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Abstract.  Software based biometrics,

utilising keystroke dynamics has been

proposed as a cost effective means of

enhancing computer access security.

Keystroke dynamics has been successfully

employed as a means of identifying

legitimate/illegitimate login attempts based

on the typing style of the login entry.  In

this paper, we collected keystroke dynamics

data in the form of digraphs from a series of

users entering a specific login ID.  We

wished to determine if there were any

particular patterns in the typing styles that

would indicate whether a login attempt was

legitimate or not using rough sets.  Our

analysis produced a sensitivity of 98%,

specificity of 94% and an overall accuracy

of 97% with respect to detecting intruders.

In addition, our results indicate that typing

speed and particular digraph combinations

were the main determinants with respect to

automated detection of system attacks.

1. Introduction

Keystroke dynamics was first

introduced in the early 1980s as a

method for identifying the individuality

of a given sequence of characters

entered through a traditional computer

keyboard [1].  Keystroke dynamics

originated from studies of the typing

patterns exhibited by users when

entering text into a computer using a

standard keyboard.  Researchers in the

field focused on the keystroke pattern,

in terms of keystroke duration and

keystroke latencies. Evidence from

preliminary studies indicated that

typing patterns were sufficiently unique

as to be easily distinguishable from one

another, much like a person’s written

signature [1,2].  Efforts focused on

acquiring keystroke attributes based on

the dynamic aspects of user input. The

results from these preliminary studies

have formed the basis for a software-

based enhancement to login security.

The basic idea is to extract

characteristic signatures from a

particular user’s entry of a login ID –

and use this information along with the

login ID in deciding whether a login

attempt is legitimate. If the typing

characteristics of the owner of a login

ID could be ascertained, then any

differences in typing patterns associated

with a particular login attempt may be

the result of a fraudulent attempt to use

those details.  Thus, the notion of a

software based biometric security

enhancement system was born.  Indeed,

there are commercial systems such as

BioPassword that have made use of this

basic premise [12].

Deterministic algorithms have been

applied to keystroke dynamics since the

late 70’s. In 1980 Gaines [1] presented

a report of his work to study the typing

patterns of seven professional typists.

The small number of volunteers and the

fact that the algorithm is deduced from



their data and not tested in other people

later, results on a lower confidence on

the false acceptance ratio (FAR) and

false rejection ratio (FRR) values

presented. But the method used to

establish a pattern was a breakthrough:

a study of the time spent to type the

same two letters, when together in the

text. In 1997 Monrose and Rubin use

the Euclidean Distance and

probabilistic calculations based on the

assumption that the latency times for

one-digraph exhibits a Normal

Distribution [5]. Later, in 2000, the

same authors presented a Bayesian

similarity based metric algorithm for

identification of attackers [6]. In 2005

Magalhães and Santos [3] presented an

improvement of the Joyce and Gupta’s

algorithm, while Revett and Khan [9]

presented evidence of the existence of a

set of procedures (typing rhythms,

length of the password, etc.) that can

enhance the precision of these

algorithms.  In this study, we employ a

rough sets based classifier in order to

determine which attributes in the input

signature are important to the

identification of a legitimate owner of a

login ID sequence.

The rough set theory, proposed by

Pawlak [8,9], is an attempt to propose a

formal framework for the automated

transformation of data into knowledge.

It is based on the idea that any inexact

concept (for example, a class label) can

be approximated from below and from

above using an indiscernibility

relationship (generated by information

about objects). Pawlak [8] points out

that one of the most important and

fundamental notions to the rough set

philosophy is the need to discover

redundancy and dependencies between

features. Since then this philosophy has

been used successfully in several tasks

as, for example, construction of rule

based classification schemes,

identification and evaluation of data

dependencies, information-preserving

data reduction [7,10]. In this work, we

utilised an implementation of rough sets

(Rosetta – see ref 11) in order to

determine if a set of rules could be

generated that could provide sufficient

discriminatory capacity to automatically

determine if a user was an intruder.  In

this study, we asked 100 volunteers to

enter a login ID.  A small sample of the

volunteers was designated as the

rightful owner of the login ID. They

were instructed to enter it into our

system with full knowledge that they

were designated as the owners and were

instructed to enter their login ID with

the same characteristics every time (on

average 50 entries).  The rest of the

volunteers were instructed to enter the

login ID as many time as possible over

a 7-day period. We recorded specific

keystroke dynamics (e.g. digraph times)

and then used Rosetta to extract a rule

base from this data.  The next section

describes in detail the experimental

method employed in this study,

followed by a results section and lastly

a brief discussion of this work.

2. Methods

In this study, we asked users

(approximately 100) to enter a

passphrase (Login ID) that consisted of

a string of 14 characters

(‘ensouspopulare’), which is composed

of three words in Portugese, through an

Intranet based portal.  Please note that

all subjects that participated in this

study were native Portugese speakers.

A subset of the users (10) were

designated as the owner of this

passphrase and was asked to enter the

passphrase on numerous occasions

(approximately 50).  The entries were

collected over a 7-day period to ensure

that we acquired a robust sampling of

the variations of the input style for

passphrase entry.  For each passphrase

entry we collected all of the digraphs,

the time elapsing between successive (3

in total), the total time spent entering

the passphrase, and the half-way time



Table 1.  This table presents a sample of 5 legitimate users (‘1’ in the Legit? column) and 5 illegitimate

users (with a ‘0’ in the Legit? column).  All other values in the table are the digraph times in mS. Please

note that there are 5 additional attributes not included in this table for the sake of presentation clarity.  The

additional attributes are: W1 (first word), W2 (second word), W3 (third word), WH (half the total time),

and TT (total time). The TX headings in this table represents the digraph number.  Legit refers to whether

the entry was made by the designated owner

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 Legit?

281 344 297 218 375 266 328 266 234 313 515 282 281 1

343 266 875 297 250 719 593 250 235 312 281 282 250 1

375 359 250 328 328 469 406 282 265 344 359 344 359 1

250 328 266 234 375 328 516 266 234 297 312 297 235 1

391 250 578 297 250 328 297 265 282 312 594 265 438 1

390 344 266 312 297 313 375 312 266 531 547 453 235 0

546 625 297 344 360 343 641 313 296 344 469 500 219 0

344 359 266 266 312 266 344 265 266 312 266 438 234 0

531 501 843 344 344 453 656 297 750 344 453 328 297 0

390 344 297 281 297 313 453 312 266 391 390 532 265 0

point.  These formed the objects in our

decision table, which included a binary

decision class based on whether the entry

was from the legitimate user or not.

  Our rough sets software, Rosetta, has a
limitation of 500 objects, so we split the
decision table into legitimate and
illegitimate users (approximately 500 of
each) and randomly selected 250 objects
from each decision class.  We repeated
this process 10 times, and report the
average results when applicable in this
paper.  We then discretised the attributes
(except for the decision attribute) using an
entropy/MDL algorithm.  We then split
the decision table up in a 70:30 split
(legitimate and non-legitimate entries

respectively).  We generated reducts using

the Dynamic Reduct option, exhaustive

RSES algorithm. We then generated

decision rules that were then applied to the

testing set. Since the critical factor in this

study is the information content of the rules,

we were interested in yielding a rule set with

minimal cardinality, while obviously

maintaining high accuracy levels. To

achieve this aim, we filtered the rules based

on support since the initial rule set contained

over 74,000 rules – too large to be of

practical use.  In the next section, we

describe the key results that were obtained

in this study.

3. Results

In Table 1 we present a sample of the

objects in the decision table, which for the

sake of clarity does not present the values

for the word lengths, total time and the

halfway time. We then discretised the entire

decision table using the entropy/MDL

option in Rosetta, on all attributes except for

the decision class.  We then split the

decision table into a 70:30 split, which we

used for training and testing purposes

respectively.  We then generated dynamic

reducts (using the Exhaustive calculation

RSES) option in Rosetta.  Lastly, we

generated rules from the reducts – in order

to minimise the redundancy in the resultant

rule set. Without any filtering, 74,392 rules

were generated.  Since the primary goal of

this study was to determine if a set of rules

could be generated that would allow a

software based biometric system to

distinguish legitimate from non-legitimate

users, to make the system computationally

tractable. If Table 2 below, we present data

on the relationship between the number of

rules (filtered on support) and the

classification accuracy.



Table 2. Results from high-pass filtering of the

rules based on support. We excluded all rules

that had a support less then the specified filter

threshold.  Note that the accuracy was reduced

by just over 2%, but the number of rules was

reduced to 0.6% of the default value

Filter

Threshold

(based on

Support)

Accuracy Number

of Rules

 <= 0  99.1%         74,392

 <= 4  97.8%            2,401

 <= 10  97.5%               604

 <= 20  96.8%               452

The accuracy of the classification task (with

maximal filtering) – segregating legitimate

from non-legitimate users was

approximately 97%.  Table 3 below presents

a randomly selected confusion matrix that

presents the key summary statistics

regarding the classification accuracy of the

resulting classifier.

Table 3. A sample confusion matrix for a randomly

selected application of the rule set generated using

rough sets.  The top entry in the 3rd column is the

sensitivity, the value below that is the specificity.  The

entry at the bottom of column two is the positive

predictive value (PPV), the last entry in column three

is the predictive negative value (PNV) and the lower

right hand corner is the overall classification accuracy

Outcomes 0 1

0 74 3 0.96
1 2 71 0.97

0.97 0.96 0.97

The primary result of this study was the rule

set that was used to distinguish a legitimate

from an illegitimate login attempt. The

primary attributes used in this study were

digraphs – the amount of time required to

depress two keys (in this study keys on a

standard PC keyboard).  We collected all

digraphs (13 in all), plus the time taken for

each word in the login ID, the total time and

the half-way time point for entering the

login ID.  We present summary statistics in

Figure 1 below, which depicts a frequency

plot of the occurrences of the various

digraphs that were found in the resulting

rule set.

 Figure 1.  Frequency plot for all attributes
from the rules (17 in total) corresponding to the

legitimate login entries – please note that there

are a total of 392 instances of all 17 rules for

legitimate login attempts

Additionally, we examined the attributes to

determine if any were more representative of

the rule set than others.  We found that

attributes 7 & 8 occurred in 100% of the

rules, 7,8 & 13 occurred in 94.6% of the

rules, and attribute set 5,7,8, & 13 occurred

in 72.4% of all instances of the rules (392

instances of 17 rules).  This key result

indicates that a subset of the attributes,

primarily 5,7,8, & 13 are the most frequent

occurring attributes and may therefore serve

as a signature for a legitimate login attempt,

for this particular login.  We performed this

same analysis on the illegitimate login

attempts, which we summary with regards to

the attribute frequency in Figure 2. The

analysis of the non-legitimate login rules is

not as straightforward as for the legitimate

login rules.  For one, there are many more of

them – 175 versus 17 for the legitimate login

attempt rules (this excludes the non-

deterministic rule set consisting of 260
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Figure 2. Attribute label versus frequency for
illegitimate login attempts.  Note that the total

number of unique rules for the deterministic non-

legitimate access classification was 175. The

values indicate attribute in the total rule base

rules). In addition, the average rule length

increased from 5 attributes to 8.  Even with

these differences, we can account for 65% of

the data by focusing on attributes 2,3,5,6,7,

& 8 – a reduction of 6/16 attributes (63.5%).

Lastly, there were a significant number of

non-deterministic rules – which were not

able to map attribute values to specific

decision classes.  There were a total of 260

of such rules – and their examination proved

to be quite useful – as they highlight

bordering cases between the decision

classes.  Specifically, we found that in many

instances, the same attributes that were

significant in the crisp rule set were mapped

to different decision classes.  After careful,

inspection, we found that the difference was

based on the magnitude of the attribute –

which in this decision table – represents the

digraph time. For the non-legitimate login

attempts, all digraphs were on the low end

of the discretisation range. For the legitimate

login attempts, this trend generally held as

well, accept for digraphs 5 & 7.  It was

Table 4. A random sample of 6 rules

(generated filtering on support >= 20).  Note that

there is a mixture of deterministic (with a single

decision ‘1’ or  ‘0’) and non-deterministic rules

with two decisions: ‘1’ and ‘0’.  The ‘*’ refers to

either 0 if it appears on the left of a tuple, or the

maximal value following discretisation if it

appears on the right end of a tuple. All rules are

generated in conjunctive normal form from

discretised data

Rule Decision

T2([*, 391)) AND T3([*, 399))

AND T5([*, 238)) AND T6([*,

282)) AND T7([*,274)) AND

T8([*,235)) AND T12([*,368))

AND T13([*,317) AND

W1([*,704))   =>

      0

T1([*, 391)) AND T2([*, 269))

AND T3([*, 399)) AND

T4([*,274)) AND T5([*,238))

AND T7([*,274)) AND

T8([*,235)) AND T13([*,317))

=>

      0

T2([*, 269)) AND T3([*, 399))

AND T5([*, 238)) AND T6([*,

282)) AND

T7([*,274)) AND T8([*,235))

AND TT([*,4204))  =>

 0 and 1

T2([*, 269)) AND T4([*, 274))

AND T5([*, 238)) AND T6([*,

282)) AND

T7([*,274)) AND T8([*,235))

AND T13([*,317))  AND

W1([*,704))  =>

 0 and 1

T3([*,399)) AND T5([246, 289))

AND T7([274,*)) AND

T8([*,235)) AND

T12([*,368)) AND T13([*,317))

=>

      1

T5([246-289)) AND T7([274, *)

AND T8([*, 235)) AND T11([*,

430)) AND

 T12([*,368)) AND T13([*,317))

=>

      1

found unanimously (see Table 4 for details)

that for the legitimate user, the digraph

values for attributes 5 & 7 were sufficient to

distinguish the login attempt in virtually

100% of the cases.  That is, the typing speed

– reflected in the digraph values was

sufficient to distinguish a valid from invalid

login attempt, when combined with a

Attribute Frequency Plot

0

20

40

60

80

100

120

140

160

180

200

1 3 5 7 9
1
1

1
3
W
2
H
W

Attribute Label

F
re
q
u
e
n
c
y
 o
f 
A
tt
ri
b
u
te



specific digraph pattern.  In this particular

case, the combination of typing speed for

digraphs 5 and 7 were sufficient to

discriminate between legitimate owners and

attackers/non-legitimate owners of the login

ID.

4. Discussion

In this pilot study, we used rough sets to

mine a small database of keystroke based

biometric data – using only digraph times.

The purpose was to develop an approach to

developing a situated agent that could be

used to determine whether a login attempt

was legitimate or not. Using a reasonable

sized dataset, we generated a decision table

by including the correct decision class

(legitimate or non-legitimate owner). Our

methodology based on rough sets was able

to predict with a high degree of accuracy

whether the attempt was legitimate or not

based on the decision rules that we

generated from rough sets (97% or more

classification accuracy). The most

interesting result from this study indicates

that the digraph times and specific digraphs

(see Table 4 for details of the rules) were

sufficient to determine whether a user was

legitimate.  As can be seen in Table 4, the

decision class ‘1’ – the non-legitimate owner

took the least amount of time in entering the

characters of their login ID compared with

that of an non-legitimate owner.  The results

of this study corroborate our previous work

[4]  - but in this study, we used the

keystroke dynamics of a series of owners of

a given login ID/passphrase. In addition to

typing speed, there appears to be unique

digraphs that are sufficient to distinguish the

actual owner versus and imposter – the

essence of keystroke dynamics.  This

implies that instead of using all of the

digraphs in a signature for verification, we

may only require a subset of them –

depending on the particular login ID

characteristics of the owner. This reduction

in the number of attributes that must be

stored and searched through reduces the

computational load of the verification

system. The use of rules generated from

rough sets based classifiers can be enhanced

by the addition of more attributes into the

decision table.  With these encouraging

results, we are expanding our analysis using

much larger datasets, both in terms of the

number of objects, but also by the inclusion

of additional attributes.  We hope to

discover what attributes are critical for

particular login Ids in order to tailor the

system so that it can emphasise those

keystroke dynamic features that are

indicative of the legitimate owner. For

instance, in addition to individual digraphs

associated with particular keys, we also

investigated obtaining composite attributes

such as the total time and half time for the

entry of the login ID.  Although these

attributes did not appear significantly in the

rule set, there was clearly a trend for these

higher order attributes to segregate across

different class decision boundaries.  We will

continue to explore the addition of higher

order attributes into our decision table in

order to help increase the classification

accuracy of our biometrics based security

enhancement system.   In particular, we can

explore the use of association rules and

other rule based systems and compare them

with the rough sets approach used in this

work.
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