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Abstract. During the past decade, several approaches have been proposed to investigate the 

response of masonry structures strengthened by externally bonded Fiber Reinforced Polymer 

(FRP) reinforcements. Nowadays, regardless of the great efforts made, scarce information 

are available on the delamination behavior of reinforced curved substrates. An experimental 

and numerical study is presented herein, focusing on curved masonry prisms with a glass 

FRP strip. Both convex and concave configurations with a diverse curvature are considered 

for the specimens, constituted by four Portuguese bricks bonded by three joints of 

conventional mortar. The experimental data are interpreted in the light of fully three-

dimensional finite element simulations. Under the simplifying assumption of perfect adhesion, 

such advanced model allows to reconstruct local processes inside the masonry prisms, such 

as the damage distribution and the interface tractions, correlating them to the macroscopic 

response in terms of reaction force versus tangential slip. The effect of the geometrical 

curvature on the delamination response of the masonry prisms is critically and comparatively 

assessed by means of “step-by-step” numerical predictions together with a “direct” lower 

bound limit analysis approach. This topic is of paramount importance for structural 

engineering when dealing with masonry arches and double curvature structural elements. 
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1 INTRODUCTION 

During the past years Fiber Reinforced Polymers (FRP) are being widely used in 

strengthening and retrofitting interventions on masonry structures, mainly to increase the in-

plane shear resistance or to provide out-of-plane load bearing capacity. Composite materials 

can be advantageously applied at the intrados or at the extrados surface of flat and curved 

masonry structural elements, to prevent or delay collapse mechanisms and, consequently, to 

increase the overall safety factor, e.g. with respect to seismic events. 

In particular, the mechanisms governing the interface bond have been extensively 

investigated [1]-[15]. While in the 1990s research was exclusively focused on reinforced 

concrete, in the last two decades the experimental and numerical literature extended also for 

masonry [16]-[40]. At present, mainly due to the technical progress in high strength 

adhesives, it can be stated that the delamination response of strengthened masonry is almost 

always dominated by the strength of the substrate [16]-[38], at least, when the influence of 

long term loading is not considered. Experimental studies demonstrate that debonding occurs 

because of the failure of the underlying masonry, with a further complication represented by 

mortar joints, which represent planes of weakness where cracks propagate preferentially even 

at low load levels on the FRP strip.  

Despite the literature copiousness dealing with FRP reinforced masonry, there is still a 

lack of knowledge regarding the delamination of FRP strips from curved surfaces [36][39]. 

This topic is crucial to correctly predict the response of strengthened arches in the non-linear 

regime, particularly in those sections interested by the possible formation of plastic hinges 

and for anchoring purposes. At present, specialized codes of practice, see e.g. CNR DT 200R1 

technical document [1], do not provide suggestions relevant to the reinforcement of a curved 

substrate, and, in particular, do not furnish indications on the possible reduction of the 

tangential strength due to the presence of normal stresses at the interface, let say on geometry-

induced mixed mode loading conditions.  

This study is the continuation of a research stream firstly initiated at the University of 

Minho [18][27][28], where two curved masonry prisms, one concave and the other convex, 

were subjected to single-lap shear tests. The aim of the present contribution is threefold: first, 

experimental evidences on curved reinforced prisms are outlined; subsequently, on this basis a 
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three dimensional finite element model of the tested specimens is calibrated and validated; 

finally, a simple at-hand procedure, based on the lower bound theorem of limit analysis, is put 

at disposal for practitioners to predict the peak delamination strength of curved masonry 

elements.  

Notation. Tensor notation is preferred for the damage model formulation, whilst vector 

notation is used elsewhere. Mechanical strengths in tension and compression, denoted by 

symbols ft and fc, respectively, have not to be confused with the damage activation 

functions tf  and cf . Acronym FE will denote the Finite Element model. 

2 EXPERIMENTAL SET-UP AND CONSTITUENT PROPERTIES  

An experimental campaign was developed to assess the ultimate load and collapse 

mechanisms of reinforced masonry portions of arches, strengthened with FRP strips and 

subjected to standard delamination tests.  The selected samples, see Figure 1, were constituted 

by four Portuguese Galveias clay bricks. This kind of bricks, produced by hand molding, 

exhibits higher absorption and porosity than modern standard bricks, and a low compressive 

strength, typical of ancient masonry buildings. For the readers’ convenience the following 

reference values can be provided: bulk weight (kg/m3) 1740; 24 hrs cold water absorption 

11.2%; porosity 20.9%.  

Bricks were suitably worked out along one direction to draw a curved shape, mimicking 

the portion of an arch. Thereafter, they were bonded by three joints of conventional mortar 

available in commerce. The resulting prism geometry exhibits flat external surfaces (over 

which all the bricks are aligned), except the strengthened surface, which possesses a curved 

shape with constant curvature radius R0=760 [mm]. The tested portions of arches were 

235x130x90 mm3 sized, and the GFRP strip had an anchorage (rectified) length equal to 150 

mm. Two geometries with the same curvature radius were considered [27] [28], one convex 

(hereafter labeled as +R0) and the other concave (–R0). Hereinafter, the terms concave and 

convex have to be considered in the usual mathematical sense as profiles with a second order 

derivative positive or negative (when assuming axes as in Figure 2), respectively.  

In Figure 2 the geometry and size of all the considered masonry prisms are illustrated, 

indicating also the location of the curvature center for the reinforced surfaces. Besides those 

tested in the experimental campaign, in fact, the response of specimens with different 
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curvatures have been predicted by an accurate three dimensional FE model, accounting for 

damage processes in both mortar and bricks [21]-[23].  

The experimental setup for single-lap shear test, sketched in Figure 1, was developed by 

Basilio [27] for an electro-mechanical Universal Instron testing machine, with a maximum 

capacity of 50 kN. The adapted device was specifically designed to avoid premature shear 

failure and to ensure an adequate stability of the test under displacement control. The samples 

were instrumented with LVDTs, providing also the feedback signal for the integral-derivative 

test control. Tested samples exhibited failure mechanism involving the masonry prism, with 

damage propagating deep inside the bulk material, for both the convex and concave 

configuration, as shown by post-mortem pictures in Figure 3. 

Moreover, preliminary experiments were performed to assess the uniaxial behavior of 

single constituents. The experimental responses of mortar joints and bricks subjected to 

compression tests, see [27], are shown in Figure 4. Both brick and mortar exhibit similar peak 

strengths, and a marked post-peak, softening branch. For the readers’ convenience, Table 1 

indicates synoptically the material properties under compression. The dissipated energies 

were estimated as the area underlying the uniaxial constitutive plot in terms of stress and 

strains. In particular, dissipated energies in Table 1 were obtained by averaging those relevant 

to several experimental plots, as documented in Basilio [27]. For a critical comparison, the 

interested reader is forwarded to a comprehensive study carried out on Portuguese bricks [41].  

3 DAMAGE MODEL AND REGULARIZATION PROVISION 

To describe both brick and mortar response, recourse is made to an isotropic damage 

model originally presented in Comi & Perego [45] for concrete, but applied also to possibly 

deteriorated dams and masonry elements [46][47]. The model was implemented in Abaqus 

[48] commercial code with a suitable Fortran user defined subroutine Vumat [45] [46]. Only a 

few hints are provided herein, whereas the interested reader is forwarded to [21][22] for 

further details. 

Each quasi-brittle constituent (brick and mortar) is described herein as an elastic-

damageable material: both the shear and bulk elastic moduli, denoted by [2(1 )]G E   and 

[3(1 2 )]K E   , respectively, are possibly deteriorated by damage. The governing equations 

are the following: 
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Symbols possess the following meaning: ij1  denotes the second-order identity operator; σ , 

ε , (tr 3) S σ σ 1 , (tr 3) e ε ε 1  denote as usual the stress and strain tensors, and their 

deviatoric counterparts, respectively, being 1 tr ij jiI   σ ,  3
22 ij jiJ S S , tr ij ij ε  tensor 

invariants; scalar variables tD and cD  govern through Eq. (2) damage mechanisms in 

tension and compression, resp., giving rise to an effective damage 1 (1 ) (1 )t cD D D      in 

Eq. (1); tf and cf denote the relevant damage activation functions; 
0ta ,

1ta ,
2ta  and 

0ca ,
1ca ,

2ca  

in Eq. (2) are nonnegative material parameters, to be detailed later.  

The current elastic domain is defined in the stress space by the inequalities 0t f  and 

0c f (see Eq. 2): its outer border is constituted by an hyperboloid and an ellipsoid, implicitly 

specified when strict equalities are considered for the above activation functions, respectively. 

The shape and location in the stress space of these geometric loci depend on the above 

parameters 
ija  ( 0 1 2i c,t; j , ,  ), which have to satisfy consistency conditions [45], and on 

the current value of the monotonically increasing damage variables ( 0iD  ) through 

functions ih  specified in Eq. (3). 

Hardening/softening function th  and ch  appearing in Eqs. (2) and (3) depend: in the 

hardening branch, on parameters iei 0/  and 0iD , namely on the ratio between the stress at 

the elastic limit and the uniaxial strength, and on the damage level at peak under uniaxial 
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conditions, respectively; in the descending, softening branch, uniquely on parameter mi  

( i c  or t  ). 

Fracture energy regularization. The present FE implementation includes a specific strategy, 

simple but effective, for fracture energy regularization. At each integration point, parameter 

mi  ( i t ,c ), governing the post peak branch of the softening function ih  in Eq. (3), ensures 

that the dissipated energy iG ( )i t ,c  does not vary from one element to another. To this 

purpose, at the beginning of each analysis a database is generated depending on the adopted 

material parameters (separately for each constituent). Several uniaxial stress-strain plots are 

drawn at varying the post-peak parameter mi inside a reasonable range, and a suitable set of 

specific energies
0

(m ) =i ig d


    are simply derived by quadrature. In practice, separately for 

tension and compression ( )i t ,c , the forward function m (m )i i ig  is sampled inside a 

reasonable interval, and the inverse relationship mj jg  can be easily estimated once for all 

by interpolating values available in the database. The specific (for unit volume) energy to be 

dissipated locally should satisfy the relationship ch(m ) i i ig G l , where the characteristic 

length represents the width of the crack brand front, herein assumed as 3
ch ell V , being eqV  

the element volume. Values of parameter mi ( )i t ,c  so achieved at each integration point, 

separately for each constituent, can be stored in memory and remain unchanged throughout 

the analysis. The values of m j  to be exploited in the database depend on the range of 

characteristic lengths in the adopted FE discretization, by which fracture energy iG  is scaled, 

namely belong to the interval ch ch[min max ]l , l . For the problem at hand, twelve values m j  

were considered.  

In Figure 5, the simulated response of the brick material under uniaxial tension is 

shown, with the regularized post-peak softening branch varying as a function of the element 

side. As expected, when the element size decreases, the dissipated energy tg  (herein 

represented by the area underlying the plot) increases, and the response exhibits an augmented 

ductility. On the contrary, if the element side is excessively large, snap-back phenomena may 

occur. The overall distribution of the post-peak parameters mi ( )i t ,c  estimated by the 
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above procedure for each constituent inside the adopted discretization, is shown in Figure 6-a 

and -b, with reference to the dissipated energy in tension and compression, respectively. 

Calibration/validation of model parameters. Simple analytical formulae are provided in 

Comi & Perego [45], allowing one to relate the model parameters 
ija  ( 0 1 2i c,t; j , ,  ) 

entering the above activation functions, Eq. (2), with the mechanical quantities used for 

design and engineering practice. Model parameters governing the compressive response of 

both mortar and brick were derived on the basis of uniaxial compression tests preliminarily 

performed on the single masonry constituents, as detailed by Basilio [27] and summarized in 

Table 2. On the basis of suggestions available in the literature (see also [29],[41]-[44]), the 

tensile strengths were assumed according to the relationship ft %5  fc [22]. Values of 

dissipated energies 
tG  were tuned to fit the macroscopic response of the prisms. 

The initial elastic domains for both mortar and brick materials are drawn in the Haar 

Westergaard space in Figure 7-a and Figure 7-b, respectively, under plane-stress conditions. 

Under uniaxial compression, the experimental response for brick and mortar and their 

simulated counterparts are shown in Figure 8-a and Figure 9-a, respectively. For the user 

convenience, also the response in tension predicted by the adopted damage model is 

visualized (subfigures b).  

In the FE model GFRP strip (1 mm thick) was assumed to be perfectly bonded to the 

substrate, and to behave as an isotropically elastic material with Young Modulus equal to 20 

GPa and Poisson’s ratio to 0.20. In the authors’ experience, values provided for the GFRP 

thickness and for the estimated Young modulus should be regarded as the effective or 

apparent thickness/stiffness of a composite material including several layers of grout and 

adhesive suitably (manually, by a roller) superimposed to each other according to a well 

defined protocol, and during curing subjected to hardening and shrinkage. Assuming an 

elastic response for the FRP composite, a micromechanical approach would lead to estimate 

local stresses in the reinforcement constituents, see Basilio et al. [18]. By means of a suitable 

choice of a micromechanical model for the composite, see Sejnoha & Zeman [49], it is always 

possible to check whether the local stresses are indeed found in the allowable limits, see 

Dvorak & Sejnoha [50] [51]. 



 

 8

4 FINITE ELEMENT ANALYSES OF CURVED PRISMS  

Masonry prisms tested during the experimental campaign, with a constant curvature 

radius  R0 over the reinforced surface, were discretized by finite elements, as shown in 

Figure 10. A comparison between the overall responses derived from the experiments, in 

terms of reaction force versus prescribed displacement, and their computed counterparts is 

given in Figure 11, for both the concave and convex case. As expected, concave configuration 

implies higher peak loading. Conversely, experimental data exhibit a quite marked scatter in 

the convex case, with peak loads sometimes higher with respect to those relevant for the 

concave case.  

The damage distributions at increasing displacements are represented in Figure 12 and 

Figure 13 for the convex and concave case, respectively. As it can be noted, damage 

propagates deeply inside masonry, as confirmed by post-mortem pictures of the tested prisms 

in Figure 3. Moreover, the mechanical properties of the adopted mortar, close to the brick’s 

ones, are responsible for the extensive diffusion of damage inside bricks during delamination 

tests. In the presence of weak joints, instead, damage localizes closely to the strip attachment, 

see e.g. Fedele & Milani [21][22]. 

Once that the FE model was calibrated and validated by the available tests on prisms 

with assigned curvature radius (referred to as R0), analyses were extended till to include 

different geometries. In fact, two additional convex (+1.25 R0, +0.75R0) and two concave (–

1.25 R0 and –0.75 R0) curvature radii were considered for the prisms, as schematically 

indicated in Figure 2. In addition, a convex geometry with a very large curvature radius (+5 

R0) was finally modeled to approximate a flat reinforcement. As a consequence, the total 

amount of geometries considered for the computer simulations is equal to seven, namely three 

for both convex and concave configurations, plus the approximated flat configuration as a 

reference. Therefore, the numerical campaign made available a wider set of data, to better 

investigate the dependence of delamination strength on the reinforced prism curvature.  

The overall responses computed by the finite element model at varying the curvature radius 

are synoptically visualized in Figure 14. As it can be observed for the convex case (+0.75 R0, 

+R0, +1.25R0), an increase of the curvature radius (or a decrease of curvature, resp.) results 

into an overall response with a higher peak strength and a larger ductility. For the concave 

case (-0.75 R0, -R0, -1.25R0), instead, an opposite trend is experienced, namely an increase (in 
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modulus) of curvature radius implies a decrease of the peak strength and a more marked 

overall brittle response. The flat case represents in a sense the separation element behavior 

between convex and concave samples and their response, rigorously recovered 

when 0R  , and herein approximated by a convex prism with radius 5 R0.  

The increase and decrease of the peak load with the curvature radius, for convex and 

concave prisms respectively, should be regarded as a systematic trend and can be justified 

investigating the stresses acting over the GFRP-masonry prism interface. In fact, stress tensor 

inside the reinforcement can be extrapolated to the interface nodes, and normal and tangential 

tractions acting over the joint easily derived according to Cauchy’s tetrahedron theorem.  

Critical observations concerning the numerical results can be outlined as follows. 

(1) Averaged values (over the CFRP-masonry joined area) for shear and normal stresses 

over the reinforcement-masonry interface at the peak loads, say n  and  , were evaluated 

by suitable post processing of FE results, and visualized in the Mohr plane, see Figure 15. A 

marked trend with respect to the curvature radius of the interface can be noted. The same 

results are differently arranged in Figure 16, in terms of the mean normal (subfigure a) and 

tangential (subfigure b) stress components acting over the FRP-masonry interface, as a 

function of normalized curvature radius R/R0. As it can be observed, convex specimens 

possess a positive average normal stress n 0  , which induces premature separation between 

the adherents (masonry and reinforcement). Such positive stress is responsible for the lower 

average shear strength of the interface. The average normal stress n  increases with the 

curvature (and decreases with the curvature radius): its trend can be satisfactorily fitted by a 

cubic spline, as shown in Figure 16. 

When dealing with the concave specimens, a meaningful negative normal stress n 0   (up to 

around 0.1 MPa) acts at the interface, which prevents adherents from separating. Such normal 

stress decreases –in absolute value– when the curvature radius (in absolute value) increases. 

The flat case exhibits, as expected, an almost zero mean normal stress 0n  (see the cubic 

interpolation reported in Figure 16), and locally pure mode II conditions are recovered. 

Results reported in Figure 15 may be extremely useful even to practitioners interested in a 

correct evaluation of the peak delamination strength in masonry arches with assigned 

curvature radius. It is worth emphasizing that specialized codes of practice, see for instance 
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CNR-DT 200 [1] Italian code on FRP reinforcement, provide scarce information on this 

crucial issue.  

(2) In Figure 17 the local stresses acting over the FRP-masonry joint at the peak load, 

predicted by the FE model, are visualized for the tested convex geometry. The same results 

are replicated in Figure 18 for the concave prism. Similar results are met also for the modified 

curvatures, for brevity not reported herein. Figure 19 shows the peak normal (a) and 

tangential (b) stresses acting on the FRP-masonry joint, as a function of the normalized 

curvature radius of the interface. Moreover, in agreement with trends already observed for the 

mean stress values, a meaningful variation of the peak stresses occurs when passing from 

negative to positive curvatures (from concave to convex configurations, resp.), which is at the 

origin of the overall extra-resistance of the reinforcement on concave specimens. 

(3) It is worth emphasizing that, since brick and mortar possess herein similar tensile 

strength, damage diffuse extensively on both the prism constituents, concentrating on parallel 

(skew) bands even at low levels of the external loading, see also Figure 12 and Figure 13. 

Closely to such damaged bands, stresses are obviously not transmitted anymore, whereas high 

peak loads are still present on the undamaged zones. This is the main reason of the highly 

oscillating stresses at the interface predicted by FE analyses. A more complex formulation 

would be required, allowing for both interface and bulk damage, with a smooth transition. 

5 COMPARATIVE ASSESSMENT WITH AN ANALYTICAL LIMIT ANALYSIS 
APPROACH 

 

Some highlights on the effectiveness of the proposed study can be provided by a simplified, 

analytical limit analysis approach.  

Limit analysis is a relatively simple, classic tool that may be easily coupled with FEM (see for 

a detailed analysis of the mathematical approach used Anderheggen & Knopfel [54], Poulsen 

& Damkilde [55] and for an application to masonry Milani et al. [56]). It allows a fast 

evaluation of collapse loads, failure mechanisms and, at least on critical sections, stress 

distribution at collapse. 

The FEM implementation requires always the solution of a linear programming problem and, 

therefore, requires in general the utilization of sophisticated optimization routines. In what 

follows, a coarse discretization of the problem is adopted, which allows to reduce the problem 
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of estimating the collapse load of the structure, to a linear programming problem with a single 

variable and with inequalities constraints only. 

In particular, the 2D (plane stress) lower bound discretization shown in Figure 20 is adopted 

for the curved prisms in point. It is constituted by 11 constant stress (CST) triangular 

elements, whilst mortar joints are reduced to zero-thickness interfaces and FRP strip are 

modeled as rods subjected exclusively to axial forces and tangential actions along the axis of 

the FRP simulating the bond on the prism. 

Boundary conditions are selected such as to mimic the actual b.c. used in the experiments. 

As detailed in Figure 20, variables involved in the limit analysis problem are: (a) three 

stress components for each CST element (say )(i
xx , )(i

yy , )(i
xy , indicating respectively 

horizontal, vertical and tangential stress inside the i-th element); (b) two stresses for each 

FRP/brick interface (denoted as  j  and  j , where j is the interface number,   and 

 indicate the normal and tangential stress, resp.); (c) three axial stresses for the FRP strip 

(denoted as  , the load multiplier to maximize, 32  and 21 ). The total number of 

unknowns governing the optimization problem is therefore equal to 42. Equality constraints to 

be imposed in the mathematical programming problem, in which the loading multiplier is 

maximized, are as follows: (1) equilibrium constraints at the interface between contiguous 

triangular elements, (2) equilibrium constraints at the interfaces between blocks and FRP, (3) 

FRP internal equilibrium constraints and (4) stress boundary conditions.  

The first set of equality constraints, above labeled as a), is constituted by 24 linear 

equations, since the interfaces between triangular elements are 12, and equilibrium must be 

imposed on both normal and tangential components of stress vector acting on the interface. 

The second and third set of equalities, above labeled as b) and c), are constituted by 12 

equations (three interfaces and three FRP elements were included, and two equilibrium 

equations must be written for each interface / element), whereas to prescribe boundary 

conditions 5 additional equations are required. In total, 41 equality constraints should be 

properly considered in Figure 20. It can be easily checked that the 41 equations derived from 

equilibrium and boundary conditions on stresses are linearly independent. Consequently, only 

one variable of the total 42 unknowns is linearly independent.  
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Let us indicate with eq eqA X b  the system of equations obtained assembling all equality 

constraints, so that the unknown vector X  has dimension 142 , the coefficient matrix eqA  

dimensions 4241 , and the vector of equalities constraints at the right hand side eqb  exhibits 

dimension 141 . Let us assume as an independent variable the external load applied to the 

structure, i.e.  , and let us assume that   1,42X . With such assumptions, the equality 

constraints system may be written in a partitioned way as follows: 

                   eq eq 
 

       


  X
A A b  (4)

Here, eqA
~

 is a 4141  matrix, A
~

 is a 141  vector whilst X
~

 is the vector of global 

independent variables (dimension 141 ). From Equation (4), vector X
~

 can be easily 

expressed as a function of loading multiplier  , as follows 1

eq eq

    X A b A  . As a further 

step, assuming that linear inequality constraints are assembled into matrix inA , so that the 

assembled inequality constraints read in inA X b  , inequality constrains can finally be re-

written in a compact form as 1

in eq eq in
     A A b A b 0   . 

For the sake of simplicity, let assume that both bricks and mortar joints obey to Mohr-

Coulomb failure criterion, the latter with a compression cut-off, see Figure 21. For the brick 

only two parameters are then required, namely the tensile and compressive strengths, whilst 

three parameters are necessary to specify the mortar response, in terms of cohesion, friction 

angle and compressive strength. For the static admissibility, the stress state of brick CST 

elements and of mortar interfaces must lie within the depicted strength domains. Whilst the 

stress domain for mortar is linear, the brick failure surface results to be nonlinear, but in view 

of a linear programming scheme it can be easily linearized using classic literature procedures, 

see for instance Milani [52]. 

In the framework of the lower bound theorem of classic limit analysis, it can be stated 

that the collapse load of the discretized mechanical system of Figure 20 may be found as: 
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 

1

max

subject to:

in eq eq in

F









    A A b A b 0  
 (5)

The linear programming problem given by Equations (5) is particularly appealing for its 

simplicity, because it is constituted exclusively by inn  inequalities and a single optimization 

variable , without the presence of equality constraints. As schematized in Figure 21, size inn  

depends on the number of planes used to approximate the Mohr-Coulomb failure criterion for 

each brick element, say inBn . Then one has inn =11 inBn +4 inMn , where inMn =3 indicates the 

total number of straight lines used to define the mortar joint failure surface. It is noted that 

this linear programming problem may be solved by means of a standard spreadsheet, and its 

simplicity makes the approach adequate for design purposes. The solution to Eq. (7) is sought 

using a bisectional procedure, robust and straightforward, converging quickly to the desired 

solution. 

In the framework of the lower bound theorem of limit analysis, the aforementioned 

procedure is repeated varying the finite element discretization of assigned prism geometry. In 

addition, also the curvature radius of the modeled prism can be perturbed, parametrized by 

means of lengths 1  and 2  represented in Figure 20, ranging from zero to the maximum 

allowable value, i.e. respectively 6y  and 7y . The maximum loading multiplier   among all 

possible values is assumed as the desired solution provided by the lower bound approach. 

Simultaneously, the lower bound limit analysis procedure provides the stress field over the 

interface, to be compared with the results of FE model predictions. In addition, the values of 

variable 1  and 2  corresponding to the maximum  suggest the shape of the failure 

mechanism, again to be compared with FE analyses. 

The   function generated by the iterative solution of the mathematical programming 

problem in Eq. (5), with geometric parameters 1  and 2  ranging within the selected 

intervals, is drawn in Figure 22, with reference to a concave prism with constant curvature 

radius R0. The relevant distribution of principal stresses inside the bricks is depicted in Figure 

23-a, whereas in Figure 23-b and –c the normal and shear stress at the FRP-masonry 
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interfaces are shown. As it can be observed, a rather satisfactory agreement between standard 

“step-by-step” FEM and “direct” lower bound limit analysis is met, both for the collapse 

loading and the average stresses acting over the interface. Numerical simulations are repeated 

for all the curvatures previously inspected, finding the distribution of the collapse load 

reported in Figure 24, as a function of curvature radius. When comparing results of “direct” 

method with step-by-step FE model analysis, the maximum error on collapse loading amounts 

to about 15%. Such uncertainty is rather satisfactory in view of the following considerations: 

(1) the limitations intrinsic to the assumptions of limit analysis model (perfect ductility and 

absence of softening); (2) the rough discretization used within the limit analysis approach 

(allowing for semi-manual calculations); (3) the fact that 3D effects are disregarded by a 

plane assumption. 

The “direct” lower bound limit analysis strategy, above proposed mainly for a 

comparative assessment of “step-by-step” FE predictions, should be regarded indeed as a 

novel application in the field. It provides fast and reliable evaluations of the collapse load, 

taking into due consideration the presence of a curved reinforced surface. Moreover, it is 

expected to be easily used by practitioners with the help of a spreadsheet. The procedure may 

be improved by taking into account the uncertainty of mechanical properties and failure 

criteria for mortar and bricks. 

6 CLOSING REMARKS 

The aim of the present experimental and numerical investigation was to assess the bond 

behavior of FRP-reinforced curved masonry prisms, by correlating local phenomena (damage 

mechanisms, interface tractions at the GFRP strip-masonry joint) with the overall response 

(the reaction force versus the tangential slip). This study appears of paramount engineering 

interest when dealing with the strengthening or seismic retrofitting of masonry arches and 

vaults. 

Firstly, an experimental campaign was carried out on masonry prisms with a curved 

reinforced surface, subjected to single-lap shear experiments. Both concave and convex 

geometries were tested. Detachment of the FRP from the masonry substrate involved thin 

layers of brick and mortar, as confirmed also by post-mortem inspection. 
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The experimental data were interpreted by means of a heterogeneous three dimensional 

FE model. Model parameters were estimated on the basis of compressive tests on single 

constituents, when necessary integrated by literature suggestions. The FE model, once 

calibrated and validated, was used to predict the response of prisms with different curvature 

radii (not tested during the experimental campaign). By combining the experimental 

information with that provided by the mechanical model, it was possible to reconstruct the 

local stresses for different geometries, thus quantifying the effect of curvature on the interface 

response. 

Finally, the predictions provided by the FE model were assessed through a comparison 

with a lower bound limit analysis approach, whose application to reinforced pillars is novel. A 

global agreement was met among all the sources of information herein considered 

(experiments, “step-by-step” damage model and “direct” limit analysis), which is encouraging 

and promising even for the engineering practice.  
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Figure 1: Experimental set-up for single lap shear tests, in a) and b), and geometry of masonry 
prisms tested in the experimental campaign, with boundary conditions in c).  
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Figure 2: Geometry and sizes of masonry prisms with different curvature radii, considered 
for the numerical simulations. 
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a) 
 

 

  
b) 

Figure 3: Post-mortem picture of masonry prisms, with a concave in a) and a 
convex profile in b). A thick layer of the masonry prism remains attached to the 

detached reinforcement [27]. 
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Figure 4: Experimental response stress-strain curves obtained in compression for blocks (a), 

brick and (b) mortar.  
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Figure 5: Fracture energy regularization based on the characteristic length eql at varying the 

finite element size. When increasing the equivalent characteristic length chl , parameter mi  

( )i t ,c  decreases, and vice versa. Herein reference is made to a uniaxial test in tension on 
brick material. 
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a) 

b) 

Figure 6: Finite element discretization of a curved masonry prism. Distribution of parameters mt  

and mc  in a) and b), governing the post-peak branches of the softening functions th  and ch , in 

tension and compression respectively, estimated by the present fracture energy regularization 
strategy separately for brick and mortar. 

 



 

 25

 

 

a) 

b) 

Figure 7: Initial elastic domain under plane stress 
conditions, in the Haar Westergaard plane: a) mortar 

failure domain; b) brick failure domain.  
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Figure 8: Mortar uniaxial behavior adopted for the numerical simulations: a) compression 
response, in comparison with experimental data; b) tensile response. 

 



 

 27

 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

1

2

3

4

5

6

7

8

9

 [%]


 [

N
/m

m
2 ]

 

 

test #1
test #2
test #3
test #4
numerical

a) 

0 0.05 0.1 0.15 0.2 0.25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

 [%]


 [

N
/m

m
2 ]

 

 

numerical

b) 

Figure 9: Brick uniaxial behavior adopted for the numerical simulations:       
a) compression response, in comparison with experimental data; b) tensile 

response.  
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Figure 10: FE discretization of the reinforced prisms, constituted of 60,000 

“brick” eight-noded elements. 
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b) 

Figure 11: Overall response under single-lap shear tests, in terms of reaction force 
versus prescribed displacement, and their computed counterparts, of: a) convex and 

b) concave reinforced prisms.  
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a) 

 

b) 

 

c) 

Figure 12: Damage evolution on convex specimen predicted 
by the FE model at different instants during the test 

simulation, at 1/3 (a),  2/3 (b) 3/3 (c) times the peak loading. 
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c) 

Figure 13: Damage evolution on concave specimen predicted 
by the FE model at different instants during the test 

simulation, at 1/3 (a),  2/3 (b) 3/3 (c) times the peak loading. 
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Figure 14: Overall response under single-lap shear tests, in terms of reaction force 
versus tangential slip, computed by the FE model at varying the curvature radius: a) 

convex and b) concave reinforced samples. 
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Figure 15: Mohr plane representation: average normal and shear stresses acting 
over the FRP-masonry interface, at different curvature radii. 
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b) 

Figure 16: Mean normal a) and tangential b) stresses acting over FRP-masonry 
interface as a function of normalized curvature radius (with square markers). A 

cubic spline (dashed line) is used for discrete data interpolation. 
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a) 

 
b) 

Figure 17: Concave specimen. Local tangential stress   in a) and normal stress n  in b)  

predicted by the FE model over the FRP-masonry interface at the peak. 
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a) b) 
Figure 18: Convex specimen. Local tangential stress   in a) and normal stress n  in b) 

predicted by the FE model over the FRP-masonry interface at the peak. 
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b) 

Figure 19: Peak normal (a) and tangential (b) stresses (with square markers) acting over the FRP-
masonry interface as a function of normalized curvature radius. A cubic spline (dashed line) is 

used for discrete data interpolation. 
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Figure 21: Linearized failure surfaces adopted for brick (a) and mortar (b)                   
in the “direct” lower bound limit approach. 
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Figure 23: Lower bound limit analysis procedure: a) Orientation 
and modulus of principal stresses in masonry elements at collapse; 

b) tangential and c) normal traction over the FRP-masonry 
interface.  
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Figure 24: Collapse loading provided by the “direct” lower bond limit analysis 

approach, at varying the curvature radius.  
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TABLES 

 
Table 1. Mechanical properties of masonry constituents 

derived from the preliminary experiments. 
 

 
 
Material 

Elastic 
Inelastic under 
compression 

 
E, 

(N/mm2) 

 
 

 
f c 

N/mm2

 
G fc 
N/mm 

brick 3280 0.2 8.2 7 

mortar 1800 0.2 7.3 12 
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Table 2. Elastic and inelastic properties adopted for the brick and mortar  

in the heterogeneous damage model. 
 

Model 
parameter 

Meaning Brick Mortar 

E Young modulus 3280 MPa 1800 MPa 

 Poisson ratio 0.2 0.2 

t0a  
parameter governing tensile               

damage activation function ft 

0.15  0.13  

t1a  
parameter governing tensile               

damage activation function ft 
3.0 MPa 1.9 Mpa 

t 2a  
parameter governing tensile               

damage activation function ft 
1.3 MPa2 0.58 MPa2 

 et 0t   uniaxial stress at the elastic limit / 

uniaxial peak stress, in tension 
0.8 0.8 

0tD  tensile damage at peak 0.1 0.1 

c0a  
parameter governing compressive 

damage activation function fc 

0.0025  0.0036  

c1a  
parameter governing compressive 

damage activation function fc 
1.5 MPa 2.4 MPa 

c2a  
parameter governing compressive 

damage activation function fc 
53 MPa2 2.1 MPa2 

 ec 0c   uniaxial stress at the elastic limit / 

uniaxial peak stress, in compression.
0.7 0.7 

0cD  compressive damage  at peak 0.3 0.3 

tG  Dissipated energy in tension 0.03 N/mm 0.058 N/mm

cG  Dissipated energy in compression 7 N/mm 12 N/mm 

 

 


