to increase the binding to the targeted protein kinases as selective allosteric inhibitors. Three different moieties (see Figure 1) were identified: 1) a polar moiety, responsible for forming ionic interactions with ATP; 2) a hydrophobic moiety, that interacts with a hydrophobic pocket of the kinases; and 3) an articulation X, responsible of the curvature of the ligand making the molecule fit very nicely in the allosteric site orientating the polar and hydrophobic moieties. Considering these three moieties we propose novel compounds with several structural modifications in mind (relative orientation, polar moiety, hydrophobic moiety, length of the molecule and nature of the aromatic rings) to confirm their mechanism of action as type III PKIs non-ATP competitive that bind to allosteric sites of MEK.

References:

1) Departamento/Centro de Química, Escola de Ciências, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; E-mail: mjqr@quilcim.uminho.pt
2) CMO-ESL, Instituto Politécnico de Bragança, Campus da Avenida, Apt. 1172, 5301-855 Bragança, Portugal
3) Cancer Drug Resistance Group, Inst. of Molecular Pathology & Immunology, Univ. of Porto (IPATIMUP), Porto, Portugal
4) Laboratory of Microbiology, Fac. of Pharmacy, Univ. of Porto, Porto, Portugal

The thienopyridine skeleton has been reported as having interesting biological activities namely antitumor, (11,12) and antiangiogenic. (13,14) New fluorinated and methoxylated di(hetero)aryl ethers and di(hetero)aryl amines were prepared functionalizing the 7-position of the thieno[3,2-b]pyridine, using copper (C-O) or palladium (C-N) catalyzed couplings, respectively, of the 7-bromo thieno[3,2-b]pyridine (1) with ortho, meta and para fluoro or methoxy phenols and anilines (see Scheme).

The compounds obtained were evaluated for their growth inhibitory activity against the human tumor cell lines MCF-7 (breast adenocarcinoma), NCI-H460 (non-small-cell lung cancer), HCT15 (colorectal carcinoma), HepG2 (hepatocellular carcinoma) and HELA (cervical carcinoma). The most active compounds, a di(hetero)aryl ether with a methoxy group in the meta position relative to the ether function (2e) and two di(hetero)aryl amines with a methoxy group either in the ortho or in the meta position relative to the NH (3d and 3e, respectively), were further tested at their GI50 concentrations on NCI-H460 cells causing pronounced alterations in the cell-cycle profile and a strong and significant increase in the apoptosis of these cells (see Figure) after 48 h. The fluorinated and the other methoxylated compounds did not show important activity, presenting high GI50 values in all the cell lines tested. Furthermore, the toxicity of the compounds was assessed using porcine liver primary cells (PLP2), established by some of us. Results showed that one of the most active compounds was not toxic to the non-tumor cells at their GI50 concentrations showing to be the most promising to be used as antitumor agents.

Scheme

Figure: Analysis of apoptosis (GI50) of NCI-H460 cells treated with medium (Blank), DMEM, or the GI50 concentrations of compounds 2e, 3d and 3e, * $ p < 0.05