188 -.138 -1.681; .095 .131 (-.27; .533) .203 .057 .647; .519 

 Gender b -.269 (-.634; .096) .185 -.136 -1.458; .147 -.708 (-1.107; -.308) .202 -.350 -3.505; .001 

 hsCRP (Log) .008 (-.145; .161) .077 .008 .102; .919 -.152 (-.323; .019) .086 -.148 -1.755; .082 

 Erythropoiesis -.298 (-.479; -.117) .092 -.301 -3.26; .001 -.044 (-.247; .16) .103 -.042 -.424; .672 

R2adjusted; R2; ∆R2 .144; .174; .063 .113; .146; .001 

F(df1;df2) for ∆R2; p F(1; 140)=10.627; .001 F(1; 129)=.180; .672 

a Less than 4 school years=0, More than 4 school years=1 ; b Female=0, Male=1 
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Figure 15 – Summary model for the correlation between depressive mood (GDS score) and 

hematological dimensions and associated beneficial and detrimental factors. 

 

For the functional dimensions (Table 23), block 1 was composed by age, BMI and hsCRP 

(Log) as independent variables (control variables). In block 1, model 0, age and BMI were 

significant predictors and the overall model explained 8.8% (R2
adjusted) and 13.9% (R2

adjusted) of 

functional-T and functional-H variance respectively. Regarding functional-H dimension, the 

addition of hematological variables in block 2 (models 1 to 5) did not increment significant 

variance explanation; although, age and gender remained as significant predictors.  

For the functional-T dimension (Table 23, Figure 16), after the addition of hematological 

dimensions in block 2 resulted in four models (models 1 - storage, 2 - transport, 4 – red cells c. 

and 5 – erythropoiesis) in which variance explanation was significantly increased. Transport S. 

addition in block 2 did not result in a significant increase in variance explanation. Storage, 

transport, red cells C. and erythropoiesis addition in block 2 resulted in a significant increase in 

variance explanation (∆R2
adjusted) of 2.4%, 2.2%, 4.8% and 9.5% in model 1, 2 4 and 5 respectively.  
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Table 23 - Hierarchical regression models to predict functional dimensions. 

  Functional-T Functional-H 

Model B (CI 95%) SE β t; p B (CI 95%) SE β t; p 

0 Age -.165 (-.319; -.011) .078 -.177 -2.116; .036 -.155 (-.298; -.012) .072 -.175 -2.148; .033 

 BMI -.220 (-.387; -.054) .084 -.231 -2.614; .010 -.315 (-.470; -.161) .078 -.346 -4.033; <.001 

 hsCRP (Log) -.031 (-.198; .136) .084 -.032 -.364; .716 .054 (-.101; .209) .078 .058 .684; .495 

R2adjusted; R2; ∆R2 .088; .108; .108 .139; .158; .158 

F(df1;df2) for ∆R2; p F(3; 133)=5.353; .002 F(3; 133)=8.344; <.001 

1 Age -.151 (-.303; .002) .077 -.162 -1.955; .053 -.151 (-.295; -.007) .073 -.170 -2.078; .040 

 BMI -.234 (-.398; -.069) .083 -.245 -2.805; .006 -.320 (-.475; -.164) .079 -.350 -4.067; <.001 

 hsCRP (Log) -.020 (-.185; .145) .083 -.021 -.241; .810 .057 (-.099; .213) .079 .062 .723; .471 

 Storage  .176 (.016; .336) .081 .177 2.174; .032 .054 (-.097; .205) .076 .057 .708; .480 

R2adjusted; R2; ∆R2 .112; .139; .031 .136; .162; .003 

F(df1;df2) for ∆R2; p F(1; 132)=4.725; .032 F(1; 132)=.502; .480 

2 Age -.179 (-.332; -.027) .077 -.193 -2.323; .022 -.156 (-.300; -.012) .073 -.175 -2.139; .034 

 BMI -.234 (-.399; -.069) .083 -.246 -2.81; .006 -.316 (-.472; -.160) .079 -.346 -4.011; <.001 

 hsCRP (Log) .026 (-.148; .199) .088 .027 .293; .770 .056 (-.108; .219) .083 .061 .673; .502 

 Transport .171 (.010; .333) .082 .179 2.102; .037 .006 (-.146; .158) .077 .007 .078; .938 

R2adjusted; R2; ∆R2 .11; .137; .029 .133; .158; .000 

F(df1;df2) for ∆R2; p F(1; 132)=4.419; .037 F(1; 132)=.006; .938 

3 Age -.165 (-.319; -.010) .078 -.177 -2.107; .037 -.155 (-.299; -.012) .073 -.175 -2.141; .034 

 BMI -.221 (-.388; -.053) .084 -.231 -2.611; .010 -.315 (-.471; -.160) .079 -.346 -4.017; <.001 

 hsCRP (Log) -.024 (-.194; .146) .086 -.025 -.277; .782 .053 (-.105; .211) .080 .058 .663; .509 

 Transport S. .038 (-.124; .200) .082 .039 .461; .646 -.004 (-.154; .147) .076 -.004 -.049; .961 

R2adjusted; R2; ∆R2 .082; .109; .001 .133; .158; .000 

F(df1;df2) for ∆R2; p F(1; 132)=.212; .646 F(1; 132)=.002; .961 

4 Age -.145 (-.298; .007) .077 -.155 -1.883; .062 -.162 (-.308; -.017) .074 -.182 -2.204; .029 

 BMI -.240 (-.402; -.078) .082 -.253 -2.937; .004 -.308 (-.463; -.154) .078 -.341 -3.943; <.001 

 hsCRP (Log) .002 (-.164; .168) .084 .002 .025; .980 .069 (-.089; .228) .080 .075 .865; .389 

 Red cells C. .218 (.057; .379) .081 .218 2.676; .008 .030 (-.124; .184) .078 .031 .385; .700 

R2adjusted; R2; ∆R2 .136; .162; .045 .131; .156; .001 

F(df1;df2) for ∆R2; p F(1; 132)=7.159; .008 F(1; 132)=.149; .700 

5 Age -.130 (-.279; .019) .075 -.139 -1.730; .086 -.156 (-.301; -.010) .074 -.174 -2.115; .036 

 BMI -.224 (-.381; -.067) .079 -.236 -2.819; .006 -.305 (-.459; -.151) .078 -.337 -3.919; <.001 

 hsCRP (Log) -.019 (-.179; .140) .081 -.020 -.240; .811 .067 (-.089; .224) .079 .073 .851; .396 

 Erythropoiesis .303 (.149; .458) .078 .305 3.886; <.001 .076 (-.075; .227) .076 .080 .997; .321 

R2adjusted; R2; ∆R2 .183; .207; .091 .136; .162; .006 

F(df1;df2) for ∆R2; p F(1; 132)=15.104; <.001 F(1; 132)=.993; .321 
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Figure 16 - Summary model for the correlation functional-T dimension and hematological 

dimensions and associated beneficial and detrimental factors. 

4.1.5 Mediation effect of nutritional status on the iron status components  

In order to assess if nutritional status (MNA) is a mediator of the hematological 

dimensions effect on the outcome of dependent variables (neurocognitive dimensions, general 

cognition, neuropsychological variables and functional dimensions) an interaction analysis on 

hierarchical multiple regression models was used. Variables carrying the information of the 

interaction between MNA and hematological dimensions were obtained by the product term of 

mean centered MNA score by the target hematological dimension (which is a z-score). Five new 

variables (MNA*Storage, MNA*Transport, MNA*Transport s., MNA*Red Cells c. and 

MNA*Erythropoiesis) were obtained and used, along with the origin variables, in the block 2 of 

similar hierarchical regression models previously presented.  
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Table 24 - Hierarchical regression models of interaction to predict neurocognitive dimensions. 

  Executive Memory 

Model B (CI 95%) SE β t; p B (CI 95%) SE β t; p 

0 Age -.327 (-.467; -.187) .071 -.343 -4.631; <.001 -.263 (-.418; -.107) .078 -.269 -3.345; .001 
 Education a .484 (.156; .812) .166 .220 2.922; .004 .346 (-.017; .709) .183 .156 1.889; .061 
 Gender b .232 (-.056; .520) .146 .119 1.592; .114 -.160 (-.476; .155) .159 -.082 -1.008; .315 
 hsCRP (Log) .008 (-.129; .145) .069 .008 .119; .905 -.002 (-.155; .150) .077 -.002 -.030; .976 
 GDS -.309 (-.454; -.163) .074 -.311 -4.192; <.001 -.386 (-.545; -.228) .080 -.393 -4.834; <.001 
R2adjusted; R2; ∆R2 .366; .390; .390 .268; .297; .297 

F(df1;df2) for ∆R2; p F(5; 125)=16.005; <.001 F(5; 122)=10.313; <.001 

1 Age -.327 (-.466; -.188) .070 -.343 -4.649; <.001 -.245 (-.397; -.092) .077 -.251 -3.182; .002 
 Education a .510 (.177; .844) .168 .232 3.03; .003 .369 (.012; .727) .180 .167 2.048; .043 
 Gender b .166 (-.131; .463) .150 .085 1.106; .271 -.245 (-.560; .070) .159 -.125 -1.542; .126 
 hsCRP (Log) .004 (-.132; .140) .069 .004 .055; .956 .013 (-.135; .161) .075 .013 .176; .861 
 GDS -.221 (-.383; -.060) .081 -.223 -2.717; .008 -.331 (-.502; -.159) .087 -.336 -3.82; <.001 
 MNA .067 (.004; .131) .032 .172 2.101; .038 .030 (-.037; .097) .034 .076 .880; .381 
 Storage  .075 (-.078; .228) .077 .074 .975; .332 .182 (.023; .340) .080 .179 2.266; .025 
 MNA*Storage .018 (-.028; .065) .023 .056 .776; .439 .067 (.016; .117) .025 .199 2.626; .010 
R2adjusted; R2; ∆R2 .381; .419; .029 .317; .360; .063 

F(df1;df2) for ∆R2; p F(3; 122)=1.999; .118 F(3; 119)=3.907; .011 

2 Age -.328 (-.468; -.188) .071 -.344 -4.645; <.001 -.290 (-.445; -.135) .078 -.297 -3.702; <.001 
 Education a .492 (.166; .817) .165 .223 2.989; .003 .327 (-.033; .687) .182 .148 1.797; .075 
 Gender b .226 (-.070; .523) .150 .116 1.513; .133 -.234 (-.554; .086) .162 -.120 -1.449; .150 
 hsCRP (Log) -.018 (-.164; .127) .073 -.019 -.247; .806 .067 (-.096; .229) .082 .067 .815; .417 
 GDS -.240 (-.402; -.078) .082 -.241 -2.932; .004 -.340 (-.515; -.165) .088 -.346 -3.853; <.001 
 MNA .064 (.001; .126) .032 .163 2.016; .046 .045 (-.031; .120) .038 .113 1.175; .242 
 Transport   -.036 (-.187; .114) .076 -.037 -.480; .632 .093 (-.075; .261) .085 .093 1.096; .275 
 MNA*Transport -.018 (-.075; .038) .029 -.047 -.644; .521 .072 (-.001; .145) .037 .169 1.956; .053 
R2adjusted; R2; ∆R2 .377; .415; .025 .287; .332; .035 

F(df1;df2) for ∆R2; p F(3; 122)=1.723; .166 F(3; 119)=2.071; .108 

3 Age -.337 (-.477; -.197) .071 -.353 -4.763; <.001 -.259 (-.418; -.101) .080 -.266 -3.242; .002 
 Education a .502 (.162; .843) .172 .228 2.922; .004 .304 (-.071; .679) .189 .137 1.604; .111 
 Gender b .198 (-.092; .488) .146 .102 1.354; .178 -.183 (-.502; .136) .161 -.094 -1.136; .258 
 hsCRP (Log) .003 (-.136; .143) .070 .004 .049; .961 .012 (-.145; .168) .079 .012 .146; .884 
 GDS -.232 (-.393; -.071) .081 -.234 -2.85; .005 -.352 (-.531; -.173) .090 -.358 -3.901; <.001 
 MNA .064 (.001; .126) .032 .163 2.027; .045 .025 (-.044; .094) .035 .063 .717; .475 
 Transport A.  .019 (-.135; .172) .078 .018 .240; .811 .060 (-.103; .224) .082 .060 .731; .466 
 MNA*Transport S. -.008 (-.067; .052) .030 -.020 -.262; .794 .025 (-.041; .091) .033 .060 .743; .459 
R2adjusted; R2; ∆R2 .374; .413; .022 .26; .307; .009 

F(df1;df2) for ∆R2; p F(3; 122)=1.547; .206 F(3; 119)=.541; .655 

4 Age -.315 (-.461; -.170) .074 -.324 -4.286; <.001 -.238 (-.400; -.076) .082 -.240 -2.911; .004 
 Education a .571 (.233; .909) .171 .253 3.34; .001 .425 (.052; .797) .188 .188 2.258; .026 
 Gender b .140 (-.162; .442) .153 .071 .918; .361 -.264 (-.590; .062) .165 -.133 -1.603; .112 
 hsCRP (Log) .020 (-.123; .162) .072 .020 .276; .783 .033 (-.126; .192) .080 .033 .413; .680 
 GDS -.227 (-.391; -.064) .083 -.223 -2.751; .007 -.352 (-.530; -.175) .090 -.349 -3.932; <.001 
 MNA .074 (.010; .138) .032 .187 2.292; .024 .036 (-.034; .106) .036 .091 1.016; .312 
 Red Cells C. .046 (-.114; .206) .081 .044 .564; .574 .107 (-.063; .276) .086 .105 1.247; .215 
 MNA*Red Cells C. .019 (-.032; .070) .026 .055 .731; .466 .049 (-.005; .104) .028 .146 1.782; .077 
R2adjusted; R2; ∆R2 .37; .409; .030 .275; .321; .027 

F(df1;df2) for ∆R2; p F(3; 122)=2.058; .109 F(3; 119)=1.58; .198 

5 Age -.321 (-.467; -.175) .074 -.330 -4.342; <.001 -.212 (-.373; -.051) .081 -.214 -2.613; .010 
 Education a .566 (.224; .908) .173 .251 3.279; .001 .521 (.148; .895) .189 .230 2.763; .007 
 Gender b .164 (-.176; .504) .172 .083 .955; .341 -.435 (-.794; -.076) .181 -.219 -2.402; .018 
 hsCRP (Log) .007 (-.134; .147) .071 .007 .095; .924 -.001 (-.155; .153) .078 -.001 -.015; .988 
 GDS -.225 (-.392; -.058) .084 -.220 -2.673; .009 -.296 (-.475; -.116) .091 -.293 -3.264; .001 
 MNA .073 (.009; .136) .032 .183 2.271; .025 .034 (-.036; .104) .035 .086 .964; .337 
 Erythropoiesis   .007 (-.175; .190) .092 .007 .077; .939 .233 (.046; .420) .094 .229 2.463; .015 
 MNA*Erythropoiesis  -.002 (-.055; .052) .027 -.004 -.058; .954 .027 (-.031; .086) .029 .075 .934; .352 
R2adjusted; R2; ∆R2 .366; .405; .027 .293; .337; .044 

F(df1;df2) for ∆R2; p F(3; 122)=1.817; .148 F(3; 119)=2.618; .054 

a Less than 4 school years=0, More than 4 school years=1 ; b Female=0, Male=1 
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An interaction effect was observed only in block 2, model 1 of the hierarchical regression 

model using memory dimension as focal dependent variable (Table 24, Figure 17). The overall 

model explained 31.7% (R2
adjusted) of memory dimension variance. Age, education, mood, storage 

dimension and MNA*Storage were significant predictors, while gender, hsCRP (Log) and MNA 

were not. Interestingly, however, MNA score was a significant predictor of almost all dependent 

variables. MMSE and memory dimensions were the exceptions where MNA did not reveal 

predictive significance, regardless of being the only significant interaction observed in the 

memory dimension.   

 

 

 

Figure 17 - Summary model for the correlation between memory dimension and interaction of 

storage dimension with nutritional status (MNA) and associated beneficial and detrimental 

factors. 
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Table 25 - Hierarchical regression models of interaction to predict general cognition 

  MMSE MOCA 

Model B (CI 95%) SE β t; p B (CI 95%) SE β t; p 

0 Age -.272 (-.416; -.128) .073 -.293 -3.748; <.001 -.245 (-.400; -.089) .078 -.247 -3.118; .002 
 Education a .370 (.033; .707) .170 .172 2.172; .032 .954 (.594; 1.314) .182 .413 5.249; <.001 
 Gender b .174 (-.124; .472) .151 .092 1.154; .250 .165 (-.142; .473) .155 .084 1.068; .288 
 hsCRP (Log) .035 (-.108; .178) .072 .036 .481; .631 -.015 (-.162; .132) .074 -.015 -.198; .843 
 GDS -.270 (-.420; -.120) .076 -.281 -3.557; .001 -.229 (-.381; -.078) .076 -.232 -3.004; .003 
R2adjusted; R2; ∆R2 .255; .282; .282 .379; .406; .406 

F(df1;df2) for ∆R2; p F(5; 131)=10.304; <.001 F(5; 108)=14.775; <.001 

1 Age -.275 (-.419; -.131) .073 -.297 -3.787; <.001 -.252 (-.404; -.099) .077 -.254 -3.274; .001 
 Education a .362 (.020; .705) .173 .168 2.091; .038 .958 (.597; 1.32) .182 .415 5.26; <.001 
 Gender b .143 (-.164; .450) .155 .075 .920; .359 .139 (-.166; .445) .154 .071 .904; .368 
 hsCRP (Log) .036 (-.107; .179) .072 .038 .499; .619 -.017 (-.161; .127) .073 -.017 -.231; .818 
 GDS -.204 (-.371; -.037) .084 -.213 -2.421; .017 -.134 (-.297; .028) .082 -.136 -1.642; .103 
 MNA .052 (-.012; .116) .032 .140 1.606; .111 .083 (.021; .146) .032 .217 2.633; .010 
 Storage  .048 (-.108; .205) .079 .048 .609; .544 .04 (-.115; .195) .078 .040 .511; .611 
 MNA*Storage .037 (-.012; .085) .025 .114 1.484; .140 .033 (-.014; .080) .024 .105 1.405; .163 
R2adjusted; R2; ∆R2 .263; .306; .024 .409; .451; .045 

F(df1;df2) for ∆R2; p F(3; 128)=1.465; .227 F(3; 105)=2.845; .041 

2 Age -.296 (-.440; -.153) .073 -.32 -4.084; <.001 -.264 (-.418; -.109) .078 -.266 -3.385; .001 
 Education a .382 (.048; .715) .169 .177 2.264; .025 .948 (.591; 1.304) .180 .410 5.269; <.001 
 Gender b .093 (-.211; .397) .154 .049 .603; .548 .126 (-.185; .437) .157 .064 .804; .423 
 hsCRP (Log) .084 (-.068; .236) .077 .088 1.097; .275 -.003 (-.156; .15) .077 -.003 -.040; .968 
 GDS -.204 (-.37; -.038) .084 -.212 -2.432; .016 -.143 (-.305; .02) .082 -.144 -1.74; .085 
 MNA .048 (-.015; .111) .032 .129 1.498; .137 .090 (.024; .156) .033 .234 2.704; .008 
 Transport   .106 (-.048; .260) .078 .111 1.365; .175 .006 (-.152; .165) .080 .006 .077; .939 
 MNA*Transport .044 (-.015; .103) .030 .112 1.463; .146 .039 (-.024; .101) .031 .097 1.227; .222 
R2adjusted; R2; ∆R2 .271; .314; .032 .406; .448; .042 

F(df1;df2) for ∆R2; p F(3; 128)=1.978; .120 F(3; 105)=2.63; .054 

3 Age -.270 (-.415; -.124) .074 -.291 -3.666; <.001 -.246 (-.400; -.091) .078 -.248 -3.147; .002 
 Education a .342 (-.007; .690) .176 .159 1.937; .055 .927 (.567; 1.288) .182 .402 5.100; <.001 
 Gender b .149 (-.152; .450) .152 .079 .982; .328 .126 (-.177; .429) .153 .064 .823; .412 
 hsCRP (Log) .036 (-.11; .182) .074 .038 .486; .628 -.010 (-.157; .136) .074 -.010 -.137; .891 
 GDS -.218 (-.386; -.049) .085 -.226 -2.558; .012 -.140 (-.303; .023) .082 -.142 -1.708; .091 
 MNA .048 (-.015; .112) .032 .130 1.51; .134 .078 (.016; .140) .031 .202 2.496; .014 
 Transport A.  .008 (-.145; .161) .077 .008 .102; .919 .061 (-.096; .218) .079 .059 .773; .441 
 MNA*Transport S. .028 (-.032; .088) .030 .074 .930; .354 .025 (-.038; .088) .032 .059 .776; .440 
R2adjusted; R2; ∆R2 .254; .298; .015 .404; .446; .040 

F(df1;df2) for ∆R2; p F(3; 128)=.938; .424 F(3; 105)=2.532; .061 

4 Age -.271 (-.424; -.118) .077 -.281 -3.509; .001 -.258 (-.409; -.106) .076 -.257 -3.377; .001 
 Education a .425 (.071; .780) .179 .189 2.373; .019 .935 (.580; 1.289) .179 .400 5.231; <.001 
 Gender b .135 (-.184; .453) .161 .068 .837; .404 .176 (-.129; .482) .154 .089 1.144; .255 
 hsCRP (Log) .051 (-.101; .204) .077 .052 .664; .508 -.015 (-.162; .131) .074 -.016 -.209; .835 
 GDS -.217 (-.389; -.044) .087 -.215 -2.485; .014 -.152 (-.311; .008) .080 -.152 -1.888; .062 
 MNA .049 (-.016; .114) .033 .127 1.482; .141 .091 (.029; .154) .032 .235 2.889; .005 
 Red Cells C. .064 (-.104; .231) .085 .062 .750; .455 -.046 (-.202; .109) .079 -.047 -.590; .557 
 MNA*Red Cells C. .041 (-.013; .094) .027 .119 1.511; .133 .042 (-.007; .090) .025 .130 1.701; .092 
R2adjusted; R2; ∆R2 .257; .301; .024 .420; .460; .051 

F(df1;df2) for ∆R2; p F(3; 128)=1.471; .226 F(3; 107)=3.376; .021 

5 Age -.263 (-.417; -.109) .078 -.272 -3.372; .001 -.232 (-.384; -.080) .077 -.232 -3.028; .003 
 Education a .464 (.104; .823) .182 .206 2.552; .012 1.089 (.731; 1.447) .181 .466 6.025; <.001 
 Gender b .069 (-.287; .425) .180 .035 .383; .702 -.021 (-.357; .316) .170 -.010 -.121; .904 
 hsCRP (Log) .028 (-.122; .178) .076 .028 .370; .712 -.032 (-.174; .110) .072 -.033 -.448; .655 
 GDS -.189 (-.367; -.012) .090 -.188 -2.113; .037 -.110 (-.271; .052) .082 -.110 -1.342; .182 
 MNA .048 (-.017; .114) .033 .126 1.468; .145 .070 (.008; .132) .031 .180 2.235; .027 
 Erythropoiesis   .106 (-.080; .292) .094 .103 1.126; .262 .204 (.031; .376) .087 .203 2.344; .021 
 MNA*Erythropoiesis  .015 (-.041; .071) .028 .041 .535; .594 -.007 (-.059; .045) .026 -.021 -.278; .782 
R2adjusted; R2; ∆R2 .252; .296; .019 .429; .468; .059 

F(df1;df2) for ∆R2; p F(3; 128)=1.155; .330 F(3; 107)=3.959; .010 

a  Less than 4 school years=0, More than 4 school years=1 ; b Female=0, Male=1 
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Table 26 - Hierarchical regression models of interaction to predict neuropsychological variables. 

  GDS PSS 

Model B (CI 95%) SE β t; p B (CI 95%) SE β t; p 

0 Age -.022 (-.187; .142) .083 -.023 -.268; .789 -.018 (-.184; .148) .084 -.018 -.210; .834 
 Education a -.299 (-.682; .084) .194 -.133 -1.544; .125 .187 (-.192; .566) .192 .083 .975; .331 
 Gender b -.595 (-.921; -.268) .165 -.301 -3.6; <.001 -.782 (-1.106; -.458) .164 -.397 -4.778; <.001 
 hsCRP (Log) .004 (-.160; .169) .083 .004 .050; .960 -.141 (-.305; .024) .083 -.141 -1.694; .093 
R2adjusted; R2; ∆R2 .094; .121; .121 .133; .160; .160 

F(df1;df2) for ∆R2; p F(4; 132)=4.54; .002 F(4; 129)=6.121; <.001 

1 Age .000 (-.150; .150) .076 .000 -.006; .995 .021 (-.140; .181) .081 .021 .253; .801 
 Education a -.276 (-.630; .078) .179 -.123 -1.541; .126 .271 (-.099; .641) .187 .121 1.449; .150 
 Gender b -.376 (-.689; -.063) .158 -.190 -2.375; .019 -.703 (-1.029; -.377) .165 -.357 -4.264; <.001 
 hsCRP (Log) .015 (-.134; .164) .075 .015 .200; .842 -.144 (-.302; .014) .08 -.144 -1.806; .073 
 MNA -.165 (-.225; -.105) .031 -.427 -5.409; <.001 -.126 (-.192; -.061) .033 -.313 -3.839; <.001 
 Storage  -.070 (-.233; .093) .082 -.068 -.851; .397 .057 (-.111; .226) .085 .056 .674; .502 
 MNA*Storage -.026 (-.077; .024) .026 -.079 -1.024; .308 -.025 (-.079; .029) .027 -.071 -.903; .368 

R2adjusted; R2; ∆R2 .260; .298; .177 .206; .248; .089 
F(df1;df2) for ∆R2; p F(3; 129)=10.863; <.001 F(3; 126)=4.948; .003 

2 Age .017 (-.134; .167) .076 .017 .217; .829 .012 (-.149; .173) .081 .012 .149; .882 
 Education a -.281 (-.628; .066) .175 -.125 -1.603; .111 .264 (-.100; .629) .184 .118 1.436; .153 
 Gender b -.359 (-.672; -.046) .158 -.182 -2.272; .025 -.697 (-1.022; -.372) .164 -.354 -4.247; <.001 
 hsCRP (Log) -.012 (-.172; .147) .081 -.012 -.152; .879 -.137 (-.305; .031) .085 -.137 -1.610; .110 
 MNA -.159 (-.219; -.099) .030 -.411 -5.218; <.001 -.138 (-.207; -.070) .035 -.343 -4.007; <.001 
 Transport   -.094 (-.255; .067) .081 -.095 -1.157; .250 .086 (-.084; .256) .086 .087 1.002; .319 
 MNA*Transport -.009 (-.071; .053) .031 -.022 -.283; .778 -.045 (-.115; .025) .035 -.107 -1.279; .203 
R2adjusted; R2; ∆R2 .259; .297; .176 .213; .255; .095 

F(df1;df2) for ∆R2; p F(3; 129)=10.765; <.001 F(3; 126)=5.356; .002 

3 Age .011 (-.140; .161) .076 .011 .142; .887 .014 (-.148; .175) .081 .014 .168; .867 
 Education a -.242 (-.600; .117) .181 -.108 -1.333; .185 .219 (-.158; .595) .190 .097 1.147; .254 
 Gender b -.383 (-.687; -.078) .154 -.194 -2.488; .014 -.676 (-.995; -.357) .161 -.343 -4.193; <.001 
 hsCRP (Log) -.001 (-.153; .150) .077 -.001 -.014; .989 -.134 (-.295; .028) .082 -.134 -1.641; .103 
 MNA -.156 (-.216; -.097) .030 -.405 -5.183; <.001 -.117 (-.183; -.052) .033 -.290 -3.552; .001 
 Transport A.  -.111 (-.268; .046) .079 -.109 -1.404; .163 .015 (-.151; .181) .084 .015 .182; .856 
 MNA*Transport S. .002 (-.060; .064) .031 .005 .068; .946 .007 (-.063; .078) .036 .017 .205; .838 
R2adjusted; R2; ∆R2 .262; .3; .179 .198; .241; .081 

F(df1;df2) for ∆R2; p F(3; 129)=10.995; <.001 F(3; 126)=4.48; .005 

4 Age .029 (-.125; .184) .078 .031 .378; .706 -.006 (-.171; .159) .083 -.006 -.075; .941 
 Education a -.231 (-.588; .125) .180 -.104 -1.286; .201 .166 (-.206; .538) .188 .073 .882; .380 
 Gender b -.385 (-.700; -.071) .159 -.197 -2.426; .017 -.707 (-1.031; -.383) .164 -.359 -4.314; <.001 
 hsCRP (Log) .013 (-.141; .167) .078 .013 .164; .870 -.128 (-.290; .035) .082 -.128 -1.556; .122 
 MNA -.158 (-.218; -.098) .030 -.414 -5.218; <.001 -.118 (-.184; -.051) .034 -.293 -3.515; .001 
 Red Cells C. .006 (-.163; .176) .086 .006 .073; .942 .043 (-.132; .218) .089 .042 .484; .629 
 MNA*Red Cells C. .008 (-.046; .061) .027 .023 .283; .777 .015 (-.041; .072) .029 .045 .540; .590 

R2adjusted; R2; ∆R2 .230; .269; .165 .208; .250; .085 
F(df1;df2) for ∆R2; p F(3; 129)=9.725; <.001 F(3; 126)=4.785; .003 

5 Age -.002 (-.154; .149) .077 -.002 -.029; .977 -.013 (-.179; .152) .084 -.013 -.157; .875 
 Education a -.297 (-.646; .053) .177 -.133 -1.68; .095 .148 (-.228; .524) .190 .066 .780; .437 
 Gender b -.144 (-.492; .205) .176 -.074 -.815; .417 -.663 (-1.033; -.292) .187 -.336 -3.539; .001 
 hsCRP (Log) .006 (-.142; .154) .075 .006 .081; .936 -.136 (-.296; .024) .081 -.136 -1.686; .094 
 MNA -.155 (-.213; -.097) .029 -.406 -5.264; <.001 -.115 (-.181; -.048) .034 -.285 -3.422; .001 
 Erythropoiesis   -.226 (-.404; -.047) .090 -.222 -2.503; .014 -.026 (-.219; .166) .097 -.026 -.268; .789 
 MNA*Erythropoiesis  -.019 (-.074; .036) .028 -.053 -.690; .492 .008 (-.052; .068) .030 .023 .275; .784 
R2adjusted; R2; ∆R2 .267; .305; .201 .206; .248; .084 

F(df1;df2) for ∆R2; p F(3; 129)=12.399; <.001 F(3; 126)=4.677; .004 

a  Less than 4 school years=0, More than 4 school years=1 ; b Female=0, Male=1 
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Table 27 - Hierarchical regression models of interaction to predict functional dimensions. 

  Functional-T Functional-H 

Model B (CI 95%) SE β t; p B (CI 95%) SE β t; p 

0 Age -.165 (-.319; -.011) .078 -.177 -2.116; .036 -.155 (-.298; -.012) .072 -.175 -2.148; .033 
 BMI -.220 (-.387; -.054) .084 -.231 -2.614; .010 -.315 (-.47; -.161) .078 -.346 -4.033; <.001 
 hsCRP (Log) -.031 (-.198; .136) .084 -.032 -.364; .716 .054 (-.101; .209) .078 .058 .684; .495 

R2adjusted; R2; ∆R2 .088; .108; .108 .139; .158; .158 
F(df1;df2) for ∆R2; p F(3; 133)=5.353; .002 F(3; 133)=8.344; <.001 

1 Age -.173 (-.318; -.027) .073 -.186 -2.350; .020 -.163 (-.305; -.022) .071 -.184 -2.287; .024 
 BMI -.196 (-.356; -.036) .081 -.206 -2.421; .017 -.279 (-.435; -.123) .079 -.306 -3.546; .001 
 hsCRP (Log) -.043 (-.200; .115) .080 -.044 -.535; .594 .041 (-.112; .195) .077 .045 .536; .593 
 MNA .116 (.056; .176) .030 .311 3.803; <.001 .079 (.020; .137) .030 .220 2.652; .009 
 Storage  .096 (-.062; .254) .080 .096 1.203; .231 .015 (-.139; .168) .078 .015 .187; .852 
 MNA*Storage -.010 (-.061; .041) .026 -.030 -.370; .712 .029 (-.02; .079) .025 .095 1.162; .247 
R2adjusted; R2; ∆R2 .197; .233; .125 .17; .207; .048 

F(df1;df2) for ∆R2; p F(3; 130)=7.050; <.001 F(3; 130)=2.641; .052 

2 Age -.186 (-.332; -.041) .073 -.201 -2.538; .012 -.167 (-.308; -.025) .071 -.187 -2.333; .021 
 BMI -.195 (-.354; -.036) .080 -.205 -2.43; .016 -.279 (-.434; -.125) .078 -.306 -3.576; <.001 
 hsCRP (Log) -.024 (-.193; .144) .085 -.025 -.287; .775 .044 (-.120; .207) .083 .048 .529; .598 
 MNA .116 (.056; .176) .030 .311 3.829; <.001 .082 (.024; .140) .029 .231 2.797; .006 
 Transport   .096 (-.061; .254) .080 .101 1.209; .229 -.044 (-.198; .109) .078 -.049 -.574; .567 
 MNA*Transport -.015 (-.077; .047) .032 -.038 -.476; .635 .035 (-.025; .096) .031 .094 1.148; .253 
R2adjusted; R2; ∆R2 .197; .233; .125 .172; .208; .050 

F(df1;df2) for ∆R2; p F(3; 130)=7.049; <.001 F(3; 130)=2.731; .046 

3 Age -.186 (-.334; -.038) .075 -.200 -2.488; .014 -.146 (-.288; -.003) .072 -.164 -2.025; .045 
 BMI -.184 (-.344; -.024) .081 -.193 -2.269; .025 -.272 (-.426; -.117) .078 -.298 -3.48; .001 
 hsCRP (Log) -.055 (-.216; .106) .081 -.057 -.676; .500 .031 (-.124; .185) .078 .033 .393; .695 
 MNA .127 (.068; .187) .030 .342 4.228; <.001 .084 (.026; .141) .029 .235 2.887; .005 
 Transport A.  -.025 (-.181; .130) .079 -.026 -.319; .750 -.051 (-.201; .099) .076 -.054 -.672; .503 
 MNA*Transport S. -.010 (-.072; .052) .031 -.025 -.307; .759 .047 (-.013; .106) .030 .127 1.548; .124 

R2adjusted; R2; ∆R2 .188; .224; .116 .178; .215; .056 
F(df1;df2) for ∆R2; p F(3; 130)=6.495; <.001 F(3; 130)=3.109; .029 

4 Age -.168 (-.314; -.022) .074 -.179 -2.278; .024 -.173 (-.317; -.029) .073 -.193 -2.382; .019 
 BMI -.199 (-.355; -.044) .079 -.210 -2.534; .012 -.284 (-.437; -.131) .077 -.314 -3.674; <.001 
 hsCRP (Log) -.018 (-.180; .143) .082 -.019 -.225; .822 .072 (-.087; .231) .080 .078 .895; .372 
 MNA .116 (.057; .175) .030 .310 3.919; <.001 .074 (.017; .132) .029 .209 2.553; .012 
 Red Cells C. .154 (-.008; .316) .082 .154 1.876; .063 .010 (-.150; .169) .081 .010 .119; .905 
 MNA*Red Cells C. .010 (-.043; .063) .027 .031 .383; .702 .032 (-.020; .084) .026 .102 1.232; .220 
R2adjusted; R2; ∆R2 .216; .250; .134 .165; .202; .047 

F(df1;df2) for ∆R2; p F(3; 130)=7.749; <.001 F(3; 130)=2.529; .060 

5 Age -.152 (-.296; -.009) .073 -.162 -2.100; .038 -.162 (-.307; -.017) .073 -.181 -2.211; .029 
 BMI -.189 (-.340; -.037) .077 -.199 -2.465; .015 -.281 (-.434; -.128) .077 -.310 -3.631; <.001 
 hsCRP (Log) -.036 (-.189; .118) .078 -.037 -.462; .645 .064 (-.091; .219) .078 .070 .819; .414 
 MNA .109 (.052; .167) .029 .293 3.785; <.001 .071 (.013; .129) .029 .199 2.428; .017 
 Erythropoiesis   .245 (.095; .396) .076 .247 3.224; .002 .040 (-.112; .191) .077 .042 .515; .608 
 MNA*Erythropoiesis  .003 (-.051; .057) .027 .008 .099; .922 .027 (-.028; .081) .028 .079 .973; .333 
R2adjusted; R2; ∆R2 .254; .287; .171 .163; .200; .045 

F(df1;df2) for ∆R2; p F(3; 130)=10.389; <.001 F(3; 130)=2.418; .069 
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4.2. Longitudinal analysis: iron fortification, cognition, mood and physical 

performance 

From the n=151 individuals assessed in Moment A1, n=41 were included in the quasi-

experimental intervention study after meeting inclusion (presence of ID) and exclusion criteria, as 

previously described, and accepting to continue in the study. Of these, n=1 individual was 

excluded due to initiation of intravenous iron treatment, and n=18 dropped-out (45%). From the 

dropouts two considerations should be addressed, firstly the dropouts were older than the ones 

that continued in the intervention and, secondly, dropouts had higher need of help to mobility 

(lower score on mobility help of physical functional ability) (data not shown) and these two factors 

may possibly explain the dropout of such higher number of individuals. The study sample for the 

study was, therefore, of 22 individuals, of which 10 (43%) were allocated to a non-intervention 

branch and 12 (57%) to a fortification branch. Allocation of participants had in consideration a 

similar distribution of individuals with lower levels of serum FT [FT<45 (µg/L)].  

4.2.1 Characterization of participants  

Socio-demographic and anthropometric characterization of participants is presented in 

Table 28. No significant differences were observed for all variables. Effect size (Cohen’s d) was 

very small and perhaps our sample size does not have enough statistical power to detect 

differences of this magnitude.  

Regarding neuropsychological assessment (Table 29), no statistical significant differences 

were observed between the groups for mood (measured by GDS) or perceived stress (assessed 

with the PSS). Of notice the absence of differences may be due to the small sample size as can 

be concluded by the small Cohen’s d (<.2). In neurocognitive variables and dimensions from the 

cross sectional analyses (Table 29), no differences were observed between the supplemented 

and non supplemented groups.  
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Table 28 - Characteristics comparison for participants. 

Variables (mean; SD) Non supplem. (n=10) Supplem. (n=12)   

Socio-demographic    
t(df); p; Cohen’s d 

 
Age (years) 62.30; 4.64  64.58; 6.60 -.949(19.530); .354; .399 

 
Education (school yrs)  6.50; 3.92 6.08; 3.80 .252(20); .803; .119 

Anthropometric   
t(df); p; Cohen’s d 

 

Weight (kg) 69.87; 8.08 75.58; 11.15 -1.350(20); .192; .586 

 

Height (m) 1.60; .07  1.62; .09  -.606(20); .551; .248 

 

BMI (kg/m2) 27.43; 3.44 29.06; 5.2 -.848(20); .407; .369 

 

Waist circ. (cm) 91.47; 10.51 93.07; 13.14 -.309(20); .760; .134 

 

Hip circ. (cm) 101.18; 6.90 98.44; 14.63 .542(20); .594; .239 

 

%BF-BIA (%)a 31.80; 9.31 33.75; 12.03 -.405(18); .690; .181 

 

%BF-Brozek (%)a 34.06; 8.32 36.11; 8.12 -.583(20); .567; .249 

Gender (n; %)   p(Fisher exact test; 2 tailed) 

 Females 6; 27.27 7; 31.81 >.999 

 Males 4; 18.18 5; 27.72  

BMI class (n; %)   
p(Fisher exact test; 2 tailed) 

 

Normal 2; 9.09 3; 13.63 .554 

 

Overweight 6; 27.27 4; 18.18  

 

Obesity 2; 9.09 5; 22.72  

Nutritional status (n; %)   
p(Fisher exact test; 2 tailed) 

 

Risk of malnutrition 4; 18.18 2; 9.09 .348 

 

Normal  6; 27.27 10; 45.45  

a n=20 [Non supplemented=10 (50%), Supplemented=10 (50%)].  

 

Table 30 lists data regarding physical functional ability at the baseline, values for the 

functional dimensions were the same derived from the cross-sectional analysis. No significant 

differences were observed for all the variables with exception for lower limb tiredness 

(t(14.228)=2.272; p= .039; d= .942) where the non supplemented group presented a higher mean 

score (meaning lower tiredness) than the supplemented group.  

The characterization of groups and the comparison of means for hematological variables 

are presented in Table 31. No significant differences were observed for the inflammatory status. 

As expected, the distribution of individuals with low FT levels was similar between non 

supplemented and supplemented. Regarding the red cells indices, statistical differences were 

observed in MCV and MHC.  In these two variables the mean value of the non supplemented 

group was higher than that of the supplemented group, indicating higher iron levels.  

In iron biomarkers, Fe was significantly higher in the non supplemented group, the same 

pattern was observed for TF sat. and body iron. Statistical significant higher mean (or median) 
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values were observed for the supplemented group in TF, TIBC, sTFr and sTFr-LogFT index. In iron 

dimensions (values from the cross sectional anlalysis), erythropoiesis was not significantly 

different between groups; however, differences were observed in storage, transport, transport s. 

and red cells c In all of the significantly different dimensions the non supplemented group 

presented a higher mean value. 

 

Table 29 - Neuropsychological and neurocognitive variables of participants. 

 Variables (mean, SD) Non supplem. Supplem.   

Psychological   t(df); p; Cohen’s d 

 GDS 11.40; 5.74 11.33; 6.14 .026(20); .979; .012 
 PSS  17.70; 7.66 18.58; 6.32 -.297(20); .770; .125 

Neurocognitive   t(df); p; Cohen’s d 

 DS – Forward  6.20; 1.40 7.08; 1.93 -1.206(20); .242; .523 
 DS – Backward  4.10; 1.73 4.33; 1.44 -.346(20); .733; .144 
 DS – Total 10.30; 2.50 11.42; 2.94 -9.49(20); .354; .411 
 Stroop – W  78.89; 16.34 73.33; 21.03 .656(19); .520; .295 
 Stroop – C  53.50; 16.45 55.17; 13.21 -.264(20); .795; .111 
 Stroop – W&C  37.50; 14.39 33.67; 11.90 .685(20); .502; .290 
 SRT – LTS  22.90; 11.53 29.50; 15.62 -1.107(20); .282; .480 
 SRT – CLTR  13.70; 8.87 22.58; 15.77 -1.581(20); .130; .694 
 SRT – DR  5.90; 1.52 6.42; 3.15 -.474(20); .641; .210 
 SRT – Intrusions  6.00; 7.54 2.92; 2.47 1.338(20); .196; .549 
 CERAD – Total hits  18.90; 2.85 20.50; 4.12 -1.037(20); .312; .451 
 CERAD – DR hits  5.90; 1.37  6.83; 1.80 -1.345(20); .194; .581 
 MMSE 28.10; 2.28 27.58; 1.78 .597(20); .557; .254 
 MOCA  20.20; 5.33  22.58; 3.00  -1.322(20); .201; .550 

Cognitive dimensions    t(df); p; Cohen’s d 

 Executive  .31; .58 .25; .90 .181(19); .858; .079 
 Memory  -.02; .56 .45; 1.05 -1.268(20); .219; .558 

 

Table 30 - Baseline characteristics on physical functional ability. 

Variables (mean, SD) Non supplem. Supplem.   

Functional ability – QoFA    t(df); p; Cohen’s d 

 Mobility tiredness 4.90; 1.97 3.92; 1.93 1.180(20); .252; .502 
 Lower limb tiredness 4.60; .52 3.58; 1.44 2.272(14.228); .039; .942 
 Upper limb tiredness 3.90; .32 3.92; .29 -.129(20); .899; .065 
 Mobility help 11.80; .63  11.50; .90 .883(20); .388; .386 
 PADL help 18.20; 4.37 18.50; 2.71 -.197(20); .846; .082 

Functional components    t(df); p; Cohen’s d 

 Functional tiredness .30; .49 -.29; .86 1.923(20); .069; .014 
 Functional help .13; .89 .11; .77 .067(20); .947; .024 
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Table 31 – Hematological characterization and comparison at baseline 

Variables (mean, SD) Non supplem. Supplem.   

Inflammatory indices   Z(U); p; r 

 hsCRP (mg/dL) ¥ † 1.53; 2.85 2.90; .60 -1.541(37); .134; .329 

Red cells indices   t(df); p; Cohen’s d 

 RBC (1012/L) 4.49; .50 4.63; .44  -.678(20); .506; .297 
 Hemoglobin (mg/dL) 13.55; 1.74 12.73; 1.65 1.139(20); .268; .483 
 Hematocrit (%) 39.51; 4.51  37.85; 3.77  .941(20); .358; .399 
 MCV (fL) 87.96; 3.32  81.79; 3.52 4.198(20); <.001; 1.803 
 MCH (pg) 30.12; 1.48  27.43; 1.6  4.071(20); .001; 1.745 
 MCHC (g/dL) 34.25; .83 33.53; 1.29 1.508(20); .147; .663 
 RDW (%) 13.51; .60 14.1; 1.14 -1.548(17.252); .140; .647 

Iron biomarkers   t(df); p; Cohen’s d 

 Fe (µg/dL) 90.80; 27.18  60.17; 21.67  2.944(20); .008; 1.246 
 TF (mg/dL)  249.10; 28.68 295.08; 53.71 -2.428(20); .025; 1.068 
 FT (ng/mL)  ¥ † 67.50; 148.75 19.50; 109.25 -1.814(32.5); .072; .387 
 TF Sat (%) 28.18; 9.66  16.19; 7.49  3.283(20);.004; 1.388 
 TIBC (µg/dL) 327.60; 31.48 390.42; 74.34 -2.485(20); .022; 1.100 
 sTFr (mg/L) ¥ † 1.11; .38  1.62; .86  -3.166(12); <.001; .675 
 sTFr-LogFT index ¥ † .69; .33  1.21; .99  -2.506(22); .011; .534 
 Body iron (mg/kg) 13.84; 3.64  8.97; 5.54  2.380(20); .027; 1.041 

FT class (n; %)   p(Fisher exact test; 2 tailed) 

 FT<45 (ng/mL) 5; 22.72 8; 36.36 .666 
 FT≥45 (ng/mL) 5; 22.72 4; 18.18  

Iron dimensions   t(df); p; Cohen’s d 

 Storage  -.06; .66   -1.32; 1.40 2.031(20); .016; 1.261 
 Transport  -.03; .96  -1.17; .74  3.170(20); .005; 1.330 
 Transport S. .15; .62 -.97; 1.31 2.463(20); 0.023; 1.093 
 Red cells C.   -.08; .72  -1.43; .98  3.722(19.711); .001; 1.570 
 Erythropoiesis -.18; 1.13  -.40; .99  .476(20); .639; .207 

¥ Variables not normally distributed, data presented in median and interquartile range (median, IQR); † Mann–
Whitney U test, results presented in Z(U); p; r. 
 

4.2.2 Variation of hematological dimensions during intervention 

New component scores for hematological dimensions were calculated for moment A and 

moment B using the hematological variables and the same methodology as previously described 

(storage moment A, Cronbach’s alpha: .969; storage moment B, Cronbach’s alpha: .959; 

transport moment A, Cronbach’s alpha: .976; transport moment B, Cronbach’s alpha:.975; 

transport s. moment A, Cronbach’s alpha: .996; transport s. moment B, Cronbach’s alpha: .991; 

red cells c. moment A, Cronbach’s alpha: .810; red cells c. moment B, Cronbach’s alpha: .916; 

erythropoiesis moment A , Cronbach’s alpha: .964; erythropoiesis moment B, Cronbach’s alpha: 

.935).  The new component scores for hematological dimensions obtained for moment A and B 

were compared using repeated measures ANOVA (Table 32). No significant effects for time or 

time by group were observed in any of the hematological components. A group effect was 

observed for storage, transport, transport s., and red cells c.; however, it was not significant for 

erythropoiesis. 
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Table 32 - Repeated measures ANOVA for hematological dimensions 

Variables  Pre-treatment (moment A)  Post-treatment (moment B)  
F(df1;df2); p; η2 partial (Time) 

(mean; SD) Non supplem. Supplem.  Non supplem. Supplem.  

Storage .57; .63 -.47; 1,02  .47; .61 -.39; 1,11  F(1; 20)=.021; .887; .001 
F(df1;df2); p; η2 partial  (Group) F(1; 20)=6.268; .021; .239  
F(df1;df2); p; η2partial  (Time*group) F(1; 20)=2.523; .128; .112  

Transport .62; .95 -.52; .73  .82; .64 -.68; .67  F(1; 20)=.010; .923; .000 
F(df1;df2); p; η2 partial  (Group) F(1; 20)=23.213; <.001; .537  
F(df1;df2); p; η2partial  (Time*group) F(1; 20)=1.165; .293; .055  

Transport S. .52; .53 -.43; 1,11  .59; .55 -.49; 1,04  F(1; 20)=.005; .946; .000 
F(df1;df2); p; η2 partial  (Group) F(1; 20)=7.870; .011; .282  
F(df1;df2); p; η2partial  (Time*group) F(1; 20)=.559; .463; .027  

Red cells C. .68; .66 -.64; .89  .52; .39 -.47; 1,16  F(1; 19)=.000; .991; .000 
F(df1;df2); p; η2 partial  (Group) F(1; 19)=12.100; .003; .389  
F(df1;df2); p; η2partial  (Time*group) F(1; 19)=1.190; .289; .059  

Erythropoiesis .12; 1.09 -.13; .10  .22; 1,03 -.2; .97  F(1; 19)=.013; .909; .001 
F(df1;df2); p; η2 partial  (Group) F(1; 19)=.602; .447; .031  
F(df1;df2); p; η2partial  (Time*group) F(1; 19)=.398; .536; .021  

 

Regarding the analysis of repeated measures for hematological variables (Table 33) and in 

consonance with the results of the hematological dimensions, no significant effects (for time, 

group or time by group interaction) were observed for the variables that composed the 

erythropoiesis dimension (RBC, hemoglobin and hematocrit). The variables that composed the 

red cells C. dimension (MCV, MCH, MCHC and RDW) did not reveal a significant effect of time by 

group interaction, the group effect was significant only for MCH and RDW and MCH and MCHC 

displayed a significant time effect, not present in MCV and RDW. The variables that composed 

transport s. (TF and TIBC) and transport (Fe and TF sat.) dimensions did not reveal significant 

time or time by group interaction effects, although a significant group effect was observed. 

Regarding the variables that composed the storage dimension, no significant effects were 

observed for FT (logarithmic transformed), significant time and group effects were observed for 

sTFR (logarithmic transformed), a significant effect group was observed for sTFr-LogFT index 

(logarithmic transformed) and a significant interaction of time by group was observed for body 

iron.  
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Table 33 - Repeated measures ANOVA for hematological variables. 

Variables  Pre-treatment (moment A)  Post-treatment (moment B)  
F(df1;df2); p; η2 partial (Time) 

(mean; SD) Non supplem. Supplem.  Non supplem. Supplem.  

RBC (1012/L) 4.49; .50 4.62; .46  4.61; .47 4.61; .39  F(1; 19)=.583; .454; .030 

F(df1;df2); p; η2 partial  (Group) F(1; 19)=.118; .735; .006  

F(df1;df2); p; η2partial  (Time*group) F(1; 19)=.840; .371; .042  

Hemoglobin (mg/dL) 13.55; 1.74 12.65; 1.71  13.82; 1.53 12.69; 1.87  F(1; 19)=.510; .484; .026 

F(df1;df2); p; η2 partial  (Group) F(1; 19)=1.976; .176; .094  

F(df1;df2); p; η2partial  (Time*group) F(1; 19)=.296; .592; .015  

Hematocrit (%) 39.51; 4.51 37.71; 3.93  40.74; 4.07 38.71; 4.02  F(1; 19)=4.063; .058; .176 

F(df1;df2); p; η2 partial  (Group) F(1; 19)=1.247; .278; .062  

F(df1;df2); p; η2partial  (Time*group) F(1; 19)=.043; .838; .002  

MCV (fL) 87.96; 3.32 81.61; 3.63  88.38; 3.28 84.05; 6.66  F(1; 19)=4.215; .054; .182 

F(df1;df2); p; η2 partial  (Group) F(1; 19)=8.424; .009; .307  

F(df1;df2); p; η2partial  (Time*group) F(1; 19)=2.100; .164; .100  

MCH (pg) 30.12; 1.48 27.31; 1.62  29.96; 1.39 27.51; 3.10  F(1; 19)=.003; .956; .000 

F(df1;df2); p; η2 partial  (Group) F(1; 19)=10.293; 0.005; 0.351  

F(df1;df2); p; η2partial  (Time*group) F(1; 19)=0.252; 0.621; 0.013  

MCHC (g/dL) 34.25; .83 33.46; 1.33  33.89; .72 32.65; 1.68  F(1; 19)=7.741; .012; .289 

F(df1;df2); p; η2 partial  (Group) F(1; 19)=4.241; .053; .182  

F(df1;df2); p; η2partial  (Time*group) F(1; 19)=1.142; .299; .057  

RDW (%) 13.51; .61 14.17; 1.17  13.25; .32 14.14; 1.01  F(1; 19)=.620; .441; .032 

F(df1;df2); p; η2 partial  (Group) F(1; 19)=5.674; .028; .230  

F(df1;df2); p; η2partial  (Time*group) F(1; 19)=.353; .560; .018  

Fe (µg/dL) 90.80; 27.18 60.17; 21.67  102.8; 18.44 62.50; 21.61  F(1; 20)=1.917; .181; .087 

F(df1;df2); p; η2 partial  (Group) F(1; 20)=19.374; <.001; .492  

F(df1;df2); p; η2partial  (Time*group) F(1; 20)=.872; .362; .042  

TF (mg/dL) 249.10; 28.68 295.08; 53.71  237.40; 21.50 286.67; 41.59  F(1; 20)=3.995; .059; .166 

F(df1;df2); p; η2 partial  (Group) F(1; 20)=8.712; .008; .303  

F(df1;df2); p; η2partial  (Time*group) F(1; 20)=.106; .748; .005  

FT (Log) (ng/dL) # 77.59 (42.13; 142.90) 31.46 (13.91; 71.16)  78.22 (40.15; 152.39) 43.68 (21.25; 89.77)  F(1; 20)=1.078; .312; .051 

F(df1;df2); p; η2 partial  (Group) F(1; 20)=.924; .348; .044  

F(df1;df2); p; η2partial  (Time*group) F(1; 20)=.034; .856; .002  

TF Sat. (%) 28.18; 9.66 16.19; 7.49  31.85; 6.41 16.72; 5.83  F(1; 20)=1.696; .208; .078 

F(df1;df2); p; η2 partial  (Group) F(1; 20)=24.583; <.001; .551  

F(df1;df2); p; η2partial  (Time*group) F(1; 20)=.939; .344; .045  

TIBC (µg/dL) 327.60; 31.48 390.42; 74.34  325.50; 31.16 377.25; 56.16  F(1; 20)=1.583; .223; .073 

F(df1;df2); p; η2 partial  (Group) F(1; 20)=6.810; .017; .254  

F(df1;df2); p; η2partial  (Time*group) F(1; 20)=.832; .373; .040  

sTFr (Log) (mg/L) # 1.10 (.95; 1.27) 1.73 (1.37; 2.18)  1.25 (1.16; 1.35) 1.85 (1.41; 2.42)  F(1; 20)=5.174; .034; .206 

F(df1;df2); p; η2 partial  (Group) F(1; 20)=7.047; .015; .261  

F(df1;df2); p; η2partial  (Time*group) F(1; 20)=.064; .803; .003  

sTFr-LogFT index (Log) # .59 (.46; .77) 1.23 (.80; 1.90)  .67 (.55; .83) 1.17 (.76; 1.81)  F(1; 20)=.012; .915; .001 

F(df1;df2); p; η2 partial  (Group) F(1; 20)=3.985; .060; .166  

F(df1;df2); p; η2partial  (Time*group) F(1; 20)=1.601; .220; .074  

Body iron (mg/kg) 13.84; 3.64 8.97; 5.54  13.42; 3.59 9.92; 5.22  F(1; 20)=.925; .348; .044 

F(df1;df2); p; η2 partial  (Group) F(1; 20)=4.464; .047; .182  

F(df1;df2); p; η2partial  (Time*group) F(1; 20)=6.467; .019; .244  

# Data presented as geometric mean and back-transformed 95% confidence intervals. 
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4.2.3 Comparison of pre- and post-intervention differences in cognitive variables  

Due to the impossibility to repeat some of the neurocognitive test in a short interval of 

time, no repeated measures were available from moment A to moment B; however, different 

measures for the same construct were used in moments A and B. PCA was used to reduce 

MMSE and MOCA total scores to a dimension termed general cog. (general cognition dimension 

from MMSE and MOCA, Cronbach’s alpha: .782) which measured the same construct as the 

ACER total score (transformed to a z-score to express the variable in the same scale as the 

general cog.). MMSE, MOCA and ACER can be divided into sub-scores measuring different areas 

of cognitive function such as attention, memory, verbal fluency, language and visuospatial 

orientation. Similar to general cog., PCA was used to reduce the sub-scores of MMSE and MOCA, 

resulting in 4 dimensions measuring cognitive ability in moment A similar to the sub-scores (as z-

scores) of the ACER measured in moment B. Briefly, attention dimension (attention and 

orientation, Cronbach’s alpha: .776) was obtained from the sum of the scores of questions 1 

(orientation), 2 (registration) and 3 (attention and calculation) of MMSE and the sum of attention 

and orientation of MOCA; memory dimension (memory and recall, Cronbach’s alpha: .112) as 

result of PCA of the question 4 (recall) of MMSE and delayed recall question of MOCA; language 

dimension (language skills, Cronbach’s alpha: .610) composed by question 5 (language) of 

MMSE and language question (first question of language) of MOCA; and a visuospatial dimension 

(flexibility, planning and conceptualization ability, Cronbach’s alpha: .730) composed by question 

6 (constructive ability) of MMSE and visuospatial/executive questions of MOCA. Since verbal 

fluency is not assessed in the MMSE, a verbal fluency domain (phonetic and semantic fluency, 

Cronbach’s alpha: .650) was obtained from PCA of the COWAT-FAS admissible (FAS – Ad.) score 

and the verbal fluency question (second question of language) of MOCA, which was used also for 

comparison with verbal fluency sub-scale (z-score) of ACER. 

The low reliability (measured by Cronbach’s alpha: .112) of the memory dimension 

prevented us from using this dimension in the analysis. For the remaining dimensions (general 

cog., attention, verbal fluency, language and visuospatial), no significant differences were 

observed between non supplemented and supplemented group in moments A or B (Table 34). 

Due to the use of different tests in each moment (although measuring the same construct), the 

test of differences between the same group in the different moments or the use of repeated 

measures ANOVA was not possible.  
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Table 34 - Neurocognitive pre- and post-intervention comparison of differences. 

Variables  Pre-treatment (moment A)  Post-treatment (moment B) 

(mean; SD) Non supplem. Supplem. t(df); p; Cohen’s d  Non supplem. Supplem. t(df); p; Cohen’s d 

General Cog.        

 General cog . (MMSE&MOCA) -.09; 1,25 .07; .79 -.375(20); .712; .168  
   

 Z – ACER total     -.23; 1,15 .19; .86 -.994(20); .330; .449 

Attention        

 Attention (MMSE&MOCA) -.28; 1,20 .23; .77 -1,163(14,774); .263; .544     
 Z – Attention ACER     -.08; 1,13 .06; .92 -.317(20); .755; .142 

Verbal fluency        

 Fluency (FAS-Ad.&MOCA) .08; 1,01 -.07; 1,03 .330(20); .745; .148     
 Z – Fluency ACER     -.12; 1,01 .1; 1,03 -.493(20); .627; .221 

Language        

 Language (MMSE&MOCA) -.09; 1,14 .08; .91 -.378(20); .709; .170     
 Z – Language ACER     -.35; 1,06 .29; .89 -1,541(20); .139; .692 

Visio-spatial        

 Visio-spatial (MMSE&MOCA) -.06; 1,14 .05; .91 -.239(20); .814; .107     
 Z – Visio-spatial ACER     -.18; .97 .15; 1,04 -.787(19,675); .441; .351 

 

Repeated measures from moment A to moment B were available for BNT-15 and SRT 

(CLTR, LTS, DR and intrusions) and, therefore, repeated measures ANOVA was used to assess 

the test time, group and time by group effects on the scores for these tests. In order to reduce 

multiple comparisons PCA was used to obtain a memory (SRT-PCA) dimension (memory moment 

A, Cronbach’s alpha: .935; memory moment B, Cronbach’s alpha: .931) was composed by LTS, 

CLTR and DR scores (intrusions score was excluded due to low communalities). The 

standardized value of the BNT-15 was used since different sets of images were used in moments 

A and B. Statistical analysis was performed using repeated measures ANOVA and is presented in 

Table 35. 

A significant effect of time by group was observed for the BNT-15, meaning that the 

tendency of non supplemented and supplemented groups was significantly different over 

intervention. The effects over time and between groups were not statistical significant. In moment 

A, non supplemented group scored higher than supplemented group, after intervention, in 

moment B, supplemented group scored higher than non supplemented group. Of notice, since 

these results are presented in z-scores, an improvement in the values of supplemented group will 

lead to a decrease in the values of non supplemented group; furthermore, the change in the 

signal (from positive to negative z-scores in non supplemented group and the other way around in 

the supplemented group) indicates that the improvement was in a magnitude sufficient to change 

the position of these groups in relation to the mean value of the variable. Regarding the memory 

(SRT-PCA) dimension no significant effects for group, time or time by group were observed. Since 

the use of standardized residuals of the PCA can hide the real difference, the original values that 
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composed the memory (SRT-PCA) dimension, were used. No significant effects were observed for 

SRT – LTS, SRT – CLTS AND SRT – DR, which is consistent with the results of the repeated 

measures ANOVA for the memory (SRT-PCA) dimension. 

 

Table 35 - Repeated measures ANOVA of neurocognitive assessment. 

Variables  Pre-treatment (moment A)  Post-treatment (moment B)  
F(df1;df2); p; η2 partial (Time) 

(mean; SD) Non supplem. Supplem.  Non supplem. Supplem.  

BNT-15 (z-score) .70; .89 -.59; .66  -.05; 1.08 .04; .98  F(1; 20)=.094; .762; .005 

F(df1;df2); p; η2 partial  (Group) F(1; 20)=3.277; .085; .141  

F(df1;df2); p; η2 partial (Time*group) F(1; 20)=11.419; .003; .363  

Memory (SRT-PCA) -.26; .66 .22; 1.20  -.31; .72 .26; 1.15  F(1; 20)=.001; .980; .000 

F(df1;df2); p; η2 partial  (Group) F(1; 20)=1.888; .185; .086  

F(df1;df2); p; η2 partial (Time*group) F(1; 20)=.076; .785; .004  

SRT – LTS  22.90; 11.53 29.50; 15.62  26.50; 10.99 36.42; 13.06  F(1; 20)=3.868; .063; .162 

F(df1;df2); p; η2 partial  (Group) F(1; 20)=.385; .542; .019  

F(df1;df2); p; η2 partial (Time*group) F(1; 20)=2.816; .109; .123  

SRT - CLTR 13.70; 8.87 22.58; 15.77  19.10; 10.27 27.83; 14.90  F(1; 20)=3.107; .093; .134 

F(df1;df2); p; η2 partial  (Group) F(1; 20)=3.494; .076; .149  

F(df1;df2); p; η2 partial (Time*group) F(1; 20)=.001; .980; .000  

SRT - DR 5.90:1.52 6.42; 3.15  5.30; 1.77 5.83; 3.43  F(1; 20)=1.926; .180; .088 

F(df1;df2); p; η2 partial  (Group) F(1; 20)=.243; .628; .012  

F(df1;df2); p; η2 partial (Time*group) F(1; 20)=.000; .985; .000  

 

4.2.4 Longitudinal analysis of psychological morbidity difference between groups 

Similar to the neurocognitive assessment, no repeated measures were available for 

neuropsychological evaluation and therefore different measures were used to assess the same 

construct. For the same reason and as explained for the neurocognitive analysis, the use of 

repeated measures ANOVA or the test of difference for the same group between the different 

moments was not possible.  Data regarding neuropsychological assessment and test of 

differences between groups for each moment are presented in Table 36. Values are presented 

both in original scores and in z-scores allowing for an easier comparison. No significant 

differences were observed between groups at moments A or B in any of the scales used to 

assess psychological morbidity.  
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Table 36 - Pre- and post-intervention comparison of differences for neuropsychological 

assessment 

Variables  Pre-treatment (moment A)  Post-treatment (moment B) 

(mean; SD) Non supplem. Supplem. t(df); p; Cohen’s d  Non supplem. Supplem. t(df); p; Cohen’s d 

Depression         

 BDI  7.00; 5.27 5.75; 5.85 .522(20); .608; .234     
 Z – BDI  .12; .96 -.10; 1.06   

    EADS – D      3.00; 2.40 1.33; 1.44 2.015(20); .058; .905 
 Z – EADS  – D      .44; 1.16 -.37; .69  

Anxiety         

 BAI  13.30; 7.42 1.92; 7.27 .759(20); .457; .341  
    Z – BAI  .18; 1.02 -.15; 1.00      

 EADS – A      2.30; 1.57 3.42; 2.75 -1.195(17.932); .248; .511 
 Z – EADS – A      -.26; .68 .22; 1.19  

Stress        

 PSS  17.70; 7.66 18.58; 6.32 -.297(20); .770; .133  
    Z – PSS  -.07; 1.13 .06; .93      

 EADS – S      2.70; 2.91 3.25; 2.90 -.443(20); .663; .199 
 Z – EADS – S      -.11; 1.02 .09; 1.02  

 

4.2.5 Time-treatment interaction on physical performance and functional ability 

The assessment of physical performance consisted in the evaluation of balance evaluation 

(static balance, gait balance and total; POMA); walking ability (time, steps, gait and cadence; 

6MTW), strength (hand and forearm muscular strength; hand grip strength) and functional ability 

(mobility tiredness, lower limb tiredness, upper limb tiredness, mobility help and physical 

activities of daily living help; QoFA). 

Data and results from repeated measures ANOVA of balance are presented in Table 37. 

Briefly, significant effects of time were observed only on gait balance. No significant effects of 

group were observed in any of the assessments performed. The effects of the time by group 

interaction were significant in all dimensions assessed for balance. In moment A the non 

supplemented group scored higher than the supplemented group in POMA – static balance, - gait 

balance and  -total; after intervention the mean score of the supplemented group increased in a 

sufficient magnitude to equal the non supplemented group both in moments A and B.  Regarding 

walking ability (Table 38) no significant effects were observed for group or time by group 

interaction. For steps and cadence, a significant effect of time was observed. On hand grip 

strength (Table 39) a significant effect of time by group interaction was observed even though no 

significant effect was observed for time or group. In moment A the non supplemented group 

scored higher than the supplemented group; after intervention the score of non supplemented 
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group decreased when compared to baseline, and that of the supplemented group improved 

when compared to baseline.   

 

Table 37 - Repeated measures ANOVA for balance 

Variables  Pre-treatment (moment A)  Post-treatment (moment B)  
F(df1;df2); p; η2

 partial (Time) 
(mean; SD) Non supplem. Supplem.  Non supplem. Supplem.  

POMA – Static balance  14.60; 1.17 13.83; 2.17  14.00; 1.25 14.50; 1.83  F(1; 20)=.018; .895; .001 

F(df1;df2); p; η2
 partial  (Group) F(1; 20)=.038; .847; .002  

F(df1;df2); p; η2
 partial (Time*group) F(1; 20)=6.467; .019; .244  

POMA – Gait balance 11.60; .97 10.50; 1.57  11.60; .70 11.58; .79  F(1; 20)=3.667; .070; .155 

F(df1;df2); p; η2
 partial  (Group) F(1; 20)=2.325; .143; .104  

F(df1;df2); p; η2
 partial (Time*group) F(1; 20)=3.667; .070; .155  

POMA – Total 26.20; 1.61 24.33; 3.37  25.60; 1.83 26.08; 2.54  F(1; 20)=1.627; .217; .075 

F(df1;df2); p; η2
 partial  (Group) F(1; 20)=.509; .484; .025  

F(df1;df2); p; η2
 partial (Time*group) F(1; 20)=6.796; .017; .254  

 

 

Table 38 - Repeated measures ANOVA for walking ability 

Variables  Pre-treatment (moment A)  Post-treatment (moment B)  
F(df1;df2); p; η2

 partial (Time) 
(mean; SD) Non supplem. Supplem.  Non supplem. Supplem.  

6MTW – Time  3.99; .57 4.58; 1.12  3.70; .37 4.62; 1.42  F(1; 20)=.523; .478; .025 

F(df1;df2); p; η2
 partial  (Group) F(1; 20)=3.719; .068; .157  

F(df1;df2); p; η2
 partial (Time*group) F(1; 20)=.888; .357; .043  

6MTW – Steps  8.03; 1.02 9.19; 1.78  8.73; 1.05 9.45; 1.32  F(1; 20)=7.587; .012; .275 

F(df1;df2); p; η2
 partial  (Group) F(1; 20)=2.852; .107; .125  

F(df1;df2); p; η2
 partial (Time*group) F(1; 20)=1.699; .207; .078  

6MTW – Gait  91.86; 13.03 82.71; 18.55  98.22; 9.18 84.58; 25.48  F(1; 20)=2.433; .134; .108 

F(df1;df2); p; η2
 partial  (Group) F(1; 20)=2.422; .135; .108  

F(df1;df2); p; η2
 partial (Time*group) F(1; 20)=.722; .406; .035  

6MTW – Cadence  121.40; 9.29 122.10; 11.68  141.88; 11.75 128.45; 21.23  F(1; 20)=9.118; .007; .313 

F(df1;df2); p; η2
 partial  (Group) F(1; 20)=2.114; .161; .096  

F(df1;df2); p; η2
 partial (Time*group) F(1; 20)=2.529; .127; .112  

 

 

Table 39 - Repeated measures ANOVA for hand grip strength 

Variables  Pre-treatment (moment A)  Post-treatment (moment B)  
F(df1;df2); p; η2

 partial (Time) 
(mean; SD) Non supplem. Supplem.  Non supplem. Supplem.  

Hand grip strength  29.5; 8.39 30.58; 7.15  27.90; 8.17 31.42; 8.46  F(1; 20)=.433; .518; .021 

F(df1;df2); p; η2
 partial  (Group) F(1; 20)=.460; .506; .022  

F(df1;df2); p; η2
 partial (Time*group) F(1; 20)=4.362; .050; .179  

 

Similarly to the cross sectional analysis, PCA was used to obtain dimensions of functional 

ability (functional tiredness and functional help) for each moment (moment A and B). The 

obtained dimensions were functional-T (functional tiredness moment A, Cronbach’s alpha: .341; 

functional tiredness moment B, Cronbach’s alpha: .549) and functional-H (functional help 
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moment A, Cronbach’s alpha: .569; functional help moment B, Cronbach’s alpha: .434). The low 

reliability of the components (Cronbach’s alpha <.6) prevented us from using them and therefore 

each sub-scale of the QoFA was analyzed independently (Table 40).  A significant effect of time 

by group interaction was observed for lower limb tiredness; however, no significant effects of time 

or group were observed. Once again, the non supplemented group scored higher than 

supplemented group in moment A; after treatment the mean value of supplemented group was 

very similar to the mean value of the non supplemented group. In the remaining sub-scales 

(mobility tiredness, upper limb tiredness, mobility help and PADL help) no significant effects of 

time, group or time by group interaction were observed.  

 

Table 40 - Repeated measures ANOVA for functional ability 

Variables  Pre-treatment (moment A)  Post-treatment (moment B)  
F(df1;df2); p; η2

 partial (Time) 
(mean; SD) Non supplem. Supplem.  Non supplem. Supplem.  

Mobility tiredness 4.90; 1.97 3.92; 1.93  5.30; .82 5.08; 1.24  F(1; 20)=3.821; .065; .160 

F(df1;df2); p; η2
 partial  (Group) F(1; 20)=1.231; .280; .058  

F(df1;df2); p; η2
 partial  (Time*group) F(1; 20)=.915; .350; .044  

Lower limb tiredness 4.60; .52 3.58; 1.44  4.30; .95 4.58; .90  F(1; 20)=2.048; .168; .093 

F(df1;df2); p; η2
 partial  (Group) F(1; 20)=1.002; .329; .048  

F(df1;df2); p; η2
 partial  (Time*group) F(1; 20)=7.064; .015; .261  

Upper limb tiredness 3.90; .32 3.92; .29  3.90; .32 3.83; .39  F(1; 20)=.826; .374; .040 

F(df1;df2); p; η2
 partial  (Group) F(1; 20)=.035; .854; .002  

F(df1;df2); p; η2
 partial  (Time*group) F(1; 20)=.826; .374; .040  

Mobility help 11.80; .63 11.50; .91  12.00; .00 11.67; .78  F(1; 20)=.961; .339; .046 

F(df1;df2); p; η2
 partial  (Group) F(1; 20)=1.881; .185; .086  

F(df1;df2); p; η2
 partial  (Time*group) F(1; 20)=.008; .930; .000  

PADL help 18.20; 4.37 18.50; 2.71  18.40; 3.75 18.67; 2.31  F(1; 20)=.630; .437; .031 

F(df1;df2); p; η2
 partial  (Group) F(1; 20)=.041; .841; .002  

F(df1;df2); p; η2
 partial  (Time*group) F(1; 20)=.005; .943; .000  
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5. Discussion and conclusions 
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For a long time it has been known that iron homeostasis is important for health and that 

imbalances of this tightly regulated metabolism leads to adverse effects on several mechanisms 

(Nancy C. Andrews, 1999). Specifically, low iron status or iron deficiency, which is the focus of 

this work, has been associated with negative outcomes in cognitive performance, depression, 

behavior and physical capacity (J. L. Beard & Connor, 2003; Haas & Brownlie, 2001; Laura E. 

Murray-Kolb, 2011). Despite of this well-known effect on these domains of human health, the 

main body of research regarding iron deficiency has been conducted in infants, children and 

women of child bearing age. However, older individuals are particularly susceptible of being at 

risk of iron deficiency. Furthermore, due to the aging process, they are more likely to develop 

cognitive deficits (Deary et al., 2009), depressive mood (Jamison et al., 2006) and physical 

disabilities (Janssen et al., 2002). Still, little is known about correlates of low iron status in the 

aging process.  

In this work, we examined the associations of normal and lower iron status with cognitive 

performance, neuropsychological morbidity, functional ability and physical performances in older 

individuals. In order to explore and understand these associations, we used two distinct 

approaches: (i) an observational approach, with a cross-sectional design, and (ii) an exploratory 

approach, using a quasi-experimental study design with iron-based fortification intervention 

component. Three main objectives served as the guiding thread to the work here addressed. 

First, using a cross-sectional methodology we investigated the associations of iron deficiency and 

low iron status with cognition, mood and physical functional ability. Second, we investigated 

whether iron supplementation ameliorated the iron status. And, third, whether fortification 

improved neurocognitive and physical performance.  

5.1. Strengths and limitations 

The novelty of this work deserves to be highlighted. The population-based observational 

study is the first work that examines the associations of iron deficiency with cognitive function, 

neuropsychological morbidity and physical functional ability in older community dwellers. 

Furthermore, both hematological and neurocognitive assessments were very comprehensive 

which allowed us to detect association(s) between specific dimensions of iron status (such as 

storage) and specific dimensions of cognition (such as memory). Since this work was supported 

by a larger study addressing predictors of healthy cognitive aging, several measures were 

available to correlate with iron status and the extensive characterization of participants allowed 
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controlling the main confounding factors that could confound and/or act as effectors in the 

associations under analysis. The richness of available data and the statistical approach should be 

highlighted as strengths of this work. 

Some limitations of this work should also be addressed. The cross-sectional nature of 

observational study limits conclusions on the nature of the association between low iron status 

and the dependent variables addressed. The sample size can also be a limitation. Although it was 

sufficient to allow the observation of significant associations, it could be not enough to detect 

more subtle associations in other variables, especially in case of small effect sizes. As such, 

effect sizes were reported throughout the work. Furthermore, the low prevalence of anemic 

individuals in our sample did not allow to explore the differential association of iron deficiency, 

iron deficiency anemia, anemia and normal iron nutriture. In order to overcome these limitations 

(sample size and conditions prevalence) a larger population-based study should be used. As for 

all the observational studies, here also, no causality relationship can be established for each 

association found. This limitation, inherent to the nature of the design, could be overcome using 

a randomized controlled trial, preferentially double (or even) triple blind. However, due to several 

practical limitations (including, chiefly ethical constrains), a double blind randomized controlled 

trial was not performed. Instead a quasi-experimental study design, here designated as 

intervention study, was used, which complemented the observational study.  

In the intervention study the sample size is, in fact, the major limitation although, the 

nature of the design, which include repeated measures, allows the use of small samples to 

detect significant differences. Furthermore, the distribution of subjects by branch can also 

represent a bias. The two branches had similar number of individuals classified as low FT and if, 

in theory, only the low FT [which are undoubtedly iron deficient (G. H. Guyatt et al., 1992) benefit 

from iron fortification, the improvements may be diluted by the ones that did not improve for 

being false iron deficient. Perhaps other approaches should be considered in which all individuals 

are fortified and results will be compared between the ones that benefit from the intervention, 

measured by hemoglobin and/or FT response (Mei et al., 2005), and the ones that do not 

benefit.   

Finally, novelty was also one of the features of the intervention study. To our knowledge, 

the present work was the first one to test the effects of iron fortification on iron status of older 

individuals, and further address if this strategy correlates with (positive) effects in cognition, 
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neuropsychological morbidity, functional ability and physical performance. Furthermore, it was 

also the first that used iron food fortification as a vehicle for iron delivery.  

5.2. Iron deficiency or low iron status – What matters? 

The participants enrolled in this study were cognitively “healthy” community dwellers  (no 

diagnosed cognitive impairment, dementia and/or neuropsychiatric disorder), whom were 

clinically considered as “normal/healthy” agers, particularly considering absence of 

neuropathology, and/or central nervous system disease and/or overt thyroid pathology. 

Nevertheless, despite of this, subjects with conditions that could affect iron status (chronic kidney 

disease, malnutrition, inflammatory states and suspects of iron overload) were also further 

excluded from the analysis. Although iron status is a continuum from iron overload to iron 

deficiency, our aim was only to address the associations of iron deficiency or low iron status and 

for that reason, subjects with suspects of iron overload were excluded.  

Individuals were classified as iron deficient using a very complete panel of iron biomarkers 

and according the values proposed in the scientific literature (see Table 1). Since inflammation 

influences the levels of several of the iron-status biomarkers, all the cases of inflammatory states 

were excluded (hsCRP>10mg/dL). Even having excluding inflammatory states, a significant 

difference in the value of hsCRP between iron sufficiency cases and ID cases was observed and, 

not surprisingly, higher values of hsCRP were observed in the ID group. As expected, the ID 

group presented significantly different values in the red cells indices, in the iron biomarkers and 

in the hematological dimensions, without exceptions. Coherently, all the differences indicate a 

significantly lower iron status of the ID group. The occurrence of hypoferremia following infection 

(which leads to inflammation) has been recognized for more than a half of century (Thurnham & 

McCabe, 2012). Furthermore, it is known that inflammatory hallmarks are present in the etiology 

of ACD and that this relation is mediated by hepcidin, which is over expressed in inflammatory 

states and negatively regulates iron availability (T. Ganz & Nemeth, 2006; Hentze et al., 2010). 

Here we classify as iron deficient a group of individuals with a higher inflammatory profile and for 

that reason we cannot conclude if we are in the presence of an absolute or functional iron 

deficiency (Thomas et al., 2013).  

In order to exclude the inflammation effects on iron status and its associations with the 

target variables (cognitive, psychological and physical functional ability), all the analyses were 

controlled for hsCRP levels. Additionally to the hsCRP, all the analyses were controlled for other 
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main confounding factors. The analysis of neurocognitive and neuropsychological variables was 

controlled for age, gender and education; GDS score was also used in the analysis of 

neurocognitive variables, following previous observation in similar cohorts (Nadine Correia Santos 

et al., 2014). Physical ability variables were also controlled for age and BMI. This strategy gives 

us a stronger confidence in the results obtained. We used ANCOVA to test whether the iron 

deficiency classification could be a predictor of the dependent variables and no significant results 

were observed in any of them, which was unexpected since in other types of population (namely 

children, adolescents and childbearing age women) iron deficiency was associated with 

impairments on cognition, mood and physical performance (J. L. Beard et al., 2005; Bodnar, 

Cogswell, & McDonald, 2005; Grantham-McGregor & Ani, 2001; Halterman, Kaczorowski, Aligne, 

Auinger, & Szilagyi, 2001). The minimum value of hemoglobin found in our sample was 9.3 

mg/dL, where it is known that severe ID will lead to deficient erythropoiesis and therefore to 

anemia, which will be severe in the same proportion as the ID. The inefficiency of the 

classification of ID to predict the target variables may be explained by the fact that, in our 

sample, ID was not sufficiently severe.  

Iron status is a continuum and no clear cutoff exists between normal iron status and iron 

deficiency. In order to test the association of iron status/dimensions with neurocognition, 

neuropsychological morbidity and physical functional ability hierarchical regression models were 

constructed. Our data indicate that, even after controlling for the main confounding factors, iron 

status is associated with memory dimension, GDS and the functional tiredness dimension.  

In the same line as previously proposed (J. L. Beard, 2001), and taken together our 

results, these findings suggest that, from the point of view of cognitive function, mood and 

physical ability, classifying individuals as iron deficient or non deficient is not a biological reality, 

since none of the variables taken as dependent was different between iron-deficient and iron-

sufficient individuals. Instead considering iron status/nutriture as a continuum seems more 

accurate and reliable to assess the consequences of different levels of severity.   

 

5.3. Nutritional status and iron nutriture – obviously! 

It was previously proposed that an iron deficient state could be a surrogate marker for 

malnutrition (Fairweather-Tait et al., 2013; Hsu et al., 2013). Although the MNA test was 

designed to detect protein-energy malnutrition (Guigoz, 2006), some authors (Murphy, Brooks, 



 

101 
 

New, & Lumbers, 2000) found significantly lower intakes of iron in malnourished orthopedic 

patients when compared with well-nourished patients.  These differences were not corroborated 

by a study in institutionalized older individuals (Ruiz-López et al., 2003). Using the MNA score as 

a continuum, a significant correlation was found with iron intake in hospitalized patients. Even 

though, in theory, MNA scores can be associated with iron status, only a small study so far, to 

our knowledge, has investigated this (Langkamp-Henken, Hudgens, Stechmiller, & Herrlinger-

Garcia, 2005). This study reported a positive association of MNA with hematocrit and hemoglobin 

in pressure ulcers patients, but they included individuals that ranged from undernourished to 

normal nutritional status. In our population, excluding undernourished individuals, we observed 

that ID states can be significantly predicted by MNA. Nutritional status is a predictor of ID and for 

a long time is a known factor associated to cognition (Goodwin, Goodwin, & Garry, 1983), mood 

(Boult, Krinke, Urdangarin, & Skarin, 1999) and physical performance (Olin, Koochek, Ljungqvist, 

& Cederholm, 2004). Taken together, these associations led us to hypothesize that nutritional 

status could be a mediator of the association of iron status with the target variables. In this study, 

our hypothesis revealed to be true regarding a mediation effect in the association of storage 

dimension with memory dimension and will be further discussed. 

 

5.4. Memory - the neurocognitive facet of lower iron status  

From the literature it is clear that the focus of low iron status research and cognition has 

been based on the categorical classification of iron deficiency, particularly in children and/or in 

animal models (Fretham et al., 2011) or in anemic individuals (Deal, Carlson, Xue, Fried, & 

Chaves, 2009; Denny et al., 2006; Lucca et al., 2008; Terekeci et al., 2010). In this work, as 

previously discussed, classification as iron deficient was not sensitive to discriminate cognitive 

performance of subjects. From the 151 enrolled subjects only 23 were anemic and from these 

only 8 were also iron deficient (data not shown). The discrepancy between the number of anemic 

subjects in each possible condition (unknown=2; iron deficient=36; iron deficiency anemia=8; 

anemic=15; normal=90) prevented us to conduct an analysis regarding anemia or iron deficiency 

anemia.  

Classification of anemia is made with base in the hemoglobin levels and since it was not 

possible to perform an analysis with respect to that classification we used hemoglobin levels to 

construct the erythropoiesys dimension along with hematocrit and RBC. Theoretically, the 
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associations found with this dimension should be similar, and in the same direction, to the 

differences found between anemic and non anemic individuals when analyzing similar constructs. 

The results of hierarchical regression models indicate that the erythropoiesys dimension 

predicted the memory dimension but did not predict the executive dimension, MMSE or MOCA. It 

is puzzling that no significant predictive value was observed for the above mentioned variables 

since several studies reported differences in the performance of these tests (or other tests 

measuring the same cognitive functions) among anemic and non-anemic older individuals (Deal 

et al., 2009; Lucca et al., 2008; Terekeci et al., 2010). The absence of statistical significant 

results can probably be explained by the different methodological approaches and/or it is 

possible that we do not have sufficient sample size to observe subtle associations. Still, the 

sample size was sufficient to detect the association of erythropoiesys dimension and memory, 

indicating perhaps that the magnitude of the possible undetected association is smaller for the 

executive dimension, MMSE or MOCA than for memory dimension. With respect to the predictive 

value of the erythropoiesys for memory, our observation is consistent with that by Shah et al. (R. 

C. Shah et al., 2009) who reported lower memory ability in individuals with lower levels of 

hemoglobin. Similar to our methodological approach the authors considered that the use of 

hemoglobin as a continuous variable may be a better way to characterize its relationship with 

cognitive function. 

The neurocognitive dimensions/variables were not predicted by any of the remaining 

hematological variables with exception for the storage dimension which was a predictor of the 

memory dimension. Once again, our results do not fit with previous reports in which an 

association between ID and MMSE was observed (Yavuz et al., 2012). In other population 

groups, namely young women, iron status has been associated with executive function and 

cognition but in some case this associations are found between the time to complete a task and 

not the result of the task (Blanton, Green, & Kretsch, 2013; L. E. Murray-Kolb & Beard, 2007). 

The neurocognitive tests that we used have a defined duration to be completed and are 

considered finished after a defined number of mistakes, or do not take time into consideration. 

Several hypotheses can be put forward to explain the discrepancy of results between our study 

and some previous reports but sample size and especially methodological approach are again 

the most probable.  

Despite of the conflicting results of low iron status and cognitive performance, the 

observations for memory and storage are consistent with previous observations in children, 
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adolescents and pregnant women (Fretham et al., 2011; Gordon, 2003; Groner, Holtzman, 

Charney, & Mellits, 1986). Insights from experiments on animal models of iron deficiency provide 

clues that possibly explain this interesting finding. The hippocampus is the central processing 

area for memory (Squire, 2004) and alterations of hippocampus neurochemical profile of rats 

were observed during perinatal ID which causes neurochemical alterations and possibly 

persistent changes in the resting energy status, neurotransmission and myelination (Rao, Tkac, 

Townsend, Gruetter, & Georgieff, 2003). Tran et al. (Tran, Fretham, Carlson, & Georgieff, 2009) 

showed that fetal-neonatal ID lowers hippocampal brain-derived neurotrophic factor expression 

and function even in adult age. These findings are relevant to the understanding of the molecular 

basis of the reported association; however, they concern to a period of the brain development in 

which iron is paramount (Roskams & Connor, 1994). During aging process a certain degree of 

brain iron accumulation is expected, but its effects are deleterious (Tracey A. Rouault & 

Cooperman, 2006). Since no studies were published regarding these mechanisms, both in 

humans and animal models, here we can only suggest the existence of similar mechanisms 

during iron deficiency in aging.  

Since, in the absence of parenteral iron administration dietary iron is the only source of 

iron (Miret et al., 2003), and nutritional status is associated with cognitive function, depressive 

mood and physical ability of older individuals (Goodwin et al., 1983; Stuck et al., 1999), we 

hypothesized that the association of iron status and the dependent variables under analysis could 

be mediated by nutritional status. Here the only interaction with significant predictive value was 

storage on memory and it was positive, which means that for individuals with higher stores of 

iron, if in a good nutritional status, memory function will be at a potential maximum. This finding 

is particularly interesting and to our knowledge is reported for the first time. It is possible that 

higher levels of insufficiency are necessary to impact on several of the dimensions studied, and 

therefore our sample may lack power to detect them.  

Interestingly, from the hematological dimensions constructed with iron biomarkers 

(storage, transport and transport s.) only the storage dimension, alone or in interaction with the 

nutritional status, was a significant predictor of memory. Stored iron, assessed using storage 

dimension as a proxy, is readily available when and where it is needed (Linder, 2013), which may 

justify its impact on memory function.  
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5.5. Depressive mood in depressed iron status  

The analysis of the predictive value of iron related hematological dimensions on 

neuropsychological variables revealed that only depressive mood could be predicted. Specifically, 

erythropoiesis, transport s. and transport dimensions were significant predictors of GDS score. 

Regarding the erythropoiesis dimension, hemoglobin is one of the principal components and 

therefore is expected that our results follow the same direction of the reports exploring the 

associations of anemia and depression. Despite of the differences in the methodological 

approach our results are in accordance with the results of three previous studies examining the 

association of anemia and depressive mood. In the InChianti study (Onder et al., 2005) a higher 

prevalence of anemia was observed among the individuals displaying depressive symptoms. In 

the same line, the results of the English longitudinal study of ageing (Hamer & Molloy, 2009) 

showed that, at baseline, anemia was associated with depressive mood, although it was not a 

predictor of its incidence at a two years follow-up. More recently, Stewart et al. (R. Stewart & 

Hirani, 2012), in a study examining the associations between anemia and iron status with 

depressive symptoms, found anemia to be associated with depressive mood, although it was 

reflecting primarily the anemia of chronic disease. This result should be interpreted with caution, 

since inflammation is a component of anemia of chronic disease and it is associated with 

depression per se (Dantzer, O'Connor, Freund, Johnson, & Kelley, 2008). Altogether, these 

studies suggest that altered brain oxygenation and dopaminergic function can underlie the 

observed mood outcome, given the well described involvement of monoamines imbalance in the 

etiology of depression (Meyer et al., 2006). Other neurotransmitter systems are likely also 

involved, namely serotoninergic and noradrenergic (Burhans et al., 2005).  

5.6. If we are not made of iron, we get tired 

The amount of literature reporting lower physical functioning in anemic older individuals is 

convincing (Chaves, 2008; Penninx et al., 2003; Penninx et al., 2004; M. Thein et al., 2009). In 

the present work we observed that both erythropoiesis and red cells c. dimensions were 

associated with the tiredness dimension of physical functional ability. The logical explanation for 

the higher fatigability observed in individuals with lower scores in these hematological dimension 

is the lower oxygenation of the muscles (J. L. Beard, 2001; Penninx et al., 2003). 
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Literature in the study of iron deficiency and physical ability in older subjects is surprisingly 

scarce, contrary to the large amount of literature examining the same in anemia. We report a 

significant predictive value of storage and transport dimensions on the functional-T dimension. 

Ours is the first report on these aspects in the older population, and seems to be in accordance 

with reports on other populations, such as hospitalized anemic patients and several physical 

workers from both sexes (Haas & Brownlie, 2001). Of notice, in iron-depleted, nonanemic women 

iron supplementation was associated with a significant improvement in muscle fatigability, which 

can be interpreted as an indication of higher fatigability due to low iron status (Brutsaert et al., 

2003).  

5.7. Can we reverse it and its liabilities? 

Using a quasi-experimental design we tested the hypothesis of cognitive function, mood 

and physical performance amelioration or normalization with daily iron food fortification with low 

iron dosage.  

From the hematological dimensions/variables, with exception of body iron, no significant 

effects of the intervention were observed. Rimon et al. (Rimon et al., 2005) reported an increase 

in hemoglobin and ferritin concentrations in iron deficient anemic elderly treated with a daily 

dosage of 15 mg of iron during 60 days. Although the dosages in our study and theirs were 

similar and the duration of our intervention was greater we did not observed the same findings. 

Several differences should be considered. In their work the subjects were iron deficient anemic 

and therefore more prompt to absorb iron and to have a greater amelioration of hematological 

parameters. Also, different formulations of iron were used; however, Na(Fe3+)EDTA should be 

better absorbed than the liquid ferrous gluconate they used (Dary & Hurrell, 2006). Despite of no 

significant effects observed in almost all the hematological variables, body iron significantly 

increased (significant effect of time by group interaction) from pre-treatment to post treatment in 

the supplemented group which could have implications for the results that will be discussed 

further ahead.  

Here neurocognitive and neuropsychological variables were not different between the two 

time points and/or as a result of the intervention. Results from randomized controlled trials 

indicate that iron supplementation is capable of ameliorating or normalizing neurocognition 

(Falkingham et al., 2010) and neuropsychological morbidity (Laura E. Murray-Kolb, 2011) in 

children and adults. The iron dosage used in these studies was higher than the one that we used 
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and it is possible that our iron dosage is insufficient to promote a visible amelioration. The BNT-

15 score was significantly improved by the intervention, although it is possible that this result is 

more dependent on the engagement of the individuals on the fortification branch than as a result 

of the iron fortification.  

The main findings on the longitudinal study are the improvement on the balance (POMA – 

static balance, POMA – gait balance and POMA – total), on the hand grip strength and the 

reduction in lower limb tiredness. These observations are consistent with the hypothesis that iron 

contributes to physical performance. Anemia has been associated with an increased risk of falls 

(Dharmarajan, Avula, & Norkus, 2007; Mei Sheng et al., 2008) and if the type of association is 

causal, the treatment of anemia will result in a reduced risk of falls. Here we observed an 

improvement in the scores of POMA, which is used to assess the risk of falls in older individuals 

(Tinetti, 1986).  

Hand grip strength and lower limb tiredness improved with supplementation, which may 

reflect endurance and aerobic capacity. Iron deficiency, particularly iron deficiency anemia was 

associated with a compromised aerobic and endurance capacity in a large number of studies 

from animal to humans and it was hypothesized that, further to deficient oxygen delivery, tissue 

iron deficiency may also play a role through reduced cellular oxidative capacity (Haas & Brownlie, 

2001).  

5.8. Concluding remarks and future directions 

Iron deficiency is the most common nutritional deficiency in the world and older individuals 

are particular susceptible to developed negative imbalances in iron homeostasis, particularly if a 

pathological condition is present. In an aging society, efforts to understand and identify issues 

that can be used to improve or maintain health and wellbeing of agers are paramount. Cognition 

and physical functioning are particularly relevant to maintain independence in late life. Thus, the 

study and investigation of strategies for a healthy aging is particularly relevant, not only given the 

health and social benefits, but also by the reduction of the expenditure of the health and welfare 

systems of nations.  

Here, using complementary study designs, we demonstrated an association of the lower 

half of the iron status range and memory, depressive mood and physical functional tiredness in 

older community dwellers. These finding are particularly relevant if we take into account the 

dimension of the public health problem that is ID and that it impacts essential capabilities of 
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aging individuals. The traditional viewpoint that iron deficiency does not have consequences until 

the development of anemia is challenged here, since our sample had a very low number of 

anemic individuals.  

The observations from the longitudinal study indicate that physical performance and ability 

probably can be ameliorated with nutritional interventions of iron fortified foods.  

In conclusion, low iron status of older individuals is associated with more depressive 

mood, higher tiredness from physical activities of daily living and lower memory, which seem to 

be modulated by nutritional status. Further research is needed to replicate and confirm our 

results, as well as, insights from animal models of low iron status and aging, which can be an 

advantage to understand the mechanistic aspects that underlie these observations.  
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