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Abstract

Composing and orchestrating software components is a fundamental concern in modern software engineering.
This paper addresses the possibility of such orchestration being dynamic, in the sense that the structure of
component’s interconnection patterns can change at run-time. The envisaged approach extends previous
work by the authors on the use of coalgebraic models for the specification of software connectors.
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1 Introduction

The increasing demand for complex and ubiquitous applications places new chal-

lenges to the way software is designed and developed. One of such challenges con-

cerns the way in which an application deals with the dynamic reconfiguration of

its components. Actually, components are no more static pieces of code assembled

at compile time, but dynamic entities, often executing in different processing units,

which interact only through well defined public interfaces. Component assembly is

understood as interconnection of ports, declared in such interfaces, and more often

than not such interconnection patterns change at runtime. This explains why, since

the 1980’s, mobility has become a buzzword both in academia and industry.
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From a foundational point of view, the publication of Milner, Parrow and

Walker original reports on the π-calculus [20], in 1992, was a fundamental mile-

stone. Since then the topic became increasingly popular in both theorectical and

applied research. It arises, for example, in connection with software architecture

(e.g., [7,22,21,13]), coordination models (e.g., [17,16]) or programming languages

(e.g., [15,10]), just to name a few. But still, in the practice of software engineering,

mobility remains hard to express and to be reasoned about.

Mobility is structurally associated with distribution, system’s temporal evolu-

tion and dynamic creation or reconfiguration of processes, links or components’

instances. In a previous set of publications [5,4] the authors proposed an approach

to the specification of the coordination level of an application, based on indepen-

dent, generic connectors modelled coalgebraically [25]. This approach is inspired by

research on coordination languages [12,23] and favors strict component decoupling

in order to support a looser inter-component dependency. Similarly to other ap-

proaches, like Reo [2] or Piccola [26,21], computation and coordination are clearly

separated, communication becomes anonymous and component interconnection is

externally controlled.

Such a model, however, assumed a fixed interconnection structure between the

components and connectors involved, making the envisaged approach static. The

present paper reports preliminary work on a possible extension of the framework

in [4] to deal with dynamic reconfiguration. More precisely the model is extended

by the explicit inclusion of a special connector — called the orchestrator — which

plays the role of a connections manager. Such is achieved through a set of basic

primitives to break or rebuild links between component’s instances and connectors

at run-time.

The proposed solution is essentially operational : it does not contribute for ex-

plaining the mathematics of mobility, but provides a possible way of dealing with

dynamic reconfiguration within an exogenous coordination model. The basic re-

quirement placed by the exogenous nature of the model is the absence of direct

communication between component’s instances. One of them, for example, may

decide at some point to disconnect from a connector’s port and, let us suppose, to

send that port identifier to be part of a new connection. All it can do, however, is to

post the port identifier through another connector’s port. What will happen after-

word, and in particular, which other component’s instance, if any, will re-use such

a port is not controlled by, in fact not even known to the original component. Each

component’s instance interfaces with the glue code, represented as a connector, and

is not aware of the presence of other components equally connected to the same

connector. That is why communication is anonymous and no direct reconfiguration

orders (like ’link this to that’) are not possible.

Notation. The paper resorts to standard mathematical notation typically used in

model-oriented specification methods, like Vdm [14], Z [27] or B [1]. We adopt,

however, a pointfree specification style (as in, e.g., [9]) which leads to more con-

cise descriptions and increased calculation power. The underlying mathematical

universe is the category of sets and set-theoretic functions whose composition and
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identity are denoted by · and id, respectively. Notation (φ → f, g) stands for a

conditional statement: if φ then apply function f else g. As usual, the basic set

constructs are product (A×B), sum, or disjoint union, (A + B) and function space

(BA). We denote by π1 : A × B −→ A the first projection of a product and by

ι1 : A −→ A + B the first embedding in a sum (similarly for the others). Both ×
and + extend to functions in the usual way and, being universal constructions, a

canonical arrow is defined to A×B from any set C and, symmetrically, from A+B

to any set C, given functions f : C −→ A, g : C −→ B and l : A −→ C, h : B −→ C,

respectively. The former is called a split and denoted by 〈f, g〉, the latter an either

and denoted by [l, h], satisfying

k = 〈f, g〉 ⇔ π1 · k = f ∧ π2 · k = g (1)

k = [l, h] ⇔ k · ι1 = l ∧ k · ι2 = h (2)

Notation BA is used to denote function space, i.e., the set of (total) functions

from A to B. It is also characterized by an universal property: for all function

f : A × C −→ B, there exists a unique f : A −→ BC , called the curry of f , such

that f = ev · (f × C).

Of course all datatype constructions extend to functions. For example, notation

f + g : A + B −→ A′ + B′ denotes a function which, depending on the argument

being of type A or B, applies f or g, returning as a result a value of types A′ or B′,

respectively. Function composition is denoted as in f · g and function application

by juxtaposition (as in f x). The identity function is represented as id.

Finally, we also assume the existence of a few basic sets, namely ∅, the empty

set and 1, the (isomorphism class of the) singleton set. By convention ⊥ is chosen

as (the representative of) the unique element of 1. Also notice that, although in

general elements of a set can only be accessed non deterministically, function the

returns, in a quite deterministic way, the unique element of a singleton.

Paper Structure. The following section recalls from [4] the formal definition of

software connectors and introduces a notion of configuration to refer to the joint

behaviour of component’s instances and the connector linking them. Section 3

reports the main contribution of the paper, explaining in which sense the model in

[4] can be adapted to cope with dynamic reconfiguration and paving the way to the

formal definition of the orchestrator connector given in section 3. Section 4 presents

an example. The paper concludes in section 5 presenting a number of relevant issues

for future work. It reports, in particular, on a prototype implementation of this

model in Haskell [8].

2 Connectors, Components and Configurations

2.1 Software Connectors

In the model proposed in [4], the specification of a software connector is given

by an interface which aggregates a number of ports. Each port has an associated

operation which regulates its behaviour, by encoding the port reaction to a message
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crossing the connector’s boundary. Let U be the type of the connector’s internal

state space and M a generic type for messages. There are three kinds of ports 3

with the following signatures:

post : U −→ UM (3)

get : U −→ U × (M + 1) (4)

read : U −→ (M + 1) (5)

Notice that Ports have an interaction polarity, either input or output, and are

uniquely identified. There is only one sort of input port, whereas output ports

may be either destructive, in the sense that a data value is deleted from the port

once read, or nondestructive. In detail, the intuition is as follows:

• post is an input operation analogous to a write operation in conventional pro-

gramming languages (see e.g., [2]). Typically, a post port accepts data items and

store them internally, in some form.

• read is a non-destructive output operation. This means that through a read port

the environment might ‘observe’ a data item, but the connector’s state space

remains unchanged. Of course read is a partial operation, because there cannot

be any guarantee that data is available for reading.

• get is a destructive variation of the read port. In this case the data item is not

only made externally available, but also deleted from the connector’s memory.

In all cases, at creation time, ports are uniquely labelled with a distinguished iden-

tifier taken from an enumerable set P. The existence of (global) unique port identi-

fiers, together with the possibility of them being communicated through channels,

makes dynamic reconfiguration possible. Actually, and this is a fundamental differ-

ence with respect to the authors previous work as documented in [5,4], a message

of type M may be either a data value (of a generic type D) or a port identifier (P).

Formally, the set of messages is defined as M = D + P, where + is, as explained

above, datatype sum.

2.2 The General Case

A software connector is specified by an interface which aggregates a number of P

post, G get and R read ports. Such an aggregation leads to the following general

definition of a connector, as a coalgebra [25] over state space U

c = 〈u ∈ U, 〈γc, ρc〉 : U −→ (U × (M + 1))P×M+G × (M + 1)R〉 (6)

where ρc is the split of R read ports, i.e.,

ρc : U −→ (M + 1) × (M + 1) × . . . × (M + 1) (7)

3 named according to the client’s (i.e., the connector’s environment) point of view.
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and, γc collects ports of type post or get, which may be required to perform state

updates. Actually the type of the codomain of the coalgebra in (6) can be rewritten

as

U = (
∑

i∈P

UM +
∑

j∈G

U × (M + 1)) ×
∏

k∈R

(M + 1) (8)

which is more intuitive but, however, less amenable to symbolic manipulation in

proofs.

As an example of a connector’s definition, consider the construction of a binary

connector. Binary connectors are built by the aggregation of two ports, assuming the

corresponding operations are defined over the same state space. This, in particular,

enforces mutual execution of state updates. For example, the aggregation of a post

and a read ports leads to

c = 〈u ∈ U, 〈post, read〉 : U → UM × (M + 1)〉 (9)

On the other hand, replacing the read port above by a get forces an additive aggre-

gation to avoid the possibility of simultaneous updates leading to

c = 〈u ∈ U, γc : U → (U × (M + 1))M+1〉 (10)

where 4

γc = U × (M + 1) dr
−−−−→ U × M + U

post+get
−−−−−→ U + U × (M + 1)

�
−−−−→ U × 1 + U × (M + 1)

[id×ι2,id]
−−−−−→ U × (M + 1)

Channels of different kinds are connectors of this type. The synchronous and the

asynchronous channels are the most well-known examples. The reader is referred

to [4] for a full account of the envisaged connector’s semantics and construction.

2.3 Components and Configurations

In an exogenous coordination model component instances are always regarded as

black boxes (see, e.g., [3]). All that is assumed to be known about them are

• the port interface signature, i.e., the identifier and polarity of each of its ports

• a specification of the interface behaviour, which defines what is called here the

component’s usage.

This is given by a process algebra-like expression and intended to define the activa-

tion pattern of the component interface. For example,

beh(C) = (in.in.out)∗

establish that the port activation pattern for component instance C requires two

activations of port in before an activation of port out. The notation used is based on

4 dr is the right distributivity isomorphism and � the codiagonal function defined as the either of two
identities, i.e., � = [id, id].

M.A. Barbosa, L.S. Barbosa / Electronic Notes in Theoretical Computer Science 181 (2007) 49–61 53



Ccs [18] over a set Act of actions, each action corresponding to a port activation 5 .

Differently from Ccs, however, actions come equipped with a co-occurrence operator

‖ — action a‖b stands for the simultaneous occurrence of both a and b. Syntax is

as follows:

B ::= 0 | Act.B | B + B | B|B | B\K | [σ]B | B∗

where, · is the prefix operator, + and | denote non deterministic choice and par-

allel composition, respectively. Notation B\K represents restriction to a set K of

actions, [σ] stands for action renaming in accordance with substitution σ, and ∗
denotes iteration.

As described above, a connector is internally specified as a coalgebra built by

port aggregation. Its external behaviour, however, is also given by a process algebra

expression. For example, behaviour of a synchronous channel with port in and out

is given by (in‖out)∗ whereas the asynchronous case is specified by (in.out)∗.

Component instances never interact with each other directly, but always through

the connector network. Actually they are not even aware of each other’s presence.

The whole system is described by a number of component instances and a connector

built from elementary connectors (like, e.g., synchronous and asynchronous chan-

nels) using a connector’s algebra formally described in [4]. This algebra includes a

parallel aggregation (c1�c2) and a feedback mechanism (C �) which links selectively

ports of opposite polarity in C. The joint behaviour of connectors and component

instances in a particular setting is called a configuration. This describes, in partic-

ular, the actual connections between ports. The semantics of configurations, which

is parametric on an interaction discipline along the lines of [24] is reported in [6].

3 The Orchestrator Connector

3.1 The Orchestrator

Central to our approach is the presence of a particular coordination connector,

called the orchestrator, whose role is to manage the interactions among all other

elements in the architectural network. In a sense, the orchestrator corresponds to

an intermediary layer between components and ordinary connectors, i.e., it acts as

a bridge among components and connectors.

The orchestrator is a listener permanently attentive to the flow of messages

which do not contain data but port identifiers, instead. Such messages will be

understood as an order for control transfer. Actually, the orchestrator is triggered

whenever a message with a port identifier arrives at a port of a particular component

instance. This means that interception is made on the execution of a read or get

operation. At this point, it intercepts the message, and re-organizes the overall

network connections according to some reconfiguration script. Notice, however,

5 A somewhat more expressive notation for behavioural specifications is suggested in [24,6], which is however
not essential for the purposes of this paper.
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that neither component’s instances nor the connectors in the network are aware of

its presence.

To fulfill its role the orchestrator is defined as a coalgebra over state space U

specified as datatype

U : P × Cmp × P(P × P) (11)

where P is the set of port identifiers known to the orchestrator, P(P × P) is a set of

active connections and Cmp is a component manager defined as function

Cmp = (PP)cmpId (12)

which associates to each component instance the set of its ports. There is an obvious

type invariant associated to U stating that all connections are point-to-point:

inv u = ∀p∈π1u . card {c ∈ π3u | π1c = p ∨ π2c = p} ≤ 1 (13)

3.2 Specification of the Orchestrator Operations

The underling operations are defined as follows

• Get Connection (getCon): This operation takes a port identifier and, if such an

identifier is part of a connection, returns the corresponding end point. Formally,

getCon : U × P → P + 1

getCon(u, p) �

let

e = {π2c| c ∈ π3u ∧ π1c = p} ∪ {π1c| c ∈ π3u ∧ π2c = p}

in

(e �= ∅ → ι1 the(e), ι2 ⊥)

• Disconnection (disCon): This operation updates the connector’s state space by

deleting an existing connection.

disCon : U × (P × P) → U

disCon(u, (p, p′)) � (π1u, π2u, (π3u)\{(p, p′)})

• Add Port (addPort): This operation updates the connector’s state space by

adding a new available port.

addPort : U × P → U

addPort(u, p) � ({p} ∪ π1u, π2u, π3u)

• Available Ports (avPort): This operation searches for ports in a given component
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instance available for connection.

avPort : U × cmpId → P(P)

avPort(u, i) �

let

used = P(π1) (π3u) ∪ P(π2) (π3u)

in

(π3u) i ∩ used

• Make Connection (mkCon): This operation aggregates a new connection to the

orchestrator’s state space.

mkCon : U × (P × P) → U

mkCon(u, (p, p′)) � (π1u, π2u, {(p, p′)} ∪ (π3u))

3.3 Coordination Patterns

The set of primitives above are used to build the above mentioned reconfiguration

scripts which constitute the orchestrator reaction to the interception of (incoming)

messages. The idea is that the orchestrator’s behaviour is parameterized by such

scripts, which, given their role in the model, will be also referred to as coordination

pattern. Let us consider one of such patterns to illustrate how they can be specified

in terms of the orchestrator primitives.

The intuition is as follows:

On interception of a message containing a port identifier m arriving to port

p, the orchestrator identifies the component instance to which p belongs and

tries to find another port in it to connect to m. In case m was previously

part of another connection, such connection has to be traced and broken.

Formally,

pattern1(u, p,m) �

let

ap = avPort(u, owner(u, p))

in

(ap �= ∅ → let r ∈ ap in reconf(u, p,m, r) , u)
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where

reconf(u, p,m, r) �

let

x = getCon(u,m)

in

(x = ι1(m
′) → mkCon(disCon(u, (m,m′)), (m, r)) , mkCon(u, (m, r))

and function owner inspects the component manager in the orchestrator’s state to

return the identifier of the component instance to which a particular port belongs.

Formally,

owner(u, p) � the {c ∈ cmpId| p ∈ (π2u) c}

Note that in this coordination pattern if there is no port available for the new

connection, the configuration if not changed. This is not, however, the only possi-

bility. Reasonable alternatives would be

• to disconnect port m in any case

• or to suspend until the a port becomes available for connection in owner(u, p).

Such alternatives can also be encoded as coordinating patterns to act as a parameter

to the orchestrator.

4 Example

For illustration purposes let us consider how to model, in the framework outlined

in the previous sections a variation of the example presented in [19].

In this case we shall consider a wireless network where a notebook (component

Client) is connected to a network which has two servers (Base1 and Base2). These

two servers are connected to each other and the client is connected to one of them.

In the initial configuration of the system the Client is communicating with the

server Base1 according to the Fig 1. The Client may permanently communicate

with the network through its input port ci and output port co. Such a behaviour is

captured by

beh(Client) = (ci + co)
∗

Base1 is permanently communicating with Base2, through its output port b1.3

and input port b1.4. In such a system configuration Base1 is also communicating

with the Client using the output port b1.1 and the input port b1.2. This behaviour

is given by,

beh(Base1) = (b1.1 + b1.2 + b1.3 + b1.4)
∗
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Fig. 1. The initial configuration.

Base2 communicates with Base1 though its input port b2.3 and output port

b2.4. Base2 also has an input port b2.1 and an output port b2.2. In this case both

ports are available and disconnected from the connectors network. The behaviour

of Base2 is given by,

beh(Base2) = (b2.3 + b2.4)
∗

The components involved in the network are interconnected by a connector made

of the four synchronous channels depicted in Fig 1. Its behaviour beh(C) is obtained

by the parallel composition of each channel. The reader is referred to [6] for details.

For the moment it is enough to point out that, as usual, the semantics of parallel

composition is given in terms of both interleaving and synchronous product.

The whole system is specified by configuration conf whose behaviour is

beh(conf) = beh(Client)[b/ci, c/co] | beh(C)

| beh(Base1)[a/b1.1, d/b1.2, e/b1.3, h/b1.4]

| beh(Base2)[f/b2.3, g/b2.4]

Note that the renaming operation connects the components ports to the connectors

ports.

Now, let us consider that the user moves and the signal becomes weak. The

server Base1 communicates with the server Base2 and sends the port identifiers in

order for Base2 to provide the service. The Fig 2 represents the result of such an

operation.

After the orchestrator has intercepted the message the behaviour of the config-
uration becomes

beh(conf ′) = beh(Client)[b/ci, c/co] | beh(C)

| beh(Base1)[e/b1.3, h/b1.4]

| beh(Base2)[d/b2.1, a/b2.2, f/b2.3, g/b2.4]
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Fig. 2. The final configuration.

Let us now focus on the orchestrator role. Suppose it is parameterized with
pattern1 above and let its initial state be u =< p, cmp, con >, where

p = {ci, co, b1.1, b1.2, b1.3, b1.4, b2.1, b2.2, b2.3, b2.4}

cmp = {(Client, {ci, co}), (Base1, {b1.1, b1.2, b1.3, b1.4}), (Base2, {b2.1, b2.2, b2.3, b2.4})}

con = {(a, b), (c, d), (e, f), (g, h)}

Suppose, now, the following situation occurs: Base1 sends port identifier a of

channel ch1 to Base2 through the connector C. The orchestrator captures such a

message and starts the script defined in pattern1, as follows.

• With avPort the orchestrator selects port b2.2 as an alternative to connect to a.

• With operation getCon it obtains port b1.1, which was previously connected to a.

• As such a port has a current connection, the following step is to break it with

disCon.

• Finally, the new connection, linking a to b2.2 is completed.

5 Conclusions and Future Work

This paper discussed an extension to a formalization of software connectors reported

in [4], which adopts a coordination oriented approach to support looser levels of

inter-component dependency. The framework supports dynamic reconfiguration of

connections through the action of a special connector (abstracting a whole level of

middleware) which manages the active possibilities of communication.

The possibility of dynamic configuration of connections arises in this model from

two basic assumptions: (a) ports have unique identifiers which can be exchanged in

messages, (b) there is a special connector — the orchestrator — to manage all active

connections in the network. With them mobility can be achieved in the classical

name-passing style typical of process algebras of the π-calculus family [19].
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A lot of work remains to be done. In particular this approach should be com-

pared with formal approaches to dynamically re-configurable architectures, such as,

for example, [11] or [28]. Our main current concerns, however, include the full de-

velopment of the model and associated calculus, as well as its application to realistic

case-studies.

We are also currently working on a prototype implementation of this model as

a Haskell library, on top of which experimentation can proceed. In particular, we

intend to build a repository of coordination patterns to be used as parameters to

the orchestrator, in order to capture a number of typical coordination situations.
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