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Astrocyte pathology in the prefrontal cortex impairs the
cognitive function of rats
A Lima1,2, VM Sardinha1,2, AF Oliveira1,2, M Reis1,2, C Mota1,2, MA Silva1,2, F Marques1,2, JJ Cerqueira1,2, L Pinto1,2, N Sousa1,2 and
JF Oliveira1,2

Interest in astroglial cells is rising due to recent findings supporting dynamic neuron–astrocyte interactions. There is increasing
evidence of astrocytic dysfunction in several brain disorders such as depression, schizophrenia or bipolar disorder; importantly these
pathologies are characterized by the involvement of the prefrontal cortex and by significant cognitive impairments. Here, to model
astrocyte pathology, we injected animals with the astrocyte specific toxin L-α-aminoadipate (L-AA) in the medial prefrontal cortex
(mPFC); a behavioral and structural characterization two and six days after the injection was performed. Behavioral data shows that
the astrocyte pathology in the mPFC affects the attentional set-shifting, the working memory and the reversal learning functions.
Histological analysis of brain sections of the L-AA-injected animals revealed a pronounced loss of astrocytes in the targeted region.
Interestingly, analysis of neurons in the lesion sites showed a progressive neuronal loss that was accompanied with dendritic atrophy
in the surviving neurons. These results suggest that the L-AA-induced astrocytic loss in the mPFC triggers subsequent neuronal
damage leading to cognitive impairment in tasks depending on the integrity of this brain region. These findings are of relevance to
better understand the pathophysiological mechanisms underlying disorders that involve astrocytic loss/dysfunction in the PFC.
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INTRODUCTION
The knowledge of the nervous system has evolved rapidly in the last
decades, namely due to the disclosure of more prominent role of
astrocytes in physiological and pathological processes. Among glial
cells, astrocytes were pointed out as neuronal partners since they
keep a concerted cross-talk with vicinal neurons, which is crucial for
normal brain function. Astrocytes are able to sense neuronal activity
by expressing an extensive number of neurotransmitter receptors,
which lead to both homeostatic changes and cellular cross-talk.1,2

The astrocytic homeostatic responses include alterations of meta-
bolic activity, synthesis of neuronal preferred energy substrate
lactate, clearance of neurotransmitters and buffering of extracellular
K+ ions.1,3,4 With respect to the alterations of cellular cross-talk, a
bidirectional communication between neurons and astrocytes,
conceptualized as the tripartite synapse,5–7 was extensively demon-
strated both in brain slice preparations8–16 and in vivo17–24 in
rodents and, more recently, in humans.25

Taking these evidences into account, it is expected that
changes in astrocyte number and/or function would impact on
the neuron-astrocyte network integrity and activity and, conse-
quently, on behavior output. Indeed, a large set of evidence has
pointed out an important pathological role of astrocytic dysfunc-
tion in several conditions.26–28 In particular, specific astrocytic
markers such as the glial fibrilary acidic protein (GFAP) or
glutamine synthetase were shown to be decreased in the context
of brain disorders such as depression, schizophrenia or bipolar
disorder,29–40 consisting a state of astrocyte pathology possibly
having a role on its pathophysiology.41–44 Amongst the most
affected brain regions is the prefrontal cortex (PFC),26,30,32,34 which

is implicated in attentional processes, decision-making, goal-
directed behavior, working memory, processing of emotional
stimuli, temporal organization of behavior, rule learning and
behavior flexibility.45–48 Furthermore, the medial prefrontal cortex
(mPFC) is anatomically and functionally linked with other
components of the limbic system, which justifies the key role in
cognitive, mnesic and emotional processing.49,50 Accordingly,
astrocyte loss in the PFC is sufficient to induce depression-like
behavior in the rat51–53 and blockade of astrocytic glutamate
uptake in this region is also sufficient to produce anhedonia, a
hallmark of depression.54

Although these observations may also justify the cognitive
dysfunction observed in patients suffering mood disorders the
impact of astrocyte loss in the mPFC, and consecutively on mPFC-
dependent cognitive function is still poorly understood. In order
to tackle this question, we induced an astrocyte pathology state in
the mPFC by injection of the specific astrocyte toxin L-aminoa-
dipate and assessed cognitive function of the treated animals by
testing their performance in working memory, behavior flexibility,
attention and reference memory tasks, as well as by characterizing
the structural consequences of astrocytic loss in the mPFC.

MATERIALS AND METHODS
Animals and treatments
Experiments were conducted in accordance with local regulations
(European Union Directive 86/609/EEC) and National Institutes of Health
guidelines on animal care and experimentation. Male Wistar-Han rats
(Charles River Laboratories, Barcelona, Spain), ten-weeks-old, were housed
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in groups of two, under standard laboratory conditions (room temperature
22 °C; food and water ad libitum; 12 h dark/light cycle, lights on at 08:00).
The astrocyte pathology model was obtained by the intracranial injection of
the selective toxin L-α-aminoadipate (L-AA)55 in treated animals. The two
groups of animals used for experimentation, control (CON) and treated
(AA), were obtained by a single bilateral microinjection of artificial
cerebrospinal fluid (aCSF) or L-AA, respectively, in the mPFC. In order to
avoid interference of the injection surgical procedures with the behavior per-
formance, cannula guides were surgically implanted in all animals one week
prior to the microinjection. The injections took place one day before the
start of the experiment through the implanted cannulas with minor impact
to the animal. Detailed surgical and injection procedures are given in SI.

Behavioral testing
The consequences of the induced astrocyte pathology in the mPFC to the
cognitive function of CON and AA animals were assessed in the attentional
set-shifting task (ASST) and in water maze tests. Animals of CON and AA
groups were divided into two sub-sets. The first sub-set performed two
days of ASST and the second sub-set performed six days of water maze
tests. Therefore, the tests were performed within the effect window of the
toxin previously described.55

The ASST was used to assess the non-spatial working memory, the
attentional set-shifting and the reversal learning functions of rats based on
previously described protocols.56 Briefly, the test was conducted in a
rectangular arena (black Plexiglass; 60 cm×40 cm×20 cm) where animals
were required to dig and find a reward (Nestlé Cheerios® cut in two) in one
of two bowls filled with sawdust. The reward was related to the presence
of relevant odor or texture stimuli that were randomly exchanged (for
test scheme, Figure 1a; Supplementary Table S1), being the criterion
accomplished whenever six consecutive correct responses were achieved
for each stage.
Water maze tests were used to assess the performance of experimental

animals in spatial working and reference memory tasks as described
previously.57,58 Briefly, these tests were conducted in a circular black pool
(170 cm diameter) filled with water at 22 °C to a depth of 34 cm in a room
with extrinsic clues (triangle, square, cross and horizontal stripes) and dim
light. An invisible platform was placed in one of four quadrants as
observed in Figures 2a and d. In the working memory task (WMT), animals
had to learn the location of the hidden platform and to retain this
information online during the four consecutive trials since the platform
was placed in a different position each day. In the reference memory task
(RMT), the platform position was unchanged. Distances swam and escape
latencies to platform were used as readout of task performance. Details on
the behavior tasks are given in SI. After the last day of behavior testing, all
animals were sacrificed and brain tissue was collected.

Histological analysis
In order to analyze the histological implications of the injection of aCSF or
L-AA, we performed the immunohistochemical characterization of frozen
coronal sections (20 μm thick) containing the mPFC of five CON and four
L-AA animals that performed the ASST and six CON and eight L-AA animals
that performed the water maze tests (for methodological details, see SI).
Briefly, brain sections were stained for: GFAP (astrocytes; 1:200, Dako-
Cytomation, Glostrup, Denmark), NeuN (neurons, 1:100, Millipore, Schwal-
bach, Germany) and DAPI (nuclei, 1:1000, Invitrogen, Paisley, UK); GFAP
(astrocytes; 1:200, DakoCytomation), S100β (astrocytes, 1:100, Sigma,
Taufkirchen, Germany) and DAPI (nuclei, 1:1000, Invitrogen); S100β
(astrocytes, 1:100, Sigma) with 3,3-diaminobenzidine (DAB); GFAP (astro-
cytes; 1:200, DakoCytomation), Iba1 (microglia, 1:100, Abcam, Cambridge,
UK) and DAPI (nuclei, 1:1000, Invitrogen). The effect of L-AA injection in the
mPFC was evaluated by analyzing the numbers of GFAP- and NeuN-
positive cells (to assess the effect on astrocytes and neurons, respectively)
in the targeted region dorsal PrL/Cg1 (lesion site), and in the ventral PrL,
(peri-lesion site; see results section) through confocal microscopy imaging
(FV1000, Olympus, Hamburg, Germany) and ImageJ software (http://
rsbweb.nih.gov/ij/). The density of cells, given in number of cells per μm2,
in lesion and peri-lesion sites was normalized to the density of cells in the
infralimbic (IL—a neighbor unaffected area) of the same brain section. The
resulting relative values allowed comparison between different animals
excluding variation due to fluctuation of staining quality between sections.
To further understand the consequences of L-AA injection to neurons of

the affected areas, their three-dimensional dendritic morphology was
analyzed and compared to the site of aCSF infusion, in CON animals.

Neuronal structures were also analyzed in the IL region of animals in both
groups to confirm that changes were restricted to the affected area. Briefly,
the analysis was performed for ten neurons in each region for each animal
group in coronal brain slices after Golgi-Cox impregnation.59 Identification
and reconstruction of Golgi-impregnated layer III pyramidal neurons in the
mPFC and estimation of spine densities was performed as previously
described.59 Dendritic trees were reconstructed using a motorized
microscope (Axioplan 2, Carl Zeiss, Göttingen, Germany) and Neurolu-
cida/NeuroExplorer software (Microbrightfield, Williston, VT, USA). To
assess structural changes, number of basal dendrites, total length and
branches of basal and apical trees, as well as Sholl analysis60,61 were
compared across groups. For spine density analysis, dendritic segments of
30 μm were randomly selected in the proximal and distal portions of the
apical dendrite and basal dendrites, and spines were classified in
mushroom, thin, wide and ramified categories. For details on the
histological procedures and neuronal reconstruction, see SI.

Statistical analysis
Data are expressed throughout the manuscript as means± s.e.m. Statistical
analysis was performed using the Prism 5 (GraphPad Software Inc., La Jolla,
CA, USA). Unpaired t-test was applied to compare: dendritic length;
number of branches or dendrites; total spine density. Two-way analysis of
variance (ANOVA) analysis and Bonferroni post-hoc tests were applied to
analyze: ASST and water maze task performances; cell counts between
lesion and non-lesion sites; dendritic length or number of intersections of
neurons in the Sholl analysis; densities of the four categories of spines. The
statistical significance of the comparisons for each statistical test was set
with a confidence interval of 95%.

RESULTS
The results presented in this section represent all animals on
which the bilateral injections of aCSF (CON group) or L-α-
aminoadipate (AA group) targeted the mPFC (Supplementary
Figure S1; see histological results below). Therefore, the data
herein presented enclose behavior outputs of seven CON and six
AA animals that performed ASST, and six CON animals and eight
AA that performed water maze tests.

Astrocyte pathology in the mPFC impairs the working memory
and reversal learning functions of rats
In order to assess the translation of astrocyte loss in the behavior
output of the mPFC, animals injected with the toxin L-AA and their

Figure 1. Astrocyte pathology in the mPFC impairs attentional set-
shifting and reversal learning in the ASST. (a) Scheme of test stages:
SDO—simple discrimination by odors, SDT—simple discrimination
by textures, CDO—compound discrimination by odors, Rev 1—CDO
reversal, EDST—extradimensional shift textures, Rev 2—EDST
reversal; (b) Trials to reach criterion of rats injected with aCSF
(CON, white) and L-AA (AA, black); Data plotted as mean± s.e.m.
*Po0.05, **Po0.01.
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respective controls performed tasks dependent on the function of
this region.
The ASST (Figure 1) assesses functions such as attention,

dimensional set-shifting and reversal learning.56 Both controls
(CON) and treated animals (AA) animals learnt to discriminate the
reward by odor in the first stage of the test since they display a
similar number of trials to acquire the rule (trials to criterion, TC;
simple discrimination by odor (SDO), t= 1.1, P>0.05). However,
animals with astrocyte pathology in the mPFC (AA) displayed a
striking difficulty in learning to discriminate stimuli in the
dimension of textures simple discrimination by textures (SDT,
t= 2.7, Po0.05) and to perform reversal learning (observed
consistently across the stages; Rev 1: t= 3.0, Po0.05; Rev 2,
t= 3.8, Po0.01), when compared to CON (Figure 1b). No
differences were observed between groups in the remaining
stages (compound discrimination of odors (CDO), t= 0.2, P>0.05;
or extra dimensional shift of textures (EDST), t= 0.7, P>0.05).
The water maze tests were performed to assess spatial working

memory (WMT) and spatial reference memory (RMT)58 in the
animals with mPFC astrocyte pathology and respective controls.
The analysis of the WMT learning curve showed that astrocyte
depletion impaired consistently the working memory (Figure 2b;
F1,12 =5.07, P= 0.04), particularly in trial 4 (trial 1, t= 0.10, P>0.05;
trial 2, t= 1.28, P>0.05; trial 3, t= 1.61, P>0.05; trial 4, t= 2.61,
Po0.05). In the spatial RMT, differences were observed in the
learning curves (Figure 2e; F1,12 =6.85, P= 0.03), mostly due to the
acquisition difficulties faced by the AA animals. Differences in
distance swam consistently supported the measurements of
escape latencies both for WMT (Figure 2c; F1,12 =8.44, P= 0.01)
and RMT (Figure 2f; F1,12 = 9.93, P= 0.01).

L-AA-induced astrocyte pathology is characterized by depletion
and neuronal damage in the region affected
The preliminary analysis of the brain sections containing the mPFC
of CON and AA animals selected for analysis revealed that the
injections targeted specifically an area concerning the dorsal portion
of the PrL and Cg1 sub-regions of the mPFC (Supplementary Figure
S1). This observation was confirmed by the microscopic analysis of
the brain sections stained with GFAP antibody, for AA animals. A
fluorescence halo was observed in the sites where the bilateral
injection of L-AA took place, on which the GFAP staining was
completely absent (Figure 3a). This observation was confirmed by
immunostaining with S100β antibody that marked typical astrocyte
morphologies, which were absent at lesion sites (Supplementary
Figure S2), confirming that L-AA injections lead to the ablation of
astrocytes of both GFAP+ and S100B+ populations.
The double staining with astrocytic (GFAP) and neuronal (NeuN)

markers revealed that despite the complete absence of astrocytes
in the lesion site, neurons were easily observable within this area
(Figures 3b and c). The calculation of astrocyte relative densities in
lesion areas (given by the number of GFAP+ astrocytes per unit of
area, relatively to the density of astrocytes in the IL region of the
same section) revealed astrocyte depletion in the L-AA-injected
subjects, 2 days post injection (t= 11.92, Po0.001; Figure 3d) and
6 days post injection (t= 8.0, Po0.001; Figure 3e), when
compared to the respective aCSF-injected controls (for absolute
values, see Supplementary Table S2). Furthermore, the effects of
L-AA were confined to the injection targets, since astrocyte
numbers were not affected in the peri-lesion region from any of
the tested animals (2 days post injection: t= 0.34, P>0.05; Figure 3f;
6 days post injection: t= 0.57, P>0.05; Figure 3g).

Figure 2. Astrocyte pathology in the mPFC impairs working memory in the water maze. (a) Test scheme for the working memory task, WMT;
(b) Escape latencies and (c) distances swam in the WMT; (d) Test scheme for the reference memory task, RMT; (e) Escape latencies and (f)
distances swam in the RMT. Rats injected with aCSF (CON, white) and L-AA (AA, black). Data plotted as mean± s.e.m. *Po0.05, **Po0.01.
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Interestingly, the calculation of relative neuronal densities
(given by the number of NeuN+ neurons per unit of area,
relatively to the density of neurons in the IL region of the same
section) revealed a 29.9% of neuronal loss in the sites of L-AA
injection 2 days (t= 2.97, Po0.05; Figure 3d); this loss was
considerably higher 6 days post injection (44.8% of loss: t= 3.3,
Po0.05; Figure 3e), when compared to aCSF-injected controls (for
absolute values, see Supplementary Table S2). Again, this effect
was restricted to the lesion site as in the vicinity of the lesion, the
neuronal densities remained unaltered 2 days (t= 0.57, P>0.05;
Figure 3f) and 6 days post injection (t= 0.5, P>0.05; Figure 3g).
The surgical procedure and injection of saline in control animals

did not trigger microglial response, confirmed by the typical
resting state morphology with small somas, and fine, long and
ramified processes62 observed at the targeted sites
(Supplementary Figures S3A and B). The astrocyte toxin L-AA
induced an activation of microglia characterized by alteration of
the cell structure, reduction of process length towards an
amoeboid structure,62 which is visible at both 2 and 6 days post
injection in the lesion sites (Supplementary Figures S3C and D).
These alterations are in line and may explain the structural
changes observed in neurons and astrocytes. Regarding the
functional consequence of microglial activation, we believe that it
may have an impact on the overall activity of the network.
However, due to the difficulty to tackle this implication and the
controversy on the link between astrocyte loss and microglia
activation in psychiatric disorders63 this issue needs to be further
addressed by other studies in the field.

3D neuronal structure in the mPFC is affected by the astrocyte
pathology
Regarding the analysis of the neuronal morphology (Figure 4 and
Supplementary Figure S4), neurons located at the lesion site of
animals from CON and AA groups displayed a quite similar
structure 2 days post injection (Figure 4a). Specifically, there were
no significant differences in apical dendritic length (t= 1.35
P>0.05), number of apical dendrite branches (t= 1.03, P>0.05),
number of basal dendrite branches (t= 0.9, P>0.05) or number of
basal dendrites (t= 0.62, P >0.05) (Figures 4a and Supplementary
Figure S5A); however, a reduction in basal dendritic length was
observed in AA-injected animals (t= 2.34, Po0.05) (Figure 4a).
These observations were similar to those made in the peri-lesion
area where no differences between CON and AA animals were
observed in any of the parameters estimated (Figure 4c and
Supplementary Figure S5C).
Interestingly, the neuronal structure of AA animals in the

lesioned areas 6 days post injection was severely affected when
compared to CON animals (Figure 4b and Supplementary Figure
S5B). Layer III pyramidal neurons of those regions presented
reduced apical dendritic length (t= 4.7, Po0.001) basal dendritic
length (t= 6.3, Po0.001; Figure 4b). Interestingly, the number of
basal dendrites in neurons in lesion areas of AA animals did not
change when compared to the CON group (t= 0.8, P>0.05;
Figure 4b), which indicates that the reductions in length and
branching observed represent atrophy of the existing dendrites,
rather than general structure damage. Again, this effect was
confined to the lesion area as confirmed by the analysis of 3D

Figure 3. Injection of L-AA induces a defined astrocyte depletion and neuronal damage in the mPFC. (a) Representative micrographs of GFAP
stained brain sections obtained 2 days post injection; L-AA injections cause astrocyte ablation denoted by nonfluorescent halos in the GFAP
immunoreactivity; CON—brain section from control animal; arrows denote the physical damage caused by the cannula placement; AA
left—brain section from AA animal evidencing astrocyte ablation in Cg and dorsal PrL, detailed in AA right. (b and c) Representative confocal
images of the lateral lesion border within the PrL region, in brain slices containing the mPFC of AA animals collected 2 and 6 days after
injection. (d and e) Relative numbers of cells within lesion sites (Cg1 and dorsal portion of PrL) over the number of cells in non-lesion region
(IL) compared to a peri-lesion (ventral PrL) at 2 (d–f) and 6 days after injection (e–g). Scale bars A= 1mm; B,C= 100 μm. Data plotted as
mean± s.e.m. *Po0.05; ***Po0.001.
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neuronal structures in the IL, a neighbor area spared from the
L-AA injection effects. Here, no significant differences were found
in any of the parameters estimated (Figure 4d and Supplementary
Figure S5D).
These observations were confirmed by the Sholl analysis that

calculates both number of intersections and length of dendrites at
specific distances from the soma (Figure 4 and Supplementary
Figure S5) both for 2 and 6 days after the lesion. The
reorganization of the dendritic material described above is visible
in Figures 4a and b left panel (details in Supplementary Figure S4),
where representative 3D reconstructions are presented for
illustration of treatment effects.
The categorization of spines and determination of its density in

basal, apical proximal and apical distal segments of the
reconstructed neurons provided a more detailed insight of the
effects of astrocyte ablation to the neuronal integrity and function.
The absence of astrocytes in targeted regions did not alter the
density of spines in basal, apical proximal or apical distal dendritic
portions. These observations were true for neurons located within
lesion sites from animals 2 days post injection (Figure 5a) and 6
days post injection (Figure 5b). Accordingly, the total density of
spines remained intact at peri-lesioned region (IL) as well, either 2
(Figure 5c) or 6 (Figure 5d) days post injection, both in CON
and AA groups. The discrimination and quantification of each
spine type according to maturity criteria (thin, mushroom,
ramified or wide) sustained these observations, since no
differences were observed between groups for each spine type
between lesion and peri-lesion areas whatsoever (Supplementary
Figure S6).

DISCUSSION
The first highlight of this study is the regional specificity of the
lesion. In fact, the model used herein allowed to target specifically
astrocytes within the mPFC, without signs of lesion in the
surrounding areas, at least as indicated by the unaffected
astrocytic densities observed at peri-lesion sites. Accordingly,
neuronal loss or effects on the dendritic structure were confined
to the regions where astrocyte loss occurred. Interestingly, both
neuronal loss and dendritic atrophy were increasing with time
after the injection of the astrocyte toxin L-AA. This observation
was not described previously in similar studies,51,53,55 a fact that
could be ascribed to the technical differences between studies.
Since L-AA is described to affect specifically astrocytes and to
cause immediate astrocyte loss in the targeted region,51,53,55 a
finding herein confirmed after 2 days of lesion, these pieces of
evidence suggest that neuronal damage is as a consequence of
the astrocyte loss in the targeted region. In this context of
astrocyte pathology, neuronal damage may occur due to the lack
of extracellular space homeostasis, excitatory neurotransmitter
uptake and metabolic support functions largely attributed to
astrocytes that are responsible for the neuronal nourishing,
maintenance and survival.1,2 In particular, lack of astrocytic
buffering of extracellular excitatory neurotransmitter glutamate
was shown to induce dendritic atrophy64 and neuronal death
through excitotoxicity,65–67 that are similar to the effects observed
in this model of astrocyte pathology.
Typically the L-AA-induced loss of astrocytes targeted the dorsal

portion of the prelimbic, as well as the cingulate subregions of the

Figure 4. Injection of L-AA induces a progressive damage of dendritic structure in mPFC pyramidal neurons. Analysis of 3D structure of
neurons in lesion and peri-lesion sites at 2 (a and c) and 6 (b and d) days post injection of aCSF (CON) or L-AA (AA); Each panel: above, mean
values± s.e.m. of total apical dendritic length and Sholl analysis of apical dendrites; below, total basal dendritic length, number of basal
dendrites and Sholl analysis of basal dendrites. *Po0.05; **Po0.01; ***Po0.001; a and b left panel, representative 3D reconstructions of
neurons of each group. Scale bar= 100 μm.
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mPFC. The function of the mPFC was tested using behavior tasks
that rely on this area to assess the impact of the astrocyte
pathology and consequent neuronal damage in the computation
of cognitive outputs. Astrocyte pathology in the mPFC affects the
attentional set-shifting, the working memory and the reversal
learning functions. The attentional set-shifting, defined as the
capability to ‘unlearn’ an established contingency in order to learn
a new one by shifting the attention from previously irrelevant
one to previously salient stimulus is computed by the mPFC in
rodents56 and primates.68,69 AA animals showed increased
difficulty when learning to discriminate the reward pot when
indicated by textures in the transition from SDO to SDT stage. This
shift of stimuli dimensions—from odor to texture—was shown to
be dependent on the intact function of the prelimbic cortex,70

which, in these animals, was targeted by the L-AA injections. In
addition, astrocyte pathology caused a worse performance in the
reversal learning stages, which was already described to arise after
lesions in the mPFC71 and might be due to an impairment in the
ability to attend relevant stimuli features within the same
dimension.72 These observations are consistent with the critical
role displayed by mPFC in shifting to new strategies or rules.73–76

When tested in water maze tasks, AA animals displayed impaired
working memory, which is a cognitive function dependent on the
mPFC.76 Altogether, these behavior data indicate that the
astrocyte pathology is sufficient to induce an impairment of the
mPFC function. On the basis of the description of similar
performances in previous neuronal lesion studies,56,70,77 this
evidence suggests that the behavior impairments observed may

be caused mainly by an indirect neuronal degeneration as a
consequence of the initial affection of neighbor astrocytes. Until
now, we have implicated the poorer performance of the mPFC
in the compromised neuronal function as a consequence of
surrounding astrocyte pathology, which leads to failure in
metabolic supply to neurons,78,79 homeostasis of K+ and H+

ions3 and neurotransmitters.1,2,79,80 We should, however, stress
that besides these functions, astrocytes are also implicated in the
modulation of the synaptic transmission and integration of
neuron-glia circuits.5–7 Although this model is not adequate to
assess specifically the function of the tripartite synapse,5 results
presented here indicate a crucial impairment of the network
output. As there is still a large group of resilient neurons in the
mPFC, we suggest that the lack of astrocytic surveillance in the
mPFC synaptic connections may account for network dysfunction
and consecutive deficient behavior output.
This study strongly supports the view that astrocytes, targeted

in a pathological process, may lead to neurodegeneration in a
specific brain region. In the case of mood disorders such as
depression or bipolar disorder reported in the literature with
impact on cognitive function,29–40 the changes of astrocytes
within the PFC may underlie the cognitive dysfunction observed
in these patients.
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Figure 5. Injection of L-AA does not affect spine density in mPFC pyramidal neurons. High-magnification micrographs of representative
dendritic segments (image composed of micrographs at different focal planes), with 20 μm zoom detailed on the right panel; scale bars= 20
μm. (a–d) values± s.e.m. of total spine densities in basal, apical proximal and apical distal portions of the dendrites from neurons in lesion and
peri-lesion sites at 2 (a and c) and 6 (c and d) days post injection of aCSF (CON) or L-AA (AA).
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