

J. Sáez-Rodríguez et al. (eds.), 8th International Conference on Practical Appl. of Comput.
Biol. & Bioinform. (PACBB 2014), Advances in Intelligent Systems and Computing 294,

261

DOI: 10.1007/978-3-319-07581-5_31, © Springer International Publishing Switzerland 2014

Bringing Named Entity Recognition on Drupal Content
Management System

José Ferrnandes1 and Anália Lourenço1,2

1 ESEI - Escuela Superior de Ingeniería Informática, University of Vigo, Edificio Politécnico,
Campus Universitario As Lagoas s/n, 32004 Ourense, Spain

2 IBB - Institute for Biotechnology and Bioengineering, Centre of Biological Engineering,
University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal

jose@bloomidea.com, analia@{ceb.uminho.pt,uvigo.es}

Abstract. Content management systems and frameworks (CMS/F) play a key
role in Web development. They support common Web operations and provide
for a number of optional modules to implement customized functionalities.
Given the increasing demand for text mining (TM) applications, it seems
logical that CMS/F extend their offer of TM modules. In this regard, this work
contributes to Drupal CMS/F with modules that support customized named
entity recognition and enable the construction of domain-specific document
search engines. Implementation relies on well-recognized Apache Information
Retrieval and TM initiatives, namely Apache Lucene, Apache Solr and Apache
Unstructured Information Management Architecture (UIMA). As proof of
concept, we present here the development of a Drupal CMS/F that retrieves
biomedical articles and performs automatic recognition of organism names to
enable further organism-driven document screening.

Keywords: Drupal, text mining, named entity recognition, Apache Lucene,
Apache Solr, Apache UIMA.

1 Introduction

The number of generic Text Mining (TM) software tools available now is
considerable [1, 2], and almost every computer language has some module or package
dedicated to natural language processing [3]. Notably, Biomedical TM (BioTM), i.e.
the area of TM dedicated to applications in the Biomedical domain, has grown
considerably [4, 5].

One of the main challenges in BioTM is achieving a good integration of TM tools
with tools that are already part of the user workbench, in particular data curation
pipelines [4, 6]. Many TM products (especially, commercial products) are built in a
monolithic way and often, their interfaces are not disclosed and open standards are
not fully supported [7]. Also, it is important to note that biomedical users have grown
dependent of Web resources and tools, such as online data repositories, online and
downloadable data analysis tools, and scientific literature catalogues [8]. Therefore, it

262 J. Ferrnandes and A. Lourenço

is desirable to integrate TM tools with these resources and tools, and it seems logical
to equip Web development frameworks, such as Content Management Systems and
Frameworks (CMS/F), with highly customizable TM modules.

Drupal, which is one of the most common open source CMS/Fs (http://trends.
builtwith.com/cms), already presents some contributions to Bioinformatics and TM:
the GMOD Drupal Bioinformatic Server Framework [9], which aims to speed up the
development of Drupal modules for bioinformatics applications; the OpenCalais
project that integrates Drupal with the Thomson Reuters' Calais Web service (http://
www.opencalais.com), a service for annotating texts with URIs from the Linked Open
Data cloud; and, RDF/RDFa support so to enable the use of this ontology language in
Web knowledge exchange and facilitate the development of document-driven
applications, and promote the availability of knowledge resources [10].

The aim of this work was to extend further Drupal TM capabilities, notably to
enable the incorporation of third-party specialized software and the development of
customized applications. The proof of concept addressed Named Entity Recognition
(NER), i.e. the identification of textual references to entities of interest, which is an
essential step in automatic text processing pipelines [11, 12]. There are many open-
source and free NER tools available, covering a wide range of bio-entities and
approaches. So, our efforts were focused on implementing a Drupal module that
would support customised NER and, in particular, to equip Drupal with the necessary
means to construct domain-specific document search engines. For this purpose, we
relied on Apache Information Retrieval (IR) and TM initiatives, namely Apache
Lucene, Apache Solr and Apache Unstructured Information Management
Architecture (UIMA).

The next sections describe the technologies used and their integration in the new
Drupal model. The recognition of species names in scientific papers using the state-
of-the-art and open source Linnaeus tool [13] is presented as an example of
application.

2 Apache Software Foundation Information Retrieval and
Extraction Initiatives

Apache organization supports some of the most important open source projects for the
Web [14]. The Web server recommended to run Drupal CMS/F is the Apache HTTP
Server [15]. Now, we want to take advantage of Apache Lucene, Apache Solr and
Apache UIMA to incorporate IR and TM capabilities in Drupal CMS/F.

The Apache Lucene and Apache Solr are two distinct Java projects that have
joined forces to provide a powerful, effective, and fully featured search tool. Solr is a
standalone enterprise search server with a REST-like API [16] and Lucene is a high-
performance and scalable IR library [17]. Due to its scalability and performance,
Lucene is one of the most popular, free IR libraries [17, 18]. Besides the inverted
index for efficient document retrieval, Lucene provides search enhancing features,
namely: a rich set of chainable text analysis components, such as tokenizers and
language-specific stemmers; a query syntax with a parser and a variety of query types

 Bringing Named Entity Recognition on Drupal Content Management System 263

that support from simple term lookup to fuzzy term matching; a scoring algorithm,
with flexible means to affect the scoring; and utilities such as the highlighter, the
query spell-checker, and "more like this" [16].

Apache Solr can be seen as an enabling layer for Apache Lucene that extends its
capabilities in order to support, among others: external configuration via XML;
advanced full-text search capabilities, standard-based open interfaces (e.g. XML,
JSON and HTTP); extensions to the Lucene Query Language; and, Apache UIMA
integration for configurable metadata extraction (http://lucene.apache.org/solr/
features.html).

Originally, the Apache UIMA started as an IBM Research project with the aim to
deliver a powerful infrastructure to store, transport, and retrieve documents and
annotation knowledge accumulated in NLP pipeline systems [19]. Currently, Apache
UIMA supports further types of unstructured information besides text, like audio,
video and images and is a de facto industry standard and software framework for
content analysis [20]. Its main focus is ensuring interoperability between the
processing components and thus, allowing a stable data transfer through the use of
common data representations and interfaces.

3 New Supporting Drupal NER Module

We looked for a tight integration of the aforementioned Apache technologies in order
to provide the basic means to deploy any NER task, namely those regarding basic
natural language processing and text annotation (Fig.1). Using XML as common
document interchange format, the new module allows the incorporation of third-party
NER tools through pre-existent or newly developed Apache UIMA wrappers.

Fig. 1. Interoperation of Apache technology and third-party NER tools in the Drupal NER
module

The proof of concept was the development of a Drupal CMS/F that retrieves
scientific articles from the PubMed Central Open Access subset (PMC-OA) [21] and
performs automatic recognition of organism mentions to enable further organism-
driven document screening. The next subsections detail the interoperation of the
different technologies and the integration of the Linnaeus UIMA NER wrapper as
means to deploy such CMS/F.

264 J. Ferrnandes and A. Lourenço

3.1 Document Retrieval and Indexing

Documents are retrieved from the PMC-OA through the FTP service. An XSLT
stylesheet is used to specify the set of rules that guide document format transformation.
Notably, the XML Path (XPath) language is used to identify matching nodes and
navigate through the elements and attributes in the PMC-OA XML documents.

After that, the Apache Solr engine is able to execute the UIMA-based NER pipeline
to identify textual references of interest (in this case, organism names) and produce a list
of named entities. The textual references are included in the metadata of the documents,
and the entities recognized are added to the Apache Lucene index as means to enable
further organism-specific document retrieval by the Drupal application.

3.2 Document Processing and Annotation

Apache UIMA supports the creation of highly customized document processing
pipelines [22]. At the beginning of any processing pipeline is the Collection Reader
component (Fig. 2), which is responsible for document input and interaction.
Whenever a document is processed by the pipeline, a new object-based data structure,
named Common Analysis Structure (CAS), is created. UIMA associates a Type
System (TS), like an object schema for the CAS, which defines the various types of
objects that may be discovered in documents. The TS can be extended by the
developer, permitting the creation of very rich type systems.

Fig. 2. High-Level UIMA Component Architecture

This CAS is processed throughout the pipeline and information can be added to the
object by the Analysis Engine (AE) at different stages. The UIMA framework treats
AEs as pluggable, compatible, discoverable, managed objects that analyze documents
as needed. An AE consists of two components: Java classes, typically packaged as
one or more JAR files, and AE descriptors, consisting of one or more XML files. The
simplest type of AE is the primitive type, which contains a single annotator at its core
(e.g. a tokenizer), but AEs can be combined together into an Aggregate Analysis
Engine (AAE). The basic building block of any AE is the Annotator, which comprises
the analysis algorithms responsible for the discovery of the desired types and the CAS
update for upstream processing.

At the end of the processing pipeline are the CAS Consumers, which receive the
CAS objects, after they have been analyzed by the AE/AAE, and conduct the final
CAS processing.

 Bringing Named Enti

3.3 Integration of Thir

Apache UIMA supports se
tools. Indeed, there already
tools, such as the organism

The first step to create an
i.e. the XML file that co
configuration parameters, d
the resources that the annot
by auto-generating this fil
window (Fig. 3 - A).

Fi

The AE is then able to l
is to define the TS, namely
the AE descriptor file (Fig.

 public void process
{
 String text = c
 List<Mention> m
 for (Mention me
 String most
 String idsT
 LinnaeusSpe
 species.set
 species.set
 species.set
 species.set
 species.set
 species.add
 }
 }

Fig. 4. proce

ity Recognition on Drupal Content Management System

rd-Party NER Tools

eamless integration of third-party TM tools such as N
y exist UIMA wrappers for several state-of-the-art N
tagger Linnaeus [23].
n UIMA annotator wrapper is to define the AE Descrip
ntains the information about the annotator, such as
data structures, annotator input and output data types,
tator uses. The UIMA Eclipse plug-ins help in this creat
le based on the options configured in a point and cl

ig. 3. UIMA Eclipse plug-in windows

load the annotator in the UIMA pipeline, and the next s
the output types produced by the annotator, as described
3 - B).

(JCas cas) throws AnalysisEngineProcessExceptio

cas.getDocumentText();
mentions = matcher.match(text);
ention : mentions) {
tProbableID = mention.getMostProbableID();
ToString = mention.getIdsToString();
ecies species = new LinnaeusSpecies(cas);
tBegin(mention.getStart());
tEnd(mention.getEnd());
tMostProbableSpeciesId(mostProbableID);
tAllIdsString(idsToString);
tAmbigous(mention.isAmbigous());
dToIndexes();

ess() method of the LinnaeusWrapper.java class

265

NER
NER

ptor,
the
and
tion
lick

step
d in

on

266 J. Ferrnandes and A.

The implementation of
AnalysisComponent. Basi
implementation of the ann
(Fig. 4).

The CAS Visual Debug
wrappers, in particular the
the pipeline is ready to be u

Fig. 5. Linnaeus U

3.4 Integration between

Drupal allows developers t
components. Here, we deve
(https://drupal.org/project/v
querying of the Apache So
available for Drupal View
applications [24]. This Dru
support different configura
the administration of netw
other parameters regarding

After configuration, it
documents and the corre
module simplifies custom q
CMS.

 Lourenço

f AE’s Annotator is based on the standard interf
cally, the wrapping of third-party tools implies
otator process() method, i.e. the desired Annotator lo

gger is useful while implementing and testing the UIM
annotators (Fig. 5). After wrappers are fully function

used.

UIMA wrapper running on a PMC Open Access article

n Drupal and Apache Solr

to alter and customize the functionality of almost all of
eloped a new Drupal module, named Views Solr Back

views_solr_backend), to allow the easy and flexi
olr index. The module is written in PHP and uses the A
ws and Solarium, an Apache Solr client library for P
upal module can be easily configured and is even able
ations for multiple Solr hosts (Fig. 6). Notably, it enab
ork parameters, the path to connect to the Solr host,
the presentation of the search results in Drupal.
is possible to query any Solr schema, i.e. all inde

esponding annotations. Therefore, our Drupal’s Vie
query display while increasing the interoperability with

face
the

ogic

MA
ning

f its
kend
ible

APIs
PHP
e to
bles
and

exed
ews
the

 Bringing Named Enti

Fig. 6

4 Conclusions and

Drupal is a powerful and a
the Biomedical domains.
processing in support of the
become almost a required m

This work addressed thi
and IE initiatives. The n
Drupal.org website (ht
Apache Solr with Drupal a
engines in Drupal applicati
here for the Linnaeus NER
in the document analysis
seamlessly means of specia

Acknowledgements. This w
Ciência e Tecnologia (FCT
Program COMPETE [FCT
01-0124-FEDER-016012],
FEDER unha maneira de
results has received fund
Programme FP7/REGPOT
BIOCAPS. This document
not liable for any use that m

ity Recognition on Drupal Content Management System

6. Drupal module setup and presentation

d Future Work

agile CMS/F that suits a number of development effort
Given the increasing demand for automatic docum

e population of biomedical knowledge systems, BioTM
module in such a framework.
is need through the exploitation of major open source
new Drupal Views Solr Backend module, available
ttps://drupal.org/project/views_solr_backend), integra

and thus, enables the implementation of customized sea
ions. Moreover, the Apache Solr UIMA plug-in develo

R tool exemplifies the integration of third-party NER to
s processes of Apache Solr, granting a powerful
alized document annotation and indexing.

work was supported by the IBB-CEB, the Fundação par
T) and the European Community fund FEDER, throu

T Project number PTDC/SAU-SAP/113196/2009/FCOM
and the Agrupamento INBIOMED from DXPCTSU
facer Europa (2012/273). The research leading to th

ding from the European Union's Seventh Framew
T-2012-2013.1 under grant agreement n° 3162
reflects only the author’s views and the European Unio

may be made of the information contained herein.

267

s in
ment

has

e IR
e at
ates
arch
ped
ools
and

ra a
ugh

MP-
UG-
hese

work
265,
on is

268 J. Ferrnandes and A. Lourenço

References

1. Kano, Y., Baumgartner, W.A., McCrohon, L., et al.: U-Compare: share and compare text
mining tools with UIMA. Bioinformatics 25, 1997–1998 (2009),
doi:10.1093/bioinformatics/btp289

2. Fan, W., Wallace, L., Rich, S., Zhang, Z.: Tapping the power of text mining. Commun.
ACM 49, 76–82 (2006), doi:10.1145/1151030.1151032

3. Gemert, J.: Van Text Mining Tools on the Internet An overview. Univ. Amsterdam 25, 1–
75 (2000)

4. Lourenço, A., Carreira, R., Carneiro, S., et al.: @Note: A workbench for biomedical text
mining. J. Biomed. Inform. 42, 710–720 (2009), doi:10.1016/j.jbi.2009.04.002

5. Hucka, M., Finney, A., Sauro, H.: A medium for representation and exchange of
biochemical network models (2003)

6. Lu, Z., Hirschman, L.: Biocuration workflows and text mining: overview of the BioCreative,
Workshop Track II. Database (Oxford) 2012:bas043 (2012), doi:10.1093/database/bas043

7. Feinerer, I., Hornik, K., Meyer, D.: Text Mining Infrastructure in R. J. Stat. Softw. 25,
1–54 (2008), doi:citeulike-article-id:2842334

8. Fernández-Suárez, X.M., Rigden, D.J., Galperin, M.Y.: The 2014 Nucleic Acids Research
Database Issue and an updated NAR online Molecular Biology Database Collection.
Nucleic Acids Res. 42, 1–6 (2014), doi:10.1093/nar/gkt1282

9. Papanicolaou, A., Heckel, D.G.: The GMOD Drupal bioinformatic server framework.
Bioinformatics 26, 3119–3124 (2010), doi:10.1093bioinformatics/btq599

10. Decker, S., Melnik, S., van Harmelen, F., et al.: The Semantic Web: the roles of XML and
RDF. IEEE Internet Comput. 4, 63–73 (2000), doi:10.1109/4236.877487

11. Rebholz-Schuhmann, D., Kafkas, S., Kim, J.-H., et al.: Monitoring named entity recognition:
The League Table. J. Biomed Semantics 4, 19 (2013), doi:10.1186/2041-1480-4-19

12. Rzhetsky, A., Seringhaus, M., Gerstein, M.B.: Getting started in text mining: Part two.
PLoS Comput. Biol. 5, e1000411 (2009), doi:10.1371/journal.pcbi.1000411

13. Gerner, M., Nenadic, G., Bergman, C.M.: LINNAEUS: A species name identification system
for biomedical literature. BMC Bioinformatics 11, 85 (2010), doi:10.1186/1471-2105-11-85

14. Fielding, R.T., Kaiser, G.: The Apache HTTP Server Project. IEEE Internet Comput.
(1997), doi:10.1109/4236.612229

15. Web server | Drupal.org., https://drupal.org/requirements/webserver
16. Smiley, D., Pugh, E.: Apache Solr 3 Enterprise Search Server, p. 418 (2011)
17. McCandless, M., Hatcher, E., Gospodnetic, O.: Lucene in Action, Second Edition: Covers

Apache Lucene 3.0, p. 475 (2010)
18. Konchady, M.: Building Search Applications: Lucene, LingPipe, and Gate, p. 448 (2008)
19. Ferrucci, D., Lally, A.: UIMA: An architectural approach to unstructured information

processing in the corporate research environment. Nat. Lang. Eng. (2004)
20. Rak, R., Rowley, A., Ananiadou, S.: Collaborative Development and Evaluation of Text-

processing Workflows in a UIMA-supported Web-based Workbench. In: LREC (2012)
21. Lin, J.: Is searching full text more effective than searching abstracts? BMC

Bioinformatics 10, 46 (2009), doi:10.1186/1471-2105-10-46
22. Baumgartner, W.A., Cohen, K.B., Hunter, L.: An open-source framework for large-scale,

flexible evaluation of biomedical text mining systems. J. Biomed. Discov. Collab. 3, 1
(2008), doi:10.1186/1747-5333-3-1

23. Móra, G.: Concept identification by machine learning aided dictionary-based named entity
recognition and rule-based entity normalisation. Second CALBC Work

24. Kumar, J.: Apache Solr PHP Integration, p. 118 (2013)

