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Abstract. Content management systems and frameworks (CMS/F) play a key 
role in Web development. They support common Web operations and provide 
for a number of optional modules to implement customized functionalities. 
Given the increasing demand for text mining (TM) applications, it seems 
logical that CMS/F extend their offer of TM modules. In this regard, this work 
contributes to Drupal CMS/F with modules that support customized named 
entity recognition and enable the construction of domain-specific document 
search engines. Implementation relies on well-recognized Apache Information 
Retrieval and TM initiatives, namely Apache Lucene, Apache Solr and Apache 
Unstructured Information Management Architecture (UIMA). As proof of 
concept, we present here the development of a Drupal CMS/F that retrieves 
biomedical articles and performs automatic recognition of organism names to 
enable further organism-driven document screening. 
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1 Introduction 

The number of generic Text Mining (TM) software tools available now is 
considerable [1, 2], and almost every computer language has some module or package 
dedicated to natural language processing [3]. Notably, Biomedical TM (BioTM), i.e. 
the area of TM dedicated to applications in the Biomedical domain, has grown 
considerably [4, 5].  

One of the main challenges in BioTM is achieving a good integration of TM tools 
with tools that are already part of the user workbench, in particular data curation 
pipelines [4, 6]. Many TM products (especially, commercial products) are built in a 
monolithic way and often, their interfaces are not disclosed and open standards are 
not fully supported [7]. Also, it is important to note that biomedical users have grown 
dependent of Web resources and tools, such as online data repositories, online and 
downloadable data analysis tools, and scientific literature catalogues [8]. Therefore, it 
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is desirable to integrate TM tools with these resources and tools, and it seems logical 
to equip Web development frameworks, such as Content Management Systems and 
Frameworks (CMS/F), with highly customizable TM modules. 

Drupal, which is one of the most common open source CMS/Fs (http://trends. 
builtwith.com/cms), already presents some contributions to Bioinformatics and TM: 
the GMOD Drupal Bioinformatic Server Framework [9], which aims to speed up the 
development of Drupal modules for bioinformatics applications; the OpenCalais 
project that integrates Drupal with the Thomson Reuters' Calais Web service (http:// 
www.opencalais.com), a service for annotating texts with URIs from the Linked Open 
Data cloud; and, RDF/RDFa support so to enable the use of this ontology language in 
Web knowledge exchange and facilitate the development of document-driven 
applications, and promote the availability of knowledge resources [10].  

The aim of this work was to extend further Drupal TM capabilities, notably to 
enable the incorporation of third-party specialized software and the development of 
customized applications. The proof of concept addressed Named Entity Recognition 
(NER), i.e. the identification of textual references to entities of interest, which is an 
essential step in automatic text processing pipelines [11, 12]. There are many open-
source and free NER tools available, covering a wide range of bio-entities and 
approaches. So, our efforts were focused on implementing a Drupal module that 
would support customised NER and, in particular, to equip Drupal with the necessary 
means to construct domain-specific document search engines. For this purpose, we 
relied on Apache Information Retrieval (IR) and TM initiatives, namely Apache 
Lucene, Apache Solr and Apache Unstructured Information Management 
Architecture (UIMA).  

The next sections describe the technologies used and their integration in the new 
Drupal model. The recognition of species names in scientific papers using the state-
of-the-art and open source Linnaeus tool [13] is presented as an example of 
application. 

2 Apache Software Foundation Information Retrieval and 
Extraction Initiatives 

Apache organization supports some of the most important open source projects for the 
Web [14]. The Web server recommended to run Drupal CMS/F is the Apache HTTP 
Server [15]. Now, we want to take advantage of Apache Lucene, Apache Solr and 
Apache UIMA to incorporate IR and TM capabilities in Drupal CMS/F. 

The Apache Lucene and Apache Solr are two distinct Java projects that have 
joined forces to provide a powerful, effective, and fully featured search tool. Solr is a 
standalone enterprise search server with a REST-like API [16] and Lucene is a high-
performance and scalable IR library [17]. Due to its scalability and performance, 
Lucene is one of the most popular, free IR libraries [17, 18]. Besides the inverted 
index for efficient document retrieval, Lucene provides search enhancing features, 
namely: a rich set of chainable text analysis components, such as tokenizers and 
language-specific stemmers; a query syntax with a parser and a variety of query types 
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that support from simple term lookup to fuzzy term matching; a scoring algorithm, 
with flexible means to affect the scoring; and utilities such as the highlighter, the 
query spell-checker, and "more like this" [16].  

Apache Solr can be seen as an enabling layer for Apache Lucene that extends its 
capabilities in order to support, among others: external configuration via XML; 
advanced full-text search capabilities, standard-based open interfaces (e.g. XML, 
JSON and HTTP); extensions to the Lucene Query Language; and, Apache UIMA 
integration for configurable metadata extraction (http://lucene.apache.org/solr/ 
features.html). 

Originally, the Apache UIMA started as an IBM Research project with the aim to 
deliver a powerful infrastructure to store, transport, and retrieve documents and 
annotation knowledge accumulated in NLP pipeline systems [19]. Currently, Apache 
UIMA supports further types of unstructured information besides text, like audio, 
video and images and is a de facto industry standard and software framework for 
content analysis [20]. Its main focus is ensuring interoperability between the 
processing components and thus, allowing a stable data transfer through the use of 
common data representations and interfaces. 

3 New Supporting Drupal NER Module 

We looked for a tight integration of the aforementioned Apache technologies in order 
to provide the basic means to deploy any NER task, namely those regarding basic 
natural language processing and text annotation (Fig.1). Using XML as common 
document interchange format, the new module allows the incorporation of third-party 
NER tools through pre-existent or newly developed Apache UIMA wrappers.  

 

Fig. 1. Interoperation of Apache technology and third-party NER tools in the Drupal NER 
module 

The proof of concept was the development of a Drupal CMS/F that retrieves 
scientific articles from the PubMed Central Open Access subset (PMC-OA) [21] and 
performs automatic recognition of organism mentions to enable further organism-
driven document screening. The next subsections detail the interoperation of the 
different technologies and the integration of the Linnaeus UIMA NER wrapper as 
means to deploy such CMS/F. 
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3.1 Document Retrieval and Indexing 

Documents are retrieved from the PMC-OA through the FTP service. An XSLT 
stylesheet is used to specify the set of rules that guide document format transformation. 
Notably, the XML Path (XPath) language is used to identify matching nodes and 
navigate through the elements and attributes in the PMC-OA XML documents.  

After that, the Apache Solr engine is able to execute the UIMA-based NER pipeline 
to identify textual references of interest (in this case, organism names) and produce a list 
of named entities. The textual references are included in the metadata of the documents, 
and the entities recognized are added to the Apache Lucene index as means to enable 
further organism-specific document retrieval by the Drupal application. 

3.2 Document Processing and Annotation 

Apache UIMA supports the creation of highly customized document processing 
pipelines [22]. At the beginning of any processing pipeline is the Collection Reader 
component (Fig. 2), which is responsible for document input and interaction. 
Whenever a document is processed by the pipeline, a new object-based data structure, 
named Common Analysis Structure (CAS), is created. UIMA associates a Type 
System (TS), like an object schema for the CAS, which defines the various types of 
objects that may be discovered in documents. The TS can be extended by the 
developer, permitting the creation of very rich type systems.  

 

Fig. 2. High-Level UIMA Component Architecture 

This CAS is processed throughout the pipeline and information can be added to the 
object by the Analysis Engine (AE) at different stages. The UIMA framework treats 
AEs as pluggable, compatible, discoverable, managed objects that analyze documents 
as needed. An AE consists of two components: Java classes, typically packaged as 
one or more JAR files, and AE descriptors, consisting of one or more XML files. The 
simplest type of AE is the primitive type, which contains a single annotator at its core 
(e.g. a tokenizer), but AEs can be combined together into an Aggregate Analysis 
Engine (AAE). The basic building block of any AE is the Annotator, which comprises 
the analysis algorithms responsible for the discovery of the desired types and the CAS 
update for upstream processing. 

At the end of the processing pipeline are the CAS Consumers, which receive the 
CAS objects, after they have been analyzed by the AE/AAE, and conduct the final 
CAS processing.  
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