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Abstract 

 

The process of injection moulding is a complex theme of study, and the manufacture of 

the moulds requires knowledge about materials, processing and design methods. The 

larger challenge for designers and engineers is to obtain one product within established 

tolerances. The prediction of shrinkage enables the engineers to know the final size and 

shape of the parts. There are commercial codes to simulate the injection moulding process 

and, thus, help to design runner system, cooling system, weld lines, air traps, and 

shrinkage. However, there is no software known that could determine the ejection force 

and, therefore, help to design the ejection system. 

In this work, a study of shrinkage and ejection force was carried out using deep tubular 

parts of several materials. This work develops a model to predict the shrinkage and 

ejection force of mouldings in polypropylene composites reinforced with glass fibre or 

nanoclays.  

The experimental part of this work consists in producing the parts with an instrumented 

mould with monitorisation of the temperature, pressure and ejection force. The final 

dimensions were also measured after 48 hours to calculate as-moulded shrinkage. Several 

other tests were done to characterize the material namely DSC, DMA, TMA and 

rheometry. The tensors of orientation of fibres were determined due to its influence on 

the shrinkage. The content of fibre, the length and diameter of the glass fibres were 

evaluated. The coefficient of friction between the steel and polymer was determined to 

calculate the ejection force. The simulations using the Moldflow software provided the 

temperature profile across the thickness of the part. 

The mathematical model that was developed is based on the thermomechanical model to 

calculate the residual stresses and shrinkage in composites, developed by Kaspar Jansen, 

and a thermomechanical model to calculate the ejection force in tubular mouldings 

produced in unreinforced materials, developed by António Pontes. The proposed model 

is an attempt to predict the shrinkage and ejection force combining those previous models. 

The results of the model were compared with the experimental results and were found to 

be in a good agreement. 
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Resumo 

 

O processo de moldação por injeção é complexo e o fabrico de ferramentas para produzir 

uma peça requer conhecimento sobre materiais, processamento e metodologias de 

projeto. O maior desafio para os projetistas e engenheiros é obter uma peça moldada 

dentro das tolerâncias estabelecidas. A previsão da contração permite aos projetistas 

prever a dimensão final e a forma das peças produzidas. Há softwares comerciais para 

simular o processo de injeção e prever, desta maneira, o sistema de alimentação, 

arrefecimento, linhas de soldadura, retenções de ar, e a contração, mas, não existe 

software conhecido, para prever a força de extração e, portanto, o sistema de extração. 

Neste trabalho, um estudo da contração e força de extração foi realizado em moldações 

tubulares profundas para diversos materiais. O objetivo deste trabalho é desenvolver um 

modelo para prever a contração e força de extração moldadas em compósitos de 

polipropileno com fibra de vidro e nanoargila. 

A parte experimental deste trabalho consiste em produzir peças num molde instrumentado 

com sensores de temperatura, pressão e força de extração e após 48 horas procedeu-se a 

medição das moldações para efetuar o cálculo da contração pós moldação. Diversos 

outros testes foram realizados para caracterizar o material como DSC, DMA e TMA e 

reometria. Os tensores de orientação das fibras foram determinados, pois influenciam a 

contração. A quantidade de fibra, o comprimento e diâmetro da fibra de vidro foram 

também medidos. Os coeficientes de atrito entre o aço e o polímero foram medidos, pois 

são necessários para calcular a força de extração. Os campos de temperatura ao longo da 

espessura da peça foram obtidos através das simulações com o software Moldflow. 

O modelo matemático foi baseado no modelo termomecânico para prever as tensões 

residuais e contração em materiais reforçados com Fibras de Vidro Curtas desenvolvido 

por Kaspar Jansen e no modelo termomecânico para prever as forças de extração e 

contração em peças tubulares com materiais não reforçados desenvolvido por António 

Pontes. O modelo proposto é uma tentativa de prever a contração e a força de extração 

combinando os modelos anteriores de Kaspar Jansen e António Pontes. Os resultados de 

previsão do modelo desenvolvido foram comparados com os resultados experimentais e 

apresentaram uma boa concordância. 
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1 Introduction 

 

The quality and efficiency have been the requirement of all companies in the industrial 

market, more intensified by the globalization. Both features must be linked to obtain best 

results along competitive market in all producing areas. This situation is required by the 

industries because the consumers desire more in less time and at lower cost.  

There is no exception for the polymer industries, mainly thermoplastics processing 

industries, they must improve their results in this competitive market. This aim only will 

be achieved if all stages of production of an article have a quality system implemented. 

This quality system ranges from the conception of the product to the achievement the 

product ready to use. This objective was better achieved when the CAD, CAM and CAE 

were implemented in the companies. Today the manufacturers have to reduce the time to 

production. Generally the design of the product and the manufacturing tools are made 

simultaneously. The computational simulation avoids many bad performances when the 

product will be in service. 

The injection moulding is the main process for manufacturing plastics products. The first 

step to obtain a product with a good quality is to carry on various CAE analyses to obtain 

the best processing conditions. This information is used in the design stages of the part 

and the mould. During the project of the part the designer has to develop several systems 

for the perfect working of the mould when in operation. Besides the concept of the 

injection moulded product, others systems of the mould must be designed such as feeding 

and gating, cooling, guiding system, venting and ejection.  

The aim of this research focus on the ejection system. From knowing  the form of the 

plastics part and the ejection forces it is possible to obtain a suitable ejection system, this 

including the type of ejection system to be used:  hydraulic, pneumatic or mechanical. If 

the forces are underestimated the projected system cannot extract the part from the mould 

and in some cases the part can be damaged. In the literature there are not enough studies 

about ejection forces.  

One of the more meaningful variables influencing the ejection force is the shrinkage of 

the part, but this parameter is not easy to predict, because the shrinkage depends on the 
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geometry of the part and the mould, the type of material and the processing conditions. 

This complexity is due to the transformation of the polymer since of beginning of the 

process until the extraction of the part from the mould. The polymer goes from solid state 

to plasticized state and becomes solid again. During this process the material is subjected 

to an environment with high pressure and temperature. There is an expansion of the 

molecules and the material is moulded in the form of the impression.  During the 

permanence of the material inside the mould, during the cooling time the moulding 

decreases its dimensions owing to shrinkage. The dimension of the part is less than the 

impression and the designer must consider this factor to obtain the correct dimensions in 

the mouldings surfaces.  

This research work studies shrinkage and ejection forces in a set of composite 

polypropylenes with glass fibres and nanoclays. A tubular geometry was used and a 

mathematical model was developed to predict the shrinkage and the ejection forces for 

reinforced materials. 

An instrumented mould was used to monitor the pressure, temperature and ejection forces 

in the tubular parts. These data were employed to validate the model developed in this 

work. Computation simulations were also carried out to get the temperature field inside 

the part during the entire process.  

This thesis is organized as follows. Firstly, a brief introduction about the work is 

presented to contextualize of the subject in the area of study, and some general comments 

are done about injection moulding. 

In chapter 2 it is presented the state of the art on the topics related with this research. It 

starts with the injection moulding process where an overview of the process is delineated 

and the historical about modelling of the injection moulding process, including the 

various stages of the process such as filling, packing, unified models, and some 

considerations about the process optimization. The shrinkage phenomena and their 

prediction is described with reference to the variables that affect it such  as processing 

conditions, design of mould and part and characteristics of the materials. The anisotropy 

of shrinkage is also reviewed because one of the materials in study is a fibrous composite. 

Existing models to describe shrinkage are reviewed. This chapter ends with the detailed 

objectives of this work. 
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In the chapter  3 the review of the models to predict shrinkage are described including the  

model of Kaspar Jansen to predict the shrinkage in rectangular plates moulded with 

reinforced material. It includes the development of the model to predict the shrinkage and 

ejection forces for tubular parts moulded with reinforced material is presented. 

The chapter 4 described the experimental methods and simulation techniques used in this 

work. The materials used are characterized using various experimental tests as DSC, 

DMA, rheological test, and TMA. The features of the tubular part, the processing 

conditions, equipments used in the production of the tubular parts are presented. The 

characterization tests of the mouldings, as measurement of glass fibre percentage, 

measurement of diameter and length of glass fibre, are also described. Moreover, the 

measurement of the coefficient of friction using a prototype equipment is presented. On 

the other hand, the simulation techniques are described, demonstrating the features of the 

software and conditions for the simulations. 

The chapter 5 presents the results and their discussion. The experimental and predicted 

results are shown and some details are discussed. The pressure, temperature and ejection 

forces evolution are presented. The shrinkage and ejection forces are shown and the 

explanation of their variation is done. 

Finally the conclusions are presented and commented. 

The suggestions for further work are mentioned in the last chapter 7. A research work 

will never finish, but it is only a step and incentive to seek more knowledge. 
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2 State of the art 

 

2.1 Injection moulding 

 

2.1.1 The process 

 

Thermoplastic injection moulding had its origin in metal casting. The first injection 

machine for plastics was developed during the U. S. civil war due to ivory shortage. In 

1869, John Wesley Hyatt used celluloid instead of ivory. The first injection machine, 

Hyatt’s machine, was patented in 1872 [1]. In 1921, another injection moulding machine 

was built by H. Buchholz. This machine was a plunger-type that was widely used in the 

past [2]. The injection moulding machine known nowadays was designed in 1956 with 

the introduction of the reciprocating screw for plasticizing and transfer the melt for the 

mould. This kind of machine keeps its features until today. 

Injection moulding is among the processes of plastics moulding with the best cost-benefit 

relation. The complete unit for injection moulding consists of the injection moulding 

machine, a temperature control and ancillaries such as: material drier, material handling 

systems and robots to help ejection of the parts [2],[3]. 

The injection moulding process produces identical parts from an impression. The 

plasticized material is forced into the mould where it is maintained under pressure until 

the solid state is obtained. However, once the mould is filled and the part begins to 

solidify, additional amount of material must be introduced to compensate the polymer 

shrinkage during the solidification phase. Without this additional amount of melt, the 

dimensions of part will not be reached [4],[5]. 

The injection cycle was described by several authors in the specialized literature [2]–[8].  

The injection moulding cycle begins when the mould is closed; the melt is injected in the 

mould, Figure 2.1. The material, in the form of pellets, enters in the barrel by the hopper. 

The pellets are melted inside the barrel, the heating is provided by electric resistance 

around the barrel and by friction between the barrel walls and the material. The 

reciprocating screw is used to carry and to press the material. During the plasticization 
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the screw moves backwards and the injection unit provides a back pressure. The screw 

stops when the next amount of material is accumulated. 

In the injection phase, the reciprocating screw moves forward and presses the melt to the 

machine nozzle, runner system and gates, and finally, the impressions in the mould. 

After the filling of impressions, the holding pressure is maintained to compensate the 

material shrinkage. At the end of holding phase, the screw returns and the next 

plasticization occur. The melt material is accumulated in front of the screw and the next 

shot is ready. 

In the moment that the material enters in the mould, the material starts to cool. This 

cooling phase is more evident during the holding phase. When the part is cooled and 

solidified, it is ejected from the mould. 

 

Figure 2.1 - Injection moulding cycle 

Injection moulding cycle (tinj - injection time, thold - holding time, tplast - plasticizing 

time, tcool - cooling time, topen/close - mould opening/closing time, tejec - ejection time, tdelay 

- delay time) 

[9] 
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2.1.2 Behaviour of polymer during the injection moulding process 

 

The environment of the flow of polymer into the impression is a typical situation of 

unsteady, non-isothermal and three-dimensional flow, of a compressible and viscoelastic 

fluid. 

The injection phase starts with the filling of the impression until the moment of switch-

over to the holding phase. During the flow, the polymer is submitted to the associated 

effects to the flow (shearing and heating) and the cooling due to heat loss to the moulding 

walls. In the Figure 2.2, it is shown the velocity profile of flowing molten polymer, [7], 

[8], [10]–[12]. In this figure it is visible the fountain flow and the formation of the 

solidified layer when the melt polymer meets the cool moulding wall. In this layer, after 

solidification of material, there is no additional flow and between the two solidified layers 

can be found the melt core of the material, this core remains fluid. 

 

 

Figure 2.2 - Velocity profile of the melt in the mould, adapted from  [7], [8], [10]. 

The highest velocity gradient found in the flow zone occurs at the vicinity of solidified 

layer. Nevertheless, because of the high viscosities found in this region, this maximum 

velocity is not exactly adjacent of the solidified layer. Moreover, in this higher velocity 

gradient region, the melt is submitted to pronounced shearing flow; due to this reason the 

polymer has its molecules orientated in the main direction of the flow. Because that the 

maximum orientation is just located below of moulding surface. 
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The thickness reduction of section due to the polymer solidified at the moulding walls, 

the maximum velocity found in this area is quite higher than velocity of flow front. 

Consequently, the melt particles, when reach the flow front, decrease their velocity 

occurring a perpendicular flow in relation to the mould wall in this area; this phenomenon 

is called fountain flow effect. This effect causes a stretching of the molecules of the flow 

front that are cooled owing to the contact with air inside the cavity and pressed against 

the cavity wall. The contact of polymer with the cooler wall causes the solidification 

instantaneously. This is the reason why the polymer is so oriented at the skin of the 

injection moulded parts. If the filling happens with uniform velocity, the orientation will 

be better and the superficial quality of the part too.  

Although, the dominant flow in the filling phase is the shear flow, the highest velocity 

components are in the flow direction. The Figure 2.3 shows the velocity profile, shear 

rate, and temperature during the filling of the impression. It is possible to note that the 

temperature has two peaks near the cavity wall; it happens due to viscous dissipation. The 

maximum temperature occurs in the region of the maximum shear rate. The velocity is 

higher at the centre of the cavity because the no slip condition. 

 

 

 

Figure 2.3 - Velocity, temperature and shear rate profiles in the filling of the impression, 

adapted of [7], [8], [10]. 
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Other important factor in the injection moulding is the cavity pressure, Figure 2.4. It is 

possible to identify three stages: injection, compression and holding pressure. These three 

stages are related with some effects and also the part quality. The injection stage affect 

the appearance of injected part and the compression stage and the holding stage is 

responsible by the part dimensions. Briefly, there are several parameters that influence 

the pressure curves such as: oil temperature, melt temperature, mould temperature and 

injection velocity.  

 

Figure 2.4 - Stages of injection process 

The holding/packing phase starts at the moment of switch-over until the solidification of 

the gate. The most important aspect of the holding phase is the addition of more material 

to compensate the volumetric shrinkage of the part during its cooling. The 

holding/packing stage is extremely important in the determination of the final quality of 

the product. Underpacking results in dimensional variation and sink marks. Overpacking 

causes premature mould opening, flashing, difficulties at the ejection and excess of 

residual stresses that results in warpage [13]. 

The cooling phase begins immediately after of the entrance of material in the impression, 

including the injection and holding phases. However, the cooling time must be extended 

until the end of holding phase, because the melting has not been cooled yet. It is not 

recommended to eject the part yet. 
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After part ejection from the mould, the part is exposed to a new set of mechanical and 

thermal conditions. Although, if the part remains in the cavity, its shrinkage and possible 

warpage are avoid mechanically, due to the restraint imposed by cavity walls. Instead of 

the part deformation, will arise internal residual stresses during the cooling of the part. 

After the demoulding of the part, a bit of the stress will be relieved through the appearance 

of deformations and the shrinkage process happens without external constrain.   

 

2.1.3 Modelling of the injection moulding process 

 

Computational simulations helps designers and engineers to study many options in 

processing and design in injection moulding without loss of time and resources. The 

simulations provide new ways to consider projects and to experiment others concepts 

before manufacturing the tools and obtaining the injection moulded products. Through 

computational programmes it is possible to determine the dependence of variables and 

the most important factors in the injection moulding process [6]. 

The computational simulation is based on several assumptions and simplifications, as any 

process in development, for the injection moulding process being complex and the 

limitations of hardware and knowledge about the physics of the problem. These 

simplifications consider the geometry, mathematical model, involved parameters, phase 

of process. Currently the CAE systems are broadly used because the design cycle of the 

product must be faster and the production costs diminished [6].  

Commonly the modelling of the process involves the conservation equations: mass, 

momentum and energy, which govern the physical phenomena. Furthermore, the 

constitutive equations related with the material are also used, namely, the relationship 

between the viscous stress tensor and the rate of strain tensor are constitutive equations. 

The mentioned equations need restrictions, boundary conditions, represented by 

geometries and physical parameters. These set of equations and their boundary conditions 

make the system complex to find an analytical solution, making it is necessary to call 

upon numerical solutions [13]. 

The simulation of the injection moulding process has been used in several degrees of 

complexity according to the objectives of the simulation. This complexity is due to the 
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mathematical formulation of conservation equations, constitutive laws and assumptions 

about material and techniques to solve the problem [15], the fields of temperature, 

pressure and velocity enable to know the microstructure distribution and, hence, the 

characteristics of final product. [15],[16]. 

The equations mentioned above must be solved simultaneously, namely, in the coupled 

form. During the process, the temperature, pressure fields must be obtained together with 

the advance of melt front flow. Depending on the solution required, the fluid is considered 

non-Newtonian and parameters as, temperature and crystallinity that depend on the time 

[15]. 

Injection moulding is developed in three stages: filling, holding or packing and cooling 

or solidification [12],[16]. 

 

2.1.3.1 Filling phase 

 

The computational simulation of injection moulding began in the seventies with models 

developed for the filling phase. In 1970, Harry and Parrot [18], proposed a model to 

predict the fill length and fill time of the thin constant transversal section cavities. Besides 

the resolution of conservation equations this model considered heat conduction and 

viscous heat generation. It enabled good results in predicting a short shot for thin and also 

complete fill in thicker cavities. Berger and Gogos [19], in 1973, developed a numerical 

solution for the mould filling of rigid PVC melt in a circular impression. One year later, 

Tadmor and Broyer [20] described a method  to describe the flow in narrow gaps of 

variable thickness and any desired shape. Other model presented in 1975 by Lord and 

William [21] increased the complexity of the relationship including viscosity, shear rate 

and temperature and solved real problems in injection moulding. The same authors, in the 

same year, [22] developed a finite difference analysis which predicted temperature, 

pressure and velocity distributions in straight and tapered, hot and cold walled circular 

flow channels.  

In the eighties years Hieber and Shen [23] detailed a formulation of the model based on 

the generalized Hele-Shaw flow for an inelastic, non-Newtonian fluid with non-

isothermal conditions applicable to thin cavities of planar geometry. In 1980, Isayev and 
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Hieber [24], applied the Leonov viscoelastic constitutive equation in the filling and 

cooling stages. The theory was developed with the following assumptions: one-

dimensional, unsteady, non-isothermal flow of polymer between two parallel plates and 

further provided non-isothermal relaxation after cessation of the flow. They concluded 

that the most important factors that affect residual stresses and birefringence are melt 

temperature and flow rate. Sanou et al. [25] (1985) realized a study in a rectangular 

impression with three different thickness in unfilled and glass fibre-filled polypropylene 

and polystyrene. Their study focused on the shapes of flow fronts by short-shots and 

deduced that the thickness of cavity is the most important factor in these shapes. In 1986, 

Kamal et al. [26] used Marker-and-Cell computational scheme (Lafleur and Kamal  [16] 

presented a good review of this technique), to obtain the filling time and flow front 

position and the velocity, temperature, pressure and shear stress distribution inside the 

cavity. In the same year, Mavridis et al. [27] developed a simulation in Newtonian and 

Shear-thinning fluids in two dimensional channels and tubes using the finite element 

technique. The consideration of fluid with a free surface advancing at a constant velocity 

was used. Gogos et al. [28] also used the Marker-and-Cell numerical technique solving 

the transient problem. The flow was considered isothermal and the fluid incompressible, 

following the power law model. Chen and Liu, (1989), [29] considered the effect of 

transient melt solidification in two-phase model for polypropylene and polyethylene. The 

authors used the Hele-Shaw for non-Newtonian fluids and a modified Cross model to 

describe viscosity under non-isothermal conditions. The energy equation was used to 

predict the solidified layer thickness and temperature profile.  

During the nineties, Papathanasiou and Kamal [30] in 1993, presented a two-dimensional 

non-isothermal melt flow model, for viscoelastic materials whose properties vary with 

temperature, shear rate and pressure. The model works with converging and diverging 

flow patterns induced by complex boundary shape. Due to the possibility of changing the 

cavity thickness, this is considered a process parameter. In the same year, Kamal and 

Papathanasiou [31] developed an experimental program with reciprocating screw 

injection moulding machine. Also in 1993, Friedrichs and Güçeri [32] used a hybrid two-

dimensional 2D/3D technique. The 2D Hele-Shaw formulation was used behind the flow 

front where this formulation is enough to describe the flow phenomena. On the other 

hand, at the fountain flow region, where all velocity components are significant, the 3D 

formulation was used with the pressure Poisson formulation. In 1998,  Pichelin and 
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Coupez [33] worked with 3D filling for incompressible and viscous flow and the solver 

uses stable of first order tetrahedral elements of MINI-elements family for pressure and 

velocity. The motion equation was solved by explicit discontinuous Taylor-Galerkin; and 

Hétu et al. (1998), [34] also studied a 3D finite element model which used the generalized 

Stoke equation for velocity and pressure and Carreau law and Arrhenius constitutive 

models.  

Kumar, Ghoshdastidar and Muje, [35] (2002), used a low density polyethylene (LDPE)  

injection mould-filling at constant flow rate during the production of a cylindrical part 

under isothermal and non-isothermal conditions, using the power law viscosity model for 

the non-zero shear rate zone. One year later, Galantucci and Spina [36] proposed an 

integrated approach to evaluate the gating system configurations to optimize the filling 

conditions of thermoplastic injection moulded parts. The finite element analysis and 

design of experiments were also used to optimize injection moulding process. Kim and 

Turng (2006) [37] presented a 3D numerical simulation that was compared with two 

numerical models used to solve the Stokes equations with three different tetrahedral 

elements (Taylor-Hood, MINI and equal-order).  

 

2.1.3.2 Packing phase 

 

The understanding of packing behaviour is important because the packing phase 

determines the mechanical properties and quality of the finished product. Moreover, the 

distribution of pressure influences the part shrinkage [38]. 

 In 1981, Chung and Ryan [38] presented a method to evaluate the pressure distribution 

in the holding phase. This attempt is based on a general non-linear differential equation 

to describe packing stage. The considered geometry was a simple rectangular cavity, the 

fluid was Newtonian and several assumptions were disregard like inertial forces, body 

forces and viscoelastic effects. The same author [39] studied the motion of an isothermal 

Newtonian fluid whose compressibility obey the Spencer-Gilmore equation of state 

during the packing stage. He found that the most important factors were melt viscosity 

and boundary of cavity in the pressure build up.  
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Greener in 1986 [40] developed an expression to establish a general optimization criteria 

for the packing phase and to assess the effects of various process and material parameters 

on the packing response of the system. This expression uses the empirical Tait equation 

combined with the transient heat-conduction equation. Huilier [41] (1988) proposed a 

model that permits calculating the evolution of pressure and temperature fields and mass 

variations in simple geometries during the packing phase.  The meaningful results of the 

simulation are local shrinkage and a good approximation of the weight of finished 

products. In 1993 Nguyen and Kama [42] obtained a set of equations governing the two-

dimensional packing stage of a viscoelastic fluid assuming that the process is isothermal. 

The polymer was considered as a Maxwell fluid and the density followed to Spencer-

Gilmore relation. The pressure equation was solved by the Galerkin finite element 

method. This work concluded that viscoelasticity rises in plane stresses and causes 

distortion in the final part. Chen (1994) [43] presented a two-phase model for simulating 

the post-filling stage for amorphous and semi-crystalline materials. Good results were 

obtained between this simulation and experimental pressure and from previous 

investigations in the literature.  

In 2005 [44] Zhou and Li developed a mathematical model to predict the warpage of 

plastics products. The model was based on the principle of viscoelastic mechanics and 

the linear isothermal-viscoelastic constitutive equation. The warpage was determined 

from the stress model. 

 

2.1.3.3 Unified model 

 

Kamal and Kenig (1972) [45], presented a mathematical model that considers all stages 

of the injection moulding: filling, packing and cooling. They solved the spreading radial 

flow in a semi-circular impression. After, the authors proved their model with a 

reciprocating-screw injection moulding machine to check the validity of a proposed 

theoretical model for injection moulding. Three years later, Kamal et al. [46] showed two 

models for simulating the injection moulding of thermoplastics in thin, rectangular 

cavities. One is the model presented in 1972 and the other is a two-dimensional analysis 

which assumes that viscosity and temperature change strongly across the narrow gap but 
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vary weakly in the directions of flow. Both models consider the non-Newtonian viscosity 

with temperature variation.  

Kamal and Lafleur (1982), [47] developed a model that in the filling stage considers the 

simplified flow in the channels and the accurate flow in the cavity. In the cavity the fluid 

is considered as viscoelastic and compressible and the flow is transient and non-

isothermal. In the packing stage, due to the compressibility of the polymer melt, one 

equation of state must be used, like the Spencer-Gilmore. In the cooling, the problem is 

treated as transient heat transfer by conduction of a polymer melt between two plates. 

Lafleur and Kamal (1986) [48] developed an inelastic model like the previous models, 

but the complete stress field must be calculated to predict microstructure and orientation 

distributions. In the packing phase the Nakamura’s crystallization equation is used to 

calculate the crystallinity. In the cooling stage the White-Metzner equation is simplified 

to a simple Maxwellian relaxation mode. The stresses are described using the Matsui-

Bogue theory of non-isothermal large deformation viscoelastic fluid behaviour. This 

model predicts the thermo-mechanical history during the injection moulding process.  

In 1991, Chiang (1991) [49][50], based on the implementation and verification of a hybrid 

finite-element/finite-difference, and presented a model for the Hele-Shaw flow of a 

compressible viscous fluid under non-isothermal conditions. The shear viscosity of the 

polymeric material is represented by a Cross model for the shear rate dependence and a 

WLF type functional form for the temperature and pressure dependence, while the 

specific volume is modelled in terms of a double-domain Tait equation. Han and Im 

(1997) [51] presented a similar model with volume control approach. Hieber, 2002, [52] 

used the differential Nakamura equation for the crystallization kinetics. 

In 1995, Douven  [53] proposed a decoupled method to calculate flow-induced stresses. 

The kinematics of the flow field was determined, employing a viscous, generalized 

Newtonian constitutive law for the Cauchy stress tensor in combination with the balance 

laws. The Leonov model and the Wagner model were used as compressive constitutive 

equations. 

 

 

 



15 
 

 

2.1.3.4 Optimization of injection moulding 

 

After the simulation of the injection moulding process being well-developed many 

commercial codes were implemented and used by the industry, like Moldflow or Moldex 

3D and by the researchers dedicated themselves to the optimization of the process. 

Bikas, Pantelelis and  Kanarachos (2002)  [54]  presented the NASPLAN code, for 

complex and multi-cavity moulds. The NASPLAN code has optimization methods whose 

leads to flow balancing and improved part quality avoiding defects such as warpage, non-

uniform shrinkage, sink marks, etc. Turng and Peic (2002), [55] implemented an 

integrated CAE system to determine the optimal design and process variables for injection 

moulding; moreover they compared several optimization algorithms in relation to the 

computational efficiency and effectiveness.  

Lam et al. (2003) [56] developed a simulation system where it is possible to specify the 

quality measuring criteria such as minimum cavity pressure and shear stress, a uniform 

distribution of cooling time, end-of-fill temperature and volumetric shrinkage or several 

criteria in the same time. 

Kim and Turng (2004) [57] made a state-of-the-art and developed three-dimensional 

computer-aided engineering (CAE) simulation for injection moulding.  They saw the 

emerging three-dimensional CAE being applied in  design and manufacture of complex 

injection moulded parts.  

Ozcelik and Erzurumlu (2006) [58] used design of experiments (DOE), Taguchi 

orthogonal array and Moldflow to study the effects of several parameters of injection 

moulding aiming the best gate location, filling and flow, and the minimum warpage of 

product. ANOVA, artificial neural network and Genetic algorithm (ANN/GA) were also 

used in this research. Changyu et al. (2007) [59], beyond the tools employed by Ozcelik 

developed a method used in the process optimization to improve the volumetric shrinkage 

in a part. The results showed that the combining ANN/GA method is an effective tool for 

the process optimization of injection moulding.   

Tang et al. (2007) [60] developed a mould that produced a thin plate to study the warpage 

applying the experimental design of Taguchi method. The results suggested that the most 

effective factor on the warpage was the melt temperature and that the filling time had 

little influence on the warpage. 

Zhou and Turng (2007) [61] studied a form to determine the optimal process conditions 

without user intervention. The authors applied a method based on the Gaussian process 
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capable of giving simultaneously both a prediction and an estimate of the confidence 

(variance) for the prediction. The method helps the professional to determine the optimal 

process conditions.  Zhou et al. (2009) [62] created a desktop, low-cost and independent 

virtual injection moulding system, which was implemented based on the techniques such 

as virtual reality, finite element analysis, motion simulation and scientific visualization. 

With this integration several influences can be evaluated from product design to 

manufacturing, capable of improving the mouldability and the quality of moulded 

products. 

Chen et al. [56] 2009 [63] used the Moldflow code and DOE applied to thin-shell plastic 

component to reduce warpage dependent of process parameter in injection moulding. The 

melt temperature and the packing pressure were found to be the most significant factors 

in the process. 

Ferreira et al. (2010)  [64] applied the Multidisciplinary Design Optimization (MDO) 

methodology to obtain improvements in the injection moulding process considering the 

system in a global way: structural, thermal, rheological and mechanical. The assessment 

of analysis showed a large impact of the sprue diameter enhancing the importance of the 

feeding system on the quality.  

Fernandes et al. (2010) [65] implemented a  Multiobjective Optimization Genetic 

Algorithm, denoted as Reduced Pareto Set Genetic Algorithm with Elitism (RPSGAe), 

to the optimization of the polymer injection moulding process. The aim is to implement 

an automatic optimization scheme capable of defining the values of important process 

operating conditions yielding the best performance in terms of prescribed criteria.  

 

2.2 Shrinkage  

 

The part presents different dimensions of the mould after the injection moulding process. 

This reduction of the dimensions is called mould shrinkage or as-moulded shrinkage, or 

simply shrinkage [66]. These differences depend not only on material characteristics, but 

also on processing conditions, which determine the distributions of pressure and 

temperature histories, [67] and on the design of part and mould.  

Fisher [68] presents more accurate terms in-mould shrinkage or moulded-part shrinkage, 

although the shrinkage being a volume phenomenon, usually, it is referred to as the 
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difference between the linear dimension in the part and the linear dimension of the mould 

at room temperature. According to the ASTM D955-0 standard [69] the shrinkage must 

be measured 24-48 h after ejection. The term post-mould shrinkage refers to any 

additional shrinkage that occurs after the initial 48-h period [68]. 

If the dimensional change in volume was considered, this change is called as  volumetric 

shrinkage. The volumetric shrinkage can be defined as  

𝑆𝑣 =
�̅�0(𝑡)−𝑣𝑟(𝑇𝑟𝑜𝑜𝑚,𝑃𝑎𝑡𝑚)

�̅�0(𝑡)
,                                               (2.1)                                              

where 𝑣𝑟(𝑇𝑟𝑜𝑜𝑚, 𝑃𝑎𝑡𝑚) is the specific volume at room temperature under atmospheric 

pressure, and �̅�0(𝑡) is the gap-wise averaged initial specific volume. The specific volume 

depends on the pressure and temperature history and thus the volumetric shrinkage can 

be calculated using PVT diagrams. 

The volumetric shrinkage involves the change of dimension in three spatial directions. 

These changes can be different for each direction. Therefore it is important to consider 

the dimensional change in length, i.e., the linear shrinkage, defined by [70] 

𝑆𝑙 =
𝑙0−𝑙𝑟

𝑙0
,                                                        (2.2)                                                            

where 𝑙0  is the initial length, and 𝑙𝑟  is the corresponding length at room temperature 

under atmospheric pressure. If the shrinkage is isotropic, then the linear shrinkage is 

related to the volumetric shrinkage by 

Sl = 1 − (1 − Sv)
1

3 ≈
1

3
Sv                                             (2.3) 

For anisotropic shrinkage, it is customary to classify the linear shrinkage into parallel 

shrinkage 𝑆∥ (the linear shrinkage in the flow direction), perpendicular shrinkage 𝑆⊥ (the 

linear in-plane shrinkage perpendicular to the flow direction) and the thickness shrinkage 

𝑆ℎ. When 𝑆𝑣 ≪ 1,   

𝑆𝑣 ≈ 𝑆
∥ + 𝑆⊥ + 𝑆ℎ                                                   (2.4) 

No simple relationship between the linear shrinkage components is available. Their 

values depend on the type of material and processing. 
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2.2.1 Variables affecting shrinkage 

 

A set of factors affect the shrinkage of the injection moulding part. At first, the processing 

conditions have a high contribution on the shrinkage, followed by the mould/part design 

and material characteristics, because all affect the dimensional tolerances that moulders 

can reasonably expect to achieve during the processing [67]. 

 

2.2.1.1 Processing conditions 

 

The shrinkage in parts moulded by injection moulding is controlled by the temperature 

and pressure in the cavity and the compressibility of resin during the packing phase. Thus, 

the control of the process conditions is primordial to obtain the parts within acceptable 

tolerances. 

All studies conclude that the parameters of the holding (packing) stage are the most 

significant in shrinkage. A higher holding pressure reduces part shrinkage along all 

directions. Increasing the holding time also reduces shrinkage. The amount of holding 

pressure affects the shrinkage of the part, this phase of the process being deeply linked 

with the design of the gate and runner system.  

Mamat et al. 1995 [71] evaluated some processing conditions on the shrinkage for PP and 

reinforced PP with 40% calcium carbonate. The results showed that holding pressure and 

packing time are the most significant parameters, cooling runners, however, could 

significantly influence local shrinkage values. Jansen et al., 1998, [72] studied the same 

parameters for polystyrene and noted that, by increasing holding pressure the in-plane 

shrinkages varied from 0.6-1.3% while the product thickness increased from about 1% to 

10%. Later,  Jansen, Van Dijk and Husselman (1998) [73] expanded their studies for 

seven common thermoplastics. They found that the holding pressure always is the key 

parameter. The melt temperature is slightly less important and the injection velocity and 

mould temperature do not presented a general trend for all polymers.  

Other important processing parameters that affect the shrinkage are the melt temperature 

of polymer and mould temperature that influence the cooling rate. The literature indicates 

that the melt temperature and mould temperature have the same influence on shrinkage. 
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Warmer moulds increase the shrinkage but reduce post-mould shrinkage and cold moulds 

have the opposite effect. Cold moulds reduce shrinkage, especially when the material is 

a semi-crystalline. When the cooling is faster the molecules have less time to arrange 

themselves, decreasing the shrinkage, this effect being more intense if the material is 

semi-crystalline. The time to cool is also important because if there is more time, the 

crystalline sctructures will be larger and more numerous, and consequently the material 

will shrink more.  

Chang and Faison, 2000, [72,73] applied the Taguchi method to investigate the effects of 

the processing conditions on the shrinkage for HDPE, a PS and ABS. The authors 

concluded that an amorphous material shrinks less than semi-crystalline. The mould and 

melt temperatures, and time and pressure packing are the most important factors that 

influence the shrinkage. 

The Figure 2.5 represents the behaviour of shrinkage according various processing 

parameters and design part. 

 

Figure 2.5 - Influence of several factor on shrinkage [14] 

 

Wang and Yoon (1999) [76] used two tools, CAE software and DOE, to assessment the 

influence of processing conditions on the shrinkage and warpage. Like for other authors 

the packing pressure is the most important factor affecting the shrinkage and warpage. It 
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happens due to the higher packing that can deliver more material into the impression and, 

therefore, reduce the shrinkage and warpage.  

Postawa and Koszkul 2005 [77] studied the influence of parameters of processing on 

shrinkage (longitudinal and perpendicular) injection moulding parts made from semi-

crystalline POM and amorphous PS. The change in mass and processing shrinkage of 

POM depends much on the clamp pressure and less on the injection temperature. 

However, for PS, it depends, mainly on the temperature of the injected plastic and the 

mould, and slightly less on the clamp pressure.  

Kramschuster 2006,  [78] investigated the effects of processing conditions on the 

shrinkage and warpage behaviour of a box-shaped PP part using conventional and 

microcellular injection moulding. The results showed that the supercritical fluid content 

and the injection speed affect the shrinkage and warpage of microcellular injection 

moulded parts most significantly, whereas hold pressure and hold time have the most 

significant effect on the shrinkage and warpage of conventional injection moulded parts.  

Kurt et al. 2010 [79] studied the effects of moulding parameters and concluded that 

packing pressure and melt temperature are dominant factors which determine the quality 

of parts.  

Hakimian et al. (2012) [80] evaluated the influence of processing parameters in injection 

moulding of microgears in a four cavity mould, and using three thermoplastic materials, 

PC/ABS, PPE/PS and POM filled with glass fibres. Moulding parameters such as packing 

time, cooling temperature, moulding and melting temperatures, packing and injection 

pressures, and fibreglass percentages are the most important factors affecting warpage 

and shrinkage. The best improvement in the shrinkage and warpage analyses were 

obtained from PPE/PS and PC/ABS, respectively. PPE/PS was the best polymer 

composite in the shrinkage analysis because of its molecular structure and minimum 

temperature at the flow front range, while the PC/ ABS behaved better in the warpage 

analysis. 
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2.2.1.2 Project of the mould/part 

 

The project of the mould and the part design are features that influence the shrinkage of 

the moulded product in injection moulding. There are many variables to consider in 

relation to the design like the size and shape of the part, the size and length of the runners, 

gates, the wall thickness of the part, the operation of the mould and the effectiveness of 

the cooling channels in the mould and the flow patterns within the mould. These factors 

may affect shrinkage in several ways. First, geometry determines pressure distribution 

inside the impression and its evolution with time. Second, geometrical constraints affect 

the shrinkage boundary conditions. Third, geometry may affect flow and hence cause 

orientation resulting in shrinkage anisotropy. 

Gordillo et al. (1999) [81]  compared the experimental and simulated shrinkage for 

isotactic PP. These researchers studied the influence of geometrical factors and 

processing conditions on the shrinkage. The wall thickness is one of the most important 

factors. If the wall thickness of the part is increased, more time is required for cooling 

and larger crystalline structures will develop, if the material is semi-crystalline, which 

increases shrinkage.  

Later, studies on the effect of wall thickness allowed more understanding about shrinkage 

on thin-wall mouldings. Liao et al. (2004) [82] investigated the optimal process 

conditions of thin-wall of a cell phone cover and Liao and Hsieh [83] applied back-

propagation artificial neural networks in predicting the shrinkage and warpage of 

injection-moulded thin-wall parts.  

Jafarian and Shakeri, 2005, [84] investigated the effects of critical relaxation time, initial 

melt temperature, mould temperature, pack pressure, gate freezing on shrinkage of 

plastics parts, and developed a simple flat model and a simulation code. They obtained 

good results confirming the model. 

Cheng-Hsien Wu and Yu-Jen Huang, 2007, [85] evaluated the cavity deformation which 

arises during the injection moulding process. A structural analysis program was 

developed to predict the cavity deformation and experiments were carried out with 

PMMA parts. The numerical simulation results were improved in predicting the shape 

and size of a final product by taking the cavity deformation into account.  
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S. Fathi and A.H. Behravesh (2007) [86] presented an experimental investigation on the 

visualization of (material/mould) separation development during the in-mould shrinkage 

of injection moulded parts. The purpose is to correlate the separation times with the 

shrinkage. The results indicate that although there is a meaningful correlation between 

shrinkage and separation time in the non-constrained mould, this correlation is highly 

disturbed in the presence of a constraint.  

 

2.2.1.3 Characteristics of Material 

 

Plastics materials have positive coefficients of thermal expansion and are compressible 

in the molten state. As a result, the volume occupied by the material changes with both, 

temperature and pressure [68]. Various phenomena occur when the polymer changes 

physical state, for instance, the solidification of material inside the mould influences the 

shrinkage of the product directly, more precisely, the cooling rate. 

Semi-crystalline thermoplastics are particularly influenced by the cooling rate. The 

polymer chains in the melt are in a disorganized state, and upon solidification they form 

a dense structure. With increasing crystallinity, the density and the shrinkage of the 

structure increase. Resler, 1999, [87] considered the effect of cooling rate, also called 

super-cooling, in injection moulding process. This super-cooling affects directly the 

crystallization temperature of semi-crystalline materials, thereby causing variations in 

volumetric shrinkage. As cooling rate is increased, the amount of crystallite formation is 

decreased. This results in a less dense material as well as a lower volumetric shrinkage.  

The behaviour of materials, amorphous or semi-crystalline, is totally different in relation 

of shrinkage, even, if the resin has fillers or reinforcements. Powders, flakes and fibres 

are generally incorporated into plastics to selectively modify mechanical properties of the 

virgin material. The use of fibre reinforcements also produces differential shrinkage 

between the flow and cross-flow moulding axes of the part, resulting in warpage. Most 

fillers and reinforcements are inorganic and have relatively low coefficients of thermal 

expansion (CTE). When an injection moulded composite is cooled during processing, the 

fillers and reinforcements tend to shrink significantly less than the polymeric matrix to 

which they are added. Particulate and flake fillers both tend to reduce the overall 

shrinkage when added to amorphous or semi-crystalline polymers. The reduction in 
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shrinkage is approximately proportional to their concentration. Powders, beads, and 

flakes are geometrically more uniform than fibres fillers.  

The use of pigments tends to increase the cross-flow shrinkage in semi-crystalline 

materials. For example, PP typically shrinks about 10% more in the in-flow direction than 

in the cross-flow direction [68].  

Velarde and Yeagley (1999) [88]  observed that the direction and magnitude of shrinkage 

depends upon processing conditions, wall thickness, flow type, material characteristics 

and part location. Disregarding the contributions of processing conditions, already 

mentioned by other authors, the semi-crystalline polymers shrink more than amorphous 

polymers due to the crystallinity, and the fillers decrease shrinkage. Considering the gate 

position, the polymer will shrink more away from the gate, since less packing pressure is 

applied at that region. Pomerleau and Sanschagrin (2006) [89] used a profilograph to 

obtain dimensional measurements, along the flow direction and across the flow direction. 

The effects of holding pressure and injection velocity on shrinkages was evaluated using 

DOE at three locations on the plates. The effects of holding pressure on shrinkage are 

significant: higher holding pressure leads to lower shrinkage. A positive effect of 

injection velocity is observed on parallel to flow shrinkage but no significant effect is 

observed on across flow shrinkage.  

Shelesh-Nezhad and Taghizadeh in 2007 [90] investigated the influence of adding 10 m 

talc particles on the shrinkage and the mechanical properties of injection moulded PP-talc 

composites. The data indicated that the maximum flexural strength, maximum impact 

strength, and isotropic shrinkage were achieved by adding 10, 20, and 30% by weight of 

talc respectively. The flake-shape structure of talc filler played an important role in 

determining the moulded part shrinkage and mechanical properties.  

De Santis et al. 2008, [91] studied the complete evolution of shrinkage from the instant 

of first solidification inside the mould to some minutes after demoulding for a typical 

multiphase industrial polymer with a small percentage of talc in a rectangular moulding. 

Simulation and experimental works were carried out and the results confirm that the 

shrinkage decreases when the holding pressure and the holding time are increased, the 

constraints inside the mould reduce the as-moulded shrinkage at low holding pressure and 

time. The use of strain gauges to directly measure the shrinkage inside the mould showed 

that the shrinkage onset is delayed by increasing the holding pressure. Their thermo-
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mechanical model gives a satisfactory description of the shrinkage and also of its onset 

inside the mould, and shows the relevance of using the degree of crystallinity as a criterion 

of solidification. 

Gershon et al. [92] 2008 used the full-field deformation technique of Digital Image 

Correlation (DIC) to characterize the non-uniform shrinkage in thermoplastics commonly 

used in traditional and emerging moulding processes. From their experiments, it has been 

shown that there is a large increase in shrinkage strain associated with the transition of 

the polymer from the molten to the solid state, and as it is cooled below the Vicat softening 

point.  

 

2.2.2 Shrinkage anisotropy 

 

The common causes of non-uniform shrinkage are differential orientation, differential 

crystallinity, differential cooling, materials characteristics, differential thermal strain, 

moulding conditions and mould constrains [68].  

In general, oriented material with molecules or fibres aligned with the flow or parallel to 

it shrinks in a more anisotropic manner than non-oriented material. The degree of 

orientation imparted by the melt flow during the mould filling process has a large 

influence on the shrinkage exhibited by the moulding. During mould filling, the polymer 

molecules undergo stretching that many result in molecular orientation and anisotropic 

shrinkage. Natural, unfilled plastic materials tend to shrink more along the direction of 

flow (in-flow shrinkage) compared with the direction perpendicular to flow (cross-flow 

shrinkage), while the shrinkage of reinforced materials is restricted along the direction of 

fibre orientation. In general, mould shrinkage tends to be more isotropic when the degree 

of orientation imparted during mould filling is minimized, and when favourable 

conditions for molecular relaxation exist. 

For semicrystalline materials, if some part of the mould cools at a slower rate, that area 

will be more crystalline and, hence, shrink more. This is the case for parts with different 

thicknesses, and for hot spots such as where material is in contact with outside corners of 

a core or with core pins. 
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Differential cooling can occur when the moulding surfaces are at different temperatures, 

as they frequently are around core pins, inside and outside mould corners, near gates, and 

where there are thickness variations. Hot spots cause problems in two ways: with added 

crystallinity and with a longer/later cooling time [68].  

Differential thermal strain may be due to geometric effects, i.e. where there are section 

thickness changes, sharp inside corners, or other geometric conditions that cause variable 

cooling or unusual orientation. The more abrupt the change, or the greater the differential 

cooling rate, the more severe is the thermal strain [68]. 

Moulding conditions can lead to excessive stresses caused by unusually high or low melt 

temperature or pressure, or unusually long injection time or short cycles. Moulding 

conditions can vary greatly, based on part size and part thickness [68].  

Mould constraints can contribute to non-uniform shrinkage. Usually the part is free to 

shrink in thickness. It is usually less free to shrink in length and width due to the geometry 

of the part. There may be cores, ribs, or edges that are firmly anchored so that the part 

cannot move until it is out of the mould [68]. 

Jansen (1998) [93] measured the coefficients of thermal expansion, elastic modulus, 

Poisson constants and linear compressibility to assess the anisotropy of these properties 

in injection moulded PP plates. A simple composite model was proposed which could 

predict all thermal and mechanical properties mentioned above from data of the 

amorphous and crystalline phases. It turned out that individual values were slightly over 

or underpredicted correctly. The only prediction which disagreed with the measurements 

was that of the coefficient of thermal expansion, which was found to be larger in the flow 

direction than in the width direction. In the same year, Jansen, Van Dijk and Freriksen 

[94] carried out a systematic study of the effect of fibre concentration and moulding 

conditions on fibre orientation and shrinkage in injection moulded composites. Shrinkage 

predictions were seen to agree well with experimentally measured shrinkages. 

Kwon et al., 2005 [89],[94],[95], developed a way to predict anisotropic shrinkage of 

semi-crystalline polymers in injection mouldings using the flow-induced crystallization, 

frozen-in molecular orientation, elastic recovery and PVT equation of state. The elastic 

recovery and frozen-in stresses and birefringence were obtained by a non-linear 

viscoelastic model. The flow-induced crystallization was described via the elevated 
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melting temperature affected by entropy production with modified kinetics of the 

crystallization. PP parts were produced by varying packing time, flow rate, melt 

temperature and mould temperature, and anisotropic shrinkage of mouldings were 

measured. The experimental results were compared with the simulated data.  

Postawa and Gnatowski (2007) [97] applied a Dynamic Mechanical Thermal Analysis 

method giving possibility in the very precise solution. Samples taken at the beginning of 

the flow path had better mechanical properties but poor suppressing properties. However, 

samples taken parallel to the flow direction in the mould (at temperatures over 40 deg) 

displayed better suppressing properties. 

 

2.2.3 Influence of fibre orientation in shrinkage 

 

The thermal and mechanical properties of the material strongly depend on the fibre 

orientation field. The composite is stronger along the major orientation direction and 

weaker in the transverse direction. Because of this anisotropy, the moulded product may 

develop high internal stresses and warp at unexpected places and consequently the 

shrinkage will be affected. Xia et al. [98] (1995) developed an analytical method for the 

prediction of stiffness of fibre reinforced injection mouldings including the effects of fibre 

orientation and fibre length distributions using two probability density functions on the 

basis of a generalized laminated-plate theory. 

Mlekusch, 1999, [99] compared several micromechanical models for determining the 

stiffness and thermal expansion coefficients of short-fibre-reinforced thermoplastics. The 

orientation averaging procedure is extended with the help of orientation tensors to non-

symmetric, transversely isotropic tensors. Furthermore, simplifications concerning the 

material symmetry are given, allowing the use of the classical thin-laminate theory to 

describe the composite. Finally, the values calculated with the various theories are  

compared with measurements on specimens from a specially designed tests component.  

Neves et al. [100] 2001, carried out an assessment of Moldflow simulations and 

experimentally determined fibre orientation distributions at three points along the flow 

path and 12 layers across the thickness of a circular centre gated moulding. The material 

used is a 10% weight short glass fibre reinforced PC. At the centreline of the disc and 
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close to the wall, the predictions of fibre orientation in most of the moulding conditions 

are close to the experimental data. At the intermediate points, the fibre orientation in the 

flow direction is consistently overestimated.  

Hine et al. 2002 [101] developed a new numerical procedure for predicting the elastic and 

thermoelastic properties of short fibre reinforced composites. The numerical predictions 

were compared with those from three commonly used micromechanical models, namely 

those of Halpin/Tsai, Tandon/Weng and Cox (shear lag). The effect of volume fraction 

and aspect ratio were investigated and the numerical approach was used to investigate 

which effect a distribution of fibre lengths would have on the prediction of mechanical 

properties.  

Thomason 2002 [102] developed an improved method for obtaining the micromechanical 

parameters, interfacial shear strength, fibre orientation factor, and fibre stress at 

composite failure using input data from macromechanical tests. They measured the 

mechanical properties and residual fibre length distributions of glass fibre reinforced PP 

containing different levels of glass fibre. The data were used as input for the model. The 

trends observed for the resultant micromechanical parameters obtained by this method 

were in good agreement with data obtained by other methods.  

 

2.2.4 Prediction of the shrinkage 

 

Due to the importance of the shrinkage to obtain precise dimensions of injection moulded 

parts, the study of predicting this phenomenon is indispensable. Some authors carried out 

research to measure and predict the shrinkage through of experimental methods and 

mathematical formulation over time, respectively.  

 Han and Wang (1997) [103] developed a method to obtain material properties which 

include the effect of crystallinity. Injection-moulding experiments have been conducted 

to measure the shrinkage of a part using a slowly-crystallizing polymer, in this case PET. 

Shrinkage has been measured and a simulation program was developed to describe the 

injection-moulding process. The predicted shrinkage and measured shrinkage are found 

to agree reasonably well. 
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Choi and Im, 1999, [104] carried out an analysis of shrinkage and warpage of injection 

moulded parts considering the residual stresses in amorphous polymers. For residual 

stress analysis, a thermo-rheologically simple viscoelastic material model was introduced 

to consider the stress relaxation effect and to describe the mechanical behaviour according 

to the temperature evolution. The deformation of injection moulded parts after ejection 

induced by the residual stress and temperature change was analysed using a linear elastic 

three-dimensional finite element approach. The results were compared with experimental 

data available in the literature.  

Lotti et al. (2002) [105] developed a neural network architecture to predict the shrinkage 

of an iPP injection moulded plaque after changing four processing conditions: melt and 

mould temperatures, holding pressure and flow rate. This work used DOE and Moldflow. 

The shrinkage predictions were compared with experimental, neural network and 

statistical results. It was observed that the neural network architecture had the best 

performance in the shrinkage prediction. 

Yang and Kwon, 2007, [106] created a numerical system to predict birefringence, residual 

stress and final shrinkage in the injection moulding process using hybrid finite element-

difference method for a general three dimensional thin part geometry. This model 

considers density relaxation phenomena. Deformations at and after ejection have been 

considered using thin shell viscoelastic finite element method. The model achieves good 

correspondences between numerical results and experimental data. 

Speranza et al. [107] (2007) studied the as-moulded shrinkage of poly(vinylidene 

fluoride) injection moulded samples in a simple rectangular cavity under different holding 

pressures. The shrinkage decreased on increasing holding pressure and the shrinkage 

increased on increasing the distance from the injection point. The shrinkage along the 

flow direction was higher than the transverse on-plane direction due to the anisotropy of 

the elastic modulus and of the coefficient of linear thermal expansion. The numerical 

simulation was carried out, and when the anisotropy in material properties was considered 

the results were satisfactory. 

Yang and Kwon 2008 [108] presented a work divided in two parts, part I, with the 

physical modelling and numerical formulation for a new lateral motion modelling and 

part II with the validation of the model comparing the calculated residual stress profile 

with the literature data. The predicted results of the birefringence, residual stress 
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distribution, and shrinkage showed better agreement with corresponding experimental 

data.  

Altan (2010) [109] studied optimal injection moulding conditions for minimum shrinkage 

using the Taguchi experimental design and the analysis of variance (ANOVA) methods. 

PP and PS were injected in rectangular-shaped specimens under various processing 

parameters. The researcher concluded that the most significant parameters were the 

packing pressure and melt temperature for the PP and PS mouldings, respectively. 

Injection pressure had the least effect on the shrinkage of either material. 

Isayev et al., 2010, [110] presented an upwinding scheme to improve the efficiency of the 

viscoelastic simulation in moulding of optical products using a numerical techniques. The 

approach was applied to simulate the flow-induced birefringence and anisotropic 

shrinkage in disk mouldings using a nonlinear viscoelastic constitutive equation, 

orientation functions and equation of state. Good agreement was found in the results. 

Lucyshyn et al. (2012) [111]  determined the transition temperatures of several polymers 

using DSC with different cooling rates. These data were used to calculate the shrinkage 

and warpage of box-shaped test parts by Moldflow. The results showed a strong influence 

of the transition temperatures on the simulation results of a 3D model and a very low 

influence when a 2.5D model was used.  

The methods that were developed for prediction the shrinkage can be classified in three 

groups: Statistical modelling approach, Thermodynamic modelling approach and 

Thermo-mechanical modelling approach. 

 

2.2.4.1 Statistical modelling approach 

 

One approach largely adopted in the literature is based on the statistical modelling of 

shrinkage as a function of the moulding parameters and design factors [67] . 

Walsh 1993 [112] declared that the warpage of injection moulded components is caused 

by variations in shrinkage. Walsh implemented a routine for shrinkage calculation in  

software for the simulation of injection moulding. Shrinkages, along the directions 
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parallel and perpendicular to that of material orientation, are calculated by means of a 

linear combination of variables, Fi: 

 

𝑆 = 𝑎0 + 𝑎1𝐹1 + 𝑎2𝐹2 + 𝑎3𝐹3 + 𝑎4𝐹4 +⋯                              (2.5)                        

 

where the coefficients ai are the constants, determined by a regression analysis on data 

obtained in a series of experimental tests, and Fi are intended to represent all different 

material properties, process variables and characteristics of the mouldings as obtained 

from flow analysis, which affect shrinkage. 

The statistical approach allows the isolation of the effect of a single variable on shrinkage, 

thus obtaining typical dependencies. The main shortcomings of such as approach are the 

lack of generality in the results obtained, which are linked to a given set of processing 

conditions and to a given geometry. 

 

2.2.4.2 Thermodynamic modelling approach 

 

This method considers the responses of polymer solids and melt during melt processing, 

represented by a PVT diagram, Figure 2.6, obtained from the material supplier or a 

standard data source [68]. The shrinkage and warpage will depend on the material 

properties (PVT, thermal properties, etc.), the part geometry (wall thickness, gate 

location, mould constraints, etc.), and the moulding conditions (temperature, pressures, 

flow rates, etc.). 

An appropriate model to describe the behaviour of polymers is the double domain Tait 

equation, used to model polymer behaviour during melt processing. From the Tait 

equation and a set of constants, any specific volume of a polymer can be determined by 

knowing only the temperature and pressure of the system. 

This form of the Tait equation is simply a prediction of the specific volume, v(T,p), as a 

function of temperature and pressure. The three conditional terms, v(T), B(T), and v(T,p), 
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change forms based on whether the selected temperature is above or below the freeze line. 

That is why this equation is called “Double Domain Equation”. 

 

 

Figure 2.6 - PVT curve evaluating shrinkage [113] 

It is not necessary to know this equation exactly. It is important only to know that it is 

coded into all mould-filling software. Plastics suppliers have generated the necessary 

databases of PVT constants to describe most of their many materials. 

𝑣(𝑇, 𝑝) = 𝑣0(𝑇) [1 − 𝐶 𝑙𝑛 (1 +
𝑝

𝐵(𝑇)
)] + 𝑣𝑡(𝑇, 𝑝)               (2.6) 

𝑣0(𝑇) = 𝑏1𝑚 + 𝑏2𝑚𝑇    if T>Tt                                            (2.7) 

𝑣0(𝑇) = 𝑏1𝑠 + 𝑏2𝑠𝑇      if T<Tt                                   ( 2.8) 

�̅� = 𝑇 − 𝑏5                                                              (2.9) 

𝐵(𝑇) = 𝑏3𝑚𝑒𝑥𝑝(−𝑏4𝑚�̅�)   if T>Tt                           (2.10) 

𝐵(𝑇) = 𝑏3𝑠𝑒𝑥𝑝(−𝑏4𝑠�̅�)     if T<Tt                                    (2.11) 

𝑇𝑡(𝑝) = 𝑏5 + 𝑏6𝑝                           (2.12) 

𝑣(𝑇, 𝑝) = 0        if T>Tt                                     (2.13) 
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𝑣(𝑇, 𝑝) = 𝑏7𝑒𝑥𝑝(𝑏8�̅� − 𝑏9𝑝)           if T<Tt                 (2.14) 

These constants have a physical meaning: b1m to b4m describe the pressure and 

temperature dependence of the melt; b1s to b4s are constants describing the pressure and 

temperature dependence of the solid; b5 is Tg; b6 is the pressure dependence of Tg; b7 to 

b9 are particular to semi-crystalline polymers and describe the shape of the melting 

transition as a function of pressure and temperature. These constants are unique to each 

plastic formulation. C is a universal constant; generally, a value of 0.0894 leads to good 

results. The subscript m refers to the material when in the molten state and the subscript 

s to the solid material. 

The local-mould shrinkage in an injection-moulded part is the result of many factors. 

Local pressure variations are a primary source of different shrinkage in different locations 

of a moulded part. For isotropic amorphous polymers moulded in simple parts, a good 

estimate of shrinkage is possible using the PVT predictions. When filler systems are 

incorporated into the plastics moulding compound, the shrinkage will be a function of the 

amount, the shape, and the orientation of the filler at each location in the part. Estimating 

the shrinkage of semi-crystalline polymers requires the additional use of data relating to 

the kinetics of crystallization. 

Many attempts have been made to model shrinkage using PVT (pressure-volume-

temperature) diagrams. Following the volume dependency on pressure and temperature, 

an isotropic value for density change after gate sealing can be obtained. These models do 

not consider details in shrinkage developments and are obviously limited to predictions 

of average shrinkage, neglecting any directional effect. Actually, large differences in 

shrinkage are usually observed along different directions. The plane shrinkage of these 

products is affected by details of the evolution of the solidification pressure, while 

thickness shrinkage is affected only by solidification pressure of the last solidified layer 

and by Poisson effects due to in-plane deformation. Linear shrinkage is not easily 

calculated from volumetric data, and a thermo-mechanical analysis is required [67] . 

Although the equations of state cannot predict any densification effect, PVT diagrams 

can, however, be used to calculate density distribution in products solidified under 

continuously changing pressure. If no volume relaxation is present below Tg, the equation 

of state can still be used to derive all relevant thermodynamic parameters (thermal 

expansion, volume compressibility) also in the solid state. The pressure induced 
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densification phenomenon is mainly due to the dependence of the glass transition 

temperature upon solidification conditions.  

Hassan et al., 2010, [114] evaluated the effect of the cooling system on the shrinkage rate 

of a PS product during injection moulding. They used the PVT approach and a Cross-

type rheological model for the polymer material. Different cooling layouts were assumed 

and the effect of their positions on the cooling process was studied. The results indicated 

a good agreement between the numerical solution and those in the literature. 

  

2.2.4.3 Thermomechanical modelling approach 

 

Thermomechanical approaches take in account the evolution of shrinkage from the 

moment of first solidification and a balance between restraining and constraining forces. 

Consider a molten slab cooling inside a mould divided in a series of layers in mechanical 

equilibrium in the direction of thickness: these layers solidify at different times. Each 

layer shrinks according to its density increase related to its temperature, pressure and 

crystallization history [67]. 

The layers are subjected a balance of forces while inside the mould and after ejection, and 

the stresses develop in the layers according to the material behaviour. 

In the in-mould shrinkage the dimensions are regulated by the mechanical equilibrium 

between internal stresses and external forces acting on the solid layers. If the moulding is 

constrained inside the mould, the product in-plane dimensions are fixed. 

Thickness shrinkage is regulated by the release of pressure at ejection, Poisson effect in 

relation to in-plane shrinkage, thermal and contraction until room temperature. 

Thermomechanical approaches allow more realistic directional shrinkage predictions 

and, by linking dimensional accuracy to the stress distribution inside the impression, also 

provide a description residual stresses.  

Bushko and Stokes (1995) [115] used the solidification of a molten layer of a 

thermoplastic between cooled parallel plates to model the mechanics of part shrinkage 

and the build-up of residual stresses in the injection-moulding process. The packing 
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pressure is shown to have a significant effect on part shrinkage, but a smaller effect on 

residual stresses. Mould and melt temperatures were shown to have a much smaller effect. 

The processing parameters appear to affect the through-thickness shrinkage more than 

the in-plane shrinkage. One year later, they [116] continued this work that allows material 

to be added to fill the space created by the pressure applied during solidification; thus 

their model can be used to assess packing-pressure effects in injection moulding. For 

several sets of boundary conditions, parametric results are presented on the effects of the 

packing pressure in plaques geometry. Plaques that can shrink in the in-plane direction 

while in the mould are shown to shrink more and to have higher residual stresses than 

plaques that are fully constrained while in the mould. 

Jansen and Titomanlio, 1996, [117] presented a simple elastic model for residual stresses 

and shrinkage of a thin solidifying product. It accounts for shrinkage anisotropy between 

in-plane and thickness directions, caused by different constraints in deformation. The 

model uses local values for temperature, pressure, crystallization, and (if present) extent 

of reaction, which belong to the standard output of most simulation codes. It is therefore 

assumed to be valid also for complex shaped products. This work shows the link between 

simple theories predicting shrinkage, density distributions in polymer products. They  

[118] also developed a simple elastic model to study the effect of in-mould shrinkage on 

final product dimensions and residual stress distributions. The friction between the 

polymer and the mould wall surface as well as the deformation of the mould impression  

was considered. The as-moulded dimensions were calculated from the stress change 

during ejection. This means that boundary condition effects (geometrical constraints, 

friction effects) can also be included. The effect of molecular orientation, however, can 

only be included indirectly (via differences in expansion and crystallization coefficients).  

Kabanemi (1998) [119] developed a numerical simulation model for predicting residual 

stresses and residual deformations which arise during the injection moulding of 

thermoplastic polymers during the post-packing stage. The volume relaxation was used 

for the calculation of residual stresses. The finite element method employed is based on 

the theory of shells as an assembly of flat elements. The approach allows the prediction 

of residual deformations and residual stresses layer-by-layer like a truly three-

dimensional calculation. Numerical results are in qualitative agreement with experimental 

observations. The influence of the mould temperature on residual stresses and warpage 

was also analyzed. 
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Azdast and Behravesh (2008) [120] presented an analytical approach to predict the in-

mould constrained shrinkage of injection moulded semi-crystalline plastics parts. The 

existence of mould constraints exerts a noticeable effect on the final dimensions of 

moulded parts due to the viscoelastic characteristics of polymeric materials. Variation of 

in-mould cooling time introduces variations in final part dimensions that depend on the 

constraints.  

De Santis et al. (2010) [121] explored the influence of holding pressure and time, and 

geometric constraints, on the shrinkage of a semi-crystalline polymer. Adopting a 

technique using strain gauges, the time at which shrinkage started inside the mould was 

measured as a function of the holding pressure. Experimental results were compared with 

predictions for shrinkage obtained by a code developed at the University of Salerno, 

which takes into account crystallization kinetics and the effect of crystallinity on material 

properties. In particular, a solidification criterion based on the degree of crystallinity was 

identified.  

 

2.2.4.4 Reinforced short fibre modelling approach 

 

2.2.4.4.1 Short-fibre composites 

 

There is a kind of reinforcement applied in composites, short-fibres, whose main attribute 

is the elongated shape where the length is smaller than the overall dimensions of the part. 

Short-fibres are used in injection moulding, as well as in sheet moulding and short-fibre 

GMT’s (glass-mat reinforced thermoplastics) [122]. 

The most common fibre used in polymer composites is the glass fibre. The reason of that 

are advantages like high strength, low cost, high chemical resistance, and good insulating 

properties. The disadvantages are low elastic modulus, poor adhesion to polymers, high 

specific gravity, sensitivity to abrasion (reduces tensile strength), and low fatigue strength 

[123]. 

The manufacturing method influences the properties of short-fibre polymer composites 

due to the orientation of the fibres inside the part. Hence, the design of short-fibre 

composite part must be thoroughly planned. 
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A description of short-fibre orientation is important to predict the properties of the 

composite. Commonly, a single fibre is regarded as an axisymmetric particle, like 

represented in the Figure 2.7. The orientation of the unique fibre is described by two 

angles, θ and ϕ, or by a unit p directed along the particle axis. The representation is shown 

below 

 

𝑝1 = 𝑠𝑖𝑛𝜃𝑐𝑜𝑠∅ 𝑝2 = 𝑠𝑖𝑛𝜃𝑠𝑖𝑛∅ 𝑝3 = 𝑐𝑜𝑠𝜃                       (2.15) 

where (p1, p2, p3) are the Cartesian components of p.  

 

 

Figure 2.7 - The orientation of a single axisymmetric particle is described by the angles, 

θ and ϕ, or by a unit vector p directed along the particle axis [122] 

 

A composite has many fibres and at this case a distribution function is necessary. The 

number of fibres can be considered as very large population, then a probability density 

function for orientation is ψ(θ,ϕ) or ψ(p). This function represents the probability of any 

fibre to be in the range between θ1 and θ1+dθ, and between ϕ1 and ϕ1+dϕ1, is 

 

𝑃(𝜃1 ≤ 𝜃 ≤ 𝜃1 + 𝑑𝜃,   𝜙1 ≤ 𝜙 ≤ 𝜙1 + 𝑑𝜙) = 𝜓(𝜃1, 𝜙1) sin 𝜃1𝑑𝜃𝑑𝜙     (2.16) 
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Wherefore every fibre with the same angle can be considered, the integral over all angles 

must be equal unity: 

 

∫ ∫ 𝜓(𝜃, 𝜙) sin 𝜃𝑑𝜃𝑑𝜙 = ∫𝜓(𝑝)𝑑𝑝 = 1
𝜋

𝜃=0

2𝜋

𝜙=0
                        (2.17) 

 

Here ∫𝑑𝑝 denotes the integral over all possible values of p.  

In practical cases ψ varies with the position and time and for a large number of fibres the 

function is not practical to calculate. So, a more efficient description of orientation to use 

in process models is required. A possible solution would be to use tensors to describe the 

fibre orientation. Instead of using a statistical function and can work with the average 

orientation.  

The tensors are represented by the quantities 𝑎𝑖𝑗 and 𝑎𝑖𝑗𝑘𝑙 that follow the transformation 

rules for tensors, where  

𝑎𝑖𝑗 = 〈𝑝𝑖𝑝𝑗〉 

𝑎𝑖𝑗𝑘𝑙 = 〈𝑝𝑖𝑝𝑗𝑝𝑘𝑝𝑙〉 

 

with i, j, k and l taking the values 1, 2 and 3 in all possible combinations. 

The nine components of 𝑎𝑖𝑗 are the components of a second-rank tensor, like stress or 

strain. Similarly, 𝑎𝑖𝑗𝑘𝑙  is a fourth-rank tensor like stiffness or compliance. These 

quantities are commonly called orientation tensors, conformation tensors or moment  

tensors.  

 

2.2.4.4.2 Orientation tensors 

 

The use of tensors to represent the glass fibre orientation had its beginning with the work 

of Jeffery in 1922, [124] who had studied the rotation of two circular cylinders in a 

viscous fluid which is developed for a single ellipsoid immersed in a viscous fluid. Since 

this model does not account for fibre-fibre interaction, and does not consider the effect of 
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fibres on the velocity field, it is only useful for dilute suspensions. Thereafter,  Advani 

and Tucker [125], 1985, described the orientation of fibres by orientation tensors and its 

influence in the properties of the material. In 1987, Advani and Tucker [126] used a set 

tensors to describe the probability distribution function of fibre orientation in suspensions 

and composites containing short rigid fibres. These tensors are related to the coefficients 

of a Fourier series expansion of the probability distribution function. They obtained the 

equations of change for orientation the second- and fourth-order tensors; these can be 

used to predict the orientation of fibres by flow during processing. Tensors offer 

considerable advantage for numerical computation because they are a compact 

description of the fibre orientation field.  

 

2.2.4.4.3 Glass fibre 

 

In the previous section it was described the geometrical characteristics of glass fibres in 

polymer matrix. Due to these characteristics several researchers developed a lot of works 

with this material. 

Xavier (1982) [127] studied the correlation of processing conditions with morphology 

and mechanical properties in PP reinforced with glass fibre moulded by injection 

moulding. The aim of this study was the optimization of processing conditions to obtain 

composites with desired properties. The author concluded that the knowledge of the 

morphological state of the polymer composite assures that the mechanical properties are 

meaningful, and permit fabrication of injection-moulded articles with tailor-made 

mechanical properties.  

Pipes et al., 1982, [128] presented a work for polymers reinforced with discontinuous 

fibres showing their influence in the orientation state using elastic constants, thermal 

coefficients of expansion and tensile strength. 

Vincent and Agassant,  in 1986, [129] used a polyamide with short glass fibres centre 

gated moulded disc using optical microscopy techniques to study the influence the 

orientation in the properties of parts obtained by injection moulding. The orientations at 

the core and the surface were different. The numerical scheme and computation method 

were implemented and presented good agreement with experimental data.  
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Altan et al.  (1990)  [130] developed a numerical technique to determine the three-

dimensional fibre orientation in complex flows. The fibre orientation field was specified 

in terms of orientation tensors, which are used in several constitutive models. This method 

is applied to quasi-steady state Hele-Shaw flows to predict the flow induced fibre 

orientation. The numerical solutions are obtained for channel and converging flows.  

Matsuoka, in 1990, [131] presented a numerical scheme to predict fibre orientation in 

three-dimensional thin-walled injection moulded parts in short-fibre thermoplastic 

composite. The Folgar and Tucker’s orientation equation was used. The equation was 

solved about a distribution function of fibre orientation by using a finite difference 

method with input of velocity data from a mould filling analysis. The mould filling was 

assumed to be a non-isothermal Hele-Shaw flow of a non-Newtonian fluid and analyzed 

by finite element method. Computed orientation parameters were compared with 

measured thermal expansion coefficients of moulded square plates of glass-fibre-

reinforced PP. A good correlation was found.  

Akay and Barkley (1991) [132] evaluated the mouldings for fibre orientation distribution, 

in tensile and dynamic mechanical tests and fracture analyses in short-glass fibre-

reinforced PP and polyamide. They concluded that the melt and mould temperatures, and 

the injection ram speed influence the fibre orientation field. The prediction was worse in 

the material systems containing significant production- induced voids.  

Randy and Tucker III, in 1992, [133] developed the theory and numerical methods to 

simulate filling and fibre orientation is simple linear injection mouldings. This simulation 

was applied for the flow of a generalized Newtonian fluid where the velocities can be 

solved independently of fibre orientation. A finite difference solution calculates the 

temperature and velocity fields along the flow direction and through the thickness of the 

part. The fibre orientation is then integrated numerically along the path lines. The 

simulation predicts that the orientation will vary through the thickness, causing the 

moulding to appear layered. The outer “skin” layer is predicted only if the effects of the 

fountain flow and heat transfer are included in the simulation.  

Bay and Tucker III,  in 1992, [134] measured the fibre orientation of two parts injection 

moulded from polyamide 6.6 reinforced with 43 wt% of glass fibres. The orientation was 

measured in polished cross sections and reported as a function of position, both across 

the thickness and in the flow direction. The experiments were compared with predictions 
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of the simulation. The simulation  prediction showed the presence, nature, and location 

of the layers very well. However, it overpredicted the small out-of-plane fibre orientation 

and places the core-shell transition too close to the mid-plane. Injection time is an 

important parameter, but injection temperature and mould temperature have little effect 

on the fibre orientation. The experiments and predictions confirmed the basic 

understanding of fibre orientation in injection moulded composites.  

Bay and Tucker III, [135] also in 1992,  presented a method  for measuring three-

dimensional fibre orientation in fibre-reinforced polymers. The orientation of individual 

fibres was determined from the elliptical intersections between the cylindrical fibres and 

the polished section. This can be done using either manual digitization or automated 

image analysis. Equations were developed for non-uniform fibre lengths, using both 

number-average and weight-average measures of orientation. Sources of systematic, 

measurement, and sampling error were discussed, and equations for sampling error and 

the propagation of the error of measurement were derived.  

Reifschneider and Akay, in 1994 [136] showed an application of a finite element 

simulation of mould filling and prediction of fibre orientation in fibre filled compression 

moulded parts for three dimensional thin-walled geometries.  Following a simulation of 

the filling process, a set of transport equations are solved to predict the locally planar 

orientation of short fibre composites. The final orientation field throughout the part 

provide the necessary information to obtain a locally orthotropic mechanical model of the 

composite. Derivations of the orthotropic mechanical properties obtained from the fibre 

orientation results are outlined.  

Cintra and Tucker III, 1995, [137] presented a new family of closure approximations, 

called orthotropic closures, what were developed for modelling the flow-induced fibre 

orientation. These closures approximate the fourth-order moment tensor for fibre 

orientation in terms of the second-order moment tensor.  

Davidson et al. (1997) [138] developed an image analysis system based on a small 

network of parallel processors hosted in a personal computer to measure the orientation 

of glass and carbon fibres in a polymer matrix from a polished section using optical 

microscopy. This technique allows the fibre orientation to be measured accurately over 

large sample areas.  



41 
 

 

Neves et al. (1998) [139] determined experimentally the through-thickness fibre 

orientation distribution of injection moulded polycarbonate plates by light reflection 

microscopy and manual digitization of polished cross sections. Fibre length distribution 

was determined by pyrolysis tests followed by image analysis. A statistical analysis was 

done to determine the confidence limits of the fibre orientation results. The fibre 

orientation distribution was described by using second-order orientation tensors. The 

through thickness stiffness variations were determined by the orientation averaging 

approach. This layer stiffness distribution was used to simulate the behaviour of beams 

subjected to three points bending with a finite element (FEM) ANSYS model. The results 

were compared with experimentally determined flexural stiffness both in the flow 

direction and in the transverse flow direction.  

Zhang et al. (1998) [140] investigated the transverse creep behaviour of unidirectionally 

reinforced glass fibre composites with an unsaturated polyester matrix. The matrix model 

included effects of physical ageing of the resin and, in its general 3D-formulation, was 

able to describe time-dependent lateral contraction. The 3D-model was implemented into 

a FEM package. The excellent agreement obtained between the FEM calculations and 

experimentally obtained strains for various model (uniaxial and multiaxial) loading 

situations lends confidence to the ability of the model to describe the time-dependent 

behaviour of the unsaturated polyester under general 3D loading situations.  

Lee and Jang, 1999, [141] fabricated glass fibre mat reinforced PP composites with the 

variation of glass fibre content. Tensile, flexural and high rate impact tests were 

conducted to investigate the effect of glass fibre content on the mechanical properties of 

the glass-fibre-mat/PP composite. Deformation and fracture behaviour of the glass-fibre- 

mat/PP composites was investigated to study the relationship with the mechanical 

property data. The tensile and flexural modulus increased with the increment of glass 

fibre content. However, the tensile and flexural strengths exhibited maximum values and 

showed a decrease at the higher glass fibre content. The impact absorption energy also 

exhibited a similar result with the tensile and flexural property data.  

Zheng et al., 1999, [142] described a numerical method for the prediction of residual 

stresses, shrinkage and warpage in injection moulded fibre-reinforced thermoplastics. 

Effects of pressure and thermal history, fibre orientation state and stress relaxation were 

taken into account through the simulation of the filling, packing and cooling stages of the 
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injection moulding process. The final dimension and shape of the part after ejection were 

calculated by a FEM structural analysis. An anisotropic linear thermo-viscoelastic 

material model was employed to describe the constitutive behaviour of the material. 

Fu et al. (2000) [143] studied composites of PP reinforced with short glass fibres and 

short carbon fibres. The tensile properties of these composites were investigated. It was 

noted that an increase in fibre volume fraction led to a decrease in mean fibre length as 

observed previously. The relationship between mean fibre length and fibre volume 

fraction was described by an exponential function with an offset. The results showed that 

mean glass and carbon fibre lengths decrease with increasing fibre volume fractions and 

the combined effect of fibre volume fraction and fibre length determines the final tensile 

properties of the composites. 

 

Eberhardt and Clarke, 2001, [144] described the confocal technique for fibre-orientation 

distribution measurement and the associated errors. Novel image processing and 

management routines have been implemented to fully to automate the data acquisition, 

and consequently significant sample areas could be analysed within hours.  

Pontes et al. (2003) [145] considered the effectiveness of the interaction parameter C on 

controlling the predicted patterns of the fibre orientation. C is important on the qualitative 

prediction of the fibre orientation. It affects significantly the patterns of fibre orientation 

predicted in the flow simulations. Larger values of C, tend to make the fibre orientation 

close to a random in-plane distribution whereas lower values predict a clear alignment in 

the flow direction.  

Vincent et al., 2005, [146] carried out the observation and quantification of fibre 

orientation in a rectangular plaque with adjustable thickness and moulded with 30 and 50 

wt% short fibre reinforced polyarylamide. An automated 2D optical technique was used 

to determine fibre orientation. It was shown that the gate design and various levels of 

fibre interactions, due to different fibre concentrations, were responsible for these 

observations. Secondly, computer simulations of flow and fibre orientation were shown. 

The agreement with the actual data was good, except in the case of the core for thin 

plaques. The limitations that have to be resolved come not only from the standard fibre 

orientation equations, but also from the flow kinematics computation.  
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Toledo et al. (2008) [147] studied the behaviour of composites formed by laminae 

reinforced with unidirectional fibres to calibrate the general model. Three-dimensional 

finite element models were used to study the distribution of stresses and strains inside the 

composite. This study presented comparisons between elastic properties of laminae 

obtained with the FEM model, the Mori–Tanaka method, the model for composite 

studied, and experimental data. The results showed that the calibrated model describes 

the behaviour up to failure of the composite laminates. The failure mode of the composite 

produced by the failure of one or more of its components could be identified.  

Phelps and Tucker,   2009, [148] developed a fibre orientation model that incorporates 

anisotropic rotary diffusion (ARD). From the kinetic theory was derived the evolution 

equation for the second-order orientation tensor, correcting some errors in earlier 

treatments. Model parameters were selected by matching the experimental steady-state 

orientation in simple shear flow, and by requiring stable steady states and physically 

realizable solutions. Also, concentrated fibre suspensions align more slowly with respect 

to strain than models based on Jeffery’s equation. The final model was suitable for use in 

mould filling and other flow simulations, and it improved predictions of fibre orientation 

for injection moulded long-fibre composites. Adding ARD to a Jeffery-type fibre 

orientation model offers greatly improved ability to match experimental data, compared 

to the isotropic Folgar–Tucker model. 

Miled et al., 2012,  [149] proposed a first integrated approach of the injection moulding 

of fibre reinforced thermoplastics starting from rheology of the material, orientation 

equation, interaction parameter and closure approximation. The resulting local fibre 

orientation distribution is then used in two ways, in order to predict the mechanical 

properties of the part: first, using classical analytical homogenization theories, but based 

on the computed orientation tensor and not on an experimental one, and then, using 

numerical homogeneization which consists in generating a Representative Elementary 

Volume (REV), determining its unidirectional mechanical properties of the part.  
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2.2.4.5 Reinforced nanoclay modeling approach 

 

Polymer nanocomposites consist of a polymeric material (e.g., thermoplastics, themosets, 

or elastomers) and a reinforcing nanoscale material (nanoparticle). The nanoparticle has 

at least one dimension in nanometer scale. Polymer nanocomposites show major 

improvements in mechanical properties, gas barrier properties, thermal stability and fire 

retardancy.  The most commonly used nanoparticles referred to the literature are [150], 

[151], [152] :  

- Montmorillonite organoclays (MMT) 

- Carbon nanofibres (CNF) 

- Polyhedral oligomeric silsesquioxane (POSS) 

- Carbon nanotubes [multiwall (MWNT), small-diameter (SDNT), and single-wall 

(SWNT) 

- Nanosilica (N-silica) 

- Nanoaluminum oxide (Al2O3) 

- Nanotitanium oxide (TiO2) 

The montmorillonite nanoclays are the most widely investigated nanoparticles in a variety 

of polymer matrices for a spectrum of applications.  

In most cases, polymer nanostructured materials exhibit multifuncionality. Several of the 

functions of these materials are listed below: 

 Thermal: increased thermal resistance, higher glass transition temperature (Tg) or 

heat deflection temperature (HDT) are reduced coefficient of thermal expansion 

(CTE). 

 Mechanical: increased modulus, strength, toughness and elongation (in some 

cases). 

Thostenson (2005) [153] provided an overview of recent advances in nanocomposites 

research. The state of knowledge in processing, characterization, and analysis/modelling 
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of nanocomposites were presented with a particular emphasis on identifying fundamental 

structure/property relationships. The author stated that multi-scale hybrid composites 

have also been produced using nanoclay as reinforcement for the matrix material. The 

motivation of adding nanoclay to a resin matrix is for enhancing the resin stiffness. The 

benefits of such improvement was demonstrated in the compressive strength of fibre 

composites, which is influenced by the matrix shear modulus.  

Lei et al., 2006, [154] studied the effect of the clay chemistry and source on the processing 

and properties of the nanocomposites. Various analyses techniques were used to 

characterize the dispersion and the properties of the nanocomposites, using scanning 

electron microscopy (SEM), differential scanning calorimetry (DSC) and dynamical 

mechanical analysis (DMA). All the types of clay have demonstrated the apparent 

nucleating effect because the crystallization took place at higher temperature upon 

cooling. The crystallization temperatures are also affected by the intercalant 

characteristics. 

Díaz, 2007, [155] realized a comparative study in PP-clay nanocomposites and PP 

containing conventional inorganic fillers such as calcium carbonate (CaCO3) and glass 

fibre focusing on dimensional stability, structure, mechanical and thermal properties. The 

relative influence of the filler was observed from dimensional stability measurements and 

structural analysis by WAXD, TEM, and thermal and mechanical properties. PP/clay 

nanocomposites exhibited an improvement in dimensional stability and were the only 

composites capable of reduced shrinkage in both in-flow and cross-flow directions. The 

flexural modulus of PP increased nearly 20% by compounding with 4% organoclay, as 

compared to a similar performance obtained by compounding with 10 wt% of CaCO3 or 

approximately 6 wt% of glass fibre.  

De Paiva et al. [156], 2008, developed a research to give an overview of properties, 

synthesis and applications, and to describe the research performed until the present 

moment. The study of organoclays was a large field and showed an immense potential to 

be explored. It was summarized in 69 important papers of the recent literature, indicated 

a strong tendency of the use of bentonites or sodium montmorillonites, quaternary 

alkylammonium salts and the cation exchange technique to prepare organoclays. 

Approximately 80% of the papers described the use of the cation exchange reactions, 

generally in aqueous solution, to modify the clay minerals.  
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Kanny et al., 2008, [157] presented a study in wear rates and quasistatic mechanical 

properties of PP infused with layered organo-modified montmorillonite nanoclays. Test 

results showed that PP infused with 2 wt% of organomodified montmorillonite gives 

improved mechanical strength, higher fracture toughness, and lower wear rates. The 

general improvement in properties, which includes but not limited to the thermal barrier 

properties, may be attributed to the change in structure.   

Carrión, et al., 2008, [158] prepared a new polycarbonate nanocomposite containing a 3 

wt% proportion of the organically modified montmorillonite bentone 2010 and 

determined its tribological properties under a pin-on-disc configuration against stainless 

steel. The good tribological performance of the new nanocomposite was attributed to this 

uniform microstructure and to the increase in the nanoclay stacking distance. 

Litchfield and Baird, 2008, [159] studied the effect of nanoclay concentration on the 

molecular orientation and drawability of poly(ethylene terephthalate) PET. The 

drawability at 83°C in hot air increased by the addition of nanoclay, but the maximum 

draw ratio was independent of nanoclay concentration. The average molecular orientation 

of the PET chain was found to mimic the trend in mechanical property improvements, 

namely Young’s modulus and tenacity.   

Paul and Robeson (2008) [160] reviewed the technology involved with exfoliated clay-

based nanocomposites on the important areas including barrier properties, flammability 

resistance, biomedical applications, electrical/electronic/optoelectronic applications and 

fuel cells. The important question of the ‘‘nano-effect’’ of nanoparticle or fibre inclusion 

relative to their larger scale counterparts was addressed relative to crystallization and 

glass transition behaviour.  

Santos et al. [161] (2009) showed that the properties of PP nanocomposites are dependent 

on the quaternary ammonium salt in the montmorillonite (MMT). Depending on the 

preparation the nanocomposite can exhibits an increase in its impact properties, while 

other preparation shows an increase in the flexural modulus.  
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2.3 Ejection forces in injection moulding 

 

The knowledge of magnitude of ejection force is determinant to the design the ejection 

system. The magnitude of the release force may also suggest the need for changing the 

position of the part in the mould and, therefore, the whole ejection system. Besides this, 

knowing the release forces and the parameters which affect them, it provides the 

possibility of reducing this force by making minor changes in the part configuration. 

Basically, two sort of forces can be expected [70]: 

- Opening forces: they are generated if the mould is jammed by too little shrinkage or too 

much deformation. 

- Release forces which are subdivided into: loosening forces and pushing forces. The 

loosening force are present for all parts with cores and are generated by the shrinking of 

the moulding onto the core. They can also be noticed with thin slender ribs with little 

taper. Here they may cause a fracture of the lamellae which form the ribs. The pushing 

forces: they can arise from too little taper of a core and the resulting friction between part 

and core. 

 

2.3.1 Ejection system  

 

The ejection system of an injection mould must be designed carefully specially if the 

ejection forces involved are high. Important considerations include location of parting 

line of the mould relative to the part during mould opening, tapering vertical surfaces that 

must be draw from a core or cavity, and undercuts that will prevent the part from being 

ejected. 

The ejector system has various requirements [7]: to eject the part without destroying it, 

to leave no visible marks on the part, to load the parts equally during ejection, to have a 

set position of the ejector pins and to coordinate the ejector system with the cooling 

system. 

 There are many means of applying the ejection force required to eject this part from the 

core. The simplest, least expensive, and easiest means would be the use of ejector pins. 
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Others ways are ejector sleeves, stripper plates, stripper rings, blade ejection and air 

ejection. When there are undercuts in the part it is necessary consider other way to realize 

the ejection of the part, like: stripping, collapsible cores, lifters, unscrewing moulds and 

side core or split cavities [6,159].  

The ejectors pins are driven forward by the ejector plate. Return pins are included to drive 

the plate back by the cavity plate when the mould closes. Return pins are included as 

either a primary means of returning the ejector pins or as a back-up if a hydraulically 

driven system fails to return the ejector plate and pins [6]. Use of pins sometimes results 

in excessive stress because of their small contact area with the part and part deformation 

or damage might occur due to the unbalance ejection force. Wang (1996) [163], describes 

an efficient algorithm for optimising the arrangement and the selection of ejectors.  

 

2.3.2 Variables affecting the ejection force 

 

Yu et al., 1992, [164] studied a combination of experimental, analytical, and statistical 

means to establish equations for calculating ejection temperature according to the 

material properties, part thickness, and moulding conditions such as injection and mould 

temperatures. 

There are various parameters that influence the ejection force, grouped in four groups: 

mould, moulding, moulding material and processing [70].  

In relation to the mould and mould material the rigidity will not permit the deformation 

of the part during the ejection; the cooling, depending on the material of the mould, will 

be faster or slower and this will affect the shrinkage determining the facility or difficulty 

to release the part. The treatment of the mould surface will influence the friction, because 

if the roughness is high, it will increase the ejection force. 

Other important characteristic are linked with the project of the product: thickness, cross 

sections, projected area and presence or absence of undercuts.  The designers must design 

the most simple system to realise the part and this system must be the cheapest as possible.  

The processing parameters influence the quality of the part and mainly the shrinkage, and 

hence the ejection force. These included the pressure build-up and temperature of 
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moulding. The temperature of moulding results from the melt temperature, mould 

temperature and time of demoulding.  

Other attributes of the moulding material as friction, modulus of elasticity, thermal 

characteristics (coefficient of expansion thermal and coefficient of compressibility linear) 

and thermodynamic behaviour also influence the shrinkage. When the shrinkage 

increases the ejection force tends to increase too.  

 

2.3.3 Prediction of the ejection force 

 

Menges, Michaeli and Mohren [70] presented various methods for computing the release 

forces, mostly based on coefficients of static friction for determining demoulding and 

opening forces for sleeves or box-shaped parts. These include expressions to calculate the 

ejection forces for open cylindrical sleeve, closed cylindrical sleeves, open rectangular 

sleeve, closed rectangular sleeve and threaded sleeve. 

Burke and Malloy (1991) [165] presented an estimate for mathematical calculation to 

determine the ejection force, if the exact material characteristics are known for the 

processing range.  

For deep draw mouldings produced using cavities and cores, such as sleeves or box 

shaped parts, the release force is given by the relationship between the plastic-steel 

coefficient of friction, , the contact pressure P, and the area of contact A: 

𝐹𝑅 = 𝜇𝑃𝐴                                                               (2.18) 

The equation above can be expanded to inclued the special case of a box shaped molding 

with a sealed end: 

𝐹𝐸 = 𝐸(𝑇)𝛼(𝑇𝑠 − 𝑇𝐸)
8𝑡𝐿

1𝛾
+ (𝑊1𝑊2𝑃𝑎)                               (2.19) 

where 𝐸(𝑇) is the elastic modulus at the temperature of ejection (Pa), α, the coefficient 

of thermal expansion (m/m/ºC), Ts, the temperature of plastic when shrinkage begins (ºC), 

Te, the part temperature at time of ejection (ºC), t, the part wall thickness (m), L, the height 
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of core (m), W1, the width of long side of core (m), W2, the width of short side of core 

(m), Pa, the atmospheric pressure (Pa) and , the Poisson’s ratio. 

Shen et al., 1999, [166] tested different configurations of mould cavities and cores, open 

(or closed), hollow, thin walled cones in various thicknesses, diameters, lengths, and cone 

angles. The ejection force was measured using a tensile test machine and a specially 

designed tool. The dependence of the ejection force on the size, wall thickness, cone 

angle, elastic modulus, Poisson’s ratio of the moulded parts, and the friction coefficient 

between steel and plastics are considered and a new method for calculating the ejection 

force in an acceptably accurate way was presented. The calculation formula of the 

ejection force indicates that: the ejection force is directly proportional to the thickness 

and length of the part and has little relationship with the radius of the part; the thermal 

contraction strain and Young’s modulus of the plastics impose considerable influence on 

the ejection force; a high friction coefficient, f, leads to a high ejection force. 

Pantani in his thesis (1999) [113] investigated the effect of in-mould shrinkage on the 

final dimensions of a rectangular plate, the effect geometrical constraints were observed 

by adding inserts to the mould cavity. Furthermore, a new technique, by which shrinkage 

can be followed from the moment it starts inside the mould to soon after ejection, was 

applied. Equations for shrinkage prediction based on a thermomechanical model were 

implemented in a computer. In this way, also important features of injection moulding 

modelling (in particular the effect of mould deformation) normally neglected by 

commercial codes, were underlined. Predicted results were successfully compared with 

experimental data, mainly of pressure and shrinkage evolution. 

Sasaki et al. [167] concluded that the ejection forces decrease when the surface roughness 

of mould decreases. Several types of PVD films were coated on to the mould cores to 

prevent the increasing of ejection forces. Some of these PVD films effectively prevent 

the increasing of ejection forces.  

Delaunay et al., 2000, [168] studied the nature of the thermal contact between the polymer 

and the mould during the holding and cooling phases. The results of this study showed 

that the thermal contact resistance between the polymer and the mould is not negligible 

and not constant with time. The polymer temperature at the surface can be 20°C higher 

than the mould surface temperature. Moreover, asymmetric air gaps have been observed 

when cavity pressure becomes equal to atmospheric pressure, therefore asymmetric 
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temperature profile in the thickness are generated. In injection moulding simulation 

softwares, many assumptions are often made to simplify the solutions of equations. 

Among them, contact is taken as perfect between the polymer and the mould.  

Delaunay et al. 2000 [94],[169] presented a simple method to locally determine mould 

rigidities: over-packed slabs are injected and local deflections are determined from 

measurements of the local residual pressure, the local in-plane shrinkages and the plate 

thickness. They also showed the influence of the mould deflection on dimensional 

properties. If the cavity thickness is small as in their 1-mm-thick plate mould, considering 

an infinitely rigid mould could not lead to realistic predictions of polymer pressure 

history, volumetric shrinkages and part mass. If the cavity pressure is high and if the 

cavity thickness is small, taking into account the mould rigidity is necessary to get 

realistic predictions of cavity pressure, volumetric shrinkage or part mass. But, as mould 

rigidities are very dependent on the mould location and design, an elastic calculation 

should be coupled with the cooling simulation.  

Hopkinson and Dickens, 2000, [170] developed equations to predict ejection forces that 

were used to estimate the ejection forces required to push the moulding from a 

stereolithography (SL) core. During the practical experiments the ejection forces were 

measured. The combination of predicted tool strength and ejection forces were intended 

to be used a basis for determining whether a SL tool would fail under tension during 

ejection. This would help designers and manufacturers to decide whether SL tooling is 

suitable for a specific application.  

Wang et al. (2000) [171] developed numerical and experimental studies on the ejection 

stage of plastics injection moulding process. A numerical approach was proposed to 

predict the ejection force in the mould-part constraining, and the friction forces as the 

product cools in the mould cavity up to the moment of ejection. A FEM thermo-

viscoelastic solidification analysis has taken into account the stress and volume relaxation 

behaviour of polymers under the cavity-constrained condition. Various cases of the 

ejector pin layout are evaluated to examine the effect of the number, location and 

dimension of ejector pins, so as to identify the balanced layout causing minimum stress 

and deformation of the product. Numerical and experimental results have shown that the 

ejection force to remove an injection moulded product is governed by the mould-part 

constraining and friction forces during the demoulding process. The proposed approach 
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is based on this mechanism so that it can reasonably predict the ejection force and its 

distribution over the ejector pins, as validated by the measurements on PC boxes.  

In SL moulds fracture were observed mainly during the ejection stage, as a result of 

excessive ejection forces. Pham et al. 2002, [172] carried out an ejection force model 

combining the effects of thermal shrinkage and mechanical interlocking due to stair-steps 

on the surface of SL tools. Finite element analyses were performed to validate and 

complement the ejection force equation. Measured forces and temperatures from injection 

moulding experiments indicated that the ejection force model is valid for SL moulds of 

both circular and non-circular shape. The average differences between measured and 

predicted ejection forces were approximately 10%.  

Pontes et al., 2002, [173] recorded the data during processing namely pressure, 

temperature and ejection force. Their data showed that the holding conditions influence 

the ejection force and are related to the diametrical shrinkage. It was verified that the 

ejection force measurements using this relatively complex mechanical system were 

recorded with an average error of 3,5% which is meaningless for this kind of equipment. 

The ejection force changes inversely with respect to the holding pressure due to the 

decreasing diametrical shrinkage. The holding time did not affect the ejection force due 

to the fast solidification of the material that makes difficult the injection of more material 

into the impression and consequently minimize the effect of holding time on ejection 

force. 

Pontes and Pouzada (2004) [97,172] studied the effect of processing on the ejection force 

required for deep tubular mouldings moulded in three common thermoplastics. These 

authors found that the temperature at the surface of the core influences the ejection force 

and that there is an injection temperature that minimizes the ejection force. The behaviour 

of the ejection force in relation to the injection temperature seems to be the combined 

result of shrinkage and frictional resistance. The shrinkage decreases because of the 

increasing pressure transmission during the holding phase. The frictional resistance 

associated to the coefficient of friction increases as a result of the better filling of the 

grooves and undulations. The ejection force varies inversely with the mould temperature. 

For a constant ejection time, this is the result of the moulding surface temperature varying 

according to the mould temperature. In general, the ejection force changes inversely with 

the holding pressure. The reduction of the diametrical shrinkage associated to the holding 
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pressure rise, which implies a smaller force to eject the moulding, is responsible for this 

behaviour. At low holding pressures a reduction of the ejection force is observed. This 

arises from the larger through thickness shrinkage that causes the detachment of the 

material from the moulding cavity surface and consequently a higher temperature of the 

moulding. 

Pontes et al., 2005,  [175] worked out a simulation algorithm based on a 

thermomechanical model and their predictions were compared with experimental data 

obtained from a fully-instrumented mould (pressure, temperature, and force). Three 

common thermoplastics were used for the tubular mouldings: PP, PS and PC. The model 

data for the ejection force closely agree with the experimental data for these three 

materials. The injection moulding tests were simulated using the software C-Mold (for 

PC and PS) and UNISA code (for PP). The predictions of the temperature profiles and 

the experimental pressure data were adopted as input to a thermomechanical model for 

the predictions of ejection forces. For an isotactic PP, the prediction of the ejection force 

as a function of the surface temperature of the core using the thermomechanical model is 

in close agreement with the experimental data. A maximum deviation of 5% between the 

predicted and experimental data is observed. For all materials, the thermomechanical 

model agrees well with the experimental data when the holding pressure is varied. Some 

divergence was observed in the case of the amorphous materials (PC and PS), at low 

holding pressures. This is probably due to the simulated temperatures being calculated by 

a program that does not consider the detachment of the material from the moulding cavity 

surface. This phenomenon causes the temperature to remain higher due to the poorer heat 

conduction transfer. 

Bhagavatula et al. (2004) [176] estimated ejection forces for moulded parts that have been 

used by the industry, and compared these models to simulation and experimental results 

for a simple cylindrical sleeve. With the shrinkage measurements taken at the time of 

ejection, it is possible to apply these data to the ejection force estimation using an equation 

to compare the analytical model to actual ejection force data as well as the simulation. 

Comparing the simulated ejection force to the analytical result, it was observed that the 

simulation is slightly higher. This may be due to non-isothermal conditions being 

assumed in the simulation whereas the analytical result is isothermal. For a closed 

cylindrical sleeve, the contribution of the vacuum force must accounted for, as described 

in equation 
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𝐹𝑅 = 𝜇𝐸(𝑇𝐸) [
𝑠1%

100
] [2𝜋𝑠𝐹𝑙 +

𝑑𝑘𝜋𝑆𝐷

1−𝜐
] +

𝑑𝑘
2𝜋

4
𝑝𝑢                             (2.20) 

where FR is the release or ejection force,  the coefficient , E(TE) the elastic modulus at 

the average ejection temperature, s1 the percentage shrinkage,  the Poisson’s ratio of the 

polymer, SF the thickness of the part, SD the base thickness, dk the inner diameter of the 

part and pu is the negative pressure (pu(max)=100kPa). The final term in the above 

equation accounts for the vacuum force created between the core of the mould and the 

part when it is ejected. 

Charmeau et al. (2008) [177] studied the impact of coatings on ejection stage in terms of 

unsticking the part from the mould surface and generation of scratches. The injection tests 

were made a cube-shaped insert in an instrumented mould (with force sensors) on three 

polymers which differ in nature: an amorphous polymer PC, a semi-crystalline one PBT 

and a blend of copolymers (styrene acrylonitrile/ acrylonitrile butadiene styrene). Those 

data were correlated to shrinkage of the polymer part, adhesion between polymer and 

mould surface and friction coefficient between those surfaces during the demoulding 

stage. Surface energies of the polymers as well as those of the coatings were measured, 

and their evolutions with temperature were used to take adhesion into account. The study 

of the demoulding forces showed a role of the coatings depending on the polymer and its 

nature, and roughness of the coating. They noted that ejection consisted of two stages: 

unsticking of the part and dynamic friction. Amorphous polymers are mainly affected by 

the first step, related to the adhesion at polymer/mould interface, whereas PBT, due to a 

higher shrinkage, is very sensitive to dynamic friction.  

 

2.4 Objectives of the work 

 

The ejection system must be designed precisely in order the part can be ejected without 

deformation. The knowledge of ejection forces allows to design the ideal system. This 

objective will be reached if the parameters that influence the ejection force are determined 

rigorously, such as the shrinkage of the part, coefficient of friction between the part and 

mould, and material characteristics. 

The objectives of this work are: 
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-       To produce tubular mouldings in controlled processing conditions in terms of 

temperature, pressure and ejection force using an instrumented mould; 

-       Measurement of the shrinkage of the tubular parts produced in PP with 

different reinforcements (nanoclay and glass fibres); 

-       To study the hybridisation effect of using nanoclays with glass fibres; 

-       To develop a thermomechanical model to predict the shrinkage and ejection 

force of the tubular parts; 

-       To validate the model predictions of shrinkage and ejection with the 

experimental data; 
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3 Models to predict shrinkage and ejection force 

 

3.1 Thermo-mechanical model for injection moulded plates 

 

The aim of this section is to present the thermo-elastic model of Titomanlio and Jansen 

[67],[72],[91],[107],[117],[118],[121]. The model permits to predict shrinkage and 

calculate residual stresses. This model was developed considering a thin slab.  

Let z denote the thickness coordinate, let x and y represent the other two perpendicular 

directions, Figure 3.1. This represents an impression moulded by injection moulding. The 

thickness varies from zero, at the surface, to B at the mid-plane. At the region inside the 

part, the polymer is molten and in the contour of the part it can be seen as a solid layer. It 

is considered that the impression is totally filled when the holding phase begins. In the 

core there is pressure acting and varying with time p(t). The thickness of the part is 2B 

and the position of the solid-melt interface is zs(t).  

The solid layers are considered perfectly elastic and shrink uniformly. The polymer cools 

instantaneously when it contacts with the mould walls and the relaxation process is 

neglected. 

 

Figure 3.1 - Schematic view of the mould during polymer solidification 
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Considering that the shear stress components are neglected in the solidified layer the 

stress 𝜎𝑥𝑦 = 𝜎𝑦𝑧 = 𝜎𝑥𝑧 = 0 and 𝜀𝑥𝑦 = 𝜀𝑦𝑧 = 𝜀𝑥𝑧 = 0. 

The Hooke’s law for this physical situation is described below (equation 3.1). 

Considering ii the total mechanical stress in the i direction, this is defined as 

𝜎𝑖𝑖 = 𝑆𝑖𝑖 − 𝑝       (3.1) 

where 𝑆𝑖𝑖(𝑥, 𝑧, 𝑡) is the stress component in the direction of i and p is melt pressure.  

In the direction z (stress in thickness does not depend on z), then 

                                                               𝜎𝑥𝑥 = 𝑆𝑥𝑥 − 𝑝 

𝜎𝑦𝑦 = 𝑆𝑦𝑦 − 𝑝    (3.2) 

                                                               𝜎𝑧𝑧 = −𝑝 

where the stress components are 

𝑆𝑥𝑥 =
𝐸

1−𝜈2
[𝜀𝑥𝑥 + 𝜈𝜀𝑦𝑦] solid part 

𝑆𝑦𝑦 =
𝐸

1−𝜈2
[𝜀𝑦𝑦 + 𝜈𝜀𝑥𝑦] solid part    (3.3) 

𝑆𝑧𝑧 = 0 

In the fluid all stresses are equal, –p, and thus  

𝑆𝑥𝑥 = 𝑆𝑦𝑦 = 𝑆𝑧𝑧 = 0 

The strain is composed by 

𝜀𝑖𝑖 = 𝜀𝑖𝑖
𝑜𝑏𝑠 − 𝜀𝑖𝑖

𝑇 − 𝜀𝑝     (3.4) 

All the components of the strain are dependent on the co-ordinate x and on time t. 

The thermal strain is given by 

𝜀𝑖𝑖
𝑇(𝑥, 𝑟, 𝑡) = ∫ 𝛼. 𝑑𝑇 ≅ 𝛼(𝑇 − 𝑇𝑠)

𝑇

𝑇𝑠
    (3.5) 

The linear thermal expansion is 
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𝛼 =
1

3.𝑉(𝑥,𝑧,𝑡)
(
𝜕𝑉

𝜕𝑇
)     (3.6) 

The specific volume is a function of pressure, temperature and crystallisation. 

Finally the hydrostatic strain that is dependent on pressure and is given by 

𝜀𝑝(𝑥, 𝑡) = −∫ 𝛽. 𝑑𝑝 ≅ 𝛽. 𝑝
𝑝

0
     (3.7) 

where the linear compressibility of the material is 

β =
1

3.𝑉(𝑥,𝑧,𝑡)
(
𝜕𝑉

𝜕𝑝
) ≅

1−2𝜈

𝐸
     (3.8) 

Thus 

𝜎𝑥𝑥 =
𝐸

1−𝜈2
[𝜀𝑥𝑥
𝑜𝑏𝑠 − 𝜀𝑥𝑥

𝑇 − 𝜀𝑝 + 𝜈(𝜀𝑦𝑦
𝑜𝑏𝑠 − 𝜀𝑦𝑦

𝑇 − 𝜀𝑝)] − 𝑝  (3.9) 

and 

𝑆𝑥𝑥 =
𝐸

1−𝜈2
[𝜀𝑥𝑥
𝑜𝑏𝑠 − 𝜀𝑥𝑥

𝑇 − 𝜀𝑝 + 𝜈(𝜀𝑦𝑦
𝑜𝑏𝑠 − 𝜀𝑦𝑦

𝑇 − 𝜀𝑝)]  (3.10) 

The balance in the equation below must be satisfied for each solidified layer as soon as 

shrinkage starts in the x-direction. 

𝜎𝑥𝑥(𝑥, 𝑡). 𝑧𝑠(𝑥, 𝑡) = [𝑆𝑥𝑥(𝑥, 𝑡) − 𝑝(𝑥, 𝑡)]. 𝑧𝑠(𝑥, 𝑡) = 𝐹𝑆 + 𝐹𝑓𝑖 + 𝐹𝐶 (3.11) 

where FS is the stretching force due to the pressure, Ffi is the friction force in the x 

direction, and FC is any other interaction with the mould. 

Or, in integral form 

∫ 𝜎𝑥𝑥𝑑𝑧 = ∫ 𝑆𝑥𝑥𝑑𝑧 − 𝐵𝑝(𝑡) =
𝑧𝑠

0

𝐵

0
𝐹𝑆 + 𝐹𝑓𝑖 + 𝐹𝐶 = 𝐹𝑥(𝑡)  (3.12) 

The Leibnitz’s theorem is used to differentiate the equation  

𝑑

𝑑𝑡
∫ 𝑆𝑥𝑥𝑑𝑧 = ∫ �̇�𝑥𝑥

𝑧𝑠

0

𝑧𝑠

0
𝑑𝑧 + 𝑆𝑥𝑥�̇�𝑠 = �̇�𝑥(𝑡)   (3.13) 

After the necessary mathematic treatment and remembering that the force balance must 

be satisfied after each time interval dt, the stress at the solid-melt interface is zero, and 

there is a uniform deformation of solidified layer, it is possible to obtain  

�̇�𝑥𝑥
̅̅ ̅̅ =

�̅�

1−𝜈2
[𝜀�̇�𝑥 + 𝜈𝜀�̇�𝑦] −

1

1−𝜈
𝐸

1

3𝑉
�̇�

̅̅ ̅̅ ̅̅ ̅̅
=
�̇�𝑥

𝑧𝑠
   (3.14) 

�̇�𝑦𝑦
̅̅ ̅̅̅ =

�̅�

1−𝜈2
[𝜀�̇�𝑦 + 𝜈𝜀�̇�𝑥] −

1

1−𝜈
𝐸

1

3𝑉
�̇�

̅̅ ̅̅ ̅̅ ̅̅
=
�̇�𝑦

𝑧𝑠
   (3.15) 
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The evaluation of shrinkage and thermal stresses requires temperature and pressure 

histories, PVT behaviour, mechanical constants of the solid polymer and friction factor 

between polymer and mould. 

The shrinkage equations after tx,shr (moment of begin of shrinkage) for in-plane strain are 

𝜀𝑥𝑥(𝑥, 𝑡) = ∫
1

�̅�

𝑡

𝑡𝑥,𝑠ℎ𝑟
(

𝐸

3𝑉(𝑥,𝑧,𝑡)
�̇�

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
) 𝑑𝑡 + ∫

�̇�𝑥−𝜈�̇�𝑦

𝑧𝑠(𝑡)�̅�

𝑡

𝑡𝑥,𝑠ℎ𝑟
𝑑𝑡  (3.16) 

 

𝜀𝑦𝑦(𝑥, 𝑡) = ∫
1

�̅�

𝑡

𝑡𝑥,𝑠ℎ𝑟
(

𝐸

3𝑉(𝑥,𝑧,𝑡)

̅̅ ̅̅ ̅̅ ̅̅ ̅
�̇�) 𝑑𝑡 + ∫

�̇�𝑦−𝜈�̇�𝑥

𝑧𝑠(𝑡)�̅�

𝑡

𝑡𝑥,𝑠ℎ𝑟
𝑑𝑡 + 𝜀𝜀𝑦

∗(𝑥, 𝑡𝑥,𝑠ℎ𝑟) (3.17) 

 

And the stresses can be derived from the general equations: 

𝑆𝑥𝑥(𝑥, 𝑧, 𝑡) = ∫ −
𝐸

1−𝜈
.
1

3

1

𝑉(𝑥,𝑧,𝑡)
�̇�

𝑡

𝑡𝑠𝑧(𝑥)
+

𝐸

1−𝜈2
(𝜀𝜀𝑥(𝑥, 𝑡) − 𝜈𝜀𝜀𝑦(𝑥, 𝑡)) 𝑑𝑡 (3.18) 

 

𝑆𝑦𝑦(𝑥, 𝑧, 𝑡) = ∫ −
𝐸

1−𝜈
.

1

3𝑉(𝑥,𝑧,𝑡)
�̇�

𝑡

𝑡𝑠𝑧(𝑥)
+

𝐸

1−𝜈2
(𝜀𝜀𝑦(𝑥, 𝑡) − 𝜈𝜀𝜀𝑥(𝑥, 𝑡)) 𝑑𝑡 (3.19) 

 

3.1.1 Strain in thickness direction: effect of mould deformation 

 

The onset of the thickness shrinkage in 𝑡𝑧
∗ is defined by the condition  

𝑝(𝑡𝑧
∗) = 0 

It means that the pressure is zero when the part starts to shrink in the thickness.  

After the beginning of the thickness shrinkage, the strain in this direction is derived from 

Hooke’s law, whereas for the molten part is given by volume shrinkage: 

𝜀𝜀𝑧𝑧
𝑜𝑏𝑠 =

1+𝜈

1−𝜈
∫

1

3𝑉
�̇�𝑑𝑡

𝑡

𝑡𝑧
∗ −

𝜈

1−𝜈
(𝜀�̇�𝑥
𝑜𝑏𝑠 + 𝜀�̇�𝑦

𝑜𝑏𝑠)|
𝑡𝑧
∗

𝑡

for solid part  (3.20) 

𝜀𝜀𝑧𝑧
𝑜𝑏𝑠 = ∫

1

3𝑉
�̇�𝑑𝑡

𝑡

𝑡𝑧
∗  for molten part   (3.21) 
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𝑧𝑧(𝑥, 𝑡) =
1

𝐵
(∫ 𝜀𝑧𝑧,𝑠𝑜𝑙𝑖𝑑

𝑜𝑏𝑠 𝑑𝑧 + ∫ 𝐷𝑧,𝑚𝑒𝑙𝑡
𝑜𝑏𝑠 𝑑𝑧

𝐵

𝑧𝑠

𝑧𝑠

0
) + 𝐶 𝑀𝑃𝑔𝑓  (3.22) 

 

The term CMPgf, has been included due to the mould deformation. CM has dimensions of 

a compliance that is related to the rigidity of the mould. Pgf is the pressure distribution 

inside the impression at the moment of the gate freezes off. 

In this particular case it has been considered that the part is constrained to shrink inside 

the mould during the solidification due to the friction between polymer and moulding or 

geometrical effects. In short there is no shrinkage inside the mould. This meaning that  

𝜀𝑥𝑥
𝑜𝑏𝑠 = 𝜀𝑦𝑦

𝑜𝑏𝑠 = 𝜀𝑧𝑧
𝑜𝑏𝑠 = 0 

 

3.1.2 In-plane shrinkage 

 

The in-plane shrinkage after ejection (𝑡 > 𝑡𝑒) is given by 

𝜀𝑥𝑥
𝑜𝑏𝑠(𝑥, 𝑡) =

1

3
ln (

𝑉(𝑥,𝑧,𝑡)

𝑉𝑠(𝑥,𝑧)
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
   (3.23) 

where Vs is the specific volume at moment of solidification. 

And thickness shrinkage 

Shz(x, t) =
1+𝜈

1−𝜈
𝑙𝑛 (

𝑉(𝑥,𝑧,𝑡)

𝑉(𝑥,𝑧,𝑡𝑧
∗)
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
−

2𝜈

1−𝜈

1

3
𝑙𝑛 (

𝑉(𝑥,𝑧,𝑡)

𝑉𝑠(𝑥,𝑧)
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
+ 𝐶𝑀𝑃𝑔𝑓  (3.24) 

 

3.2 Thermo-mechanical model for cylindrical tubes  

 

This section describes the Pontes model [3],[173]–[175] using the same reasoning by 

Titomanlio and Jansen but applied to a tubular geometry.  

Consider a thin tube of thickness, H, whose cooling occurs inside and outside. Let r be 

the radial co-ordinate ranging from R0 (internal surface) to R1 (external surface), θ the 

angular co-ordinate and x the longitudinal co-ordinate of the tube Figure 3.2. 
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Figure 3.2 - Scheme of cross-section of tubular part [3],[174] 

This scheme above represents the tube with solid layers that has contact with the mould 

wall in the cavity and the core. Inside these two solid layers there is molten polymer in 

process of solidification. It is considered that there is symmetry in relation to the average 

radius, Rm and constant temperature profile in the tangential direction. The interface solid-

melt changes with the time and is represented by r0s(r,t), in relation to the core and r1s(r,t) 

in relation to the cavity. 

 

3.2.1 Assumptions of the model 

 

The following assumptions are considered in relation to the thin walled tube and 

solidification symmetry with respect to the average radius, Rm [175]. 

1. Continuity of stress and strain at the solid-melt interface; 
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2. The tangential stress, θθ, at any radial position is constant as resulting from the 

symmetry; 

3. The radial stress, rr, is independent from the radial co-ordinate, r; 

4. The shear components can be neglected in the solidified layer ; 

5. The deformation of the solidified layer is uniform (the deformation in the θ and x 

directions do not depend on r) 

6. No out of plane deformation occurs during solidification; 

7. The solid polymer is elastic, whereas the melt is considered unable to withstand 

relevant tensile stresses; 

8. The frozen-in-flow-induced stresses can be neglected (flow-induced stresses are 

typically one order of magnitude lower than the thermal-pressure induced 

stresses); 

9. Temperature, pressure, positions of solid-melt interface and crystallisation status 

are known at each instant. 

The stresses ii and strains ii in cylindrical co-ordinates are x, θ and r, respectively. 

The stress components for solid layer can be written as 

𝜎𝑥𝑥 =
𝐸

1 − 𝜈2
[𝜀𝑥𝑥 + 𝜈𝜀𝜃𝜃] −

𝜈

1 − 𝜈
𝑝(𝑥, 𝑡) 

𝜎𝜃𝜃 =
𝐸

1−𝜈2
[𝜀𝜃𝜃 + 𝜈𝜀𝑥𝑥] −

𝜈

1−𝜈
𝑝(𝑥, 𝑡)   (3.25) 

𝜎𝑟𝑟 = −𝑝(𝑥, 𝑡) 

or 

𝜎𝑥𝑥 = 𝑆𝑥𝑥(𝑥, 𝑟, 𝑡) − 𝑝(𝑥, 𝑡) 

𝜎𝜃𝜃 = 𝑆𝜃𝜃(𝑥, 𝑟, 𝑡) − 𝑝(𝑥, 𝑡)    (3.26) 

𝜎𝑟𝑟 = −𝑝(𝑥, 𝑡) 
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where 

𝑆𝑥𝑥 =
𝐸

1 − 𝜈2
(𝜀𝑥𝑥
𝑜𝑏𝑠 + 𝜈𝜀𝜃𝜃

𝑜𝑏𝑠) −
𝐸

1 − 𝜈
(𝜀𝑥𝑥
𝑇 + 𝜀𝑝) 

𝑆𝜃𝜃 =
𝐸

1−𝜈2
(𝜀𝜃𝜃
𝑜𝑏𝑠 + 𝜈𝜀𝑥𝑥

𝑜𝑏𝑠) −
𝐸

1−𝜈
(𝜀𝜃𝜃
𝑇 + 𝜀𝑝)        (3.27) 

𝑆𝑟𝑟 = 0 

The stress distribution is evaluated after each time interval, dt, as 

�̇�𝜃𝜃 =
𝐸

1−𝜈2
(𝜀�̇�𝜃
𝑜𝑏𝑠 + 𝜈𝜀�̇�𝑥

𝑜𝑏𝑠) −
𝐸

1−𝜈
(
1

3.𝑉
�̇�)   (3.28) 

The dot denotes derivation in relation to time, and 

𝜀�̇�𝑥
𝑇 + 𝜀̇𝑝 = 𝜀�̇�𝜃

𝑇 + 𝜀̇𝑝 = 𝛼�̇� − 𝛽�̇� =
1

3𝑉
�̇�   (3.29) 

When the part is inside the mould it is considered it can shrink just in the thickness 

direction and is not allowed to shrink in other directions. 

The strain in the thickness direction considering 

𝜎𝑟𝑟 = −𝑝(𝑥, 𝑡)  

is given by 

𝜀𝑟𝑟
𝑜𝑏𝑠 =

1+𝜈

1−𝜈
(
𝜕𝑉

3.𝑉
) −

𝜈

1−𝜈
(𝜀𝜃𝜃
𝑜𝑏𝑠 + 𝜀𝑥𝑥

𝑜𝑏𝑠)   (3.30) 

The thickness shrinkage must evaluated as from its onset at 𝑡 = 𝑡𝑟
∗.  

𝑡𝑟
∗ is determined from the condition: 

𝑝(𝑡𝑟
∗) = 0 

The thickness shrinkage until ejection is determined by considering the strains in both 

solid and molten layers 

εrr,solid
obs =

1+ν

1−ν
∫

1

3𝑉
�̇�𝑑𝑡 −

𝜈

1−𝜈
(𝜀𝜃𝜃
𝑜𝑏𝑠 + 𝜀𝑥𝑥

𝑜𝑏𝑠)|
𝑡𝑟
∗

𝑡𝑒𝑡𝑒

𝑡𝑟
∗   (3.31) 

𝜀𝑟𝑟,𝑚𝑜𝑙𝑡𝑒𝑛
𝑜𝑏𝑠 = ∫

1

3𝑉
�̇�𝑑𝑡

𝑡𝑒

𝑡𝑟
∗    (3.32) 
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At the start of thickness shrinkage, 𝑡𝑟
∗, the reference dimensions coincide with the mould 

dimensions. Considering symmetry in relation to the average radius (Rm) the thickness 

shrinkage Shr(x,t) is obtained by integrating 𝜀𝑟𝑟
𝑜𝑏𝑠(𝑥, 𝑟, 𝑡) from the internal surface, R0, of 

the tube to its average radius, Rm: 

𝑆ℎ𝑟(𝑥, 𝑡)|𝑡𝑟∗
𝑡𝑒 = −

1

𝑅𝑚−𝑅0
[∫ 𝜀𝑟𝑟 𝑠𝑜𝑙𝑖𝑑

𝑜𝑏𝑠 𝑑𝑟 + ∫ 𝜀𝑟𝑟
𝑜𝑏𝑠𝑑𝑟

𝑅𝑚

𝑟𝑜𝑠

𝑟𝑜𝑠

𝑅0
]|
𝑡𝑟
∗

𝑡𝑒
  (3.33) 

The shrinkage in the thickness direction causes strain changes in the tangential direction 

The beginning shrinkage 𝑡𝑟
∗, until ejection, is 

𝜀𝜃𝜃|𝑡𝑟∗
𝑡𝑒 = −𝑆ℎ𝑟|𝑡𝑟∗

𝑡𝑒 𝐻

2𝑅𝑚
      (3.34) 

Considering that until ejection, 𝜀�̇�𝜃
𝑜𝑏𝑠=0, by integrating equation over time from the 

moment of the solidification of the first layer, it results for the stress distribution before 

ejection: 

𝑆𝜃𝜃(𝑥, 𝑟, 𝑡) = −∫
𝐸

1−𝜈

1

3𝑉
�̇�𝑑𝑡 + ∫

𝐸

1−𝜈2
𝜀𝜃𝜃
𝑜𝑏𝑠𝑡

𝑡𝑟
∗

𝑡

𝑡𝑠,0
𝑑𝑡   (3.35) 

It must be noted that 𝜀�̇�𝜃
𝑜𝑏𝑠=0 as from the moment of solidification of the first layer, ts0, 

until the start of thickness shrinkage, 𝑡𝑟
∗. 

An equation similar to previous equation can be written for the x direction by 

interchanging the subscripts θ and x, and multiplying the observable strain 𝜀𝜃𝜃
𝑜𝑏𝑠  by 

Poisson’s ratio. 

𝑆𝑥𝑥(𝑥, 𝑟, 𝑡) = −∫
𝐸

1−𝜈

1

3𝑉
�̇�𝑑𝑡 + ∫

𝜈𝐸

1−𝜈2
𝜀𝜃𝜃
𝑜𝑏𝑠𝑡

𝑡𝑟
∗

𝑡

𝑡𝑠,0
𝑑𝑡   (3.36) 

 

3.2.2 Ejection force 

 

Consider the geometry n the Figure 3.3 

𝑝𝑐(𝑥)

𝑐𝑜𝑠(𝛼)
𝑑𝜃𝑟(𝑥)𝑑𝑥 − 2𝜎𝜃̅̅ ̅(𝑥, 𝑡𝑒)𝐻𝑝𝑎𝑟𝑡𝑑𝑥 𝑠𝑖𝑛 (

𝑑𝜃

2
) = 0   (3.37) 

𝑠𝑖𝑛 (
𝑑𝜃

2
) ≈

𝑑𝜃

2
     (3.38) 

𝑝𝑐(𝑥) =
2𝜎𝜃̅̅ ̅̅ (𝑥,𝑡𝑒)𝐻𝑝𝑎𝑟𝑡𝑐𝑜𝑠(𝛼)

𝑟(𝑥)
     (3.39) 
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𝐹𝑒 = 𝜇 ∫𝑝𝑐𝑑𝐴     (3.40) 

𝑑𝐴 =
2𝜋(𝑥)𝑑𝑥

𝑐𝑜𝑠(𝛼)
      (3.41) 

 

 

Figure 3.3 - Schematic representation of forces before ejection 

 

𝐹𝑒 = 2𝜋𝜇𝐻𝑝𝑎𝑟𝑡 ∫ 𝜎𝜃̅̅ ̅(𝑥, 𝑡𝑒)𝑑𝑥
𝐿

0
     (3.42) 

 

The average tangential stress before ejection, 𝜎𝜃𝜃̅̅ ̅̅ ̅(𝑥, 𝑡𝑒) , is obtained substituting in 

equation 3.32, the equation 3.31 and averaging it over the thickness. In this analysis it is 

considered that the modulus of the polymer is constant and equal to the modulus at the 

average ejection temperature, 𝐸(𝑇�̅�), and the melt pressure at ejection, p(x,te), is zero. 

Thus 

𝜎𝜃𝜃̅̅ ̅̅ ̅(𝑥, 𝑡) = −
𝐸(𝑇𝑒̅̅ ̅)

1−𝜈
∫

1

3𝑉
�̇�

̅̅ ̅̅ ̅
𝑑𝑡 −

𝐸(𝑇𝑒̅̅ ̅)

1−𝜈2
𝐻

2𝑅𝑚

𝑡𝑒

𝑡𝑠0
𝑆ℎ𝑟(𝑡)|

𝑡𝑟
∗

𝑡𝑒
   (3.43) 

After integration 

 

𝜎𝜃𝜃̅̅ ̅̅ ̅(𝑥, 𝑡) = −
𝐸(𝑇𝑒̅̅ ̅)

1−𝜈

1

3
𝑙𝑛 (

𝑉(𝑥,𝑟,𝑡𝑒

𝑉𝑠(𝑥,𝑟)
) −

𝐸(𝑇𝑒̅̅ ̅)

1−𝜈2
𝐻

2𝑅𝑚
𝑆ℎ𝑟(𝑡)|

𝑡𝑟
∗

𝑡𝑒
  (3.44) 
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The function 𝑉𝑠(𝑥, 𝑟) is the specific volume at the moment of solidification. 

Substituting in equation 3.44 the equation 3.43 it follows that 

𝐹𝑒 = 𝜇
2𝜋𝐻𝑝𝑎𝑟𝑡

1−𝜈
𝐸(𝑇�̅�) ∫ ( −

1

3
𝑙𝑛 (

𝑉(𝑥,𝑟,𝑡𝑒

𝑉𝑠(𝑥,𝑟)
) −

𝐻

(1+𝜈)2𝑅𝑚
𝑆ℎ𝑟(𝑡)|

𝑡𝑟
∗

𝑡𝑒
)

𝐿

0
𝑑𝑥 (3.45) 

The expression above indicates that the ejection force is directly dependent on the elastic 

modulus at ejection temperature, the coefficient of friction (considered here as a 

constant), the thickness of the part and the variation of the (average) volume shrinkage 

between solidification and the ejection time. 

The last term inside the integral is included if the tube shrinks in the thickness direction. 

This may happen for lower holding pressure or times leading to the reduction of the force 

required to eject the part. 

To calculate the diametrical shrinkage and thickness shrinkage can be used 

𝑆ℎ𝐷𝑚(𝑥, 𝑡)|0
𝑡 = −

1

3
𝑙𝑛 (

𝑉(𝑥,𝑡)

𝑉𝑠(𝑥)
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
   (3.46) 

 

𝑆ℎ𝑟(𝑥, 𝑡)|0
𝑡 =

1+𝜈

1−𝜈

1

3
𝑙𝑛 (

𝑉(𝑥,𝑡)

𝑉(𝑥,𝑡𝑒)
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
+

2𝜈

1−𝜈

1

3
𝑙𝑛 (

𝑉(𝑥,𝑡)

𝑉𝑠(𝑥)
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
− (

𝑅𝑚−𝑟0𝑠(𝑡)

𝑅𝑚−𝑅0
)
1

3
𝑙𝑛 (

𝑉(𝑥,𝑡)

𝑉(𝑥,𝑡𝑟
∗)|

𝑡𝑟
∗

𝑡𝑒

− 𝐶𝑀𝑝𝑔𝑓

    (3.47) 

The term 𝐶𝑀𝑝𝑔𝑓 has been included here (as it was done in the case of the plate case) to 

account for the relative thickness variation of the as-mould product due to the mould 

deformation. The term 𝑝𝑔𝑓is the pressure distribution inside the impression at the instant 

the gate solidifies. The mould compliance 𝐶𝑀 can be obtained by a simplified analysis of 

the core and cavity deformations. 

 

3.3 Thermo-mechanical model for reinforced moulded plate 

 

The model proposed by Jansen et al. [91],[94] uses the fibre orientation state, temperature 

and pressure fields as input and predicts shrinkage. The properties of the unidirectional 

ply are calculated from the properties of matrix and fibre. The moulded product is 

considered as a laminate with finite number of plies. The fibre orientation is known for 
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each ply and for all laminate. The ply properties and the pressure and temperature history 

are used to calculate the shrinkage and residual stress distribution. 

The glass fibre shear modulus is evaluated by [123],[178]–[180] 

𝐺𝑓 =
𝐸𝑓

2(1+𝜈𝑓)
       (3.48) 

Matrix volume fraction (Vm) 

𝑉𝑚 = 1 − 𝑉𝑓       (3.49) 

Let 1, 2 and 3 denote the flow, transverse and thickness direction, respectively. The ply 

properties are calculated with the  Halpin-Tsai equations. The elastic modulus is 

𝐸1 = 𝐸𝑚
1+2(

𝑙

𝑑
)𝜂𝐿𝑉𝑓

1−𝜂𝐿𝑉𝑓
 , 𝜂𝐿 =

𝐸𝑓

𝐸𝑚
−1

𝐸𝑓

𝐸𝑚
+2

𝑙

𝑑

      (3.50)  

𝐸2 = 𝐸𝑚
1+2𝜂𝑇𝑉𝑓

1−𝜂𝑇𝑉𝑓
, 𝜂𝑇 =

𝐸𝑓

𝐸𝑚
−1

𝐸𝑓

𝐸𝑚
+2

      (3.51) 

The Poisson’s coefficients are 

𝜈12 = 𝑉𝑓𝜈𝑓 + 𝑉𝑚𝜈𝑚,      (3.52) 

𝜈21 =
𝜈12𝐸2

𝐸1
       (3.53) 

The shear modulus is 

𝐺12 = 𝐺𝑚
1+𝜂𝐺𝑉𝑓

1−𝜂𝐺𝑉𝑓
 , 𝜂𝐺

𝐺𝑓

𝐺𝑚
−1

𝐺𝑓
𝐺
𝑚

+1
      (3.54) 

The Stiffness matrix of a uniaxial ply is 

𝑄11 =
𝐸1

1−𝜈12𝜈21
 , 𝑄12 =

𝜈21𝐸1

1−𝜈12𝜈21
 ,𝑄21 = 𝑄12 , 𝑄22 =

𝐸2

1−𝜈12𝜈21
 , 𝑄66 = 𝐺12   (3.55) 

In the matrix form 

𝑄 [

𝑄11 𝑄12 𝑄13
𝑄21 𝑄22 𝑄23
𝑄61 𝑄62 𝑄66

]     (3.56) 

The expansion thermal coefficients are given by the Schapery equations: 

𝛼1 =
𝐸𝑓𝛼𝑓𝑉𝑓+𝐸𝑚𝛼𝑚𝑉𝑚

𝐸𝑓𝑉𝑓+𝐸𝑚𝑉𝑚
       (3.57) 



68 
 

 

𝛼2 = (1 + 𝜈𝑓)𝛼𝑓𝑉𝑓 + (1 + 𝜈𝑚)𝛼𝑚𝑉𝑚 − 𝛼1(𝜈𝑓𝑉𝑓 + 𝜈𝑚𝑉𝑚)   (3.58) 

 

Consider that a planar orientation distribution function 𝜓(𝜃) is known, with 𝜓(𝜃)𝑑𝜃 

being the probability of finding a fibre between 𝜃  and 𝜃 + 𝑑𝜃 . Then the orientation 

averaged stiffness of a ply is obtained by integrating over all angles between 0 e 2π with 

〈𝑓(𝜃)〉 = ∫ 𝑓(𝜃)𝜓(𝜃)𝑑𝜃
2𝜋

0
     (3.59) 

The orientation fibre tensor was obtained experimentally. 

where 

𝑎11 = 〈𝑐𝑜𝑠
2𝜃1〉     (3.60) 

 𝑎22 = 〈𝑠𝑖𝑛
2𝜃2〉      (3.61) 

θ1 and θ2 are given by: 

𝜃1 = cos
−1
√𝑎11         (3.62)   

and  

 𝜃2 = sin
−1
√𝑎22       (3.63) 

where the coefficients of the 4th order tensor are 

𝑎1111 = 〈𝑐𝑜𝑠
4𝜃1〉      (3.64) 

 𝑎2222 = 〈𝑠𝑖𝑛
4𝜃2〉      (3.65) 

𝑎1122 = 〈𝑐𝑜𝑠
2𝜃1𝑠𝑖𝑛

2𝜃2〉     (3.66) 

 

The average stiffness matrix is then corrected as: 

〈𝑄11〉 = 𝑎1111𝑄11 + 𝑎2222𝑄22 + 2𝑎1122(𝑄12 + 2𝑄66)   (3.67) 

〈𝑄22〉 = 𝑎2222𝑄11 + 𝑎1111𝑄22 + 2𝑎1122(𝑄12 + 2𝑄66)   (3.68) 

〈𝑄12〉 = 𝑎1122(𝑄11 + 𝑄22 − 4𝑄66) + (𝑎1111 + 𝑎2222)𝑄12   (3.69) 

〈𝑄66〉 = 𝑎1122(𝑄11 + 𝑄22 − 2𝑄12) + (𝑎1111 − 2𝑎1122 + 𝑎2222)𝑄66  (3.70) 

 

The coefficients of thermal expansion average in longitudinal and transverse direction are 
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〈𝛼1〉 = 𝑎11𝛼1 + 𝑎22𝛼2     (3.71) 

〈𝛼2〉 = 𝑎22𝛼1 + 𝑎11𝛼2     (3.72) 

 

 The composite stiffness is averaged over the thickness. If the total thickness is h, the 

composite stiffness, 𝐴𝑖𝑗, is 

 𝐴𝑖𝑗 = 〈𝑄𝑖𝑗〉𝑔(𝑧)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅        (3.73) 

where  

 𝑔(𝑧)̅̅ ̅̅ ̅̅ =
1

ℎ
∫ 𝑔(𝑧)
ℎ

2

−
ℎ

2

𝑑𝑧     (3.74) 

The expansion thermal coefficients for the composite are 

𝛼1̅̅ ̅ = �̃�1𝑗𝑄𝑗𝑘(𝑧)𝛼𝑘(𝑧)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅        (3.75) 

𝛼2̅̅ ̅ = �̃�2𝑗𝑄𝑗𝑘(𝑧)𝛼𝑘(𝑧)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅      (3.76) 

The average linear compressibility for the composite are 

𝛽1̅̅ ̅ = �̃�1𝑗𝑄𝑗𝑘(𝑧)𝛽𝑘(𝑧)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅       (3.77) 

𝛽2̅̅ ̅ = �̃�2𝑗𝑄𝑗𝑘(𝑧)𝛽𝑘(𝑧)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅      (3.78) 

 

This model uses the Modified Classical Laminate Theory. To understand how pressures 

get “frozen in” it is necessary to consider the stress history of a layer that cools through 

the solidification temperature, 𝑇𝑠. At reference time 𝑡 = −∞, the pressure is assumed to 

equal to zero. The stress history then consists of a fluid part and a solid part: 

𝜎𝑖 = −𝑃|−∞
𝑡𝑠𝑧 + ∫ �̇�𝑖

𝑡

𝑡𝑠𝑧
𝑑𝑡     (3.79) 

where 𝑡𝑠𝑧 stands for the instant of solidification of layer z, and 𝜎𝑖 is the elastic stress of 

the solid part. The general orthotropic stress equations are given by: 

𝜎𝑖 = 𝑄𝑖𝑗𝜀𝑗
∗      (3.80) 

𝜀𝑗
∗ = 𝜀𝑗 − 𝛼𝑗∆𝑇 = 𝑆𝑖𝑗𝜎𝑗     (3.81) 

For the cylindrical geometry it is assumed that 𝑥 → 1, 𝜃 → 2 𝑎𝑛𝑑 𝑟 → 3 

The Hooke Law for each dimension are 
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𝜎1 = 𝑄11𝜀1
∗ + 𝑄12𝜀2

∗ + 𝑄13𝜀3
∗     (3.82) 

𝜎2 = 𝑄21𝜀1
∗ + 𝑄22𝜀2

∗ +𝑄23𝜀3
∗     (3.83) 

𝜎3 = 𝑄31𝜀1
∗ + 𝑄32𝜀2

∗ +𝑄33𝜀3=−𝑃
∗      (3.84) 

Separating 𝜀3
∗ em 𝜎3: 

𝜀3
∗ = −

𝑄31𝜀1
∗

𝑄33
−
𝑄32𝜀2

∗

𝑄33
−

𝑃

𝑄33
      (3.85) 

and replacing in  

𝜎1 = 𝑄11𝜀1
∗ + 𝑄12𝜀2

∗ + 𝑄13 (−
𝑄31𝜀1

∗

𝑄33
−
𝑄32𝜀2

∗

𝑄33
−

𝑃

𝑄33
)    (3.86) 

Rewriting 

𝜎𝑖 = ∑ 𝑄𝑖𝑗
𝑃𝑆𝜀𝑗

∗2
𝑗=1 − ∑ 𝑄𝑖3

𝑃𝑃3
1   𝑖 = 1 , 2   (3.87) 

From literature [179]: 

𝑄13
𝑃 =

𝑄13

𝑄33
=
𝜐13𝜐12𝜐23

1−𝜐12𝜐21
     (3.88) 

𝑄23
𝑃 =

𝑄23

𝑄33
=
𝜐23+𝜐21𝜐13

1−𝜐12𝜐21
     (3.89) 

𝑄11
𝑃𝑆 =

𝐸1

1−𝜐12𝜐21
     (3.90) 

𝑄12
𝑃𝑆 = 𝑄21

𝑃𝑆 =
𝜐12𝐸1

1−𝜐12𝜐21
     (3.91) 

𝑄22
𝑃𝑆 =

𝐸2

1−𝜐12𝜐21
     (3.92) 

Consider the layer that solidifies at Ts temperature. It has a fluid part and a solid part  

𝜎𝑖 = −𝑃|−∞
𝑡𝑠𝑧 + ∫ �̇�𝑖

𝑡

𝑡𝑠𝑧
𝑑𝑡     (3.93) 

𝜎𝑖 = −𝑃|−∞
𝑡𝑠𝑧 + ∫ [𝑄𝑖𝑗

𝑃𝑆𝜀𝑗
∗ − 𝑄𝑖3

𝑃𝑃]
𝑡

𝑡𝑠𝑧
𝑑𝑡    (3.94) 

𝜎𝑖 = −𝑃|−∞
𝑡𝑠𝑧 + 𝑄𝑖𝑗

𝑃𝑆𝜀𝑗
∗ ∫ [−𝑄𝑖3

𝑃𝑃]
𝑡

𝑡𝑠𝑧
𝑑𝑡    (3.95) 

𝜎𝑖 = −[𝑃𝑡𝑠𝑧 − 𝑃−∞] + 𝑄𝑖𝑗
𝑃𝑆𝜀𝑗

∗ − 𝑄𝑖3
𝑃 ∫ [𝑃]

𝑡

𝑡𝑠𝑧
𝑑𝑡   (3.96) 

𝜎𝑖 = −𝑃𝑡𝑠𝑧 + 𝑃−∞ + 𝑄𝑖𝑗
𝑃𝑆𝜀𝑗

∗ − 𝑄𝑖3
𝑃 [𝑃𝑡 − 𝑃𝑡𝑠𝑧]           𝑃𝑡 = 𝑃   (3.97) 

𝜎𝑖 = −𝑃𝑡𝑠𝑧 + 𝑄𝑖𝑗
𝑃𝑆𝜀𝑗

∗ + 𝑄𝑖3
𝑃𝑃𝑡𝑠𝑧 − 𝑄𝑖3

𝑃𝑃    (3.98) 

𝜎𝑖 = 𝑄𝑖𝑗
𝑃𝑆𝜀𝑗

∗ − 𝑄𝑖3
𝑃𝑃 − 𝑃𝑡𝑠𝑧 + 𝑄𝑖3

𝑃𝑃𝑡𝑠𝑧      (3.99) 

𝜎𝑖 = 𝑄𝑖𝑗
𝑃𝑆𝜀𝑗

∗ − 𝑄𝑖3
𝑃𝑃 − (1 − 𝑄𝑖3

𝑃 )𝑃𝑡𝑠𝑧           𝑃𝑡𝑠𝑧 = 𝑃𝑠    (3.100) 
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𝜎𝑖 = 𝑄𝑖𝑗
𝑃𝑆𝜀𝑗

∗ − 𝑄𝑖3
𝑃𝑃 − (1 − 𝑄𝑖3

𝑃 )𝑃𝑠     (3.101) 

It is know that 

𝑆11𝑄11
𝑃𝑆 + 𝑆12𝑄21

𝑃𝑆 = 1     (3.102) 

𝑆11𝑄12
𝑃𝑆 + 𝑆12𝑄22

𝑃𝑆 = 0     (3.103) 

1 − 𝑄13
𝑃 = 𝑄11

𝑃𝑆𝛽1 +𝑄12
𝑃𝑆𝛽2     (3.104) 

𝛽1𝑄31 + 𝛽2𝑄32 + 𝛽3𝑄33 = 1    (3.105) 

Thus 

𝜎𝑖 = 𝑄𝑖𝑗
𝑃𝑆𝜀𝑗

∗ − 𝑄𝑖3
𝑃𝑃 − (1 − 𝑄𝑖3

𝑃 )𝑃𝑠     (3.106) 

𝜎𝑖 = 𝑄𝑖𝑗
𝑃𝑆 (𝜀𝑗 − 𝛼𝑗(𝑇 − 𝑇𝑠)) + (𝑄𝑖𝑗

𝑃𝑆𝛽𝑗 − 1)𝑃 − (𝑄𝑖𝑗
𝑃𝑆𝛽𝑗𝑃𝑠)  (3.107) 

𝜎𝑖 = 𝑄𝑖𝑗
𝑃𝑆 (𝜀𝑗 − 𝛼𝑗(𝑇 − 𝑇𝑠)) + 𝑄𝑖𝑗

𝑃𝑆𝛽𝑗𝑃 − 𝑃 − 𝑄𝑖𝑗
𝑃𝑆𝛽𝑗𝑃𝑠  (3.108) 

𝜎𝑖 = −𝑃 + 𝑄𝑖𝑗
𝑃𝑆[𝜀𝑗 − 𝛼𝑗(𝑇 − 𝑇𝑠) + 𝛽𝑗(𝑃 − 𝑃𝑠)]   (3.109) 

 

It is assumed the product to be fully constrained before mould opening (no slip boundary 

condition). At ejection the product will then shrink uniformly to reach stress equilibrium. 

Since just after ejection the pressure terms vanish, the strains are given by  

 

𝜎𝑖 = −𝑃 + 𝑄𝑖𝑗
𝑃𝑆[𝜀𝑗 − 𝛼𝑗(𝑇 − 𝑇𝑠) + 𝛽𝑗(𝑃 − 𝑃𝑠)], P=0   (3.110) 

𝜀𝑗
∗ =

𝜎𝑖

𝑄𝑖𝑗
𝑃𝑆 = 𝜀𝑗 − 𝛼𝑗(𝑇 − 𝑇𝑠) + 𝛽𝑗(𝑃 − 𝑃𝑠)    (3.111) 

Integrating over the thickness and time 

𝜀𝑖 = �̅�𝑗(�̅� − 𝑇𝑠) − �̅�𝑗(�̅� − 𝑃𝑠)    (3.112) 

Remembering that  

𝛼1̅̅ ̅ = �̃�1𝑗𝑄𝑗𝑘(𝑧)𝛼𝑘(𝑧)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅      (3.113) 

𝛼2̅̅ ̅ = �̃�2𝑗𝑄𝑗𝑘(𝑧)𝛼𝑘(𝑧)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅      (3.114) 

𝛽1̅̅ ̅ = �̃�1𝑗𝑄𝑗𝑘(𝑧)𝛽𝑘(𝑧)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅      (3.115) 

𝛽2̅̅ ̅ = �̃�2𝑗𝑄𝑗𝑘(𝑧)𝛽𝑘(𝑧)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅      (3.116) 
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𝜀(𝑡𝑒′) = �̃�𝑖𝑗 [𝑄𝑗𝑘
𝑝𝑠𝛼𝑘(𝑇 − 𝑇𝑠)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝑄𝑗𝑘

𝑝𝑠𝛽𝑘(𝑃 − 𝑃𝑠)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ]    (3.117) 

It can be obtained the ambient temperature shrinkage considering �̃�𝑖𝑗  stands for 𝐴𝑖𝑗
−1 , 

being the matrix inverse of the thickness averaged stiffness 𝐴𝑖𝑗. During further cooling 

the frozen-in pressure contribution remains constant and the shrinkage is caused only by 

thermal effects. The final strains then become  

𝜀𝑖(𝑡∞) = �̃�𝑖𝑗 [𝑄𝑗𝑘
𝑝𝑠𝛼𝑘(𝑇 − 𝑇∞)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 𝑄𝑗𝑘

𝑝𝑠𝛽𝑘𝑃𝑠
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ]    (3.118) 

 

3.4 Thermo-mechanical model for reinforced injection moulded products in 

cylindrical tubes 

 

At this moment, there is no model to predict shrinkage and ejection forces for reinforced 

injection moulded products in cylindrical tubes. This is the model developed by this work 

and use some fundamentals of previous models referred at item 3.1 to 3.3.  

This model uses the Modified classical Laminate Theory [179] and consider what happen 

with the stress when the layer cools at solidification temperature. The stress is compound 

by a fluid part and solid part during its freezing. In the start of solidification 𝜎𝑖 is the 

elastic stress of the solid part. Considering the cylindrical geometry it is assumed that 

𝑥 → 1, 𝜃 → 2 𝑎𝑛𝑑 𝑟 → 3, respectively.  

The orthotropic stress equations for these directions are given by 

𝜎1 = 𝑄11𝜀1
∗ + 𝑄12𝜀2

∗ + 𝑄13𝜀3
∗     (3.119) 

𝜎2 = 𝑄21𝜀1
∗ + 𝑄22𝜀2

∗ +𝑄23𝜀3
∗     (3.120) 

𝜎3 = 𝑄31𝜀1
∗ + 𝑄32𝜀2

∗ +𝑄33𝜀3=−𝑃
∗      (3.121) 

separating 𝜀3
∗ em 𝜎3 in the equation 3.121 

𝜀3
∗ = −

𝑄31𝜀1
∗

𝑄33
−
𝑄32𝜀2

∗

𝑄33
−

𝑃

𝑄33
   (3.122) 

considering that 𝑄13
𝑃 =

𝑄31

𝑄33
 and 𝑄23

𝑃 =
𝑄32

𝑄33
 and replacing in the equation 3.122 
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𝜀3
∗ = −𝑄13

𝑃 𝜀1
∗ − 𝑄23

𝑃 𝜀2
∗ −

𝑃

𝑄33
      (3.122) 

According Kasper Jansen [91],[94] 

𝛽1𝑄31 + 𝛽2𝑄32 + 𝛽3𝑄33 = 1    (3.123) 

Isolating Q33 in the equation 3.124 

𝛽3𝑄33 = 1 − 𝛽1𝑄31 + 𝛽2𝑄32    (3.124) 

𝑄33 =
1

𝛽3
−
𝛽1𝑄31

𝛽3
−
𝛽2𝑄32

𝛽3
     (3.125) 

 Returning the equation 3.123 and considering that pressure varies with the time until the 

full solidification of the layer 

𝜀3
∗ = −𝑄13

𝑃 𝜀1
∗ − 𝑄23

𝑃 𝜀2
∗ − ∫

𝑃(𝑡)

𝑄33

𝑡

𝑡𝑠𝑧
𝑑𝑡     (3.126) 

𝜀3
∗ = −𝑄13

𝑃 𝜀1
∗ − 𝑄23

𝑃 𝜀2
∗ −

(𝑃−𝑃𝑠)

1

𝛽3
−𝛽1

𝑄31
𝑃𝑆

𝛽3
−𝛽2

𝑄32
𝑃𝑆

𝛽3

                                (3.127) 

𝜀3
∗ = −𝑄13

𝑃 𝜀1
∗ − 𝑄23

𝑃 𝜀2
∗ − 𝛽3

(𝑃−𝑃𝑠)

1−∑ 𝑄3𝑗𝛽𝑗
2
𝑗=1

    (3.128) 

𝜀3 − 𝛼3(𝑇 − 𝑇𝑠) = −𝑄13
𝑃 (𝜀1 − 𝛼1(𝑇 − 𝑇𝑠)) − 𝑄23

𝑃 (𝜀2 − 𝛼2(𝑇 − 𝑇𝑠)) − 𝛽3
(𝑃−𝑃𝑠)

1−∑ 𝑄3𝑗𝛽𝑗
2
𝑗=1

 

(3.129) 

𝜀3 = −𝑄13
𝑃 (𝜀1 − 𝛼1(𝑇 − 𝑇𝑠)) − 𝑄23

𝑃 (𝜀2 − 𝛼2(𝑇 − 𝑇𝑠)) − 𝛽3
(𝑃−𝑃𝑠)

1−∑ 𝑄3𝑗𝛽𝑗
2
𝑗=1

+ 𝛼3(𝑇 − 𝑇𝑠) 

(3.130) 

𝜀3 = −∑ 𝑄𝑖3
𝑃2

𝑖=1 [𝜀𝑖 − 𝛼𝑖(𝑇 − 𝑇𝑠)] + 𝛼3(𝑇 − 𝑇𝑠) − 𝛽3
(𝑃−𝑃𝑠)

1−∑ 𝑄3𝑗𝛽𝑗
2
𝑗=1

  (3.131) 

Then, for the solid part 

𝜀3 = −∑ 𝑄𝑖3
𝑃2

𝑖=1 [𝜀𝑖 − 𝛼𝑖(𝑇 − 𝑇𝑠)] + 𝛼3(𝑇 − 𝑇𝑠) − 𝛽3
(𝑃−𝑃𝑠)

1−∑ 𝑄3𝑗𝛽𝑗
2
𝑗=1

  (3.132) 

And for the fluid part 

𝜀3 = 𝛼3(𝑇 − 𝑇𝑠) − 𝛽3
(𝑃−𝑃𝑠)

1−∑ 𝑄3𝑗𝛽𝑗
2
𝑗=1

     (3.133) 

 

Considering orthotropic material and transversally isotropic in 2-3 plane Figure 3.4 [179]: 
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Figure 3.4 - Orthotropic material and transversally isotropic in 2-3 plane (adapted [179]) 

The properties were considered the same values of the matrix in the third dimension, in 

the cylindrical coordinate 𝑟 → 3, namely thickness of the part. 

𝜐13 = 𝜐𝑚      (3.134) 

𝛼3 = 𝛼𝑚      (3.135) 

𝛽3 = 𝛽𝑚      (3.136) 

And the 𝐺23 and 𝜐23 were obtained by [179] 

𝐺23 =
1

2
(𝑄22

𝑃𝑆 − 𝑄21
𝑃𝑆)      (3.137) 

𝜐23 =
𝐸2

2𝐺23
− 1     (3.138) 

According Kasper Jansen [91],[94], 𝑄13
𝑃  and 𝑄23

𝑃 , can be evaluated 

𝑄13
𝑃 =

𝜐13+𝜐12𝜐23

1−𝜐12𝜐21
      (3.139) 

𝑄23
𝑃 =

𝜐23+𝜐21𝜐13

1−𝜐12𝜐21
      (3.140) 

In the beginning of shrinkage, 𝑡𝑟
∗ , the part dimensions are the same as the mould 

dimensions: 

𝑆ℎ3|𝑡𝑟∗
𝑡𝑒 = −

1

𝑅𝑚−𝑅0
(∫ 𝜀3 𝑠𝑜𝑙𝑖𝑑

𝑜𝑏𝑠 𝑑3 + ∫ 𝜀3 𝑚𝑒𝑙𝑡
𝑜𝑏𝑠 𝑑3

𝑅𝑚

𝑟0𝑠

𝑟0𝑠

𝑅0
) |𝑡𝑟∗
𝑡𝑒   (3.141) 

The stress equation in coordinate 𝜃 → 2 

𝜎2 = ∑ 𝑄2𝑗
𝑃𝑆[𝜀𝑗 − 𝛼𝑗(𝑇 − 𝑇𝑠) + 𝛽𝑗(𝑃 − 𝑃𝑠)]

2
𝑗=1⏟                          − 𝑃   (3.142) 

      S2 
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where S2 is 

𝑆2 = ∑ 𝑄2𝑗
𝑃𝑆[𝜀𝑗 − 𝛼𝑗(𝑇 − 𝑇𝑠) + 𝛽𝑗(𝑃 − 𝑃𝑠)]

2
𝑗=1    (3.143) 

𝑆2 = 𝑄21
𝑃𝑆[𝜀1 − 𝛼1(𝑇 − 𝑇𝑠) + 𝛽1(𝑃 − 𝑃𝑠)] + 𝑄22

𝑃𝑆[𝜀2 − 𝛼2(𝑇 − 𝑇𝑠) + 𝛽2(𝑃 − 𝑃𝑠)] 
(3.144) 

The differential of equation in relation to time is 

�̇�2 = 𝑄21
𝑃𝑆[𝜀1̇ − 𝛼1(�̇� − 𝑇𝑠) + 𝛽1(�̇� − 𝑃𝑠)]𝑑𝑡 + 𝑄22

𝑃𝑆[𝜀2 − 𝛼2(�̇� − 𝑇𝑠) + 𝛽2(�̇� − 𝑃𝑠)]𝑑𝑡 
(3.145) 

Until the ejection 𝜀1̇ = 0 and with the integral of the above equation over the time, since 

the solidification moment of the first layer, this results in stress distribution before the 

ejection: 

𝑆2 = 𝑄21
𝑃𝑆 [∫ −𝛼1(�̇� − 𝑇𝑠) + 𝛽1(�̇� − 𝑃𝑠)

𝑡

𝑡𝑠,0
] 𝑑𝑡 + 𝑄22

𝑃𝑆 [∫ 𝜀2̇ − 𝛼2(�̇� − 𝑇𝑠) +
𝑡

𝑡𝑟
∗

𝛽2(�̇� − 𝑃𝑠)] 𝑑𝑡          (3.146) 

where ts,0 is the moment of solidification for the first layer. 

In the case of S1: 

𝜎1 = ∑ 𝑄1𝑗
𝑃𝑆[𝜀𝑗 − 𝛼𝑗(𝑇 − 𝑇𝑠) + 𝛽𝑗(𝑃 − 𝑃𝑠)]

2
𝑗=1⏟                          − 𝑃   (3.147) 

S1 

𝑆1 = ∑ 𝑄1𝑗
𝑃𝑆[𝜀𝑗 − 𝛼𝑗(𝑇 − 𝑇𝑠) + 𝛽𝑗(𝑃 − 𝑃𝑠)]

2
𝑗=1     (3.148) 

𝑆1 = 𝑄11
𝑃𝑆[𝜀1 − 𝛼1(𝑇 − 𝑇𝑠) + 𝛽1(𝑃 − 𝑃𝑠)] + 𝑄12

𝑃𝑆[𝜀2 − 𝛼2(𝑇 − 𝑇𝑠) + 𝛽2(𝑃 − 𝑃𝑠)] 
(3.149) 

In the form differential equation  

�̇�1 = 𝑄11
𝑃𝑆[𝜀1̇ − 𝛼1(�̇� − 𝑇𝑠) + 𝛽1(�̇� − 𝑃𝑠)]𝑑𝑡 + 𝑄12

𝑃𝑆[𝜀2̇ − 𝛼2(�̇� − 𝑇𝑠) + 𝛽2(�̇� − 𝑃𝑠)]𝑑𝑡 
(3.150) 

with 𝜀2̇ = 0 

𝑆1 = −𝑄11
𝑃𝑆 [∫ 𝛼1(�̇� − 𝑇𝑠) + 𝛽1(�̇� − 𝑃𝑠)

𝑡

𝑡𝑠,0
] 𝑑𝑡 + 𝑄12

𝑃𝑆 [∫ 𝜀2̇ − 𝛼2(�̇� − 𝑇𝑠) +
𝑡

𝑡𝑟
∗

𝛽2(�̇� − 𝑃𝑠)] 𝑑𝑡          (3.151) 
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𝜎2 = 𝜎𝜃 = −𝑄21
𝑃𝑆 [ ∫𝛼1(�̇� − 𝑇𝑠) + 𝛽1(�̇� − 𝑃𝑠)

𝑡

𝑡𝑠,0

] 𝑑𝑡

+ 𝑄22
𝑃𝑆 [∫ 𝜀2̇ − 𝛼2(�̇� − 𝑇𝑠) + 𝛽2(�̇� − 𝑃𝑠)

𝑡

𝑡𝑟
∗

] 𝑑𝑡 

         (3.152) 

 

Knowing that 

𝜀2̇ = −𝑆ℎ3(𝑥, 𝑡)|𝑡𝑟∗
𝑡𝑒 𝐻

2𝑅𝑚
     (3.153) 

 

𝜎2 = 𝜎𝜃 = −𝑄21
𝑃𝑆 [∫ 𝛼1(�̇� − 𝑇𝑠)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 𝛽1(�̇� − 𝑃𝑠)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅𝑡

𝑡𝑠,0
] 𝑑𝑡 + 𝑄22

𝑃𝑆 [∫ (−𝑆ℎ3(𝑥, 𝑡)|𝑡𝑟∗
𝑡𝑒 𝐻

2𝑅𝑚
) −

𝑡

𝑡𝑟
∗

𝛼2(�̇� − 𝑇𝑠)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − 𝛽2(�̇� − 𝑃𝑠)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ] 𝑑𝑡        (3.154) 

 

𝜎2 = 𝜎𝜃 = −𝑄21
𝑃𝑆[𝛼1(𝑇 − 𝑇𝑠)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 𝛽1(𝑃 − 𝑃𝑠)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ] + 𝑄22

𝑃𝑆 [
𝐻

2𝑅𝑚
𝑆ℎ3(𝑡) − 𝛼2(𝑇 − 𝑇𝑠)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ −

𝛽2(𝑃 − 𝑃𝑠)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ] (3.155) 

Remembering that the ejection force is obtained by 

𝐹𝑒 = 2𝜋𝜇𝐻𝑝𝑎𝑟𝑡 ∫ 𝜎𝜃̅̅ ̅(𝑥, 𝑡𝑒)𝑑𝑥
𝐿

0
    (3.156) 

Replacing the equation 3.156 in the equation 3.157 was achieved the expression for 

ejection force for reinforced material in cylindrical geometry 

𝐹𝑒 = 2𝜋𝜇𝐻𝑝𝑎𝑟𝑡 ∫ 𝑄21
𝑃𝑆 [[−𝛼1(𝑇 − 𝑇𝑠)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 𝛽1(𝑃 − 𝑃𝑠)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ]] + 𝑄22

𝑃𝑆 [−
𝐻

2𝑅𝑚
𝑆ℎ3(𝑡) −

𝐿

0

𝛼2(𝑇 − 𝑇𝑠)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 𝛽2(𝑃 − 𝑃𝑠)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ] 𝑑𝑥        

  (3.157) 

In this moment it´s necessary to consider that 

𝛼1̅̅ ̅ = �̃�1𝑗𝑄𝑗𝑘(𝑧)𝛼𝑘(𝑧)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅        (3.158) 

𝛼2̅̅ ̅ = �̃�2𝑗𝑄𝑗𝑘(𝑧)𝛼𝑘(𝑧)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅      (3.159) 

And 

𝛽1̅̅ ̅ = �̃�1𝑗𝑄𝑗𝑘(𝑧)𝛽𝑘(𝑧)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅        (3.160) 
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𝛽2̅̅ ̅ = �̃�2𝑗𝑄𝑗𝑘(𝑧)𝛽𝑘(𝑧)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅        (3.161) 

 

Replacing 𝛼1̅̅ ̅ , 𝛼2̅̅ ̅, 𝛽1̅̅ ̅ and 𝛽2̅̅ ̅ for the expressions above in equation 3.158 

𝐹𝑒 = 2𝜋𝜇𝐻𝑝𝑎𝑟𝑡 {𝑄21
𝑃𝑆 [∫ −∑ �̃�1𝑗 ∑ 𝑄𝑗𝑘𝛼𝑘(𝑇 − 𝑇𝑠)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅2

𝑘=1
2
𝑗=1

𝐿

0
+

∑ �̃�1𝑗 ∑ 𝑄𝑗𝑘𝛽𝑘(𝑃 − 𝑃𝑠)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅2
𝑘=1

2
𝑗=1 ] 𝑑𝑥 + 𝑄22

𝑃𝑆 [∫ −
𝐻

2𝑅𝑚
𝑆ℎ3(𝑡)|𝑡𝑟∗

𝑡𝑒𝐿

0
−

∑ �̃�2𝑗 ∑ 𝑄𝑗𝑘𝛼𝑘(𝑇 − 𝑇𝑠)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅2
𝑘=1

2
𝑗=1 + ∑ �̃�2𝑗 ∑ 𝑄𝑗𝑘𝛽𝑘(𝑃 − 𝑃𝑠)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅2

𝑘=1
2
𝑗=1 ] 𝑑𝑥}    (3.163) 

 

Remembering that 

𝑆ℎ3 = −∑ 𝑄𝑖3
𝑃 [𝜀𝑖 − 𝛼𝑖(𝑇 − 𝑇𝑠)] + 𝛼3(𝑇 − 𝑇𝑠) −

𝛽3(𝑃−𝑃𝑠)

1−∑ 𝑄3𝑗𝛽𝑗
2
𝑗=1

2
𝑖=1 |𝑡𝑟∗

𝑡𝑒  (3.164) 

The equation 3.163 indicates that the ejection force is dependent of the coefficient of 

friction between the mould and composite; the matrix of rigidity of the composite (elastic 

modulus at moment of the ejection); shrinkage of the composite (depends of the 

characteristics of the material, geometry and processing conditions). 
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4 Experimental methods and simulation techniques 

 

4.1 Materials and characterisation 

 

In this work three grades of PP (Domo Chemicals) were used. PP is a semicrystalline 

material with a wide range of applications due to its good mechanical properties [181].  

When an enhancement of properties is required PP can be reinforced with glass fibres or 

nanofillers. The compounding with glass fibres leads to greater mechanical resistance, 

lower thermal dilatation coefficient, good impact strength, higher tensile strength 

resistance and large flexibility conformation [182]. In this work a nanoclay (nanoMax® 

polyolefin masterbatch) was also used as reinforcement as it is expected to influence in 

the shrinkage and ejection forces. In the literature, these effects have not been searched 

yet, as well as if the nanoclays can facilitate the part ejection.  

 

4.1.1 Polypropylene  

 

Domolen 1100L is a homopolymer PP with a conventional molecular weight distribution 

used mainly in injection moulding applications [181]. The data sheet of the material is in 

the appendix A1, Table A1. 1 .The grade Domolen P1-013-V10-N has 10% of glass fibre, 

its properties are listed in the Table A1. 2 [183] and Domolen P1-102-V30-N has 30% of 

glass fibre, its properties being also listed in the Table A1. 3 [184]. 

The main properties of PP grades are summarised in the Table 4.1. 

Table 4.1- General properties of polypropylene grades 

Properties 
Domolen 

1100L 

Domolen P1-013-

V10-N 

Domolen P1-102-

V30-N 

Melt flow rate (g/10min) 6 8 7.5 

Modulus of elasticity (MPa) 1500 3500 6700 

Melting point (°C) 163 166 167 

Density (mg/cm3) 0.91 0.93 1.12 
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4.1.2 Nanoclays 

 

The masterbatch NanoMax® is one of the polyolefin based masterbatches produced by 

Nanocor in the pellet form [185]. The P-802 grade contain 50% wt% Nanomer® nanoclay. 

Normally, the nanoclays, are added in the range 8-12 wt% for mechanical improvement 

and 2-8 wt% to improve the flame retardation.  

 

4.1.3 Material identification codes 

 

The mouldings in this work were moulded in various materials namely virgin PP, PP with 

10% glass fibre (P1-013-V10-N), PP with 30% glass fibre (P1-102-V30-N) and PP with 

several contents  of nanoclays (P-802), that is, 2%, 6% and 10% of nanoclay. 

Furthermore, parts with glass fibre and nanoclay were also moulded: 2% of nanoclay with 

10% of glass fibre and 2% of nanoclay with 30% of glass fibre. The Table 4.2 shows the 

reference code to be used with these materials in this thesis. 

Table 4.2 - Materials and identification code 

Material Identification code 

PP without reinforcement PP0 

PP with 10% of glass fibre PP10GF 

PP with 30% of glass fibre PP30GF 

PP with 2% nanoclay PP2N 

PP with 6% nanoclay PP6N 

PP with 10% nanoclay PP10N 

PP with 10% glass fibre and 2% nanoclay PP10GF2N 

PP with 30% glass fibre and 2% nanoclay PP30GF2N 

 

4.1.4 Melting temperature, crystallization temperature and degree of crystallinity 

 

The DSC (Differential scanning calorimetry) was used to determine the melting 

temperature, degree of crystallinity and crystallization temperature [186],[187]. The 

assessed range temperature is between -180°C and 600°C [7],[187]. The sample is small 

(<20 mg) [7],[186]. Polymer samples are encapsulated in small aluminium pans, 

thermocouples are put in contact with the outside pans. The tested polymer sample is put 
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in one of pan, while the substance of comparison is put in the other pan,.The temperature 

is programmed to increase linearly during the experiment. The difference of temperature 

between the two pans is measured [7], [188].  

If the material is semi-crystalline, the degree of crystallinity can be obtained as 

𝜒 =
Δ𝐻𝑆𝐶

ΔHC
      (4.1) 

where  is the degree of crystallinity, HSC is the heat fusion of the polymer sample, and 

HC is the enthalpy of fusion of a 100% crystalline sample [187]. 

DSC was performed with all the 8 materials previously mentioned. 

The DSC test (ASTM D 3417-83) was carried out in a Perkin Elmer Pyris 1 device, at a 

heating rate of 10ºC/min between -30°C and 200°C. The test data are shown in the Table 

4.3, including the sample mass, the melting temperature and the degree of crystallinities. 

As can be see with a higher percentage of nanoclay the melt temperature decreases. The 

glass fibre content seems does not change the melt temperature and the degree of 

crystallization. 

The graphic outputs of the tests are shown in the appendix A8. 

Table 4.3 - The test data of DSC 

Material Mass (mg) Tm (°C) c 

PP0 11,2 167.7 42.5 

PP10GF 9,0 170.7 41.1 

PP30GF 12,7 166.5 39.5 

PP2N 11,7 165.5 34.4 

PP6N 18,0 167.7 41.8 

PP10N 13,7 167.6 40.0 

PP10GF2N 14,0 167.7 41.7 

PP30GF2N 13,8 167.2 44.1 

 

The DSC test also enabled to obtain the crystallization temperature of the 8 materials. 

The results for crystallization temperature of the materials used in this work is shown in 

the Table 4.4. The Figure 4.1 represents the crystallization curve of PP without 
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reinforcement, it can be observed that the peak crystallization temperature is around 116 

°C. The other curves are in the appendix A.4. 

Table 4.4  - Crystallization temperature for the materials 

Material 

Onset 

average 

temperature 

(°C) 

Peak 

crystallization 

temperature 

(°C) 

Average 

enthalpy 

(cooling) 

 (J/g) 

PP0 121,28 116,49 -91,12 

PP2N 131,96 126,55 -90,75 

PP6N 131,95 126,87 -94,74 

PP10N 133,49 127,94 -88,68 

PP10GF 134,35 130,67 -91,94 

PP30GF 132,94 127,44 -68,13 

PP10GF2N 136,65 132,35 -79,49 

PP30GF2N 132,30 127,32 -69,08 

 

The Table 4.4 shows the onset average temperature obtained by the intersection between 

the extension of base line and the extension of the peak line. It is possible to note that PP 

has the lower crystallization temperature and that the materials with nanoclay have the 

higher crystallization temperature, this suggesting the nanoclay acts as a nucleating agent. 

If the glass fibre is considered it has the opposite effect: the material with less glass fibre 

starts to crystallize later. However when nanoclays are introduced the trend to 

crystallization is anticipated if the amount of nanoclays is around 10%.  
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Figure 4.1 - Crystallization curve for polypropylene without reinforcement 

 

4.1.5 Storage modulus 

 

Dynamic Mechanical Analysis is a technique where a cyclic deformation is applied to a 

sample. This allows the material response to stress, temperature, frequency and other 

variables to be studied [189].  

DMA works by applying a sinusoidal deformation to a sample of known geometry. The 

sample can be subjected to a controlled stress or a controlled strain. For a known stress, 

the sample will then deform a certain amount. In DMA this is done sinusoidally. The 

deformation is related to its stiffness [189]. 

DMA tests were realized to obtain the storage modulus in relation to the temperature. In 

these tests a sinusoidal stress is applied and the strain in the material is measured, allowing 

the determination of the complex modulus. The temperature of the sample or the 

frequency of the stress are often varied, leading to variations in the complex modulus. 
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The dynamic mechanical properties were measured with the dynamic mechanical 

analyser PerkinElmer DMA 7. Specimens with 1.5 mm thick, 3 mm wide, and 20 mm 

long were tested in a three-point-bending configuration, Figure 4.2. The storage modulus 

(E0), loss modulus (E00), and loss factor (tan ) as a function of the temperature were 

obtained at a heating rate of 10°C/min from -25 to 190°C and at a fixed frequency of 1 

Hz. The ASTM D-5023-01 standard was used for the tests.  

 

Figure 4.2 – Three point bending mode [189] 

The testing parameters were:  

- Static load: 800 kN 

- Dynamic load: 770 kN 

- Frequency: 1Hz 

- Heating speed: 10°C/min 

The tests were carried out with the same materials tested in DSC. The results of DMA for 

the materials used are listed in the Table 4.5 and in the graphic form in the appendix A5 

together with the DMA curves for reinforced materials. At the table can be observed that 

the storage modulus decreases with the temperature.  

 

Support pillar 

and 3 point 

bending 

clamp 

3 point bending 

clamp (inverted 

on driveshaft) 
Sample 
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Table 4.5 - Storage modulus for all materials studied 

Material 

Nominal temperature (°C) 

30 50 75 

Storage modulus (GPa) 

PP0% 1.5 1.1 0.8 

PP2%N 0.9 0.7 0.5 

PP6%N 1.4 1.0 0.6 

PP10%N 1.9 1.4 0.9 

PP10%GF 1.9 1.6 1.3 

PP30%GF 2.4 2.0 1.4 

PP10%GF2%N 1.3 1.1 0.9 

PP30%GF2N 2.2 1.9 1.5 

 

The DMA output for PP without reinforcement is shown in the Figure 4.3, for the 

remaining materials the curves are in the appendix A.5. 

 

Figure 4.3 - DMA output for PP without reinforcement 
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4.1.6 Coefficient of linear thermal expansion  

 

The thermomechanical analysis was done to measure the linear coefficient of thermal 

expansion of the materials used in this work. The thermomechanical analysis uses a 

dilatometer to determine the linear thermal expansion of a solid as a function of 

temperature. The measured expansion of the specimen can be used to determine the 

coefficient of linear thermal expansion α [190],[191]. 

The coefficient of linear thermal expansion may be evaluated as the mean �̅� , in 

accordance with DIN 53 752 or ISO 113591 Part 1 and 2. 

The mean coefficient of linear thermal expansion �̅�  is obtained with the following 

equation 

�̅� =
1

𝑙0
.
𝑙2−𝑙1

𝑇2−𝑇1
=

1

𝑙0
.
∆𝑙

∆𝑇
      (4.2) 

where l is related to the length and T in relation to the temperature.  

The equipment used in this experiment was a Perkin Elmer Diamond TMA. The force of 

50 mN was applied to the sample and was held for 34 min. The equipment was 

programmed for heating from 25°C to 170°C at 10°C/min, holding for 5 min at 170°C 

and cooling from 170°C to 25°C at the same rate of the heating. 

The method is based on a glass rod, holding the sample with specific force on a crystal 

plate. The samples are 3-4 mm in diameter disks obtained from injection moulded plates. 

The glass rod holds the sample and allows measuring its thickness accurately during the 

entire test. The whole system, glass rod, crystal plate/base and the sample are inserted in 

the small furnace, where the temperature is controlled and increased at a rate, Figure 4.4. 

The temperature is increased to the melting temperature of the sample material, and then 

maintained for 5 min. After this time, the samples were cooled-down. 
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Figure 4.4 – Schematic diagrams of TMA apparatus [190] 

The results of the coefficients of linear thermal expansion are showed in the Table 4.6. 

An example of curve obtained from the test of thermomechanical analysis for PP without 

reinforcement is shown in Figure 4.5, and for others materials are in the appendix A6. 

Table 4.6 - Coefficient of linear thermal expansion for several materials 

Material 

Coefficient of 

linear thermal 

expansion  

(10-4 °C-1) 

PP0 2,28 

PP2N 1,96 

PP6N 2,00 

PP10N 1,84 

PP10GF 1,60 

PP30GF 1,63 

PP10GF2N 2,95 

PP30GF2N 2,99 
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Figure 4.5 - Experimental curve obtained of TMA for PP without reinforcement 

 

4.1.7 Rheology characterization 

 

The rheology characterization was carried out to compare the material data used in the 

experimental work and those in the simulation.  

The capillary rheometer used was a Rosand RH10. This equipment is able to evaluate the 

viscosity of materials as a function of speed (shear rate) and temperature. This is measured 

by heating the material within the bore of a temperature-controlled barrel, and then 

forcing the material at a defined speed through an accurately-dimensioned capillary die. 

The pressure above the capillary is measured. The viscosity is a function of this pressure-

drop, the piston speed and the test geometry. The Figure 4.6 shows a close up of the 

pistons.  

This process is repeated at several speeds to produce a profile of viscosity as a function 

of speed (shear rate). The temperature may be defined as that at which processing is 

usually carried out, or the test may be repeated at several temperatures [192]. 
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Figure 4.6 – Pistons of Advanced Capillary Rheometer RH 10 

The Rosand RH 10 works in conjunction with the Flowmaster® software. It allows to 

perform experiments and to analyse the data produced in the experiments. 

The Table 4.7 shows the correspondence among the materials used in this work and the 

Moldflow materials available in the database. 

Table 4.7 - Correspondence among experimental materials and Moldflow materials 

Material Experimental materials Moldflow 

PP without reinforcement Domolen 1000L MOPLEN HP501L 

PP 10% Glass fibre Domolen P1-013-V10-N PX0056 

PP 30% Glass fibre Domolen P1-102-V30-N GC30P100-01 

 

The die diameter used was of 2 mm and the shear rate range 1-10000 s-1. The temperatures 

used for each material are shown in the Table 4.8 and were chosen for comparison with 

the viscosity curves of the Moldflow database. 
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Table 4.8 - Test temperatures used in the rheological experiments 

Material Test temperature (°C) 

MOPLEN HP501L 220, 240 and 260 

PX0056 200, 220 and 240 

GC30P100-01 200, 226,7 and 253,3 

 

The results from the rheology characterization are shown in the Figure 4.7  for neat PP, 

Figure 4.8 for PP with 10% glass fibre and Figure 4.9 for PP with 30% glass fibre. As it 

can be seen, there is a good agreement between the material data used in this work and 

the material data in the simulation software database. 

 

Figure 4.7 - Polypropylene without reinforcement at 220°C 
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 Figure 4.8 - PP 10% glass fibre at 220°C 

 

 

Figure 4.9 - PP 30% glass fibre at 226.7°C 
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4.1.8 Coefficient of Friction measurement 

 

For this work it was necessary to inject samples of the materials. The samples are 

rectangular plates, whit dimensions of 62mm x 31 mm x 2 mm, in the same equipment 

where the other mouldings were produced. 

The tests were carried on the prototype equipment that enables the study of the effect of 

different parameters on the coefficient of friction relevant for the injection of plastic parts 

from mould in as-moulding conditions[193]. The concept of this equipment (known as 

Mouldfriction) is shown in the Figure 4.10 [194] 

 

Figure 4.10 - Concept of Mouldfriction [192] 

The Mouldfriction equipment has various functional systems, such as temperature 

control, control of contact pressure for replication of the surface and for testing, and 

movement guiding. A brief description of these functional systems follows next [194]–

[196]. 

Temperature control: this feature is important for a good replication of the surface at 

temperatures close to melting temperature of semicrystalline materials, or above the glass 

transition temperature in case of amorphous materials. It is also important to maintain the 

temperature during the friction test. 

The heating is achieved by cartridge heaters allowing the temperature to rise from room 

temperature up to the replication temperature within a reasonable time (typically 5 min). 

Some 5 mm insulating plates are used to minimize heat losses. 



92 
 

 

Cooling down from replication temperature to the testing temperature is obtained by 

circulating water in the cooling circuit. 

Control of contact pressure: a pneumatic cylinder is used to produce the contact pressure. 

The control of the pressure is obtained with a piezo-resistive pressure sensor. 

Monitoring of friction force: the use of a tensile test machine is an easy and reliable way 

to control and acquire the friction force data during the test. The prototype apparatus was 

designed to be mounted and work with a universal tensile testing machine. 

In Figure 4.11, it is shown the Mouldfriction installed on the universal testing machine. 

 

Figure 4.11 - View of the mouldfriction installed in a universal testing machine 

The testing routine includes the following steps: 

1. Heating of the mouldings surface up to the replication temperature. 

2. Stabilization of the temperature. 

3. Application of contact pressure to get surface replication. 

4. Cooling down to the testing temperature. 
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5. Friction test at selected cross-head speed. 

The cycle time for the complete routine is typically 15-20 min. 

The tests were carried out at a cross head rate of 10 mm/min, and the maximum 

temperature of operation was 160°C. The pressure of contact was 4.3 MPa, the pressure 

at the manometer was 5 bar and the normal contact force was obtained by Netto [197] in 

the calibration line  

𝑁 = 1.85 × 𝑃𝑚𝑎𝑛 × 100 + 14.43     (4.3) 

where N is the normal force, Pman is the pressure registered by manometer and 14.43 is a 

constant. 

The roughness used were Ra 0.2 m, 0.6 m and 0.8 m, remembering that the surface 

roughness in the mould is 0.5 m. 

A typical curve of the friction test for PP with 10% of glass fibre is shown in Figure 4.12 

 

Figure 4.12 - Friction test for PP with 10% of glass fibre 

The results of coefficient of friction are shown in the Table 4.9. 

From the experimental data it can be concluded that when the mould surface is rougher 

the friction coefficient is greater. This happens because the grooves difficult the sliding 
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the part with the surface of the mould. Furthermore, it can be noted that with PP nanoclay 

composites, the coefficient of friction decreases. The nanoclays seem to behave as a 

lubrificant. For PP with glass fibres the coefficient of friction increases with the content 

of glass fibre.  

Table 4.9 - Coefficient of friction in relation to material and roughness of the mould 

Roughness 

(m) 

Static coefficient of friction 

PP0 PP2N PP6N PP10N PP10GF PP30GF PP10GF2N PP30GF2N 

0,2 0,32 0,31 0,24 0,23 0,25 0,33 0,25 0,31 

0,6 0,43 0,40 0,36 0,43 0,38 0,44 0,39 0,45 

0,8 0,38 0,32 0,28 0,30 0,31 0,37 0,30 0,36 

 

4.1.9 Measurement of the glass fibre percentage 

 

The glass fibre percentage was calculated according to the DIN EN ISO 3451 standard. 

The samples had the size around 10mm x 10mm and weighed around 0.30 g. These 

samples were put in the furnace at 630°C during 30 minutes. After this time, only the 

glass fibre remained into the melting pot. To evaluate the glass fibre percentage, the 

equation below was used: 

𝐺𝑙𝑎𝑠𝑠 𝑓𝑖𝑏𝑟𝑒 % =
𝑅𝑒𝑠𝑡

𝑠𝑎𝑚𝑝𝑙𝑒
. 100      (4.4) 

where Rest is the residue mass after calcination and Sample is the sample mass. 

The data of glass fibre percentage are shown in the Table 4.10 and Table 4.11 for 10% of 

glass fibre and 30% of glass fibre, respectively. 

 Table 4.10 - Measurement of percent of glass fibre (10%) 

10% glass fibre 

 Sample mass (g) Residue mass (g) % glass fibre 

Sample 1001 0.354 0.041 11.58 

Sample 1002 0.265 0.032 12.08 

Sample 1003 0.254 0.031 12.20 
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Table 4.11 - Measurement of percent of glass fibre (30%) 

30% glass fibre 

 Sample mass (g) Residue mass (g) % glass fibre 

Sample 3001 0.341 0.105 30.79 

Sample 3002 0.334 0.101 30.24 

Sample 3003 0.347 0.105 30.26 

 

 

4.1.10 Glass fibre measurement (length and diameter) 

 

Some samples were cut of tubular parts and these pieces were done inside the oven until 

the polymer was totally consumed. After, this powder was put on the microscope and 

observed in Bright Field Microscopy to take pictures for later measurement of glass fibre. 

The Bright Field Microscopy uses a basic microscope, in transmission or reflexion mode 

without special accessories to generate contrast. This technique is adequate to observe 

polymeric systems whose constituents have refractive index enough different enough 

(differences over 0.05). This technique is used to analyse the dispersion and pigment 

particle distribution, reinforcement and other additives. The Bright Field Microscopy  in 

reflexion is applied, mainly, to analyse materials with significant contents (> 5%) of 

reinforcements, such as glass fibres [198].  

In short fibre reinforced thermoplastic, the fibre length can vary from less than one fibre 

diameter to hundreds of fibre diameters. During extrusion and injection moulding 

processes, the shear forces exerted by the screw or ram break the fibres and result in a 

length distribution that is different from the original length of chopped strand fibres 

[199],[200]. 

The measurement of length and diameter of glass fibre was done using a transmission 

microscope Olympus BH2. The instrument was calibrated and pictures were taken. Three 

samples of 10% of glass fibre and three samples of 30% of glass fibre. From each sample 

3 pictures were taken (a total of 18 pictures). An example is shown in Figure 4.13 for PP 

with 30% of glass fibre. 
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Figure 4.13 - Photograph of sample with 30% of glass fibre 

The glass fibres length and diameter were measured in 100 fibres per photo. Fibre length 

histograms for 10% glass fibre and 30% glass fibre were generated, as well as fibre 

diameter histograms.  

The results for the measurement of length and diameter of the fibres are shown in the 

Table 4.12 and Table 4.13, respectively. 

The result can be shown in the form of histogram, for example, the histogram for sample 

1 of 10% glass fibre is presented in the Figure 4.14. 
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Table 4.12 - Length measurement of 10% glass fibre and 30% glass fibre 

10% Glass Fibre 

Sample 1 Sample 2 Sample 3 

Picture �̅� (m)  (m) Picture �̅� (m)  (m) Picture �̅� (m)  (m) 

1001 553,10 194,59 1001 633,80 168,87 1001 716,57 223,23 

1002 530,63 201,02 1002 473,30 163,90 1002 533,57 174,99 

1003 445,29 156,40 1003 466,77 164,50 1003 403,92 152,31 

 

30% Glass Fibre 

Sample 1 Sample 2 Sample 3 

Picture �̅� (m)  (m) Picture �̅� (m)  (m) Picture �̅� (m)  (m) 

3001 372,03 106,93 3001 444,96 114,76 3001 374,31 98,89 

3002 543,62 117,68 3002 514,72 112,87 3002 503,94 118,64 

3003 400,80 144,63 3003 398,91 116,71 3003 384,58 99,90 

 

Table 4.13 - Diameter measurement of 10% glass fibre and 30% glass fibre 

Sample 1 10% glass 

fibre 

Sample 1 30% glass fibre Sample 2 10% glass fibre 

Picture �̅� (m)  (m) Picture �̅� (m)  (m) Picture �̅� (m)  (m) 

1001 15,04 3,59 3001 16,63 4,27 1001 17,45 3,81 

1002 14,95 3,37 3002 17,23 3,77 1002 16,37 3,77 

1003 15,93 3,08 3003 17,49 4,13 1003 17,05 3,64 
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Figure 4.14- Histogram of sample with 10% glass fibre 

 

4.2 Injection moulding  

 

The materials were moulded in a deep tubular part (tube) with 2 mm of thickness wall. 

The mouldings with nominal dimensions of Dint=60 mm (internal diameter) and L=146 

mm (length) were produced in an injection moulding machine Ferromatik Milacron FM 

85 with a thermo regulator Piovan THN6P. The mouldings were produced with an 

instrumented mould [173]. In the Figure 4.15 it is shown the tubular part and its main 

dimensions.  

 

Figure 4.15 – Tubular part 
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4.2.1 Moulding conditions 

 

The moulding conditions were chosen considering the recommended processing window 

for the materials used in this work. 

The processing conditions for the various materials are listed in the Table 4.14. 

Table 4.14 - Moulding conditions 

Identification 

P
P

0
 

P
P

1
0
G

F
 

P
P

3
0
G

F
 

P
P

2
N

 

P
P

6
N

 

P
P

1
0
N

 

P
P

1
0
G

F
2
N

 

P
P

3
0
G

F
2
N

 

Cycle time (s) 50 

Cooling time (s) 12 

Injection velocity (mm/s) 70 

Injection pressure (set) (bar) 100 

Injection time (s) 0,93 0,87 0,83 0,93 0,87 0,83 0,87 0,83 

Holding pressure (set) (bar) 25 

Holding time (s) 19 

Switchover (mm) 13,6 10 10 13,6 10 10 10 10 

Temperature of the barrel 

zones (Hopper-Nozzle) (˚C) 
40-150-180-195-210-220 

Mould temperature (set) (˚C) 30-50-75 

 

 

4.2.2 Data acquisition 

 

The mould was equipped with three pressure sensors in the cavity and three 

pressure/temperature sensors in the core (along the flow path and facing each other at 

25mm, 83 mm and 143 mm downstream of the gate). These positions in the cavity will 

be referred to as C1, C2 and C3, and in the core as B1, B2 and B3, and T1, T2 and T3, 

for the pressure and temperature sensors, Figure 4.16. 

Priamus (Multi DAQ 8101 A and Mobile DAQ 8001 B) was used as data acquisition 

system with sensors that allow acquiring pressure, temperature and ejection force data.   
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Figure 4.16 - Moulding part with the positions of pressure and temperature sensors 

 

The location of temperature and pressure sensors is presented in Figure 4.17. 

 

 

Figure 4.17 - Location of temperature and pressure sensors [173] 

The data acquisition system consists of 3 sensors located in the cavity (Kistler 6157 BA 

0.4) C1, C2 and C3 and 3 sensors for temperature and pressure located in the core (Kistler 

6190 A 0.4) B1/T1, B2/T2 and B3/T3. The location of these sensors are at 25mm from 

the gate for the sensors # 1, 83 mm from the gate for the sensors # 2 and 143 mm from 

the gate for sensors # 3.  
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The ejection force evolution during the ejection was monitored with Kistler load cells 

(Kistler 9021 A) with range capacity of 0.01 N to 35 kN. The location of load cells in the 

ejector plate is indicated in the Figure 4.18 [173]. 

 

Figure 4.18 - Location of cell load sensors [173] 

After acquisition, the data were worked with in spreadsheets to obtain the pressure, 

temperature and ejection force curves. 

In the Figure 4.19, it is presented an ejection force curve to show how the ejection forces 

were obtained from the curve. 

The total ejection force to extract the part from the mould was obtained adding F1 and F2, 

as in the equation  

𝐹𝑒 = 𝐹1 + 𝐹2 

F1 and F2 being calculated from the acquired corresponding data. 

The ejection forces data were calculated using the information from 10 injection 

moulding cycles by its average and respective standard deviation. 
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Figure 4.19 - Ejection force evolution for PP30% glass fibre and mould temperature of 

75°C 

 

4.2.3 Fibre Orientation Measurement 

 

This process of fibre orientation measurement was described by Neves [139]. The 

objective of knowing the fibre orientation for assessing its influence on the shrinkage and 

the anisotropy of properties. The samples of the tubular parts measured 14mm x 7mm and 

were cut at 25 mm at 143 mm from the gate location, Figure 4.20. These locations were 

used as they correspond to where the pressure and temperature were measured. Two 

samples of each part were taken and in total 18 samples were prepared, 2 for each part 

and 3 for each moulding temperature. As mentioned, the material was injected using 3 

different mould temperatures of 30°C, 50°C and 75°C.  
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Figure 4.20 – Location of the samples for fibre orientantion 

The samples were cut using a saw, and mounted in a plastic mould and immersed in an 

epoxy resin. The cure took 8 hours to complete. Then the surface was polished in a 

polishing machine. This process uses various sandpaper, starting with the roughest 

sandpaper until the most refined sandpaper. Each sandpaper should be used until no trace 

is seen in the microscope. A ready sample is shown in the Figure 4.21. 

 

Figure 4.21 - Sample after polish operation 
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The surface was photographed in an Olympus Transmission Microscope with (objective 

resolution of 20x) and a Leica digital camera , the setup being shown in Figure 4.22. 

 

Figure 4.22 - Equipment used to acquire the pictures of samples 

The Leica Qwin Pro Software was used to analyse the sample data. The pictures were 

taken in a dimension of 772 x 512 pixels and filed in bmp format. The number of photos 

taken was around 16 per sample.  

All the pictures were analysed with the Ellipse Software for fibre measurement. This 

software gives the information about fibres, namely, dimensions, angle and relative 

position of fibre centre in the sample.  

These data were worked on spreadsheets and the glass fibre orientation tensors were 

obtained and are shown in the chapter of results and discussion. 

 

4.2.4 Measurement of shrinkage 

 

The measurement of the dimensions allowing the calculation of the shrinkage was 

realized in the Tesa Micro-Hite 3D DCC CMM equipment, Figure 4.23. In this figure, 

the PP moulding were measured, it being possible to note the moment that the support 

and sensor set touch the moulding. This machine has an uncertainty of 3.5 m according 

to the manufacturer. The equipment is controlled by joystick and a computational 

software PC-DMIS 4.2. This software enables to create and to execute programmes to 

measure various types of geometries.  
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Figure 4.23 Tesa 3D CMM Equipment to measure the moulding dimensions 

The software to measure the shrinkage was obtained by the creation of circle in the 

interior and in the exterior of the part in three different planes. These planes were in the 

position near from the gate, in the intermediate position in relation to the gate and far 

from the gate. The differences between the external and internal dimensions enable to 

evaluate the external diameter and internal diameter respectively. The length of the part 

was measured between two coordinates in the top of the part and the base of the tubular 

part. The shrinkage was calculated as the difference between the dimensions of the 

diameters of the mould and diameter measured by the machine. The results of the 

measurement for the neat PP are presented in the Table 4.15 and the other shrinkage data 

are in the appendix A2. 

Table 4.15 - Shrinkage for PP - mould temperature 30°C 

 

Int. diameter (D3) 59,880 58,968 1,523 58,950 1,553 58,932 1,583 1,553

Int. diameter (D2) 58,830 57,898 1,584 57,894 1,591 57,884 1,608 1,594

Int. diameter (D1) 57,820 56,952 1,501 56,950 1,505 56,939 1,524 1,510

Ext. diameter (D3) 63,870 62,940 1,456 62,953 1,436 62,978 1,397 1,429

Ext. diameter (D2) 62,810 61,923 1,412 61,920 1,417 61,937 1,390 1,406

Ext. diameter (D1) 61,820 61,050 1,246 61,043 1,257 61,052 1,242 1,248

Height  of part 146,000 144,503 1,025 144,480 1,041 144,481 1,040 1,036

Dimension 

[mm]

Shrinkage  

[%]

Measurement

Mould 

dimension 

[mm]

Sample 3 Sample 6 Sample 9

Average 

shrinkage 

among 

samples 

[%]

Dimension 

[mm]

Shrinkage  

[%]

Dimension 

[mm]

Shrinkage  

[%]
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4.3 Simulation of temperature field 

 

The simulation software used in this work was Moldflow Plastics Insigth 6.1. In the 

technical literature, there are many studies using Moldflow [64],[111],[202]–[204], 

showing the power of this computational tool. In this work, the aim of simulations was to 

compare its results with experimental data and also to help to explain possible reasons of 

disagreement among results and to obtain the temperature field during the injection 

moulding process. 

 

4.3.1 Mesh 

 

A 3D mesh of the tubular moulding is shown in Figure 4.24 and Figure 4.25. The 3D 

mesh of Moldflow uses full 3D Navier-Stokes equations, solves pressure, temperature 

and the three directional velocity components at each node. It also considers heat 

conduction in all directions and provides options to use inertia and gravity effects. 

 

Figure 4.24 - 3D mesh from Moldflow 
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Figure 4.25 - Part and cooling system 

The mesh has 10095 nodes, 186 beam elements and 54312 tetrahedral elements. The 

aspect ratio maximum is 97.7, average 28.25 and minimum 1.19. 

 

4.3.2 Rheology description 

 

The Cross Model was used to describe the viscosity of materials. The Cross can be 

represented by [205],[206]: 

𝜂 =
𝜂0

1+(
𝜂0�̇�

𝜏∗
)
1−𝑛      (4.5) 

where   is the stress in which occurs the transition between the first Newtonian region 

and the Power Law region.  

 The Cross Model can still be changed to consider temperature effect, replacing ηo 

for other function ηo(T), according the equation below, where B and Tb are parameters 

obtained of the adjustment of this equation with the experimental measurements of ηo in 

several temperatures: 

𝜂0 = 𝐵𝑒𝑥𝑝 (
𝑇𝑏

𝑇
)     (4.6) 

With this change, the modified Cross Model was obtained. 

𝜂 =
𝐵𝑒𝑥𝑝(

𝑇𝑏
𝑇
)

1+(
𝜂0�̇�

𝜏∗
)
1−𝑛      (4.7) 
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In the Moldflow the Cross-WLF viscosity model uses the equation below for ηo  

𝜂0 = 𝐷1𝑒𝑥𝑝 [
−𝐴1(𝑇−𝑇

∗)

𝐴2+(𝑇−𝑇∗)
]    (4.8) 

Where: η is the viscosity (Pa.s), �̇� is the shear rate (1/s), 𝑇 is the temperature (K), 𝑇∗ =

𝐷2 + 𝐷3𝑃  where P is the pressure (Pa), 𝐴2 = 𝐴2~ + 𝐷3𝑃  (K) and 

𝑛, 𝜏∗, 𝐷1, 𝐷2, 𝐷3, 𝐴1, 𝐴2~ are data-fitted coefficients. 

The Cross-WLF model provides a good physical representation of the data.  is related 

to the relaxation time of the material, D2 is related to the glass transition temperature, Tg 

(Moldflow 6.1). 

The materials used in the simulations of Moldflow were MOPLEN HP501L (Bassel 

Polyolefins Europe) for PP without reinforcement, PX0056: Borealis OPP SA for PP with 

10% of glass fibre and GC30P100-01:Rhetec for 30% of glass fibre. The Table 4.16 

shows the parameters for Cross-WLF model. 

Table 4.16 - Parameters for the  Cross-WLF model (Moldflow 6.1) 

Parameter 
MOPLEN 

HP501L 
PX0056 GC30P100-01 Unit 

N 0.2734 0.2903 0.2634  

 22027.2 32340 44578 Pa 

D1 2.60213x1015 3.41877x1011 1.22x1013 Pa.s 

D2 263.15 263.15 263.15 K 

D3 0 0 0 K/Pa 

A1 33.714 24.334 27.952  

A2~ 51.6 51.6 51.6 K 

 

4.3.3 PVT descripition 

 

The Tait equation is generally used in CAE packages to model the polymer behaviour 

during melt processing [68],[206]. For the Tait equation and a set of constants, any 

volume of a polymer can be determined by knowing the temperature and pressure.  

The parameters for Tait equation used in the Moldflow are shown in the Table 4.17. 
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Table 4.17 - Parameters of the modified Tait equation 

Parameter MOPLEN HP501L PX0056 GC30P100-01 Unit 

b5 452.15 446.15 449.15 K 

b6 4.651x108 3.351x108 4x10-8 K/Pa 

b1m 0.001318 0.001132 0.0009777 m3/kg 

b2m 9.481x107 8.001x107 4.499x10-7 m3/kgK 

b3m 7.112x107 8.347x107 1.55682x108 Pa 

b4m 0.004308 0.004811 0.004428 1/K 

b1s 0.001199 0.001049 0.0009473 m3/kg 

b2s 6.24x107 4.369x107 3.849x10-7 m3/kgK 

b3s 1.024x108 1.174x108 1.65415x108 Pa 

b4s 0.008427 0.004983 0.006316 1/K 

b7 0.0001184 8.325x10-5 3.041x10-5 m3/kg 

b8 0.1182 0.2257 0.118 1/K 

b9 7.328x109 9.596x10-9 6.921x10-9 1/Pa 

 

4.3.4 The SciLAB software 

 

The SciLab – Scientific Laboratory – is a software to solve numerical calculus. It is a 

high performance tool used in complex situations by interaction or through programming. 

The SciLab belongs to a group of softwares that simulates environment of numerical 

computation, such as MatLab, Octave, Maple, Simulink, MuPAD, etc. Among these, the 

best known is the MatLab (Matrix Laboratory). The MatLab is a commercial software 

and SciLab is open source and free [207]. 

The SciLab is a product created and maintained by a consortium of companies formed in 

2003 by INRIA (the french National Institute for Research in Computer Science and 

Control), The SciLab Consortium had joined the Digiteo Foundation in July 2008 [208]. 

It can be used in Windows or Linux and others environments, for several areas: 

engineering, petrochemical, meteorology, automotive industry, etc [209]. 

This work uses SciLab to implement the mathematical model to predict shrinkage and 

ejection forces in tubular parts in injection moulding. The model was already described 

in chapter 3. 
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5 Results and Discussion 

 

5.1 Injection moulding 

 

5.1.1 Moulding pressure 

 

Through the pressure curves it is possible explore data such as the extent of the filling, 

the holding and cooling development and also information about flow rate.  

For each processing conditions ten mouldings were analysed. After evaluation, it was 

checked the representative curve the entire experiment.  

The Figure 5.1 shows the evolution of pressure in the impression for the tubular part. In 

this figure, the pressure curves in three locations along the part, near the gate (C1), in 

intermediate location (C2) and far from the gate (C3) are shown. The pressure curve is 

divided in regions I and II, the region I representing the injection phase and region II 

representing the holding phase. 

The pressure evolution in the impression depends on many parameters. The most 

important parameter in its evolution are the injection velocity and the melt temperature 

[7]. 

The mould temperature has only a slight influence on the pressure evolution in the filling 

phase, because of the fast cooling rates, but there is a strong influence on the pressure 

evolution during the holding phase, because the wall temperature influences the cooling 

behaviour [210]. 

The most important aspect of the holding pressure phase is the addition of melt in the 

impression to compensate the effect of the thermal contraction of the melt during cooling. 

In the Figure 5.1 if is shown a peak in the pressure due to the late switchover. 
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Figure 5.1 - Pressure evolution during an injection cycle of neat PP with mould 

temperature of 30°C 

In the Figure 5.2, it is possible to observe the influence of mould temperature in the 

pressure evolution inside de cavity. Due to the higher mould temperature the melt 

polymer has more time to cool and consequently the holding phase is longer.  

The maximum injection pressure was observed for the mould temperature of 75°C due to 

the lower pressure drop during the filling phase. 

The results in Figure 5.3 show the influence of the glass fibre content in the pressure 

evolution for different amounts of reinforcement at mould temperature of 75°C. It is 

possible to note that for the higher glass fibre content the pressure drop is faster. This is 

due to the faster cooling rate and higher pressure drop of the PP with higher content of 

glass fibres. 

 

 I 

 

II 
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Figure 5.2 - Influence of the mould temperature in the pressure evolution for PP – 

Domolen 1100L 

 

Figure 5.3 - Influence of glass fibre content in the cavity pressure evolution at mould 

temperature of 75°C 
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In the Figure 5.4 where the influence of nanoclay content is observed, the percentage of 

nanoclay used does not influence the pressure evolution.  

It is also important to point out that the pressure evolution is similar to the pressure 

evolution observed with PP without reinforcements. This observation confirms that the 

nanoclay does not change the flow behaviour of the material when small percentage of 

nanoclay is added. 

 

Figure 5.4 - Influence of nanoclay content in the pressure evolution at mould 

temperature of 50°C 

In the Figure 5.5 is shown the effect of nanoclay on the pressure evolution of reinforced 

PP with 10% and 30% of glass fibre. It can be seen that the small incorporation of 

nanoclay (2%) does not affect the pressure evolution, and also flow behaviour of the 

reinforced PP.  
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Figure 5.5 - Influence of nanoclay on the pressure evolution of reinforcement PP of 

mould temperature of 75°C 

 

5.1.2 Temperature evolution 

 

In the Figure 5.6 it is shown the evolution of temperature along the time for PP with 2% 

of nanoclay in the three used mould temperatures, 30°C, 50°C and 75°C. As it can be 

noted the evolution of temperatures are accordance with the mould temperature impose 

on the thermoregulator. This temperature evolution was used to validate the simulation 

temperature evolution using the Moldflow software. As mentioned previously the 

predicted temperature gradient was used in the predictions of shrinkage and ejection 

forces. 

The small peak of the temperature observed in all curves around 35 s is due to the ejection 

of the part.  
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Figure 5.6 - Evolution of temperature along of the injection cycle for PP with 2% of 

nanoclay different moud temperatures 

 

5.2 Shrinkage 

 

In this section, it is made the discussion of the experimental results for the shrinkage along 

the flow path, in relation to the mould temperatures and level of reinforcement. These 

results are presented in relation to the diametrical shrinkage and thickness shrinkage. All 

the results of shrinkage calculations are shown in the appendix A2. 

 

5.2.1 Variation along the flow path 

 

In the Figure 5.7 and Figure 5.8, they are shown the results of the calculated diametrical 

shrinkage for PP without reinforcement for low and high mould temperatures. It can be 

seen a slight increase of diametrical shrinkage along the flow path, and the increase of 

internal diametrical shrinkage is more pronounced than the external diametrical 

shrinkage. This occurs due to the expansion on the thickness direction after ejection.  
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In these graphics, it can also be noted that there is a plateau after the intermediate region 

of the tubular parts.  

Near the gate, the shrinkage is lower because the effect of holding pressure is more 

effective and consequently the compression of the part is higher far away from the gate, 

the values of the shrinkage, internal and external, tends to be closer. 

 

Figure 5.7 - As-moulded diametrical shrinkage at different position along the flow path 

for PP tubes with mould temperature of 30°C 

The effect of mould temperature on the diametrical shrinkage is also shown in Figure 5.7 

and 5.8. The increase of the mould temperature increases the diametrical shrinkage. This 

behaviour is due to higher temperature of the part at ejection when is used the higher 

temperature of the mould 

In the Figure 5.9 it is represented the behaviour of shrinkage along the flow path with the 

mould temperature at 50°C for PP with different percentage of nanoclay. 

As it can be seen the shrinkage of the internal diameter is also higher than external 

diameter as observed for unreinforced PP. This behaviour is due to the expansion after 

ejection, which decreases the internal diameter and increases the external diameter. 

The higher shrinkage occurs far away from the gate in the external diametrical shrinkage. 

The material with nanoclays has almost the same results as pure PP. 
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Also can be seen that, when is added nanoclays as reinforcement, there is a reduction in 

the shrinkage as expected, due to the constraint effect of the reinforcements. 

 

Figure 5.8 - As-moulded diametrical shrinkage at different position along the flow path 

for PP tubes with mould temperature of 75°C 

 

Figure 5.9 - As-moulded diametrical shrinkage for different position along the flow path 

for PP tubes with different contents of nanoclay 
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In the Figure 5.10 it is presented the effect of glass fibre on the as-moulded diametrical 

shrinkage along the flow path. As it can be seen the diametrical shrinkage decreases with 

the increase of glass fibre content. The shrinkage is higher near the gate and at 

intermediate region of the part. This apparent non sense is due to the fibre orientation 

pattern that changes with the flow path. It is possible to find that the a22 tensor is higher 

the region far away the gate, which constrains the diametrical shrinkage. 

 

Figure 5.10 – As-moulded diametrical shrinkage along the flow path for PP tubes with 

10% and 30% of glass fibres 

 

5.2.2 Thickness shrinkage 

 

The data summarized in Figure 5.11 and Figure 5.12 for the thickness shrinkage along 

the flow path correspond to PP without reinforcement and PP with 6% of nanoclay. The 

shrinkage is higher and positive far away from the gate it and near the gate is observed to 

have negative value (expansion). This behaviour is due to the fact that near the gate the 

material is over packed and when the mould opens the part expands. Afterwards, the part 

shrinks but not enough to compensate the previous expansion. The shrinkage is not 

significantly affected by the nanoclay addition.  
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Figure 5.11 - Thickness shrinkage for PP without reinforcement 

 

 

 

Figure 5.12 - Thickness shrinkage for PP with 6% of nanoclay 

 

In Figure 5.13 and Figure 5.14 the results for glass fibre with 10% and 30%, respectively, 

are presented.  
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Figure 5.13 -Thickness shrinkage for PP with 10% of glass fibre 

 

 

Figure 5.14  - Thickness shrinkage for PP with 30% of glass fibre 
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5.2.3 Effect of the mould temperature 

 

In the Figure 5.15 and Figure 5.16 are presented the results of shrinkage in the position 

far from the gate in the flow path. As it can be seen when the mould temperature increases 

the shrinkage also increases. This behaviour is due to the fact that when the moulding is 

ejected at higher temperature the material has more time to shrink. It is also possible to 

note that the reinforced materials present shrink less than PP. In these figures the effect 

of the combination of nanoclays with glass fibre PP can also be observed. The presence 

of nanoclays decreases the shrinkage. 

 

 

Figure 5.15 - Shrinkage of the external diameter of different mould temperatures  
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Figure 5.16 - Shrinkage of the internal diameter with various mould temperatures  

 

 

Figure 5.17 - Shrinkage dependence of the mould temperature for PP without 

reinforcement in several positions along the flow path 
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5.2.4 Effect of the content of glass fibre  

 

The thermal expansion coefficient of the glass fibre is a key factor in mould shrinkage 

owing to possessing higher magnitude than matrix thermal expansion coefficient, Figure 

5.18 and Figure 5.19. Thus, as far as glass fibre content is elevated, the shrinkage would 

decrease. In relation to the mould temperature effect, it was explained in the previous 

section 5.2.3. 

 

Figure 5.18 – Shrinkage of external diameter at the position T2 for different glass fibre 

content and different mould temperatures 
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Figure 5.19 – Shrinkage of internal diameter at position T2 for different glass fibre 

content for different mould temperatures  

 

5.2.5 Effect of content of nanoclays 

 

In the Figure 5.20 and Figure 5.21, it is presented the internal and external shrinkage 

diameter, respectively, at position T2 with different mould temperatures. As it can be seen 

the shrinkage decreases with the nanoclay content. This behaviour is due to the 

constraining effect of the nanoclays and the lower thermal expansion coefficient. 
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Figure 5.20 – Internal diameter at position T2 for different content of nanoclays at 

different mould temperatures  

 

Figure 5.21 – External shrinkage diameter of position T2 for different content of 

nanoclays at different mould temperatures 
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5.3 Ejection force 

 

It can be observed in the Figure 5.22 and Figure 5.23  that the ejection force decreases 

with the increase of mould temperature. The ejection force also increases with the 

increase of the glass fibres content, due to the higher elastic modulus. In contrary the 

nanoclays decrease the ejection force when compared with glass fibres and pure PP. 

When nanoclays are added to PP with glass fibre the ejection forces decreases slightly in 

comparison with the ejection forces of the mouldings produced with the material without 

nanoclays. This behaviour is in agreement with the nanoclays reducing the shrinkage and 

also the coefficient of friction and consequently reduce the ejection force. 

 

Figure 5.22 - Ejection forces in relation to content of nanoclays for mould temperatures 

of 30°C, 50°C and 75°C 
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Figure 5.23 - Ejection forces in relation to content of glass fibre for mould temperatures 

of 30°C, 50°C and 75°C 

 

5.4 Fibre Orientation Measurement data 

 

According the procedure described in the previous chapter, the orientations of fibres were 

obtained. Considering the measurement data, the tensors a11, a22 and a33 represent the 

orientation of fibres along the thickness of the part. The tensor a11 describes the 

orientation in the direction of flow, the tensor a22 shows the orientation in the transversal 

direction of the flow and the tensor a33 represents the orientation in the thickness direction 

of the part.  

In the Figure 5.24 and Figure 5.25 are presented the results for PP with 10% of glass fibre 

at the mould temperature of 50°C, in the position near to the gate and far away from the 

gate, respectively. In the Figure 5.26 and Figure 5.27 is present the tensors for PP with 

30% of glass fibre. 
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Figure 5.24 - Tensors for PP with 10% of glass fibre for mould temperature of 50°C 

near from the gate 

 

 

Figure 5.25 - Tensors for PP with 10% of glass fibre for mould temperature of 50°C far 

from the gate 
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Figure 5.26 - Tensors for PP with 30% of glass fibre for mould temperature of 50°C 

near from the gate 

 

 

Figure 5.27 - Tensors for PP with 30% of glass fibre for mould temperature of 50°C far 

from the gate 

The tensors a11 and a22 are approximately symmetric, in other words, when a11 increases, 

a22 decreases and vice versa. In relation to the orientation of the fibres this means that 
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when a11 is higher the orientation of the fibres is predominant in the flow direction and 

when a22 is higher the orientation of the fibres is predominant in the circumferential 

direction. Other important point to be observed is the value of the tensor in the thickness 

direction. The tensor in this direction is, a33, and is usually very low.  

Analysing the tensors a11 and a22 for polymer with 10% of glass fibre it is noticeable that 

there is a higher orientation of fibres in the circumferential direction, and thus the tensor 

a22 is higher than a11. The inverse is observed for PP with 30% of glass fibre. The tensor 

a22 also increases with the flow path, is higher away from the gate.  

The mould temperature does not cause significant influence in the glass fibre orientation. 

 

5.5 Model implementation 

 

In the chapter 3, the data needed to apply the model and to evaluate the shrinkage and 

ejection force for tubular part was mentioned. 

The polymer matrix data, namely PP, are described in the Table 5.1 according to the 

mould temperature.  

Table 5.1 - Parameters of the models used for unreinforced PP 

Polypropylene (PP0) 

Parameter Tm 30°C Tm 50°C Tm 75°C Unit source 

Elastic modulus, E 0.70 0.65 0.60 GPa 

 Poisson coefficient,  0.38 0.38 0.38 - 

Thermal expansion coefficient, α 1.7x10-4 1.7x10-4 1.7x10-4 K-1 

linear compressibility, β 1.64x10-10 1.64x10-10 1.64x10-10 MPa-1 [3] 

Friction coefficient,  0.13 0.17 0.25 - 

 Solidification temperature, Ts 111 111 111 °C 

Ejection average temperature, Te 42 61 76 °C 

Solidification pressure near1, Ps 26.4 26.9 28.3 MPa 
 

Solidification pressure far2, Ps 12.3 15.2 18.3 MPa 

1 The solidification pressure near from the gate and 2 far from the gate 

 Parameter obtained by experimental test 

 Parameter obtained by simulation  
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The solidification pressure was obtained according to the simulated temperature. When a 

layer reached the solidification temperature, the pressure in this moment was considered 

as the solidification pressure. 

The data for glass fibre are presented in the Table 5.2. 

Table 5.2 - Glass fibre parameters 

Glass fibre 

Parameter Value Unit Source 

Elastic modulus, E 73 GPa 

[94] Poisson coefficient,  0.18 - 

Thermal expansion coefficient, α 4.6x10-6 K-1 

Fibre average length for PP with 10% GF, l 530 m 

 
Fibre average diameter for PP with 10% GF, d 16 m 

Fibre average length for PP with 30% GF, l 440 m 

Fibre average diameter for PP with 30% GF, d 16 m 

            Parameter obtained by experimental test 

 

For the other materials used in this work, the parameters of the models used to predict the 

shrinkage and ejection forces can be found in the appendix A.7. 

The prediction of shrinkage for neat PP and PP with nanoclays, in the flow direction and 

transversal to the flow direction, were done using the Jansen equations (3.117 and 3.118). 

The nanoclays at the microscale can be considered an isotropic material, but at the 

nanoscale it is known that the nanoclays have some orientation, depending on various 

factors. 

In the case of PP with glass fibres (due to its anisotropic shrinkage) it is necessary to 

apply the thickness shrinkage equation (3.164). If this contribution is neglected, the 

ejection forces are underestimated.  

The equation to predict the ejection force developed in this work, when applied to 

unreinforced material becomes the equation (3.45) developed by Pontes [173]–[175].  
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5.6 Assessment of the model accuracy 

 

5.6.1 Shrinkage 

 

In this section is presented the comparison results when the model is applied to glass fibre 

and nanoclay composites and the experimental data. As previously mentioned the 

shrinkage has influence in the ejection force. In Figure 5.28 it is shown the shrinkage of 

the neat PP mouldings (PP0) in the flow direction of the part at various mould 

temperatures. The behaviour of the shrinkage in the flow direction does not change with 

the materials in this study. For this reason just the PP0 data is shown. The model predicts 

higher shrinkage comparing with the experimental data.  

The overestimation by the model is attributable to the solidification pressure, obtained by 

simulated temperature.  

 

Figure 5.28 - Comparison between the model and experimental shrinkage in the flow 

direction at different mould temperature for PP0 

 

In the Figure 5.29 the diametrical shrinkage of PP0 mouldings in relation to the mould 

temperature is shown. It is necessary to remember that the shrinkage was assessed at two 

locations of the part. The pressure is higher in the near to the gate region than far away 
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from it, and the prediction for these regions is more inaccurate due to the detachment of 

the part that, tend to  could occur during solidification therefore changing the temperature 

profile. 

 

Figure 5.29 - Comparison between the model and experimental average diametrical 

shrinkage in relation to the mould temperature for PP0 

In the Figure 5.30 it is made the comparison of the composites with various contents of 

nanoclay with the mould temperature at 75°C. It is observed that the content of nanoclay 

causes the diametrical shrinkage to decrease in relation to the material without nanoclays. 

The results of the model and experimental data are in a good agreement. The shrinkage 

reduction could be attributed to the nanoscale dispersion of the clay [155] and the lower 

expansion thermal coefficient than neat PP. 

The assessment of using different amount of glass fibre is also carried out and presented 

in the Figure 5.31. Because of the content of glass fibre and the lower thermal expansion 

of the composite it is expectable that the shrinkage is lower for the material with higher 

content of glass fibre. The model is able to describe this behaviour with better results for 

lower mould temperature. Furthermore, the model also follows the same trend in 

predicting more shrinkage far from the gate than near from the gate. 
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Figure 5.30 - Comparison between the model and experimental average diametrical 

shrinkage for different content of nanoclay near to the gate and far from the gate at the 

mould temperature of 75°C 

 

Figure 5.31 - Comparison between the model and experimental diametrical shrinkage in 

relation to the content of glass fibre near from the gate and far from the gate for the 

mould temperature of 75°C 
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An important aspect to investigate is the influence of nanoclay in the material with glass 

fibres. It can be noted in the Figure 5.32, that the material with nanoclay and glass fibre 

shrinks less than the material with only glass fibre. The difference is bigger in the 

comparing with pure PP. This can be explained by the thermal expansion as previously 

reported. 

 

Figure 5.32 - Comparison between the model and experimental diametrical shrinkage in 

relation to the content of glass fibre 10% and nanoclay 2% added simultaneously near 

from the gate and far from the gate for the mould temperature of 50°C 

 

Similar situation occurs with material with 30% of glass fibre and 2% of nanoclay as 

shown in the Figure 5.33.  
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Figure 5.33 - Comparison between the model and experimental diametrical shrinkage in 

relation to the content of glass fibre 30% and nanoclay 2% added simultaneously near 

from the gate and far from the gate for the mould temperature of 30°C 

 

5.6.2 Ejection force 

 

Generally, the model can predict the ejection force for all the conditions that were 

experimentally tested. In the sequence of the Figure 5.34 and Figure 5.35 several 

situations for ejection force in relation to the mould temperature for several materials are 

presented. The agreement for all materials is clearly shown mainly at higher mould 

temperatures. The model is less precise in lower mould temperature, it happens,  probably 

because the problems with solidification pressure obtained by the simulated temperature 

as described previously. 



137 
 

 

 

Figure 5.34 - Comparison between the model and experimental ejection force in relation 

to the mould temperature for PP0 

 

 

Figure 5.35 - Comparison between the model and experimental ejection force in relation 

to the mould temperature for PP6N 
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The content of nanoclays influences the shrinkage and the elastic modulus. In relation to 

the elastic modulus it is unlikely to affect the predictions as the modulus does not vary 

with the various materials with nanoclay. The difference in the results of the model is 

therefore due to the solidification pressure.  

The same analysis is done for the mouldings material with glass fibre and glass fibre with 

nanoclay. The model can reproduce the ejection forces also for these materials.  

In relation to the material with glass fibre, the model yields better results when the 

percentage of glass fibre is higher. It can be explained because the thermal stability is 

higher with the increase of content of glass fibre, Figure 5.36. 

 

 

Figure 5.36 - Comparison between model and experimental results for ejection force in 

relation to the content of glass fibre in different mould temperatures 

An important remark can be done if the content of glass fibre without nanoclay and with 

nanoclay are considered, Figure 5.37.  
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Figure 5.37 - Comparison between model and experimental results for ejection force for 

material with glass fibre and glass fibre with addition of nanoclay 

In the Table 5.3 is presented a brief comparison among the results of the model and the 

experimental data with the difference in percentage for each material and with  the mould 

temperature. 

 

Table 5.3  - Comparison among the results of the model and experimental data of 

ejection force for materials in relation of the mould temperature 

Material 

Ejection force (N) 

Mould temperature 

Tm=30 °C Tm=50 °C Tm=75°C 

Model Exp. 
% 

Dif. 
Model Exp. 

% 

Dif.  
Model Exp. 

% 

Dif. 

PP0 2305 2138 8 1653 1589 4 909 860 6 

PP2N 2167 1976 10 1728 1516 14 892 908 -2 

PP6N 2191 1960 12 1685 1447 16 850 901 -6 

PP10N 2242 1989 13 1744 1479 18 810 898 -10 

PP10GF 3383 2865 18 2376 2128 11 1185 1284 -8 

PP30GF 3724 3515 6 3204 3006 7 1875 1745 7 

PP10GF2N 2928 2630 11 2151 2047 5 1013 1227 -17 

PP30GF2N 3895 3520 11 2988 2892 3 1480 1792 -17 
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6 Conclusions 

 

In the context of this research work a major contribution was given to the 

extension of a thermo-mechanical model to describe the shrinkage and ejection forces to 

the case of reinforced PP with different reinforcements (glass fibres and nanoclays) and 

contents. The assessment of the data from the experimental work was also done in 

controlled processing conditions of temperature and pressure. Consequently, aspects such 

as detailed consideration of the crystallinity process in injection moulding, or the fibre 

orientation are aside from the body of this research. The predictions were compared with 

experimental data (shrinkage and ejection forces) in order to validate the model. 

 

Shrinkage 

 

Experimental data 

 The mould temperature affects the shrinkage. The increase of the mould temperature 

increases also the shrinkage because the material has no constraint and can shrink 

freely. 

 The effect of glass fibre in the shrinkage during the moulding process is significant. 

The final shrinkage is smaller with the increase of the fibre content in the case of free 

shrinkage. 

 The shrinkage seems to be affected by the nanoclays in the same way of the glass 

fibre. 

 

Prediction of the shrinkage 

Within this work a thermomechanical model was developed for a more precise 

description of the shrinkage mechanism in reinforced PP. 

 The thermo-mechanical model developed in this work gives a satisfactory description 

of the shrinkage in the case of PP composites. 
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 The precision of results depends of the determination of several input data that was 

gotten in many experimental tests 

 

Ejection force 

 

The main objective of the work was the assessment and the prediction of the ejection 

forces in the case of tubular moulding. The effect of processing parameters on the 

ejection forces of a tubular moulding was analysed and a thermo-mechanical model was 

developed to estimate those forces. The model developed in this work describes the case 

of semi-crystalline materials with reinforcements. 

 

Experimental data 

 

Effect of the mould temperature  

 The results indicate that the temperature of the mould influences substantially the 

ejection force. In particular, this force decreases when the mould temperature 

increases. This is an expected result of the concurrent effect of the reduction of the 

modulus and of the shrinkage at ejection, both having an influence in that sense. 

 

Effect of the glass fibre 

 The ejection force changes directly with respect to the glass fibre content. The 

increase of the mechanical modulus of the material at ejection is responsible for this 

behaviour. 

 

Prediction of the ejection force 

 The prediction of the ejection force is in close agreement with the experimental data, 

it was shown in the Table 5.3. 

 The decrease of the ejection force with the rise of the mould temperature is an 

expected result and it derives from the concurrent effect of the reduction of the 

modulus and the volumetric shrinkage at ejection, pointing together in that direction 
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 The thermo-mechanical model results agree well with the experimental data when the 

nanoclays and glass fibre is analyzed as reinforcement. 
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7 Further work 

 

This work presents an advance of thermomechanical model in relation to the 

several materials used. Many possibilities arise to improve the comprehension of the 

phenomena related to the shrinkage and ejection forces. By the way, in the final of the 

work it is possible to sight many forms to develop knowledge in this field. Some items 

can be reported below: 

 To work with other polymer matrix and change the sort and percentages 

of reinforcements materials of the interest of the industries. 

 To developed a thermomecanical model to predict shrinkage for more 

complex shapes of parts as ribs and boss. 

 To study the behaviour of nanoclay to built a model to predict shrinkage 

for nanoclay and don’t consider this material as isotropic, because the 

nanoclay is not isotropic in nanoscale. To determine the orientation of 

nanoclay and its influence on the shrinkage. 

 To aggregate the evaluation of ejection force with the simulation of the 

mould and part. 

 To develop a FEM model to predict the shrinkage and ejection force for 

the entire part. 

 To try to understand better the mechanism of shrinkage in the thickness of 

the part and to improve the results in this region of the moulded product. 

 To obtain characterisation data of the glass fibre to refine the results of the 

model. 

 To use the mesh generator to obtain more accurate nodes side by side along 

of the thickness of the part. 
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9 Appendix 

 

A1 – Material 

 

Table A1. 1 - Property typical value for Domolen 1100L [181] 

Properties Unit Test Method Value 

Melt flow rate  (MFR 230/2.16) g/10 m ISO 1133 6 

Technical properties 

Tensile modulus of elasticity (v=1mm/min) MPa ISO 527-2 1500 

Tensile yield stress (v=50mm/min) MPa ISO 527-2 34 

Tensile yield strain (v=50mm/min) % ISO 527-2 9 

Tensile strain at break (v=50mm/min) % ISO 527-2 >50 

Tensile creep modulus (1000h, elongation ≤0.5% MPa ISO 899-1 380 

Shear modulus MPa ISO 6721-2 750 

Charpy impact strength notched +23°C kJ/m2 ISO 179/1eA 3.5 

Charpy impact strength notched -30°C kJ/m2 ISO 179/1eA 1.5 

Charpy impact strength unnotched +23°C kJ/m2 ISO 179/1eU 140 

Charpy impact strength unnotched -30°C kJ/m2 ISO 179/1eU 16 

Izod impact strength unnotched +23°C kJ/m2 ISO 180/1A 3.5 

Izod impact strength unnotched -30°C kJ/m2 ISO 180/1A 1.3 

Ball indentation hardness (H 132/30 – H358-/30) MPa ISO 2039-1 74 

Thermal properties 

Melting point, DSC °C ISO 3146 163 

Heat deflection temperature 

- HDT / A (1.8 MPa) °C ISO 75-2 55 

- HDT / B (0.45 MPa) °C ISO 75-2 85 

Vicat softening temperature 

- VST / A (10N) °C ISO 306 154 

- VST / B (50N) °C ISO 306 90 

Other properties 

Haze % ASTM D 1003 60 

Density g/cm3 ISO 1183 0.91 

Applications 

Closures, housewares, general injection moulding 
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Table A1. 2 - Property typical value for Domolen P1-013-V10-N [183] 

Properties Unit Test 

method 

Value 

General properties 

Density g/cm3 ISO 1183/A 0.96 

Ash content (600°C) % ISO 3451 10 

Melt Flow Rate – MFR (230°C/2.16kg) g/10min ISO 1133 8 

Moulding shrinkage (after 120h, 23°C, 50% RH) 

- Length % ISO 2577 - 

- Width % ISO 2577 - 

Mechanical properties 

Tensile modulus of elasticity (v=1mm/min) MPa ISO 527-1A 3500 

Tensile yield stress (v=50mm/min) MPa ISO 527-1A - 

Tensile yield strain (v=50mm/min) % ISO 527-1A - 

Tensile stress at break (v=50mm/min) MPa ISO 527-1A 60 

Tensile strain at break (v=50mm/min) % ISO 527-1A 3.6 

Charpy impact strength notched +23°C kJ/m2 ISO 179/1eA 5 

Charpy impact strength notched -30°C kJ/m2 ISO 179/1eA - 

Charpy impact strength unnotched +23°C kJ/m2 ISO 179/1eU 40 

Charpy impact strength unnotched -30°C kJ/m2 ISO 179/1eU - 

Thermal properties 

Melting point, DSC °C ISO 3146 166 

Heat deflection temperature: 

- HDT/A (1.8 MPa) °C ISO 75-2 130 

- HDT/B (0.45 MPa) °C ISO 75-2 157 

Vicat softening temperature: 

- VST/A/50 (10N) °C ISO 306 - 

- VST/B/50 (50N) °C ISO 306 - 
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Table A1. 3 - Property typical value for Domolen P1-102-V30-N [184] 

Properties Unit Test 

method 

Value 

General properties 

Density g/cm3 ISO 1183/A 1.12 

Ash content (600°C) % ISO 3451 30 

Melt Flow Rate – MFR (230°C/2.16kg) g/10min ISO 1133 7.5 

Moulding shrinkage (after 120h, 23°C, 50% RH) 

- Length % ISO 2577 - 

- Width % ISO 2577 - 

Mechanical properties 

Tensile modulus of elasticity (v=1mm/min) MPa ISO 527-1A 6700 

Tensile yield stress (v=50mm/min) MPa ISO 527-1A 93 

Tensile yield strain (v=50mm/min) % ISO 527-1A - 

Tensile stress at break (v=50mm/min) MPa ISO 527-1A - 

Tensile strain at break (v=50mm/min) % ISO 527-1A 3 

Charpy impact strength notched +23°C kJ/m2 ISO 179/1eA 8 

Charpy impact strength notched -30°C kJ/m2 ISO 179/1eA - 

Charpy impact strength unnotched +23°C kJ/m2 ISO 179/1eU 50 

Charpy impact strength unnotched -30°C kJ/m2 ISO 179/1eU - 

Thermal properties 

Melting point, DSC °C ISO 3146 167 

Heat deflection temperature: 

- HDT/A (1.8 MPa) °C ISO 75-2 145 

- HDT/B (0.45 MPa) °C ISO 75-2 158 

Vicat softening temperature: 

- VST/A/50 (10N) °C ISO 306 163 

- VST/B/50 (50N) °C ISO 306 130 
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A2 – Shrinkage tables 

 

Table A2. 1 - Shrinkage for PP - mould temperature 30°C 

 

 

Table A2. 2 - Shrinkage for PP - mould temperature 50°C 

 

 

Table A2. 3 - Shrinkage for PP - mould temperature 75°C 

 

Int. diameter (D3) 59,880 58,968 1,523 58,950 1,553 58,932 1,583 1,553

Int. diameter (D2) 58,830 57,898 1,584 57,894 1,591 57,884 1,608 1,594

Int. diameter (D1) 57,820 56,952 1,501 56,950 1,505 56,939 1,524 1,510

Ext. diameter (D3) 63,870 62,940 1,456 62,953 1,436 62,978 1,397 1,429

Ext. diameter (D2) 62,810 61,923 1,412 61,920 1,417 61,937 1,390 1,406

Ext. diameter (D1) 61,820 61,050 1,246 61,043 1,257 61,052 1,242 1,248

Height  of part 146,000 144,503 1,025 144,480 1,041 144,481 1,040 1,036

Dimension 

[mm]

Shrinkage  

[%]

Measurement

Mould 

dimension 

[mm]

Sample 3 Sample 6 Sample 9

Average 

shrinkage 

among 

samples 

[%]

Dimension 

[mm]

Shrinkage  

[%]

Dimension 

[mm]

Shrinkage  

[%]

Int. diameter (D3) 59,880 58,912 1,617 58,926 1,593 58,917 1,608 1,606

Int. diameter (D2) 58,830 57,854 1,659 57,864 1,642 57,865 1,640 1,647

Int. diameter (D1) 57,820 56,910 1,574 56,911 1,572 56,920 1,557 1,568

Ext. diameter (D3) 63,870 62,913 1,498 62,890 1,534 62,918 1,491 1,508

Ext. diameter (D2) 62,810 61,871 1,495 61,858 1,516 61,870 1,497 1,502

Ext. diameter (D1) 61,820 60,988 1,346 60,985 1,351 60,980 1,359 1,352

Height  of part 146,000 144,480 1,041 144,480 1,041 144,480 1,041 1,041

Sample 9

Average 

shrinkage 

among 

samples 

[%]

Dimension 

[mm]

Shrinkage  

[%]

Dimension 

[mm]

Shrinkage  

[%]

Dimension 

[mm]

Shrinkage  

[%]

Measurement

Mould 

dimension 

[mm]

Sample 3 Sample 6

Int. diameter (D3) 59,880 58,931 1,585 58,940 1,570 58,940 1,570 1,575

Int. diameter (D2) 58,830 57,866 1,639 57,875 1,623 57,870 1,632 1,631

Int. diameter (D1) 57,820 56,902 1,588 56,908 1,577 56,902 1,588 1,584

Ext. diameter (D3) 63,870 62,930 1,472 62,929 1,473 62,910 1,503 1,483

Ext. diameter (D2) 62,810 61,868 1,500 61,875 1,489 61,870 1,497 1,495

Ext. diameter (D1) 61,820 60,953 1,402 60,961 1,390 60,950 1,407 1,400

Height  of part 146,000 144,474 1,045 144,483 1,039 144,480 1,041 1,042

Dimension 

[mm]

Shrinkage  

[%]

Measurement

Mould 

dimension 

[mm]

Sample 3 Sample 6 Sample 9

Average 

shrinkage 

among 

samples 

[%]

Dimension 

[mm]

Shrinkage  

[%]

Dimension 

[mm]

Shrinkage  

[%]
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Table A2. 4 - Shrinkage for PP10GF - mould temperature 30°C 

 

 

Table A2. 5 - Shrinkage for PP10GF - mould temperature 50°C 

 

 

Table A2. 6 - Shrinkage for PP10GF - mould temperature 75°C 

 

 

 

Int. diameter (D3) 59,880 59,380 0,835 59,376 0,842 59,374 0,845 0,841

Int. diameter (D2) 58,830 58,180 1,105 58,178 1,108 58,179 1,107 1,107

Int. diameter (D1) 57,820 57,206 1,062 57,146 1,166 57,206 1,062 1,097

Ext. diameter (D3) 63,870 63,349 0,816 63,373 0,778 63,347 0,819 0,804

Ext. diameter (D2) 62,810 62,117 1,103 62,122 1,095 62,118 1,102 1,100

Ext. diameter (D1) 61,820 61,225 0,962 61,226 0,961 61,224 0,964 0,962

Height  of part 146,000 144,379 1,110 144,477 1,043 144,476 1,044 1,066

Dimension 

[mm]

Shrinkage  

[%]

Measurement

Mould 

dimension 

[mm]

Sample 3 Sample 6 Sample 9

Average 

shrinkage 

among 

samples 

[%]

Dimension 

[mm]

Shrinkage  

[%]

Dimension 

[mm]

Shrinkage  

[%]

Int. diameter (D3) 59,880 59,389 0,820 59,360 0,868 59,375 0,843 0,844

Int. diameter (D2) 58,830 58,169 1,124 58,165 1,130 58,173 1,117 1,124

Int. diameter (D1) 57,820 57,104 1,238 57,197 1,077 56,955 1,496 1,271

Ext. diameter (D3) 63,870 63,343 0,825 63,345 0,822 63,356 0,805 0,817

Ext. diameter (D2) 62,810 62,093 1,142 62,088 1,149 62,090 1,146 1,146

Ext. diameter (D1) 61,820 61,197 1,008 61,188 1,022 61,183 1,030 1,020

Height  of part 146,000 144,476 1,044 144,477 1,043 144,475 1,045 1,044

Average 

shrinkage 

among 

samples 

[%]

Dimension 

[mm]

Shrinkage  

[%]

Dimension 

[mm]

Shrinkage  

[%]

Dimension 

[mm]

Shrinkage  

[%]

Measurement

Mould 

dimension 

[mm]

Sample 3 Sample 6 Sample 9

Int. diameter (D3) 59,880 59,361 0,867 59,370 0,852 59,388 0,822 0,847

Int. diameter (D2) 58,830 58,172 1,118 58,180 1,105 58,176 1,112 1,112

Int. diameter (D1) 57,820 57,200 1,072 57,212 1,052 57,136 1,183 1,102

Ext. diameter (D3) 63,870 63,346 0,820 63,329 0,847 63,331 0,844 0,837

Ext. diameter (D2) 62,810 62,090 1,146 62,079 1,164 62,077 1,167 1,159

Ext. diameter (D1) 61,820 61,188 1,022 61,170 1,051 61,167 1,056 1,043

Height  of part 146,000 144,473 1,046 144,483 1,039 144,478 1,042 1,042

Dimension 

[mm]

Shrinkage  

[%]

Measurement

Mould 

dimension 

[mm]

Sample 3 Sample 6 Sample 9

Average 

shrinkage 

among 

samples 

[%]

Dimension 

[mm]

Shrinkage  

[%]

Dimension 

[mm]

Shrinkage  

[%]
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Table A2. 7 - Shrinkage for PP30GF - mould temperature 30°C 

 

 

Table A2. 8 - Shrinkage for PP30GF - mould temperature 50°C 

 

 

Table A2. 9 - Shrinkage for PP30GF - mould temperature 75°C 

 

 

 

Int. diameter (D3) 59,880 59,577 0,506 59,578 0,504 59,569 0,519 0,510

Int. diameter (D2) 58,830 58,306 0,891 58,312 0,881 58,313 0,879 0,883

Int. diameter (D1) 57,820 57,278 0,937 57,296 0,906 57,284 0,927 0,924

Ext. diameter (D3) 63,870 63,465 0,634 63,426 0,695 63,444 0,667 0,665

Ext. diameter (D2) 62,810 62,190 0,987 62,181 1,001 62,175 1,011 1,000

Ext. diameter (D1) 61,820 61,252 0,919 61,246 0,929 61,248 0,925 0,924

Height  of part 146,000 144,478 1,042 144,477 1,043 144,476 1,044 1,043

Dimension 

[mm]

Shrinkage  

[%]

Measurement

Mould 

dimension 

[mm]

Sample 3 Sample 6 Sample 9

Average 

shrinkage 

among 

samples 

[%]

Dimension 

[mm]

Shrinkage  

[%]

Dimension 

[mm]

Shrinkage  

[%]

Int. diameter (D3) 59,880 59,585 0,493 59,585 0,493 59,566 0,524 0,503

Int. diameter (D2) 58,830 58,323 0,862 58,325 0,858 58,319 0,869 0,863

Int. diameter (D1) 57,820 57,305 0,891 57,302 0,896 57,303 0,894 0,894

Ext. diameter (D3) 63,870 63,444 0,667 63,447 0,662 63,483 0,606 0,645

Ext. diameter (D2) 62,810 62,166 1,025 62,166 1,025 62,179 1,005 1,018

Ext. diameter (D1) 61,820 61,232 0,951 61,228 0,958 61,244 0,932 0,947

Height  of part 146,000 144,476 1,044 144,482 1,040 144,478 1,042 1,042

Average 

shrinkage 

among 

samples 

[%]

Dimension 

[mm]

Shrinkage  

[%]

Dimension 

[mm]

Shrinkage  

[%]

Dimension 

[mm]

Shrinkage  

[%]

Measurement

Mould 

dimension 

[mm]

Sample 3 Sample 6 Sample 9

Int. diameter (D3) 59,880 59,593 0,479 59,591 0,483 59,582 0,498 0,487

Int. diameter (D2) 58,830 58,332 0,847 58,331 0,848 58,323 0,862 0,852

Int. diameter (D1) 57,820 57,316 0,872 57,008 1,404 57,131 1,192 1,156

Ext. diameter (D3) 63,870 63,429 0,690 63,424 0,698 63,413 0,716 0,701

Ext. diameter (D2) 62,810 62,136 1,073 62,140 1,067 62,150 1,051 1,064

Ext. diameter (D1) 61,820 61,210 0,987 61,219 0,972 61,216 0,977 0,979

Height  of part 146,000 144,474 1,045 144,477 1,043 144,474 1,045 1,045

Dimension 

[mm]

Shrinkage  

[%]

Measurement

Mould 

dimension 

[mm]

Sample 3 Sample 6 Sample 9

Average 

shrinkage 

among 

samples 

[%]

Dimension 

[mm]

Shrinkage  

[%]

Dimension 

[mm]

Shrinkage  

[%]
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Table A2. 10 - Shrinkage for PP2N - mould temperature 30°C 

 

 

Table A2. 11 - Shrinkage for PP2N - mould temperature 50°C 

 

 

Table A2. 12 - Shrinkage for PP2N - mould temperature 75°C 

 

 

Int. diameter (D3) 59,880 59,111 1,284 59,113 1,281 59,115 1,278 1,281

Int. diameter (D2) 58,830 57,997 1,416 58,007 1,399 58,006 1,401 1,405

Int. diameter (D1) 57,820 56,987 1,441 56,997 1,423 56,998 1,422 1,429

Ext. diameter (D3) 63,870 63,075 1,245 63,084 1,231 63,089 1,223 1,233

Ext. diameter (D2) 62,810 62,029 1,243 62,036 1,232 62,037 1,231 1,235

Ext. diameter (D1) 61,820 61,094 1,174 61,105 1,157 61,100 1,165 1,165

Height  of part 146,000 144,481 1,040 144,479 1,042 144,479 1,042 1,041

Average 

shrinkage 

among 

samples 

[%]

Dimension 

[mm]

Shrinkage  

[%]

Dimension 

[mm]

Shrinkage  

[%]

Dimension 

[mm]

Shrinkage  

[%]

Measurement

Mould 

dimension 

[mm]

Sample 3 Sample 6 Sample 9

Int. diameter (D3) 59,880 59,121 1,268 59,123 1,264 59,133 1,247 1,260

Int. diameter (D2) 58,830 58,009 1,396 58,010 1,394 58,016 1,384 1,391

Int. diameter (D1) 57,820 56,972 1,467 56,974 1,463 56,978 1,456 1,462

Ext. diameter (D3) 63,870 63,066 1,259 63,061 1,267 63,065 1,260 1,262

Ext. diameter (D2) 62,810 62,006 1,280 62,012 1,270 62,031 1,240 1,264

Ext. diameter (D1) 61,820 61,063 1,225 61,077 1,202 61,099 1,166 1,198

Height  of part 146,000 144,479 1,042 144,485 1,038 144,480 1,041 1,040

Average 

shrinkage 

among 

samples 

[%]
Dimension 

[mm]

Shrinkage  

[%]

Dimension 

[mm]

Shrinkage  

[%]

Dimension 

[mm]

Shrinkage  

[%]

Measurement

Mould 

dimension 

[mm]

Sample 3 Sample 6 Sample 9

Int. diameter (D3) 59,880 59,082 1,333 59,086 1,326 59,082 1,333 1,330

Int. diameter (D2) 58,830 57,963 1,474 57,965 1,470 57,966 1,469 1,471

Int. diameter (D1) 57,820 56,938 1,525 56,938 1,525 56,937 1,527 1,526

Ext. diameter (D3) 63,870 62,992 1,375 62,998 1,365 62,995 1,370 1,370

Ext. diameter (D2) 62,810 61,913 1,428 61,913 1,428 61,918 1,420 1,425

Ext. diameter (D1) 61,820 60,995 1,335 60,994 1,336 60,994 1,336 1,336

Height  of part 146,000 144,477 1,043 144,484 1,038 144,483 1,039 1,040

Average 

shrinkage 

among 

samples 

[%]
Dimension 

[mm]

Shrinkage  

[%]

Dimension 

[mm]

Shrinkage  

[%]

Dimension 

[mm]

Shrinkage  

[%]

Measurement

Mould 

dimension 

[mm]

Sample 3 Sample 6 Sample 9
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Table A2. 13 - Shrinkage for PP6N - mould temperature 30°C 

 

 

Table A2. 14 - Shrinkage for PP6N - mould temperature 50°C 

 

 

Table A2. 15 - - Shrinkage for PP6N - mould temperature 75°C 

 

 

Int. diameter (D3) 59,880 59,136 1,242 59,132 1,249 59,132 1,249 1,247

Int. diameter (D2) 58,830 58,033 1,355 58,029 1,362 58,036 1,350 1,355

Int. diameter (D1) 57,820 57,039 1,351 57,035 1,358 57,042 1,346 1,351

Ext. diameter (D3) 63,870 63,086 1,227 63,075 1,245 63,080 1,237 1,236

Ext. diameter (D2) 62,810 62,048 1,213 62,044 1,220 62,050 1,210 1,214

Ext. diameter (D1) 61,820 61,139 1,102 61,134 1,110 61,137 1,105 1,105

Height  of part 146,000 144,481 1,040 144,482 1,040 144,480 1,041 1,040

Average 

shrinkage 

among 

samples 

[%]

Dimension 

[mm]

Shrinkage  

[%]

Dimension 

[mm]

Shrinkage  

[%]

Dimension 

[mm]

Shrinkage  

[%]

Measurement

Mould 

dimension 

[mm]

Sample 3 Sample 6 Sample 9

Int. diameter (D3) 59,880 59,132 1,249 59,133 1,247 59,134 1,246 1,247

Int. diameter (D2) 58,830 58,028 1,363 58,024 1,370 58,030 1,360 1,364

Int. diameter (D1) 57,820 57,028 1,370 57,025 1,375 57,032 1,363 1,369

Ext. diameter (D3) 63,870 63,072 1,249 63,059 1,270 63,061 1,267 1,262

Ext. diameter (D2) 62,810 62,028 1,245 62,007 1,278 62,008 1,277 1,267

Ext. diameter (D1) 61,820 61,110 1,148 61,095 1,173 61,091 1,179 1,167

Height  of part 146,000 144,477 1,043 144,476 1,044 144,475 1,045 1,044

Average 

shrinkage 

among 

samples 

[%]
Dimension 

[mm]

Shrinkage  

[%]

Dimension 

[mm]

Shrinkage  

[%]

Dimension 

[mm]

Shrinkage  

[%]

Measurement

Mould 

dimension 

[mm]

Sample 3 Sample 6 Sample 9

Int. diameter (D3) 59,880 59,067 1,358 59,090 1,319 59,091 1,318 1,332

Int. diameter (D2) 58,830 57,968 1,465 57,978 1,448 57,982 1,441 1,452

Int. diameter (D1) 57,820 56,980 1,453 56,971 1,468 56,978 1,456 1,459

Ext. diameter (D3) 63,870 63,002 1,359 63,004 1,356 63,029 1,317 1,344

Ext. diameter (D2) 62,810 61,943 1,380 61,945 1,377 61,968 1,341 1,366

Ext. diameter (D1) 61,820 61,060 1,229 61,059 1,231 61,067 1,218 1,226

Height  of part 146,000 144,480 1,041 144,480 1,041 144,481 1,040 1,041

Sample 3 Sample 6 Sample 9

Average 

shrinkage 

among 

samples 

[%]
Dimension 

[mm]

Shrinkage  

[%]

Dimension 

[mm]

Shrinkage  

[%]

Dimension 

[mm]

Measurement

Mould 

dimension 

[mm] Shrinkage  

[%]
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Table A2. 16 - Shrinkage for PP10N - mould temperature 30°C 

 

 

Table A2. 17 - Shrinkage for PP10N - mould temperature 50°C 

 

 

Table A2. 18 - Shrinkage for PP10N - mould temperature 75°C 

 

 

Int. diameter (D3) 59,880 59,143 1,231 59,161 1,201 59,159 1,204 1,212

Int. diameter (D2) 58,830 58,047 1,331 58,059 1,311 58,063 1,304 1,315

Int. diameter (D1) 57,820 57,063 1,309 57,075 1,288 57,073 1,292 1,297

Ext. diameter (D3) 63,870 63,080 1,237 63,095 1,213 63,096 1,212 1,221

Ext. diameter (D2) 62,810 62,052 1,207 62,060 1,194 62,061 1,192 1,198

Ext. diameter (D1) 61,820 61,143 1,095 61,150 1,084 61,150 1,084 1,088

Height  of part 146,000 144,482 1,040 144,480 1,041 144,482 1,040 1,040

Average 

shrinkage 

among 

samples 

[%]

Dimension 

[mm]

Shrinkage  

[%]

Dimension 

[mm]

Shrinkage  

[%]

Dimension 

[mm]

Shrinkage  

[%]

Measurement

Mould 

dimension 

[mm]

Sample 3 Sample 6 Sample 9

Int. diameter (D3) 59,880 59,156 1,209 59,151 1,217 59,157 1,207 1,211

Int. diameter (D2) 58,830 58,065 1,300 58,062 1,305 58,059 1,311 1,305

Int. diameter (D1) 57,820 57,067 1,302 57,065 1,306 57,069 1,299 1,302

Ext. diameter (D3) 63,870 63,088 1,224 63,092 1,218 63,091 1,220 1,221

Ext. diameter (D2) 62,810 62,036 1,232 62,036 1,232 62,044 1,220 1,228

Ext. diameter (D1) 61,820 61,131 1,115 61,126 1,123 61,137 1,105 1,114

Height  of part 146,000 144,482 1,040 144,481 1,040 144,482 1,040 1,040

Average 

shrinkage 

among 

samples 

[%]
Dimension 

[mm]

Shrinkage  

[%]

Dimension 

[mm]

Shrinkage  

[%]

Dimension 

[mm]

Shrinkage  

[%]

Measurement

Mould 

dimension 

[mm]

Sample 3 Sample 6 Sample 9

Int. diameter (D3) 59,880 59,123 1,264 59,124 1,263 59,134 1,246 1,258

Int. diameter (D2) 58,830 58,022 1,373 58,020 1,377 58,032 1,356 1,369

Int. diameter (D1) 57,820 57,026 1,373 57,024 1,377 57,038 1,352 1,367

Ext. diameter (D3) 63,870 63,024 1,325 63,022 1,328 63,041 1,298 1,317

Ext. diameter (D2) 62,810 61,961 1,352 61,962 1,350 61,979 1,323 1,342

Ext. diameter (D1) 61,820 61,069 1,215 61,076 1,203 61,084 1,191 1,203

Height  of part 146,000 144,477 1,043 144,478 1,042 144,480 1,041 1,042

Average 

shrinkage 

among 

samples 

[%]
Dimension 

[mm]

Shrinkage  

[%]

Dimension 

[mm]

Shrinkage  

[%]

Dimension 

[mm]

Shrinkage  

[%]

Measurement

Mould 

dimension 

[mm]

Sample 3 Sample 6 Sample 9
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Table A2. 19 - Shrinkage for PP10GF2N - mould temperature 30°C 

 

 

Table A2. 20 - Shrinkage for PP10GF2N - mould temperature 50°C 

 

 

 

Table A2. 21 - Shrinkage for PP10GF2N - mould temperature 75°C 

 

 

Int. diameter (D3) 59,880 59,394 0,812 59,375 0,843 59,370 0,852 0,836

Int. diameter (D2) 58,830 58,202 1,067 58,192 1,084 58,192 1,084 1,079

Int. diameter (D1) 57,820 57,233 1,015 57,229 1,022 57,228 1,024 1,020

Ext. diameter (D3) 63,870 63,376 0,773 63,366 0,789 63,379 0,769 0,777

Ext. diameter (D2) 62,810 62,164 1,028 62,159 1,036 62,169 1,021 1,028

Ext. diameter (D1) 61,820 61,256 0,912 61,249 0,924 61,263 0,901 0,912

Height  of part 146,000 144,481 1,040 144,478 1,042 144,479 1,042 1,042

Average 

shrinkage 

among 

samples 

[%]

Dimension 

[mm]

Shrinkage  

[%]

Dimension 

[mm]

Shrinkage  

[%]

Dimension 

[mm]

Shrinkage  

[%]

Measurement

Mould 

dimension 

[mm]

Sample 3 Sample 6 Sample 9

Int. diameter (D3) 59,880 59,394 0,812 59,375 0,843 59,370 0,852 0,836

Int. diameter (D2) 58,830 58,202 1,067 58,192 1,084 58,192 1,084 1,079

Int. diameter (D1) 57,820 57,233 1,015 57,229 1,022 57,228 1,024 1,020

Ext. diameter (D3) 63,870 63,376 0,773 63,366 0,789 63,379 0,769 0,777

Ext. diameter (D2) 62,810 62,164 1,028 62,159 1,036 62,169 1,021 1,028

Ext. diameter (D1) 61,820 61,256 0,912 61,249 0,924 61,263 0,901 0,912

Height  of part 146,000 144,481 1,040 144,478 1,042 144,479 1,042 1,042

Average 

shrinkage 

among 

samples 

[%]

Dimension 

[mm]

Shrinkage  

[%]

Dimension 

[mm]

Shrinkage  

[%]

Dimension 

[mm]

Shrinkage  

[%]

Measurement

Mould 

dimension 

[mm]

Sample 3 Sample 6 Sample 9

Int. diameter (D3) 59,880 59,385 0,827 59,371 0,850 59,383 0,830 0,836

Int. diameter (D2) 58,830 58,200 1,071 58,191 1,086 58,190 1,088 1,082

Int. diameter (D1) 57,820 57,224 1,031 57,218 1,041 57,213 1,050 1,041

Ext. diameter (D3) 63,870 63,371 0,781 63,378 0,770 63,391 0,750 0,767

Ext. diameter (D2) 62,810 62,151 1,049 62,156 1,041 62,165 1,027 1,039

Ext. diameter (D1) 61,820 61,241 0,937 61,239 0,940 61,243 0,933 0,937

Height  of part 146,000 144,481 1,040 144,481 1,040 144,475 1,045 1,042

Average 

shrinkage 

among 

samples 

[%]

Dimension 

[mm]

Shrinkage  

[%]

Dimension 

[mm]

Shrinkage  

[%]

Dimension 

[mm]

Shrinkage  

[%]

Measurement

Mould 

dimension 

[mm]

Sample 3 Sample 6 Sample 9



170 
 

 

Table A2. 22 - Shrinkage for PP30GF2N - mould temperature 30°C 

 

 

Table A2. 23 - Shrinkage for PP30GF2N - mould temperature 50°C 

 

 

Table A2. 24- Shrinkage for PP30GF2N - mould temperature 75°C 

 

 
 

Int. diameter (D3) 59,880 59,562 0,531 59,581 0,499 59,587 0,489 0,507

Int. diameter (D2) 58,830 58,289 0,920 58,293 0,913 58,299 0,903 0,912

Int. diameter (D1) 57,820 57,279 0,936 57,280 0,934 57,291 0,915 0,928

Ext. diameter (D3) 63,870 63,455 0,650 63,453 0,653 63,470 0,626 0,643

Ext. diameter (D2) 62,810 62,190 0,987 62,193 0,982 62,200 0,971 0,980

Ext. diameter (D1) 61,820 61,248 0,925 61,254 0,916 61,267 0,895 0,912

Height  of part 146,000 144,481 1,040 144,483 1,039 144,475 1,045 1,041

Average 

shrinkage 

among 

samples 

[%]

Dimension 

[mm]

Shrinkage  

[%]

Dimension 

[mm]

Shrinkage  

[%]

Dimension 

[mm]

Shrinkage  

[%]

Measurement

Mould 

dimension 

[mm]

Sample 3 Sample 6 Sample 9

Int. diameter (D3) 59,880 59,581 0,499 59,574 0,511 59,583 0,496 0,502

Int. diameter (D2) 58,830 58,311 0,882 58,304 0,894 58,310 0,884 0,887

Int. diameter (D1) 57,820 57,295 0,908 57,291 0,915 57,293 0,911 0,911

Ext. diameter (D3) 63,870 63,473 0,622 63,457 0,647 63,463 0,637 0,635

Ext. diameter (D2) 62,810 62,200 0,971 62,193 0,982 62,190 0,987 0,980

Ext. diameter (D1) 61,820 61,256 0,912 61,257 0,911 61,247 0,927 0,917

Height  of part 146,000 144,479 1,042 144,476 1,044 144,480 1,041 1,042

Sample 3 Sample 6 Sample 9

Average 

shrinkage 

among 

samples 

[%]

Dimension 

[mm]

Shrinkage  

[%]

Dimension 

[mm]

Shrinkage  

[%]

Dimension 

[mm]

Measurement

Mould 

dimension 

[mm] Shrinkage  

[%]

Int. diameter (D3) 59,880 59,584 0,494 59,560 0,534 59,561 0,533 0,520

Int. diameter (D2) 58,830 58,309 0,886 58,289 0,920 58,281 0,933 0,913

Int. diameter (D1) 57,820 57,299 0,901 57,282 0,930 57,275 0,943 0,925

Ext. diameter (D3) 63,870 63,422 0,701 63,444 0,667 63,443 0,669 0,679

Ext. diameter (D2) 62,810 62,152 1,048 62,156 1,041 62,158 1,038 1,042

Ext. diameter (D1) 61,820 61,213 0,982 61,216 0,977 61,219 0,972 0,977

Height  of part 146,000 144,477 1,043 144,480 1,041 144,487 1,036 1,040

Average 

shrinkage 

among 

samples 

[%]

Dimension 

[mm]

Shrinkage  

[%]

Dimension 

[mm]

Shrinkage  

[%]

Dimension 

[mm]

Shrinkage  

[%]

Measurement

Mould 

dimension 

[mm]

Sample 3 Sample 6 Sample 9
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A3 – Ejection force tables 

Table A3. 1 - Ejection force for PP0 

Part BASE MAX. F EJECTION BASE MAX. F EJECTION EJECTION FORCE

PP0-30-1 903,89 1953,13 1049,24 1133,27 2237,01 1103,74 2152,98

PP0-30-2 1183,23 2286,97 1103,74 1085,57 2123,46 1037,89 2141,63

PP0-30-3 1183,23 2289,24 1106,01 1003,82 2050,78 1046,96 2152,97

PP0-30-4 1167,33 2268,80 1101,47 962,94 1998,55 1035,61 2137,08

PP0-30-5 1180,96 2298,33 1117,37 1071,95 2121,18 1049,23 2166,60

PP0-30-6 1165,06 2282,43 1117,37 1031,07 2084,85 1053,78 2171,15

PP0-30-7 1160,52 2252,91 1092,39 1024,26 2066,68 1042,42 2134,81

PP0-30-8 1180,96 2275,62 1094,66 1033,34 2059,87 1026,53 2121,19

PP0-30-9 1199,13 2291,52 1092,39 1049,24 2091,66 1042,42 2134,81

PP0-30-10 1190,04 2252,91 1062,87 1024,26 2041,70 1017,44 2080,31

1093,75 1045,60

22,02 23,09

2139,35 45,11

PP0-50-1 851,65 1680,60 828,95 1203,67 2066,68 863,01 1691,96

PP0-50-2 806,23 1594,30 788,07 1233,19 2071,22 838,03 1626,10

PP0-50-3 813,05 1587,48 774,43 1224,11 2059,87 835,76 1610,19

PP0-50-4 817,59 1562,50 744,91 1253,63 2068,95 815,32 1560,23

PP0-50-5 819,86 1592,02 772,16 1244,55 2075,76 831,21 1603,37

PP0-50-6 819,86 1580,67 760,81 1242,28 2057,59 815,31 1576,12

PP0-50-7 808,50 1537,52 729,02 1228,65 2034,88 806,23 1535,25

PP0-50-8 828,94 1567,04 738,10 1240,01 2039,43 799,42 1537,52

PP0-50-9 831,21 1585,21 754,00 1208,21 2018,99 810,78 1564,78

PP0-50-10 815,32 1573,86 758,54 1183,23 2005,36 822,13 1580,67

764,90 823,72

28,60 18,73

1588,62 47,33

PP0-75-1 1230,92 1701,04 470,12 1140,08 1548,87 408,79 878,91

PP0-75-2 1249,09 1719,20 470,11 1060,59 1467,11 406,52 876,63

PP0-75-3 1221,84 1710,12 488,28 1062,86 1507,99 445,13 933,41

PP0-75-4 1253,63 1707,85 454,22 1060,59 1473,93 413,34 867,56

PP0-75-5 1226,38 1680,60 454,22 1253,47 1639,72 386,25 840,47

PP0-75-6 1237,74 1687,41 449,67 1108,28 1512,54 404,26 853,93

PP0-75-7 1253,63 1698,76 445,13 1094,66 1496,64 401,98 847,11

PP0-75-8 1249,09 1703,31 454,22 1119,64 1507,99 388,35 842,57

PP0-75-9 1240,01 1682,87 442,86 1065,13 1446,68 381,55 824,41

PP0-75-10 1230,92 1666,97 436,05 1124,18 1523,89 399,71 835,76

456,49 403,59

15,55 17,93

860,08 33,48

STD. DEVIATION

AVERAGE CEL 1 AVERAGE CEL 2

LOAD CELL 1 LOAD CELL 2

AVERAGE CEL 1 AVERAGE CEL 2

AVERAGE EJECTION FORCE (N) STANDARD DEVIATION

STD. DEVIATION STD. DEVIATION

MOULD TEMPERATURE 30°C

MOULD TEMPERATURE 50°C

MOULD TEMPERATURE 75°C

AVERAGE EJECTION FORCE (N) STANDARD DEVIATION 

STANDARD DEVIATIONAVERAGE EJECTION FORCE (N)

STD. DEVIATION STD. DEVIATION

AVERAGE CEL 1 AVERAGE CEL 2

STD. DEVIATION
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Table A3. 2 - Ejection force for PP10GF 

Part BASE MAX. F EJECTION BASE MAX. F EJECTION EJECTION FORCE

PP0-30-1 1183,2 2791,15 1607,92 1135,84 2432,32 1296,48 2904,40

PP0-30-2 1169,60 2770,71 1601,11 1021,98 2307,41 1285,43 2886,54

PP0-30-3 1162,79 2752,54 1589,75 978,83 2266,53 1287,70 2877,45

PP0-30-4 1151,44 2716,21 1564,77 1067,41 2327,85 1260,44 2825,21

PP0-30-5 1144,62 2743,46 1598,84 969,75 2264,26 1294,51 2893,35

PP0-30-6 1153,71 2720,75 1567,04 1026,53 2277,89 1251,36 2818,40

PP0-30-7 1183,23 2750,27 1567,04 1090,12 2352,83 1262,71 2829,75

PP0-30-8 1174,15 2766,17 1592,02 874,29 2266,53 1392,24 2984,26

PP0-30-9 1146,89 2711,66 1564,77 1056,05 2316,50 1260,45 2825,22

PP0-30-10 1162,79 2741,19 1578,40 1106,01 2332,39 1226,38 2804,78

1583,17 1281,77

16,74 44,59

2864,94 61,33

PP0-50-1 826,67 1800,96 974,29 1285,43 2500,45 1215,02 2189,31

PP0-50-2 783,52 1728,29 944,77 1240,01 2418,70 1178,69 2123,46

PP0-50-3 749,45 1678,32 928,87 1226,38 2391,44 1165,06 2093,93

PP0-50-4 774,44 1710,12 935,68 1233,19 2423,24 1190,05 2125,73

PP0-50-5 749,45 1680,60 931,15 1215,03 2386,90 1171,87 2103,02

PP0-50-6 810,77 1778,25 967,48 1278,62 2464,12 1185,50 2152,98

PP0-50-7 769,89 1732,83 962,94 1210,48 2400,53 1190,05 2152,99

PP0-50-8 769,89 1696,49 926,60 1205,94 2384,63 1178,69 2105,29

PP0-50-9 781,25 1710,12 928,87 1230,92 2393,71 1162,79 2091,66

PP0-50-10 849,38 1798,69 949,31 1278,62 2475,47 1196,85 2146,16

945,00 1183,46

17,77 15,68

2128,45 33,45

PP0-75-1 1255,90 2000,82 744,92 981,10 1519,35 538,25 1283,17

PP0-75-2 1276,34 2030,34 754,00 1040,15 1594,30 554,15 1308,15

PP0-75-3 1258,18 1998,55 740,37 1056,05 1603,38 547,33 1287,70

PP0-75-4 1267,26 1998,55 731,29 1074,22 1596,57 522,35 1253,64

PP0-75-5 1274,07 2018,99 744,92 1033,34 1573,86 540,52 1285,44

PP0-75-6 1296,78 2039,43 742,65 981,10 1514,81 533,71 1276,36

PP0-75-7 1294,51 2021,26 726,75 1110,56 1637,45 526,89 1253,64

PP0-75-8 1280,89 2021,26 740,37 1103,74 1651,07 547,33 1287,70

PP0-75-9 1264,99 2007,63 742,64 1042,42 1582,94 540,52 1283,16

PP0-75-10 1260,45 2023,53 763,08 1008,36 1564,77 556,41 1319,49

743,10 540,75

10,26 11,05

1283,85 21,30

STD. DEVIATION

AVERAGE CEL 1 AVERAGE CEL 2

LOAD CELL 1 LOAD CELL 2

AVERAGE CEL 1 AVERAGE CEL 2

AVERAGE EJECTION FORCE (N) STANDARD DEVIATION

STD. DEVIATION STD. DEVIATION

MOULD TEMPERATURE 30°C

MOULD TEMPERATURE 50°C

MOULD TEMPERATURE 75°C

AVERAGE EJECTION FORCE (N) STANDARD DEVIATION 

STANDARD DEVIATIONAVERAGE EJECTION FORCE (N)

STD. DEVIATION STD. DEVIATION

AVERAGE CEL 1 AVERAGE CEL 2

STD. DEVIATION
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Table A3. 3 - Ejection force for PP30GF 

Part BASE MAX. F EJECTION BASE MAX. F EJECTION EJECTION FORCE

PP0-30-1 1192,3 3088,66 1896,35 1078,76 2636,72 1557,96 3454,31

PP0-30-2 1155,98 3097,75 1941,77 1074,22 2684,41 1610,19 3551,96

PP0-30-3 1171,88 3147,71 1975,83 1074,22 2686,68 1612,46 3588,29

PP0-30-4 1187,77 3143,17 1955,40 1028,80 2645,80 1617,00 3572,40

PP0-30-5 1185,50 3093,90 1908,40 1028,80 2582,21 1553,41 3461,81

PP0-30-6 1169,60 3113,64 1944,04 956,12 2529,28 1573,16 3517,20

PP0-30-7 1169,60 3113,64 1944,04 1058,32 2641,26 1582,94 3526,98

PP0-30-8 1183,23 3127,70 1944,47 1106,01 2711,66 1605,65 3550,12

PP0-30-9 1151,44 3086,39 1934,95 937,95 2493,64 1555,69 3490,64

PP0-30-10 1167,33 3070,49 1903,16 1090,12 2620,82 1530,70 3433,86

1934,84 1579,92

24,94 30,30

3514,76 55,24

PP0-50-1 772,17 2207,49 1435,32 1244,55 2904,71 1660,16 3095,48

PP0-50-2 799,42 2134,81 1335,39 1249,09 2841,12 1592,03 2927,42

PP0-50-3 778,98 2150,71 1371,73 1230,92 2847,93 1617,01 2988,74

PP0-50-4 774,44 2118,91 1344,47 1221,84 2838,84 1617,00 2961,47

PP0-50-5 803,96 2146,17 1342,21 1242,28 2854,74 1612,46 2954,67

PP0-50-6 881,18 2246,09 1364,91 1219,57 2843,39 1623,82 2988,73

PP0-50-7 778,98 2191,59 1412,61 1217,30 2870,64 1653,34 3065,95

PP0-50-8 792,61 2212,03 1419,42 1196,86 2850,20 1653,34 3072,76

PP0-50-9 783,52 2177,96 1394,44 1212,75 2863,83 1651,08 3045,52

PP0-50-10 790,33 2128,00 1337,67 1210,48 2834,30 1623,82 2961,49

1375,82 1630,41

37,24 22,62

3006,22 59,86

PP0-75-1 1251,36 2241,55 990,19 983,38 1732,83 749,45 1739,64

PP0-75-2 1262,72 2257,45 994,73 999,27 1741,91 742,64 1737,37

PP0-75-3 1269,53 2255,18 985,65 1001,54 1771,44 769,90 1755,55

PP0-75-4 1255,90 2264,26 1008,36 1051,17 1773,71 722,54 1730,90

PP0-75-5 1283,16 2271,08 987,92 931,14 1682,87 751,73 1739,65

PP0-75-6 1271,80 2248,36 976,56 1015,17 1778,25 763,08 1739,64

PP0-75-7 1262,72 2261,99 999,27 1021,98 1807,78 785,80 1785,07

PP0-75-8 1262,72 2246,09 983,37 1031,07 1796,42 765,35 1748,72

PP0-75-9 1251,36 2234,74 983,38 972,02 1746,46 774,44 1757,82

PP0-75-10 1280,89 2255,18 974,29 981,01 1726,02 745,01 1719,30

988,37 756,99

10,31 18,35

1745,37 28,66

STD. DEVIATION

AVERAGE CEL 1 AVERAGE CEL 2

LOAD CELL 1 LOAD CELL 2

AVERAGE CEL 1 AVERAGE CEL 2

AVERAGE EJECTION FORCE (N) STANDARD DEVIATION

STD. DEVIATION STD. DEVIATION

MOULD TEMPERATURE 30°C

MOULD TEMPERATURE 50°C

MOULD TEMPERATURE 75°C

AVERAGE EJECTION FORCE (N) STANDARD DEVIATION 

STANDARD DEVIATIONAVERAGE EJECTION FORCE (N)

STD. DEVIATION STD. DEVIATION

AVERAGE CEL 1 AVERAGE CEL 2

STD. DEVIATION
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Table A3. 4 - Ejection force for PP2N 

Part BASE MAX. F EJECTION BASE MAX. F EJECTION EJECTION FORCE

PP0-30-1 1106 2114,37 1008,36 1085,57 2152,98 1067,41 2075,77

PP0-30-2 1192,31 2150,71 958,40 1124,18 2146,17 1021,99 1980,39

PP0-30-3 1112,83 2089,39 976,56 1106,01 2148,44 1042,43 2018,99

PP0-30-4 1153,71 2107,56 953,85 1121,91 2157,52 1035,61 1989,46

PP0-30-5 1235,47 2168,88 933,41 1137,81 2148,44 1010,63 1944,04

PP0-30-6 1140,08 2096,20 956,12 1126,45 2143,90 1017,45 1973,57

PP0-30-7 1090,12 2018,99 928,87 1103,74 2107,56 1003,82 1932,69

PP0-30-8 1119,64 2046,24 926,60 1110,56 2112,10 1001,54 1928,14

PP0-30-9 1112,83 2068,95 956,12 1110,56 2130,27 1019,71 1975,83

PP0-30-10 1099,20 2034,88 935,68 1106,01 2107,56 1001,55 1937,23

953,40 1022,21

25,01 21,05

1975,61 46,06

PP0-50-1 1217,30 1953,13 735,83 1110,56 1912,25 801,69 1537,52

PP0-50-2 1078,76 1805,51 726,75 1101,47 1887,26 785,79 1512,54

PP0-50-3 1183,23 1925,87 742,64 1131,00 1921,33 790,33 1532,97

PP0-50-4 1060,59 1807,78 747,19 1096,93 1884,99 788,06 1535,25

PP0-50-5 1065,13 1785,07 719,94 1094,66 1860,01 765,35 1485,29

PP0-50-6 1051,51 1789,61 738,10 1083,30 1864,55 781,25 1519,35

PP0-50-7 1076,49 1796,42 719,93 1108,28 1884,99 776,71 1496,64

PP0-50-8 1049,24 1782,79 733,55 1085,57 1853,20 767,63 1501,18

PP0-50-9 1019,71 1769,17 749,46 1096,93 1853,20 756,27 1505,73

PP0-50-10 1035,61 1796,42 760,81 1103,74 1880,45 776,71 1537,52

737,42 778,98

13,16 13,41

1516,40 26,57

PP0-75-1 1049,24 1489,83 440,59 1083,30 1594,30 511,00 951,59

PP0-75-2 1076,49 1505,72 429,23 1083,30 1587,48 504,18 933,41

PP0-75-3 1087,85 1507,99 420,14 1101,47 1594,30 492,83 912,97

PP0-75-4 1183,23 1603,38 420,15 1121,91 1605,65 483,74 903,89

PP0-75-5 1085,57 1512,54 426,97 1124,18 1605,65 481,47 908,44

PP0-75-6 1128,72 1544,33 415,61 1115,10 1598,84 483,74 899,35

PP0-75-7 1094,66 1505,72 411,06 1115,10 1598,84 483,74 894,80

PP0-75-8 1151,44 1569,31 417,87 1110,56 1592,02 481,46 899,33

PP0-75-9 1128,72 1553,42 424,70 1103,74 1571,58 467,84 892,54

PP0-75-10 1106,01 1510,27 404,26 1124,18 1607,92 483,74 888,00

421,06 487,37

10,11 12,36

908,43 22,47

AVERAGE CEL 1 AVERAGE CEL 2

MOULD TEMPERATURE 30°C

LOAD CELL 1 LOAD CELL 2

AVERAGE CEL 1 AVERAGE CEL 2

STD. DEVIATION STD. DEVIATION

AVERAGE EJECTION FORCE (N) STANDARD DEVIATION 

MOULD TEMPERATURE 50°C

STD. DEVIATION STD. DEVIATION

AVERAGE EJECTION FORCE (N) STANDARD DEVIATION

STD. DEVIATION STD. DEVIATION

AVERAGE EJECTION FORCE (N) STANDARD DEVIATION

MOULD TEMPERATURE 75°C

AVERAGE CEL 1 AVERAGE CEL 2
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Table A3. 5 - Ejection force for PP6N 

Part BASE MAX. F EJECTION BASE MAX. F EJECTION EJECTION FORCE

PP0-30-1 1053,8 2016,72 962,94 1094,66 2132,54 1037,88 2000,82

PP0-30-2 1128,72 2091,66 962,94 1142,35 2166,61 1024,26 1987,20

PP0-30-3 1067,41 1996,28 928,87 1112,83 2103,02 990,19 1919,06

PP0-30-4 1085,57 2016,72 931,15 1119,64 2118,91 999,27 1930,42

PP0-30-5 1040,15 2007,63 967,48 1110,56 2130,27 1019,71 1987,19

PP0-30-6 1042,42 2009,90 967,48 1096,93 2137,08 1040,15 2007,63

PP0-30-7 1242,28 2180,23 937,95 1208,21 2216,57 1008,36 1946,31

PP0-30-8 1040,15 1984,92 944,77 1103,74 2093,93 990,19 1934,96

PP0-30-9 1058,32 1991,73 933,41 1126,45 2103,02 976,57 1909,98

PP0-30-10 1058,32 2032,61 974,29 1117,37 2123,46 1006,09 1980,38

951,13 1009,27

17,55 21,12

1960,40 38,67

PP0-50-1 1071,95 1782,79 710,84 1124,18 1925,87 801,69 1512,53

PP0-50-2 1031,07 1723,75 692,68 1135,54 1898,62 763,08 1455,76

PP0-50-3 1058,32 1751,00 692,68 1121,91 1900,89 778,98 1471,66

PP0-50-4 1085,57 1764,63 679,06 1160,52 1921,33 760,81 1439,87

PP0-50-5 1051,51 1737,37 685,86 1155,98 1912,25 756,27 1442,13

PP0-50-6 1056,05 1730,56 674,51 1171,88 1909,97 738,09 1412,60

PP0-50-7 1140,08 1816,86 676,78 1174,15 1925,87 751,72 1428,50

PP0-50-8 1081,03 1757,81 676,78 1165,06 1916,79 751,73 1428,51

PP0-50-9 1049,24 1741,91 692,67 1158,25 1928,14 769,89 1462,56

PP0-50-10 1131,00 1803,23 672,23 1185,50 1928,14 742,64 1414,87

685,41 761,49

11,96 18,61

1446,90 30,57

PP0-75-1 1142,35 1560,23 417,88 1101,47 1612,46 510,99 928,87

PP0-75-2 1171,88 1585,21 413,33 1124,18 1610,19 486,01 899,34

PP0-75-3 1060,59 1476,20 415,61 1140,08 1628,36 488,28 903,89

PP0-75-4 1069,68 1476,20 406,52 1140,08 1639,72 499,64 906,16

PP0-75-5 1094,66 1501,18 406,52 1140,08 1628,36 488,28 894,80

PP0-75-6 1101,47 1505,72 404,25 1137,81 1630,63 492,82 897,07

PP0-75-7 1051,51 1464,84 413,33 1158,25 1648,80 490,55 903,88

PP0-75-8 1112,83 1514,81 401,98 1146,89 1623,82 476,93 878,91

PP0-75-9 1062,86 1476,20 413,34 1149,16 1628,36 479,20 892,54

PP0-75-10 1074,22 1483,01 408,79 1140,08 1632,90 492,82 901,61

410,16 490,55

5,27 9,75

900,71 15,02

AVERAGE CEL 1 AVERAGE CEL 2

MOULD TEMPERATURE 30°C

LOAD CELL 1 LOAD CELL 2

AVERAGE CEL 1 AVERAGE CEL 2

STD. DEVIATION STD. DEVIATION

AVERAGE EJECTION FORCE (N) STANDARD DEVIATION 

MOULD TEMPERATURE 50°C

STD. DEVIATION STD. DEVIATION

AVERAGE EJECTION FORCE (N) STANDARD DEVIATION

STD. DEVIATION STD. DEVIATION

AVERAGE EJECTION FORCE (N) STANDARD DEVIATION

MOULD TEMPERATURE 75°C

AVERAGE CEL 1 AVERAGE CEL 2
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Table A3. 6 - Ejection force for PP10N 

Part BASE MAX. F EJECTION BASE MAX. F EJECTION EJECTION FORCE

PP0-30-1 1015,2 1959,94 944,77 1083,30 2157,52 1074,22 2018,99

PP0-30-2 1037,88 1991,73 953,85 1115,10 2187,05 1071,95 2025,80

PP0-30-3 1135,54 2071,22 935,68 1115,10 2168,88 1053,78 1989,46

PP0-30-4 1017,44 1987,19 969,75 1099,20 2184,77 1085,57 2055,32

PP0-30-5 1035,61 1971,29 935,68 1108,28 2173,42 1065,14 2000,82

PP0-30-6 1060,59 1998,55 937,96 1112,83 2155,25 1042,42 1980,38

PP0-30-7 1155,98 2073,49 917,51 1167,33 2209,76 1042,43 1959,94

PP0-30-8 1096,93 2018,99 922,06 1140,08 2177,96 1037,88 1959,94

PP0-30-9 1042,42 1966,75 924,33 1115,10 2148,44 1033,34 1957,67

PP0-30-10 1108,28 2021,26 912,98 1137,81 2168,88 1031,07 1944,05

935,46 1053,78

17,44 19,24

1989,24 36,68

PP0-50-1 1094,66 1805,51 710,85 1108,28 1928,14 819,86 1530,71

PP0-50-2 1149,16 1835,03 685,87 1142,35 1941,77 799,42 1485,29

PP0-50-3 1103,74 1798,69 694,95 1140,08 1930,41 790,33 1485,28

PP0-50-4 1081,03 1775,98 694,95 1137,81 1928,14 790,33 1485,28

PP0-50-5 1094,66 1766,90 672,24 1137,81 1923,60 785,79 1458,03

PP0-50-6 1087,85 1775,98 688,13 1140,08 1937,23 797,15 1485,28

PP0-50-7 1090,12 1773,71 683,59 1144,62 1928,14 783,52 1467,11

PP0-50-8 1092,39 1769,17 676,78 1137,81 1919,06 781,25 1458,03

PP0-50-9 1119,64 1791,88 672,24 1146,89 1923,60 776,71 1448,95

PP0-50-10 1083,30 1746,46 663,16 1142,35 1916,79 774,44 1437,60

684,28 789,88

13,92 13,28

1474,16 27,20

PP0-75-1 1017,44 1444,40 426,96 1158,25 1653,34 495,09 922,05

PP0-75-2 1051,51 1458,03 406,52 1158,25 1655,61 497,36 903,88

PP0-75-3 1058,32 1462,57 404,25 1165,06 1648,80 483,74 887,99

PP0-75-4 1067,41 1473,93 406,52 1160,52 1641,99 481,47 887,99

PP0-75-5 1131,00 1542,06 411,06 1160,52 1646,53 486,01 897,07

PP0-75-6 1092,39 1494,37 401,98 1158,25 1646,53 488,28 890,26

PP0-75-7 1117,37 1526,16 408,79 1165,06 1651,07 486,01 894,80

PP0-75-8 1115,10 1510,27 395,17 1176,42 1657,89 481,47 876,64

PP0-75-9 1108,28 1526,16 417,88 1199,13 1698,76 499,63 917,51

PP0-75-10 0,00 0,00 0,00

408,79 488,78

9,22 6,88

897,58 16,11

AVERAGE CEL 1 AVERAGE CEL 2

MOULD TEMPERATURE 30°C

LOAD CELL 1 LOAD CELL 2

AVERAGE CEL 1 AVERAGE CEL 2

STD. DEVIATION STD. DEVIATION

AVERAGE EJECTION FORCE (N) STANDARD DEVIATION 

MOULD TEMPERATURE 50°C

STD. DEVIATION STD. DEVIATION

AVERAGE EJECTION FORCE (N) STANDARD DEVIATION

STD. DEVIATION STD. DEVIATION

AVERAGE EJECTION FORCE (N) STANDARD DEVIATION

MOULD TEMPERATURE 75°C

AVERAGE CEL 1 AVERAGE CEL 2
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Table A3. 7 - Ejection force for PP10GF2N 

Part BASE MAX. F EJECTION BASE MAX. F EJECTION EJECTION FORCE

PP0-30-1 1162,8 2371,00 1208,21 1124,18 2634,45 1510,27 2718,48

PP0-30-2 1131,00 2298,33 1167,33 1137,81 2586,76 1448,95 2616,28

PP0-30-3 1271,80 2443,68 1171,88 1212,75 2675,33 1462,58 2634,46

PP0-30-4 1090,12 2237,01 1146,89 1133,27 2577,67 1444,40 2591,29

PP0-30-5 1092,39 2237,01 1144,62 1126,45 2550,42 1423,97 2568,59

PP0-30-6 1230,92 2400,53 1169,61 1194,59 2695,77 1501,18 2670,79

PP0-30-7 1135,54 2286,97 1151,43 1167,33 2618,55 1451,22 2602,65

PP0-30-8 1117,37 2289,24 1171,87 1160,52 2625,36 1464,84 2636,71

PP0-30-9 1074,22 2234,74 1160,52 1094,66 2541,33 1446,67 2607,19

PP0-30-10 1187,77 2371,00 1183,23 1185,50 2652,62 1467,12 2650,35

1167,56 1462,12

18,86 26,20

2629,68 45,06

PP0-50-1 1203,67 2132,54 928,87 1162,79 2352,83 1190,04 2118,91

PP0-50-2 1081,03 1966,75 885,72 1142,35 2268,80 1126,45 2012,17

PP0-50-3 1071,95 1941,77 869,82 1149,16 2334,67 1185,51 2055,33

PP0-50-4 1060,59 1957,67 897,08 1144,62 2309,68 1165,06 2062,14

PP0-50-5 1031,07 1907,70 876,63 1103,74 2255,18 1151,44 2028,07

PP0-50-6 1085,57 1969,02 883,45 1151,44 2316,50 1165,06 2048,51

PP0-50-7 1062,86 1957,67 894,81 1158,25 2332,39 1174,14 2068,95

PP0-50-8 1085,57 1971,29 885,72 1146,89 2296,06 1149,17 2034,89

PP0-50-9 1149,16 2034,88 885,72 1167,33 2323,31 1155,98 2041,70

PP0-50-10 1228,65 2098,47 869,82 1194,59 2323,31 1128,72 1998,54

887,76 1159,16

17,08 21,36

2046,92 38,44

PP0-75-1 1115,10 1646,53 531,43 1137,81 1905,43 767,62 1299,05

PP0-75-2 1035,61 1537,52 501,91 1128,72 1839,57 710,85 1212,76

PP0-75-3 1046,97 1542,06 495,09 1142,35 1855,47 713,12 1208,21

PP0-75-4 1126,45 1619,28 492,83 1155,98 1884,99 729,01 1221,84

PP0-75-5 1037,88 1539,79 501,91 1158,25 1884,99 726,74 1228,65

PP0-75-6 1033,34 1542,06 508,72 1158,25 1884,99 726,74 1235,46

PP0-75-7 1053,78 1555,69 501,91 1151,44 1855,47 704,03 1205,94

PP0-75-8 1062,86 1569,31 506,45 1151,44 1873,64 722,20 1228,65

PP0-75-9 1049,24 1551,14 501,90 1151,44 1857,74 706,30 1208,20

PP0-75-10 1056,05 1562,50 506,45 1158,25 1871,37 713,12 1219,57

504,86 721,97

10,55 18,34

1226,83 28,88

AVERAGE CEL 1 AVERAGE CEL 2

MOULD TEMPERATURE 30°C

LOAD CELL 1 LOAD CELL 2

AVERAGE CEL 1 AVERAGE CEL 2

STD. DEVIATION STD. DEVIATION

AVERAGE EJECTION FORCE (N) STANDARD DEVIATION 

MOULD TEMPERATURE 50°C

STD. DEVIATION STD. DEVIATION

AVERAGE EJECTION FORCE (N) STANDARD DEVIATION

STD. DEVIATION STD. DEVIATION

AVERAGE EJECTION FORCE (N) STANDARD DEVIATION

MOULD TEMPERATURE 75°C

AVERAGE CEL 1 AVERAGE CEL 2
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Table A3. 8 - Ejection force for PP30GF2N 

Part BASE MAX. F EJECTION BASE MAX. F EJECTION EJECTION FORCE

PP0-30-1 1230,9 2854,74 1623,82 1153,71 3138,63 1984,92 3608,74

PP0-30-2 1260,45 2877,45 1617,00 1171,88 3131,81 1959,93 3576,93

PP0-30-3 1301,33 2936,50 1635,17 1167,33 3156,80 1989,47 3624,64

PP0-30-4 1242,28 2832,03 1589,75 1199,13 3111,37 1912,24 3501,99

PP0-30-5 1106,01 2698,04 1592,03 1133,27 3050,05 1916,78 3508,81

PP0-30-6 1274,07 2834,30 1560,23 1183,23 3097,75 1914,52 3474,75

PP0-30-7 1103,74 2659,43 1555,69 1151,44 3047,78 1896,34 3452,03

PP0-30-8 1169,60 2748,00 1578,40 1171,88 3106,83 1934,95 3513,35

PP0-30-9 1103,74 2666,24 1562,50 1133,27 3038,70 1905,43 3467,93

PP0-30-10 1158,25 2729,83 1571,58 1155,98 3054,60 1898,62 3470,20

1588,62 1931,32

28,27 34,81

3519,94 63,08

PP0-50-1 1224,11 2589,03 1364,92 1108,28 2772,98 1664,70 3029,62

PP0-50-2 1251,36 2507,27 1255,91 1115,10 2688,95 1573,85 2829,76

PP0-50-3 1069,68 2332,39 1262,71 1112,83 2727,56 1614,73 2877,44

PP0-50-4 1260,45 2548,15 1287,70 1135,54 2695,77 1560,23 2847,93

PP0-50-5 1571,58 2832,03 1260,45 1494,37 3077,31 1582,94 2843,39

PP0-50-6 1319,49 2557,23 1237,74 1167,33 2738,92 1571,59 2809,33

PP0-50-7 1185,50 2482,29 1296,79 1142,35 2782,07 1639,72 2936,51

PP0-50-8 1324,04 2614,01 1289,97 1137,81 2759,36 1621,55 2911,52

PP0-50-9 1085,57 2368,73 1283,16 1121,91 2770,71 1648,80 2931,96

PP0-50-10 1251,36 2550,42 1299,06 1128,72 2732,10 1603,38 2902,44

1283,84 1608,15

34,84 35,80

2891,99 70,65

PP0-75-1 1187,77 2021,26 833,49 1101,47 2171,15 1069,68 1903,17

PP0-75-2 1140,08 1925,87 785,79 1133,27 2168,88 1035,61 1821,40

PP0-75-3 1071,95 1828,22 756,27 1126,45 2152,98 1026,53 1782,80

PP0-75-4 1158,25 1932,69 774,44 1137,81 2148,44 1010,63 1785,07

PP0-75-5 1137,81 1914,52 776,71 1124,18 2137,08 1012,90 1789,61

PP0-75-6 1199,13 1966,75 767,62 1140,08 2137,08 997,00 1764,62

PP0-75-7 1242,28 2007,63 765,35 1137,81 2132,54 994,73 1760,08

PP0-75-8 1103,74 1871,37 767,63 1146,89 2134,81 987,92 1755,55

PP0-75-9 1117,37 1882,72 765,35 1137,81 2155,25 1017,44 1782,79

PP0-75-10 1121,91 1889,53 767,62 1140,08 2148,44 1008,36 1775,98

776,03 1016,08

21,68 23,75

1792,11 45,43

AVERAGE CEL 1 AVERAGE CEL 2

MOULD TEMPERATURE 30°C

LOAD CELL 1 LOAD CELL 2

AVERAGE CEL 1 AVERAGE CEL 2

STD. DEVIATION STD. DEVIATION

AVERAGE EJECTION FORCE (N) STANDARD DEVIATION 

MOULD TEMPERATURE 50°C

STD. DEVIATION STD. DEVIATION

AVERAGE EJECTION FORCE (N) STANDARD DEVIATION

STD. DEVIATION STD. DEVIATION

AVERAGE EJECTION FORCE (N) STANDARD DEVIATION

MOULD TEMPERATURE 75°C

AVERAGE CEL 1 AVERAGE CEL 2
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A4 – Crystallization temperature curves 

 

Figure A4. 1 - Crystallization curve for PP2N 

 

 

Figure A4. 2 - Crystallization curve for PP6N 
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Figure A4. 3 - Crystallization curve for PP10N 

 

 

Figure A4. 4 - Crystallization curve for PP10GF 
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Figure A4. 5 - Crystallization curve for PP30GF 

 

 

Figure A4. 6 - Crystallization curve for PP10GF2N 
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Figure A4. 7 - Crystallization curve for PP30GF2N 
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A5 – DMA curves 

 

Figure A5. 1 - Storage modulus for several materials relation to the temperature 

 

 

Figure A5. 2 - DMA curves for PP with 2% of nanoclay 
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Figure A5. 3 - DMA curves for PP with 6% of nanoclay 

 

 

Figure A5. 4 - DMA curves for PP with 10% of nanoclay 
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Figure A5. 5 - DMA curves for PP with 10% of glass fibre 

 

 

Figure A5. 6 - DMA curves for PP with 30% of glass fibre 
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Figure A5. 7 - DMA curves for PP with 10% of glass fibre and 2% of nanoclay 

 

 

Figure A5. 8 - DMA curves for PP with 30% of glass fibre and 2% of nanoclay 
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A6 – Curves for Thermal expansion coefficient 

 

Figure A6. 1 - Curve for thermal expansion coefficient for PP2N 

 

 

Figure A6. 2 - Curve for thermal expansion coefficient for PP6N 
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Figure A6. 3 - Curve for thermal expansion coefficient for PP10N 

 

 

 

Figure A6. 4 - Curve for thermal expansion coefficient for PP10GF 
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Figure A6. 5 - Curve for thermal expansion coefficient for PP30GF 

 

 

 

Figure A6. 6 - Curve for thermal expansion coefficient for PP10GF2N 
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Figure A6. 7 - Curve for thermal expansion coefficient for PP30GF2N 
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A7 Parameters for model implementation for materials with glass fibres 

and nanoclays 

 

Table A7. 1- Parameters used for polypropylene with 2% of nanoclay in the model 

Polypropylene 2% nanoclay (PP2N) 

Parameter Tm 30°C Tm 50°C Tm 75°C Unit source 

Elastic modulus, E 0.7 0.65 0.6 GPa 

 Poisson coefficient,  0.38 0.38 0.38 - 

Thermal expansion coefficient, 

α 

1.4x10-4 1.4x10-4 1.4x10-4 K-1 

linear compressibility, β 1.94x10-

10 

1.94x10-

10 

1.94x10-

10 

MPa-

1 

[3] 

Friction coefficient,  0.13 0.17 0.20 - 

 Solidification temperature, Ts 122 122 122 °C 

Ejection average temperature, 

Te 

42 61 79 °C 

Solidification pressure near1, Ps 19.9 20.4 21.8 MPa 
 

Solidification pressure far2, Ps 12.6 13.2 14.4 MPa 

 

Table A7. 2 - Parameters used for polypropylene with 6% of nanoclay in the model 

Polypropylene 6% nanoclay (PP6N) 

Parameter Tm 30°C Tm 50°C Tm 75°C Unit source 

Elastic modulus, E 0.7 0.65 0.6 GPa 

 Poisson coefficient,  0.38 0.38 0.38 - 

Thermal expansion coefficient, 

α 

1.4x10-4 1.4x10-4 1.4x10-4 K-1 

linear compressibility, β 1.94x10-

10 

1.94x10-

10 

1.94x10-

10 

MPa-

1 

[3] 

Friction coefficient,  0.13 0.17 0.20 - 

 Solidification temperature, Ts 122 122 122 °C 

Ejection average temperature, 

Te 

42 61 79 °C 

Solidification pressure near1, Ps 19.9 20.9 22.4 MPa 
 

Solidification pressure far2, Ps 12.2 14.0 15.0 MPa 
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Table A7. 3 - Parameters used for polypropylene with 10% of nanoclay in the model 

Polypropylene 10% nanoclay (PP10N) 

Parameter Tm 30°C Tm 50°C Tm 75°C Unit source 

Elastic modulus, E 0.7 0.65 0.6 GPa 

 Poisson coefficient,  0.38 0.38 0.38 - 

Thermal expansion coefficient, 

α 

1.4x10-4 1.4x10-4 1.4x10-4 K-1 

linear compressibility, β 1.94x10-

10 

1.94x10-

10 

1.94x10-

10 

MPa-

1 

[3] 

Friction coefficient,  0.13 0.17 0.20 - 

 Solidification temperature, Ts 122 122 122 °C 

Ejection average temperature, 

Te 

42 61 79 °C 

Solidification pressure near1, Ps 18.6 20.0 23.4 MPa 
 

Solidification pressure far2, Ps 11.1 13.1 15.1 MPa 

 

Table A7. 4 - Parameters used for polypropylene with 10% of glass fibre in the model 

Polypropylene 10% glass fibre (PP10GF) 

Parameter Tm 30°C Tm 50°C Tm 75°C Unit source 

Elastic modulus, E 1.0 0.95 0.90 GPa 

 Poisson coefficient,  0.38 0.38 0.38 - 

Thermal expansion coefficient, 

α 

2.5x10-4 2.5x10-4 2.5x10-4 K-1 

linear compressibility, β 1.64x10-

10 

1.64x10-

10 

1.64x10-

10 

MPa-

1 

[3] 

Friction coefficient,  0.25 0.28 0.44 - 

 Solidification temperature, Ts 124 124 124 °C 

Ejection average temperature, 

Te 

40 56 77 °C 

Solidification pressure near1, Ps 21.7 22.5 23.4 MPa 
 

Solidification pressure far2, Ps 12.3 12.4 12.5 MPa 
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Table A7. 5 - Parameters used for polypropylene with 30% of glass fibre in the model 

Polypropylene 30% glass fibre (PP30GF) 

Parameter Tm 30°C Tm 50°C Tm 75°C Unit source 

Elastic modulus, E 0.92 0.91 0.90 GPa 

 Poisson coefficient,  0.38 0.38 0.38 - 

Thermal expansion coefficient, 

α 

2.5x10-4 2.5x10-4 2.5x10-4 K-1 

linear compressibility, β 1.64x10-

10 

1.64x10-

10 

1.64x10-

10 

MPa-

1 

[3] 

Friction coefficient,  0.25 0.32 0.45 - 

 Solidification temperature, Ts 123 123 123 °C 

Ejection average temperature, 

Te 

44 59 77 °C 

Solidification pressure near1, Ps 20.7 21.3 22.3 MPa 
 

Solidification pressure far2, Ps 12.4 13.0 13.7 MPa 

 

 

Table A7. 6 - Parameters used for polypropylene with 10% of glass fibre and 2 % of 

nanoclay in the model 

Polypropylene 10% glass fibre 2% nanoclay (PP10GF2N) 

Parameter Tm 30°C Tm 50°C Tm 75°C Unit source 

Elastic modulus, E 1.05 1.04 1.03 GPa 

 Poisson coefficient,  0.38 0.38 0.38 - 

Thermal expansion coefficient, 

α 

2.0x10-4 2.0x10-4 2.0x10-4 K-1 

linear compressibility, β 1.64x10-

10 

1.64x10-

10 

1.64x10-

10 

MPa-

1 

[3] 

Friction coefficient,  0.29 0.35 0.49 - 

 Solidification temperature, Ts 127 127 127 °C 

Ejection average temperature, 

Te 

39 56 75 °C 

Solidification pressure near1, Ps 21.8 22.7 23.7 MPa 
 

Solidification pressure far2, Ps 15.8 16.4 16.4 MPa 
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Table A7. 7 - Parameters used for polypropylene with 30% of glass fibre and 2 % of 

nanoclay in the model 

Polypropylene 30% glass fibre 2% nanoclay (PP30GF2N) 

Parameter Tm 30°C Tm 50°C Tm 75°C Unit source 

Elastic modulus, E 0.92 0.91 0.90 GPa 

 Poisson coefficient,  0.38 0.38 0.38 - 

Thermal expansion coefficient, 

α 

2.5x10-4 2.5x10-4 2.5x10-4 K-1 

linear compressibility, β 1.64x10-

10 

1.64x10-

10 

1.64x10-

10 

MPa-

1 

[3] 

Friction coefficient,  0.25 0.31 0.45 - 

 Solidification temperature, Ts 122 122 122 °C 

Ejection average temperature, 

Te 

38 57 75 °C 

Solidification pressure near1, Ps 20.9 21.9 23.1 MPa 
 

Solidification pressure far2, Ps 14.6 15.1 15.4 MPa 
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A8 DSC curves for materials used in this work 

 

 

Figure A8. 1 - DSC curves for materials with different reinforcements 
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A9 Rheological curves 

 

Figure A9. 1- Polypropylene without reinforcement in the temperature of 240°C 

 

 

Figure A9. 2- Polypropylene without reinforcement in the temperature of 260°C 
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Figure A9. 3 - PP 10% glass fibre in the temperature of 200°C 

 

 

Figure A9. 4 - PP 10% glass fibre in the temperature of 240°C 
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Figure A9. 5 - PP 30% glass fibre in the temperature of 200°C 

 

 

Figure A9. 6 - PP 30% glass fibre in the temperature of 253,3° 




