
NEEM: Network-friendly Epidemic Multicast∗

J. Pereira
U. do Minho
jop@di.uminho.pt

L. Rodrigues
U. de Lisboa

ler@di.fc.ul.pt

M. J. Monteiro
U. de Lisboa

mjmonteiro@di.fc.ul.pt

R. Oliveira
U. do Minho
rco@di.uminho.pt

A.-M. Kermarrec
Microsoft Research

annemk@microsoft.com

July 28, 2003

Abstract

Epidemic, or probabilistic, multicast protocols have emerged as a viable mech-
anism to circumvent the scalability problems of reliable multicast protocols. How-
ever, most existing epidemic approaches use connectionless transport protocols to
exchange messages and rely on the intrinsic robustness of the epidemic dissemina-
tion to mask network omissions. Unfortunately, such an approach is not network-
friendly, since the epidemic protocol makes no effort to reduce the load imposed
on the network when the system is congested.

In this paper, we propose a novel epidemic protocol whose main characteristic
is to be network-friendly. This property is achieved by relying on connection-
oriented transport connections, such as TCP/IP, to support the communication
among peers. Since during congestion messages accumulate in the border of the
network, the protocol uses an innovative buffer management scheme, that com-
bines different selection techniques to discard messages upon overflow. This tech-
nique improves the quality of the information delivered to the application during
periods of network congestion. The protocol has been implemented and the bene-
fits of the approach are illustrated using a combination of experimental and simu-
lation results.

1 Introduction

Reliable multicast is a fundamental building block of many distributed applications.
However, providing stable high throughput to large groups while, at the same time, en-
forcing strong reliability is a very hard task [1]. Some protocols, such as RMTP [15],
generate a large number of acknowledgments that must be received and processed,
a task that may rapidly overwhelm the sender. Even with scalable acknowledgment
mechanisms, messages have to be buffered and retransmitted until all recipients ac-
knowledge their reception or are declared failed [9]. Therefore, when a receiver is

∗Selected section of this report have been published in the Proceedings of the 22nd Symposium on Reli-
able Distributed Systems, October, 2003, Florence, Italy. Work partially supported by FCT project RUMOR
(POSI/40088/CHS/2001) and Microsoft Research Grant (2001-39).

1

perturbed, messages accumulate and eventually prevent further messages to be sent for
some time. This means that a single slow receiver slows down the entire group [24].

Epidemic multicast protocols are an attractive proposal to address the performance
and scalability issues of reliable multicast. These protocols, also called gossip-based or
probabilistic, support the efficient dissemination of data among a large number of nodes
while providing a probabilistic guarantee of delivery [11, 2, 13, 4]. Epidemic multicast
protocols support throughput stability even for very large groups with perturbed nodes,
as the load required to ensure reliability is evenly spread across all members of the
group and no single perturbed node can block senders. Additionally, gossiping offers
high resilience to node and network failures.

The probabilistic atomic delivery guarantee of epidemic protocols is based on the
assumption of an uniformly distributed message loss. This assumption does not hold
if the input load exceeds the capacity of the network. When the network is congested,
sequences of messages can be discarded, leading to failure of the protocol. This phe-
nomenon is exacerbated by the usage of connection-less transport layer such as UDP/IP
for exchanging gossip messages. As UDP/IP based protocols do not usually perform
congestion control, routers are often configured to discard UDP/IP traffic when con-
gested. This is a sensible choice, as failing to perform congestion control can lead to a
severe degradation of throughput in congested networks [12, 5]. Additionally, in todays
Internet, participants in multicast traffic may access the network through residential
connections such as ADSL, cable, or even traditional analog modems. Even broad-
band connections are asymmetric and have restricted uplink capacities. This further
complicates the deployment of epidemic protocols which generate symmetric traffic.

In this paper, we propose a novel epidemic protocol called NEEM, Network-friendly
Epidemic Multicast. As its name implies, the main goal of the protocol is to ensure
that the protocol does not negatively contribute to the congestion of the network dur-
ing overload periods. In order to do so, our proposal combines a standard epidemic
protocol with the following complementary mechanisms:

• TCP-friendly [5] end-to-end congestion control, allowing safe usage of available
bandwidth. This property is achieved by relying on connection-oriented trans-
port connections, such as TCP/IP, to support the communication among peers.

• An innovative buffer management technique at the border of the network, that
combines different selection techniques to discard messages on overflow. Using
this approach, it is possible to preserve the throughput stability of epidemic pro-
tocols while at the same time improve the quality of the information delivered to
the application during network congestion periods.

A key feature of our buffer management technique is the usage of message se-
mantics to select which messages to discard upon overflow. This work shows that
a technique that has been used to improve throughput stability of deterministic reli-
able multicast protocols [23] can also benefit epidemic dissemination. The approach
stems from the observation that in distributed applications messages often overwrite
the content of others sent shortly before, therefore making them obsolete while still in
transit. We have previously suggested the usage of message semantics in probabilis-
tic multicast protocols in a short paper [21]. The current paper includes the following
novel significant contributions:i) we describe in detail the architecture for combining
probabilistic multicast and semantic reliability and introduce its implementation using
TCP/IP;ii) we use a simulation model to illustrate the performance of the proposed ar-
chitecture, showing how configuration parameters and design decisions, such as buffer

2

size and purging policies, affect the overall performance of the protocol; andiii) we
present results with traffic from a real application.

The paper is organized as follows. Section 2 motivates our work by describing
the target application and network environment, introducing also the intuition behind
our approach. The proposed protocol is described in Section 3. Section 4 evaluates the
proposed protocol and identifies the configuration parameters that offer the best results.
Finally, Section 5 discusses related work and Section 6 concludes the paper.

2 Motivation

2.1 Target Applications

Most applications that need to periodically disseminate updates to a large number of
recipients may benefit from a protocol such as NEEM. On one hand, the scalability
requirements invalidate the use of conventional reliable multicast protocols. Epidemic
protocols offer a good balance among reliability and scalability. On the other hand,
the periodic nature of traffic makes it highly likely that the message flow exhibits some
level of redundancy. Such redundancy can be exploited by a clever buffer management
scheme to selectively discard messages during overflow periods. Examples of applica-
tions with these characteristics are multi-player games, and real-time multicasting of
data from sport events to a very large number of observers, such as tracking of GPS
coordinates of participants in the Paris-Dakar or the American Cup. Other examples of
traffic with similar characteristics can be found in [22].

Although the applicability of our proposal is not limited to a single application, to
make our discussion concrete we focus on multi-player games. The growing popularity
of multi-player networked games has sparked an interest in supporting large number of
participants over the Internet, both as players and as observers. Player ranks are orga-
nized and matches between top players attract considerable attention. It has even been
suggested that on-line games are turning into a spectator sport, in which the number of
spectators tends to be far greater than the number of participants [3]. In fact, observers
are expected to be a source of revenue for hosting companies. Namely, it is attractive
to use on-line games as an advertisement medium. Providing the observer capability is
also regarded as a mean to increase gaming hardware and software sales.

As hosting games becomes commercially interesting, there is a demand for special-
ized middleware which eases their development and deployment. Current multi-player
games and existing toolkits are either based on a centralized server, which maintains
the state of the game, or on a peer-to-peer model in which each player disseminates
some of the information to all other participants. Neither of these is suitable for coping
with hundreds of spectators. In addition, it is expected that spectators are not passive.
Support for complementary activities, already common in current spectator sports, such
as chatting and betting1 can significantly increase the quality of the experience.

2.2 Case Study: Microsoft Flight Simulator 2002

Microsoft Flight Simulator 2002 (FS2002) is a realistic flight simulation game which
allows for multi-player operation on local area networks and on the Internet. Each
player controls a single aircraft in a common virtual world, where they can inter-
act visually, by colliding, and by exchanging text messages. The implementation of

1As an example visithttp://youplaygames.com/ .

3

FS2002 uses the DirectPlay peer-to-peer API on the Windows operating system [17].
This toolkit provides a simple membership and multisend protocol. The state of the
game is replicated by all participants. Each player maintains the authoritative state of
the locally controlled aircraft and periodically updates other participants by sending
information about its position and velocity [18]. Other messages are used for addi-
tional gaming facilities (e.g. chat messages, the external look of the plane, name of the
player) and for membership management.

Let us analyze the communication requirements of a game such as FS2002. Each
player multicasts 4 state update messages each second, carrying 60 bytes of payload
each. When players are connected using V.90 modems (56 kbps downlink/33.6 kbits
uplink bandwidth) this translates to a maximum of 17 destinations of each state update.
As each player is responsible for multicasting its updates to all observers, this means
that 17 is in fact the total number of players plus spectators. Even with broadband
connections, the uplink is lower than the available downlink bandwidth, thus limiting
the number of destinations. This can be mitigated by relying on a centralized server
with a more expensive high bandwidth network connection, as can be provided by a
commercial game hosting service. This does not however entirely solve the problem,
as a hosting service is also expected to host more than one simultaneous instance of
the game. The amount of traffic imposed on the server is still proportional to the total
number of spectators and thus the operating cost of such service grows linearly with
the bandwidth used. Ideally, one would take advantage of the observers themselves to
relay the traffic, thus removing the dependence on the servers and the upper limit on
the number of spectators.

2.3 Epidemic Multicast on the Internet

At first sight, it seems that the use of epidemic multicast protocols [11, 2, 13, 4] would
trivially make it possible to support a very large number of observers in a multi-player
game without imposing a proportional load on game servers. Unfortunately, the de-
ployment of an epidemic protocol on the envisaged network environment is problem-
atic. As noted before, since the probabilistic guarantees are based on the assumption
of packet loss being uniformly distributed across the network and in time, epidemic
protocols do not cope well with congestion that causes bursts of lost packets in a single
link. In fact, the high probability of message loss during congestion periods is not only
due to the congestion itself, but also due to the fact that epidemic protocols are typically
based on network-unfriendly connectionless transport protocols, such as UDP/IP [12].
Internet service providers (ISPs) often configure their networks to prioritize TCP/IP
traffic to ensure stable performance. Thus, when a network link is being fully used, the
UDP/IP traffic is therefore more likely to be discarded.

Given that several low bandwidth links are expected to exist in our target network
environment, and that these links may be shared by different applications, congestion
periods are bound to happen. Therefore, current epidemic protocols are not appropriate
to disseminate updates from highly dynamic multi-user games to a large set of nodes.
To address these problems, we propose a new epidemic multicast protocol that is based
on network-friendly, connection-oriented transport protocols, such as TCP/IP, to sup-
port the communication among peers. A consequence of such approach is that, during
congestion periods, messages are not injected on the network but, on the contrary, ac-
cumulate at the network border, under control of the epidemic protocol. This raises
the opportunity to be selective when deciding which messages to discard when buffers
overflow. Our selection procedure uses a combination of criteria, among which is the

4

use of semantic knowledge about the message contents, as discussed below.

2.4 On the Use of Semantic Knowledge for Buffer Management

Consider the traffic generated by Flight Simulator 2002. The bulk of the traffic are pe-
riodic messages that convey each airplane’s position to other players and to observers.
In general, each update makes the preceding information about the same airplane ob-
solete, as the most current information is always preferable. Given the nature of the
epidemic dissemination, messages are retransmitted a number of times. Each message
stays within the system for some time. It is thus likely that some messages are already
obsolete while still being relayed. Notice that messages are usually delivered to the
vast majority of destinations in less hops than those necessary to ensure probabilistic
atomicity. This means that messages that are already obsolete and that have even been
delivered can still consume network bandwidth. If such messages could be recognized
by intermediate nodes, a significant amount of bandwidth could be saved.

From the previous paragraph, it may seem that the naive solution of discarding all
but the latest message sent by each source is a effective selection criteria. To achieve
good results, one needs a more sophisticated approach. First, some of the messages
are not related to the airplane position and thus should be delivered with the highest
reliability possible. Second, not all position updates become obsolete. Those updates
that lead to the discovery of a collision or the crossing of a finish line should be reliably
delivered to all players. Observers may also value the ability to reconstruct the entire
route and thus updates that correspond to sharp changes of direction should not be dis-
carded. Finally, in applications other than FS2002, a single node might manage more
than one object, thus multicasting unrelated streams of update messages that should be
managed separately. It is therefore required that some amount of message semantics is
known by the protocol. Our goal is thus to build a general purpose protocol that simul-
taneously takes advantage of message semantics, to reduce bandwidth requirements,
but that is not tied to the content of messages produced by a single application.

3 The NEEM Protocol

Our novel Network-friendly Epidemic Multicast protocol (NEEM) is obtained by com-
bining three complementary layers. A simple epidemic protocol [11] embodying par-
tial membership management [4] is the top layer. This layer is briefly described for
completeness, as it has been introduced and is thoroughly described elsewhere. The
next two sections introduce the specialized buffer management layer and the configu-
ration of the transport layer, which are the core of our proposal. We then conclude by
discussing how the three layers interact to achieve the desired goal.

3.1 Epidemic Dissemination

Epidemic multicast works as follows: A message is initiallu tagged with the maximum
number of roundsr and then forwarded to distinctf other nodes chosen randomly. On
reception, the number of rounds remaining is decremented. If zero remain, the message
is discarded. If not, the message is forwarded again to anotherf nodes. Delivery
happens when a new message is received by a node. The guarantees offered by the
protocol depend on appropriate configuration ofr andf [11, 13]. The membership
protocol is itself based on gossip and keeps at each node list of other locally known

5

nodes [4]. This list is a partial view of the entire group, as it has been shown that
this is sufficient for gossiping to succeed, even if this list is much smaller that the
entire group. The membership protocol works as follows: Upon each gossip round, the
identification of some locally known nodes is piggybacked on data messages. When a
message is received, a node from the local list is picked at random and evicted, being
replaced with the newly arrived node.

3.2 Buffer Management

The buffering layer at each node contains an independent queue for each possible des-
tination. Messages enter the queues during each gossip round, as selected by the gossip
mechanism. Even if the group is very large and contains hundreds of nodes, the small
size of the local membership of each node ensures that only a few buffering queues are
required at each node. Each message is inserted simultaneously inf distinct queues, al-
lowing the space where the payload is stored to be shared, saving additional resources.

For short bursts of incoming messages, buffering alone is enough to spread the load
in time and thus to avoid message losses. Buffering alone is also adequate for local area
network in which congestion is transient. However, for continued loads, buffers are
eventually exhausted. In sharp contrast with deterministic protocols, gossiping cannot
be stopped until buffer space is available, in order not to allow a single perturbed node
to degrade overall performance. The only option is thus to select a message to be
discarded, either the newly arrived or one already in the buffer.

Dropping the newly arrived message is not an attractive option. When the system
is congested it tends to result in the loss of entire gossip rounds as with no buffering
at all. Such correlated loss quickly degrades atomicity guarantees. The goal is thus
to avoid such loss at the expense of discarding other messages in the buffer. This is
done by implementing a selection technique that combines, by order of preference, the
following strategies: Semantic purging, age-based purging, and random purging. We
now examine each of these in turn.

Random purging. A message is selected at random to make up room for each newly
arrived messages. This ensures proper operation of the probabilistic protocol within
the bounds of system capacity due to the intrinsic redundancy of gossip protocols [4]
but is only marginally better when the system is congested for some time. It is however
useful as a fall-back strategy.

Age-based purging. The message that has been relayed more times is discarded. The
rationale for this is that those messages are likely to have reached more nodes and thus
can be retransmitted from elsewhere [14]. This is the preferred purging strategy if no
obsolete messages are discovered.

Semantic purging. A message that has been recognized as obsolete is discarded. By
forcing correlated loss of obsolete messages, it is possible to avoid discarding non-
obsolete messages. In contrast with other purging policies, in which message purging
should be done lazily (i.e. messages should be discarded only if absolutely required),
one can consider an eager strategy in which messages are discarded immediately when
discovered to be obsolete, even if the reclaimed buffer space is not required. This has
the potential advantage of reducing average buffer occupancy and thus of lower latency.

6

The main issue is how to convey the required semantics to the protocol while at
the same time retaining its generality. It is thus not desirable that the protocol de-
pends on the internal structure of messages, both to avoid the complexity of parsing
the information as well as to allow a general purpose implementation of the protocol.
This has been previously discussed in the context of semantically reliable multicast
protocols [23] and the same implementation can be reused. Briefly, the proposed im-
plementation is to associate a small bitmap to each message (e.g. 32 bits) and take
advantage of the sequence number already present in protocol headers to remove du-
plicates and discover missing messages. If theith bit is set in the bitmap of messagej,
the protocol is informed that message with sequence numberj − i is considered obso-
lete. If the bitmap is all set to zero, the protocol defaults to the conservative approach
of not considering message semantics.

This implementation allows that only obsolescence relations among messages from
the same sender and close in the message stream are represented. This is however not a
problem, as it is unlikely that two messages sent far apart can be found simultaneously
in the same buffer and thus need to be compared. Obsolescence among messages from
distinct senders can be represented indirectly using the following strategy: Consider
a messagem sent by some nodep that makes a messagem′ by some other nodeq
obsolete. Upon delivery ofm′ to p, the fact is noted. As soon asp has the opportunity
of sending some other messagem′′, it uses it to mark the originalm as obsolete. This
implementation has the additional advantage of being efficiently manipulated at the
protocol level. Namely, determining which messages are obsolete can be achieved
with simple bit shift and logical operators [23].

Previous work on semantic reliability has also shown that the performance of se-
mantic purging depends on the distance between related messages when compared to
the amount of buffering. If related messages can only be found far apart in the message
stream, it is unlikely that they can be found simultaneously in the same small buffer,
thus reducing the likelihood of purging to occur. Notice however that it is possible to
detect obsolete messages by observing all queues: If a message in one queue is made
obsolete by another message in a different queue it is nonetheless considered obsolete.
This makes the available buffer space for purging larger than each individual queue
while reducing the impact on latency.

3.3 End-to-End Congestion Control

In contrast to previous proposals [2, 4], NEEM uses a connection oriented transport
layer. More precisely, each node uses an individual outgoing TCP/IP connection for
each node in its local membership list. When a network link is congested, the affected
connections are throttled back forcing messages to accumulate in the corresponding
queue at the buffering layer. If the bottleneck is the uplink, this happens simultaneously
for all outgoing connections. If the bottleneck is elsewhere in the network, this has
the additional advantage of relieving the uplink from traffic that would be discarded
anyway. The resulting capacity can then be used by other competing connections.

This approach is also resource efficient, as the number of connections is as small
as the local membership, and a reduced amount of buffering is used for each connec-
tion. Reducing resource usage is however not the primary goal when configuring each
connection with a very small amount of buffer space. By reducing the total amount
of buffering in the system, the latency can be dramatically reduced without severely
impacting bandwidth usage [8]. This is critical, as the number of hops in gossip pro-
tocols multiplies end-to-end latency. Ideally, the buffer size would be dynamically

7

adjusted by the operating system according to the current size of the window [8]. This
mechanism is however not available in standard operating systems. The alternative is to
statically calculate an approximate ideal buffer size given the expected bandwidth share
and round-trip latency of connections. The rest is straightforward:setsockopt() is
used to set the sender buffer to the desired value or, alternatively, anioctl() system
call used to poll current buffer usage.

Although using small buffers reduces the bandwidth usable by each individual con-
nection, our approach does not prevent full usage of the already limited uplink band-
width of each node. This happens because NEEM uses several connections sharing
the limited bandwidth of the same uplink. A very small amount of buffering for each
connection is thus enough to saturate its bandwidth share. In fact, the sum of buffers
in all connections is as large as the default configuration of TCP/IP in most operating
systems, which is enough to fully use the large bandwidth of local area networks or of
high latency long distance connections over the Internet.

3.4 Discussion

Epidemic multicast protocols are usually described as requiring only a connection-less
transport layer and in some cases requiring no explicit buffering. It is thus interesting
to understand the role of the buffering and transport layers proposed. Notice that when
the system is not congested, neither the buffers or the congestion control are used and
thus we restrict our discussion to congested networks.

Besides the positive impact in competing traffic and overall network stability, using
end-to-end congestion control at the transport level allows us to avoid loosing messages
due to congestion within the network. In practice, this layer transforms a network with
high bandwidth and high probability of message loss in a network with lower band-
width but no message loss. The feedback provided to the upper layer about available
bandwidth allows also to push buffering out of the transport layer as much as possible.

The buffer management layer uses purging to transform the low bandwidth and
low loss network back into a high bandwidth and high loss network as the original
network. The advantage is however in the quality of the loss. The original network
discards bursts of possibly valuable messages thus failing to meet the assumptions on
independent loss. The resulting transformed network is much smarter about message
loss. It tries not to loose entire gossip rounds, at the expense of inducing correlated loss
of already irrelevant messages.

Notice that each of the layers alone is of little use when dealing with network
congestion. A smart message purging policy within the epidemic protocol is useless
if the bulk of buffering is done elsewhere. Pushing message loss out of the network
is also useless if full gossip rounds can still be lost due to a naive buffer management
policy. The result of the combined use of these layers is the creation of a virtually
ideal network for probabilistic multicast, which ensures adequate operating conditions
to ensure atomic delivery of relevant messages.

4 Evaluation and Configuration

This section evaluates the performance of the NEEM protocol. In detail, we com-
pare previously proposed buffer management policies (i.e. random and age-based) to
semantic purging when combined with a connection oriented transport layer. This is
done using traffic collected from Microsoft Flight Simulator 2002 (FS2002). We then

8

evaluate the impact of traffic and system configuration parameters to determine the best
configuration of the protocol.

4.1 Evaluation Criteria

The evaluation of the proposed system in the face of different application traffic profiles
and purging configuration parameters requires the definition of a suitable performance
metric. As noted before, NEEM does not aim at reducing the number of message
losses when the network is congested. If the load exceeds the network capacity either
the source is controlled, thus endangering throughput stability, or a number of message
drops will inevitably occur. The purpose of our protocol is to create the conditions to
drop more obsolete information than up-to-date information, thus improving the quality
of the information provided to the users according to the semantics of the application
and without endangering throughput stability.

A good metric of the quality of the information delivered to the users in a sys-
tem where a degree of message obsolescence exists is to count the loss of messages
that never become obsolete. The primary evaluation criterion is thus that non-obsolete
messages are atomically delivered according to the probabilistic protocols metric (i.e.
either to almost all or to almost none recipients). Secondary criteria are reducing la-
tency (i.e. messages are not arbitrarily delayed in order to allow purging) and that
system configuration is robust (i.e. performance is stable despite variation of traffic
and system parameters).

4.2 Integrating NEEM with FS2002

In order to have both a proof-of-concept prototype, and to ease the task of extracting
realistic traffic patterns to evaluate the effectiveness of our approach, we have decided
to experiment NEEM with the Microsoft Flight Simulator 2002 game.

The implementation exploits the fact that FS2002 is based on the DirectPlay API [17].
To intercept the call from FS2002 to the DirectPlay API we have implemented a new
dynamic library that replaces the originaldplayx.dll used by FS2002. The archi-
tecture of the new library, calledneemdplayx.dll , is depicted in Figure 1(a). The
library intercepts all data messages and forwards the remaining control operations to
the origin DirectPlay implementation without further processing. Outbound traffic is
classified, and obsolescence relations encoded in an abstract from which can be inter-
preted by NEEM below. Inbound traffic is pre-processed by an extrapolation layer.
The extrapolation layer is responsible for storing the last position of each object and to
compensate for lost or delayed messages in the probabilistic protocol, by extrapolating
these messages from the past positions.

NEEM itself was implemented using theAppiaprotocol composition and execution
framework [19]. The implementation is a modular composition of different layers, as
depicted in Figure 1(b). The probabilistic multicast layer implements the epidemic dis-
semination of data messages. The buffering layer applies semantic purging to message
queues according to the obsolescence relations identified by theneemdplayx.dll .
Finally, the transport layer described in the previous section is implemented by inter-
facing back with the original DirectPlay library, which in turn calls the native TCP/IP
implementation of the operating system. SinceAppia is implemented in Java and the
neemdplayx.dll is implemented in C++, a small adaption layer glues both com-
ponents.

9

DirectPlay API
Classification Extrapolation

Multiplexer

FS 2002

DirectPlay API
Classification Extrapolation

Multiplexer

FS 2002

NEEM NEEM

neemdplayx.ddlneemdplayx.ddl

(a) DirectPlay interception

Probabilistic multicast

DirectPlay Interface

Buffering and Purging

dll2appia interface

NEEM

A
pp

ia
 s

ta
ck

(b) NEEM

Figure 1: Implementation architecture.

Unfortunately, we do not have the resources to build a controlled experiment with
hundreds of FS2002 observers. Therefore, we have used the implementation to extract
realistic traffic pattern to feed simulations: the traffic pattern extracted from the proto-
type is synthesized and approximated during the simulations by a parametrized random
generator. Traffic is collected from FS2002 by intercepting requests at the DirectPlay
API to multisend messages. These are decoded [18] and logged. The following rule
is then used to decide when each message becomes obsolete, if ever: If during a se-
quence of messages regarding the same airplane, the velocity vector differs from that
of the first by less than a factorF , all but the last are considered to be obsoleted by
its successors. This shows that even withF = 1% a share of46% of all messages do
become obsolete shortly after being sent. WithF = 2% this share rises to72%. This
numbers disregards messages other than position updates, whose number is insignifi-
cant. The traffic pattern of FS2002 can be generalized as follows. Traffic is composed
of an amount of traffic that never becomes obsolete. The remaining sharer, of traffic
is divided ind concurrent chains. Each message in the chain is made obsolete by its
successor with probabilityl. The concrete traffic of FS2002 used fits in this model by
consideringr = 1, d as the number of aircrafts andl = 0.72 whenF = 2%.

4.3 Simulation Model

We use an high level event-based simulation model of the system, in which both the
transport layer, the application and membership are abstracted. The epidemic protocol
and the buffering layer are simulated in detail. The simulated system is composed of

10

a configurable number of processes connected by a point-to-point network. Each con-
nection is allocated a share of bandwidth using a token bucket algorithm and imposes a
configurable latency on message transmission. Each node is connected only to a subset
of distinct nodes chosen randomly which constitute its local membership. This mem-
bership is generated once before simulation runs and checked that every node is reach-
able from every other node in the system. This simulation model offers an interesting
balance between accuracy and efficiency. Many of the data values shown in our results
are obtained by binary search, which is computationally very intensive. A detailed sim-
ulation model of the transport layer, such as the one offered by ns-2 [20], would make
our simulations prohibitively long without a significant improvement in accuracy, as
previous work has shown that TCP/IP successfully approximates our model [8].

For the results presented in this paper, the network is configured such that each link
has a 56 kbps bandwidth both for uplink and downlink and a latency of 25 ms. This
is the worst case scenario in which all participants have limited bandwidth in face of
the offered load. As the local membership size used is 12, this bandwidth is statically
divided by the 12 outgoing connections. In practice, this corresponds to each node
maintaining 12 outgoing TCP/IP connections and 12 incoming connections. We have
used a number of nodes ranging from 50 to 500. As discussed in Section 2, even 50
nodes is out of reach of a simple multisend primitive and thus already an interesting
application scenario. The default parameters used for simulations shown below are a
buffer size of 10 messages per connection.

For the probabilistic multicast protocol we have used a fanout of 6 and maximum
of 6 rounds per message. A justification for these values is outside the scope of this pa-
per and can be found in [11]. We have verified experimentally that these values remain
valid, but omit the results due to space constraints. The latency of the gossip mech-
anism is modeled as uniformly distributed between 0 and 25 ms, and is attributable
mostly to scheduling latency. Each simulation is run for 300 s of simulated time. Dur-
ing simulation, events are logged to files and processed later to computed the desired
statistics. The first 100 s and last 50 s are discarded to avoid transient states.

4.4 Simulation Results

Figure 2 depicts some relevant performance metrics of NEEM, namely the output rate,
the atomicity of message delivery, and the latency of message delivery, as a function of
the number of players. Values in this figure were obtained by running the simulation
with a fixed number of 500 nodes, of which an increasing number of players, and
recording the delivery of those messages that do never become obsolete.

Figure 2(a) presents the average output rate of non-obsolete messages observed at a
single spectator using a simple gossip protocol and NEEM. The effect of each purging
strategy alone is also presented. Notice that only semantic purging strategies allow
for a linear increase in the message rate. The curves depicted in this graph must be
interpreted with care. With 25 players, pbcast is not “half as good” as semantic purging
as the graphic shows. This reason for this is that different messages are discarded by
different processes and “half of the atomicity” is not useful. A better metric is presented
in Figure 2(b), which counts the number of messages which were delivered to more
than 95% of processes. This means that semantic purging improves the usefulness
of the protocol from 5 to 20 concurrent players. Latency was measured at a single
process and only for delivered messages. As shown in Figure 2(c) random selection is
the one which results in higher latency. Age based purging, on the other hand, results
in low latency. Regarding semantic purging policies, it can be observed that an eager

11

0

5

10

15

20

25

30

35

5 10 15 20 25 30 35

O
ut

pu
t r

at
e

(m
sg

/s
)

Number of players

NEEM
random

age
lazy

eager

(a) Output rate

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25 30 35

A
to

m
ic

ity

Number of players

NEEM
random

age
lazy

eager

(b) Atomicity

0

2

4

6

8

10

5 10 15 20 25 30 35

La
te

nc
y

(s
)

Number of players

NEEM
random

age
lazy

eager

(c) Latency

Figure 2: Performance of the NEEM protocol.

purging strategy results in better latency while the system is moderately congested,
by eliminating transmission of as much obsolete messages as possible. Therefore, the
eager semantic purging strategy is the best option, specially when combined with fall-
back to age-based purging in NEEM.

Another way to assess the effectiveness of NEEM is to compute the maximum in-
put rate that the protocol may sustain before breaking a given atomicity requirement.
This metric is depicted in Figure 3. Maximum throughput graphics are calculated by
binary searching (running a simulation for each combination of parameters of inter-
est) of the input rate that causes the system to deliver at least 95% of non-obsolete
messages to 98% of receivers.2 We start by configuring the traffic generation with
l = 0.75, r = 0.75, d = 10 and buffer size for 10 messages. Figure 3(a) shows that
the results are independent of the total number of participants. This allows us to use
relatively small groups of 50 participants for the remaining of this section thus greatly
reducing the required simulation time. Figure 3(b) illustrates the impact of varying
buffer size available at each node. We observe that there is a minimal buffer size that
enables optimum throughput. Further increasing the buffer size presents no advantage
for purging and would negatively impact latency. The amount of buffer required is
intimately related with the amount of concurrent unrelated chains of messages. Fig-

2As atomicity drops sharply, as shown in Figure 2b, this is very close to perfect atomicity. It is however
less sensitive to variability when using binary search to compute the results than aiming for values closer to
100%.

12

0

10

20

30

40

50

100 200 300 400

M
ax

im
um

 in
pu

t r
at

e
(m

sg
/s

ec
)

Group size

NEEM
pbcast

(a) Size of the group

0

10

20

30

40

50

5 10 15 20

M
ax

im
um

 in
pu

t r
at

e
(m

sg
/s

ec
)

Buffer size

NEEM
pbcast

(b) Buffer size

 0

 10

 20

 30

 40

 50

 5 10 15 20

M
ax

im
um

 in
pu

t r
at

e
(m

sg
/s

ec
)

Parameter d

NEEM
pbcast

(c) Traffic diversity

 0

 10

 20

 30

 40

 50

 0 0.2 0.4 0.6 0.8

M
ax

im
um

 in
pu

t r
at

e
(m

sg
/s

ec
)

Parameter l

NEEM
pbcast

(d) Obsolescence chain length

 0

 10

 20

 30

 40

 50

 0 0.2 0.4 0.6 0.8

M
ax

im
um

 in
pu

t r
at

e
(m

sg
/s

ec
)

Parameter r

NEEM
pbcast

(e) Amount of related traffic

Figure 3: Impact of group size, buffer size and traffic profile in maximum throughput.

13

ure 3(c) illustrates how the purging rate is affected by traffic diversityd by increasing
the number of senders. Notice how increasing traffic diversity for a fixed buffer config-
uration decreases the purging performance. However, performance degradation is not
sudden, ensuring that a small change in traffic characteristics does not result in a drastic
change in the system output. Figure 3(d) presents the impact of increasing sequence
lengths which cause increasing maximum achievable throughput. As this reduces the
number of messages that never become obsolete it proportionally increases the amount
of messages that can be purged (therefore, the system performance improves with the
length of the obsolescence chains). Finally, Figure 3(e) presents the impact of sharing
the channel with traffic that does not ever become obsolete, which naturally reduces
the amount of traffic that can be purged (therefore, the system performs better with a
larger amount of related traffic).

5 Related work

Our proposal stands on previous work on semantic reliability, epidemic dissemination
and networking. We briefly discuss related work in each of these areas. Semantic
reliability based on message obsolescence has been previously proposed in the context
of group communication protocols and targeted at strong consistent replication [23].
Although the goal of our current proposal is different, a number of implementation
mechanism can be reused, namely in managing message semantics and in purging
buffers.

Epidemic dissemination protocols have been proposed for a variety of network set-
tings. Recognizing that the probability of the message being delivered to all processes
grows with the size of the initial set of processes receiving the message, it has been
proposed that an initial optimistic multicast phase is used [2]. The epidemic phase is
then done by negative acknowledgment thus saving network bandwidth in local area
networks where a true multicast primitive is available. On the other hand, given knowl-
edge about network topology it is possible to better spread network traffic across phys-
ical links, thus better coping with wide area networks [16, 10]. Although attractive,
knowledge about the topology is difficult to achieve in the Internet and thus of limited
applicability. By gossiping a fixed amount of messages with a fixed time interval, it is
possible to bound the network bandwidth used by the protocol [4]. The protocol can be
improved by preferring to discard messages which have been relayed more times [14].
In contrast to our proposal, messages are delayed by fixed period and not due to ob-
servation of network conditions, thus impacting latency even when the system is not
congested. It has also been shown that a global deterministic view of the participant set
is not required. Instead, it is sufficient that each participant keeps a random subset of
the entire participant set computed dynamically with a fixed [4] or variable size [7]. We
assume such a partial membership protocol to ensure the scalability of our buffering
and transport layers.

A single other proposal has addressed the issue of controlling congestion in epi-
demic dissemination, although targeted at coping with insufficient buffering resources
and not with competing network traffic. It has been proposed that the message input
rate has to be adjusted to preserve reliability guarantees. This rate can be computed by
the gossip protocol itself and thus dynamically adjusted to fit resource availability [25].
Our current proposal does not limit in any way the input rate.

Streaming media on the Internet has similar requirements to that of NEEM. Namely,
TCP-friendly congestion control, low latency and uniformly distributed loss. It is thus

14

interesting to consider for the transport layer some of the recent proposals in that area,
such as DCCP [6]. Due to its widespread availability, TCP/IP is however still the best
option, specifically, when configured for low latency [8].

6 Conclusions

Our proposal combines an epidemic multicast protocol with congestion control on the
Internet and a sophisticated buffer management scheme. Although efficient gossip pro-
tocols have been previously proposed for local area networks, our current proposal is
the first to support end-to-end congestion control and can therefore be safely used in the
Internet (i.e. it is TCP-friendly). This is achieved without jeopardizing the throughput
stability of the epidemic approach. A clever buffer management scheme that combines
different techniques, including the use of knowledge about message semantics, ensures
that available buffer space and bandwidth is applied as better fit for each application.

By combining the load-balancing features inherent to epidemic algorithms, with the
network friendly operation of TCP, NEEM may simplify the task of traffic engineering
in large-scale networks that must support event dissemination applications, such as
large-scale publish-subscribe systems or distributed on-line games. As future work,
we plan to study the interaction of epidemic algorithms such as NEEM with traffic
engineering techniques.

The evaluation of the protocol is performed in two steps using a simulation model.
First, traffic collected from Microsoft Flight Simulator 2002 is used to demonstrate the
usefulness of the protocol, namely, in allowing hundreds of spectators. Then, synthetic
traffic is used to explore boundary conditions and the behavior of the protocol in differ-
ent environments and applications. This allows us to discuss how the protocol should
be configured. A prototype of the protocol and its integration in Microsoft Flight Sim-
ulator 2002 has been implemented, illustrating the feasibility of the approach.

References

[1] K. Birman. A review of experiences with reliable multicast.Software Practice
and Experience, 29(9), July 1999.

[2] K. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu, and Y. Minsky. Bimodal
multicast.ACM Transactions on Computer Systems, 17(2), May 1999.

[3] S. Drucker, L. He, M. Cohen, C. Wong, and A. Gupta. Spectator games: A
new entertainment modality of networked multiplayer games. Technical report,
Microsoft Research, 2002.

[4] P. Eugster, R. Guerraoui, S. Handrukande, A.-M. Kermarrec, and P. Kouznetsov.
Lightweight probabilistic broadcast. InIEEE Intl. Conf. on Dependable Systems
and Networks (DSN), 2001.

[5] S. Floyd and K. Fall. Promoting the use of end-to-end congestion control in the
Internet.IEEE/ACM Transactions on Networking, 7(4), August 1999.

[6] S. Floyd, M. Handley, E. Kohler, and J. Padhye. Datagram congestion control
protocol (DCCP). IETF Internet Draft, 2003.

15

[7] A.J. Ganesh, A.-M. Kermarrec, and L. Massoulie. Peer-to-peer membership man-
agement for gossip-based protocols.IEEE Transactions on Computers, February
2003.

[8] A. Goel, C. Krasic, K. Li, and J. Walpole. Supporting low latency TCP-based
media streams. InIntl. Ws. on Quality of Service (IWQoS’2002), 2002.

[9] K. Guo. Scalable Message Stability Detection Protocols. PhD thesis, Cornell
University, Computer Science Department, May 1998.

[10] I. Gupta, A.-M. Kermarrec, and A. Ganesh. Efficient epidemic-style protocols for
reliable and scalable multicast. InIEEE Intl. Symp. Reliable Distributed Systems
(SRDS), 2002.

[11] M. Hayden and K. Birman. Probabilistic broadcast. Technical Report TR96-1606,
Cornell University, Computer Science, 1996.

[12] V. Jacobson. Congestion avoidance and control.ACM SIGCOMM’88 Symp.,
18(4), 1988.

[13] A.-M. Kermarrec, L. Masssouli, and A. Ganesh. Reliable probabilistic communi-
cation in large-scale information dissemination systems. Technical Report 2000-
105, Microsoft Research, 2000.

[14] P. Kouznetsov, R. Guerraoui, S. Handurukande, and A.-M. Kermarrec. Reducing
noise in gossip-based reliable broadcast. InIEEE Symp. Reliable Distributed
Systems (SRDS), 2001.

[15] J. Lin and S. Paul. RMTP: A reliable multicast transport protocol. InIEEE Conf.
Computer Communications (INFOCOM), 1996.

[16] M.-J. Lin and K. Marzullo. Directional gossip: Gossip in a wide area network. In
European Dependable Computing Conference (EDCC), 1999.

[17] Microsoft Corp.DirectPlay 8.1, 2002.

[18] Microsoft Corp. Microsoft Flight Simulator 2002 Software Development Kit –
Multiplayer/Flight instructor, 2002.

[19] H. Miranda, A. Pinto, and L. Rodrigues. Appia, a flexible protocol kernel sup-
porting multiple coordinated channels. InIEEE Intl. Conf. Distributed Computing
Systems (ICDCS), 2001.

[20] Network Simulator - ns-2. http://www.isi.edu/nsnam/ns/.

[21] J. Pereira, R. Oliveira, L. Rodrigues, and A.-M. Kermarrec. Probabilistic se-
mantically reliable multicast (extended abstract). InIEEE Intl. Symp. Network
Computing and Applications (NCA), 2001.

[22] J. Pereira, L. Rodrigues, and R. Oliveira. Semantically reliable multicast proto-
cols. InIEEE Symp. Reliable Distributed Systems (SRDS), 2000.

[23] J. Pereira, L. Rodrigues, and R. Oliveira. Semantically reliable multicast: Defi-
nition, implementation and performance evaluation.IEEE Transactions on Com-
puters, Special Issue on Reliable Distributed Systems, 2003.

16

[24] R. Piantoni and C. Stancescu. Implementing the Swiss Exchange Trading System.
In IEEE Intl. Symp. Fault-Tolerant Computing (FTCS), 1997.

[25] L. Rodrigues, S.Handurukande, J. Pereira, R. Guerraoui, and A.-M. Kermarrec.
Adaptive gossip-based broadcast. InIEEE Intl. Conf. on Distributed Systems and
Networks (DSN), 2003.

17

