

Abstract — In this paper it is presented a solution for replacing

the current endoscopic exams control mechanisms. This kind of
exams require the gastroenterologist to perform a complex
procedure, using both hands simultaneously, to manipulate the
endoscope’s buttons and using the foot to press a pedal in order to
perform simple tasks such as capturing frames. The last procedure
cannot be accomplished in real-time because the gastroenterologist
needs to press an additional programmable button on the
endoscope to freeze the image and then press the pedal to capture
and save the frame. The presented solution replaces the pedal with
a hands-free voice control module and it is capable of running on
the background continuously without human physical intervention.
This system was designed to be used seamlessly with the
MyEndoscopy system that is being tested in some healthcare
institution and uses the PocketSphinx libraries to perform real-time
recognition of a small vocabulary in two different languages,
namely English and Portuguese.

Keywords—Automatic Speech Recognition, Hidden Markov
Models, PocketSphinx, SphinxTrain, Endoscopic Procedures

I. INTRODUCTION
OWADAYS it is accepted by most healthcare
professionals that information technologies and

informatics are crucial tools to enable a better healthcare
practice. The Pew Health Professions Commission (PHPC)
recommended that all healthcare professionals should be
able to use information technologies [1]. The technological
evolution has led to an enormous increase in the production
of objective diagnostic tests and a decrease on the reliance
of more subjective problem solving methods, which should
increase the quality of the service provided, and can even be
seen as a consequence of the increased accountability of
healthcare institutions in relation to the legislation [2].

EsophagoGastroDuodenoscopy (EGD) and Colonoscopy
occupy relevant positions amongst diagnostic tests, since
they combine low cost and good medical results. The
current endoscopic exams require the gastroenterologist to
perform a complex procedure using both hands
simultaneously to manipulate the endoscope’s buttons and
using the foot to press the pedal in order to perform such
simple tasks as capturing frames. The last procedure cannot

This work is funded by ERDF - European Regional Development Fund
through the COMPETE Programme (operational programme for
competitiveness) and by National Funds through the FCT - Fundação para
a Ciência e a Tecnologia (Portuguese Foundation for Science and
Technology) within project PEst-OE/EEI/UI0752/2014.

S. Afonso, I. Laranjo, J. Braga and J. Neves are in the Computer Science
and Technology Center (CCTC), University of Minho, Braga, Portugal
(simaopoafonso@gmail.com, isabel@di.uminho.pt, jneves@di.uminho.pt,
joeltelesbraga@gmail.com)

V. Alves is in the Computer Science and Technology Center (CCTC),
University of Minho, Braga, Portugal (corresponding author to provide e-
mail: valves@di.uminho.pt).

be accomplished in real-time because the gastroenterologist
needs to press an additional programmable button on the
endoscope to freeze the image and then press the pedal to
capture and save the frame [3]. This approach to the
problem is not optimal and raises several new issues, such
as limiting the movements of everyone involved and
requiring the gastroenterologist to perform a complex
procedure, distracting him/her from the task at hand. A new
hands-free interface that allows for a richer control scheme
would solve some of the existing snags.

A novel approach to this problem consists of adding a
voice recognition module to the system, providing a hands-
free control. This module, called MIVcontrol, will be
integrated into the device called MIVbox (more details are
given in section 3).

The main goal of the MIVcontrol module is to create a
simple speech recognition system for recognizing a very
small vocabulary of simple pre-determined commands. The
recognized commands are used to control the
MIVacquisition, creating a hands-free control system that
should be able to replace the current solution. This system
can perform frame capturing in real-time, without the need
to use any extra buttons.

The system should be speaker-independent and have a
very low error rate, even on noisy environments, and it
should be able to capture audio from a microphone
continuously, so that it can run in the background without
human intervention. This will require automatic word
segmentation, to make recognition possible.

The rest of the paper is organized as follows: in section 2
it is presented a review of related work in the area of speech
recognition, from its theoretical foundations to practical
systems already being used. In section 3 is outlined the
overall system architecture and how it integrates with the
MyEndoscopy system. In section 4 is presented specific
details about the implementation of the solution, whereas in
section 5 the methodology used in the study is exhibited.
Finally, the results and their assessment are presented in
section 6 and 7, followed by conclusions in section 8.

II. RELATED WORK
Automatic Speech Recognition (ASR) is a process by

which a computer processes human speech, creating a
textual representation of the spoken words. This process has
two main areas of study, i.e. discrete speech and continuous
speech. Discrete speech is useful for the creation of voice
command interfaces, while continuous speech, also known
as dictation, mimics the way two humans communicate.
Though the ultimate objective of having a system capable of

Endoscopic Procedures Control Using Speech
Recognition

Simão Afonso, Isabel Laranjo, Joel Braga, Victor Alves, José Neves

N

Advances in Information Science and Applications - Volume II

ISBN: 978-1-61804-237-8 404

recognizing everything anyone can say in multiple
languages has yet to be achieved, research has been focused
on smaller-scale approaches [4].

A. Theoretical Foundations
Aymen et al. [5] presented the theoretical foundation of

Hidden Markov Models (HMM) that underpin most modern
implementations of automatic speech recognition. The
authors present the distinction between speech recognition,
which aims to recognize almost anyone’s speech, and voice
recognition, which creates systems trained to particular
users. The model is constructed based on a large corpus of
recorded speech, annotated with the respective transcription.
The HMM requires three different sub-models:
1) The acoustic model consists of different features for

each utterance the system recognizes;
2) The lexical model tries to identify sounds considering

the context;
3) The language model identifies the higher-level

characteristics of speech, such as words and sentences.
The HMM searches the model for similar patterns that fit

into the given audio input, producing probable matches. The
HMM’s advantages over previous learning algorithms
consists of easy implementation on a computer and
automated training without human intervention. This stems
from the fact that it is assumed that in short-time ranges the
process is stationary, vastly reducing the computational
effort [5].

B. Implementations
There are several HMM implementations, but the most

advanced are the HTK Toolkit [6] and the CMU Sphinx
system [7].

Hidden Markov Model Toolkit (HTK) is a set of libraries
used for research in automatic speech recognition,
implemented using HMM. The HTK codebase is owned by
Microsoft, but managed by the Cambridge University
Engineering Department. Since HTK has been largely
abandoned, since the last release (v3.4.1) was made in 2009,
the CMU Sphinx system is getting more attention from the
speech recognition community [6].

The original SPHINX was the first accurate Large
Vocabulary Continuous Speech Recognition (LVCSR)
system, using HMM as its underlying technology, that
managed to be speaker independent [7]. The next version,
SPHINX-II, was an improved version that was both faster
and more accurate, created by most of the same authors,
using HMM as its underlying technology. It was developed,
from the beginning, as an open source project, creating a
community around it [8]. The next version, SPHINX-III, is
an offline version of the previous systems, with a different
internal representation to allow for greater accuracy. The
signals go through a much larger amount of pre-processing
before they even reach the recognizer [7]. Current hardware
is capable of running the recognizer for SPHINX-III in
almost real-time, but it is not suitable to processing in such
conditions. SPHINX-4 is a complete rewrite to create a
more modular and flexible system that can accept multiple
data sources elegantly. It is a joint venture with Mitsubishi
Electric Research Laboratories and Sun Microsystems,
using the Java programming language. As with the third
version, its intended use is offline processing, not real-time

applications [9]. Vertanen [10] tested both the HTK and the
Sphinx systems with the Wall Street Journal (WSJ) corpus
and found no significant differences in error rate and speed.
This conclusion is corroborated by other researchers [11].

Huggins-Daines et al. [12] optimized CMU Sphinx II for
embedded systems, primarily those with ARM architecture.
To balance the loss of precision required in other
optimizations, the CMU Sphinx III Gaussian mixture model
was back-ported. They managed to have a 1000-word
vocabulary running at 0.87 times real-time on a 206 MHz
embedded device, with an error rate of 13.95% [12]. “Times
real-time” is a notation that indicates the amount of time
required to process live data. In this case, the system can
process 1 second of data in 0.87 seconds, which makes it
suitable to real-time recognizing. This work has lead to the
creation of the PocketSphinx project, an open source
initiative to continue this work. This project is in active
development, and it has bindings for C and Python [13].

C. Practical systems
Vijay [14] studied the problem of phonetic

decomposition in lesser-studied languages, like Native
American and Roma language variants, using the
PocketSphinx system. While the system does not implement
the complex rules of these languages, it is possible to
leverage the existing system to recognize unknown
languages, using a relatively simple lookup table that maps
sounds to phones [15]. Varela et al. [15] adapted the system
to the Mexican Spanish language. The authors created a
language and an acoustic model, based on an auto-attendant
telephonic system, and achieved an error rate of 6.32% [15].
The same process was followed for other languages, like
Mandarin [16], Arabic [17], Swedish [18]. These examples
show that the PocketSphinx system is flexible enough so
that it is relatively easy for people with phonetics training to
extend it to other languages.

Harvey et al. [4] researched how ASR systems could be
integrated with their project aimed at developing a device to
help the elderly, both inside and outside the home. The
authors identified the following challenges associated with
ASR systems used for voice command interfaces [4]:
1) Important differences between users;
2) Similarity between certain sounds;
3) Short words provide less data for the system to analyze,

which may lead to increased error rates;
4) Different recognition languages lead to variable error

rates using the same system.
Specifically to their project, the authors found that

medical conditions, which frequently affect the elderly,
create different speech patterns and their tolerance to errors
is quite low. With that in mind, the authors leveraged the
Sphinx library for its maturity and features. Focusing on the
creation of models and general optimization tasks, the
authors managed to create a multilingual system that has a
2-second processing time on embedded systems, with error
rates above 70% [4].

Kirchhoff et al. [19] suggested other methods to improve
the ASR systems’ performance. One proposal consists of
replacing the current feature-extraction algorithms with
others specially designed to discriminate certain sound
classes depending on the intended use, or through the use of
noise reduction algorithms, which can improve the data

Advances in Information Science and Applications - Volume II

ISBN: 978-1-61804-237-8 405

analysis and increase the models’ accuracy, using the same
data collection routines. A different approach is collecting
more out-of-band information to increase the amount of data
available to the system. This might include different
processing front-ends for feature extraction (although this
may be of limited use) or even non-acoustic data, such as
visual information [19].

III. ARCHITECTURE
As referred before, the gastroenterologist needs to use a

pedal to capture and save the frame, and with the proposed
solution the pedal is replaced with a hands-free voice
control module, called MIVcontrol. This module was
developed to tackle the problems that healthcare
professionals face when performing an endoscopic
procedure. This module is part of the MIVbox device, which
is integrated in the MyEndoscopy system.

MyEndoscopy is the name of the global system
developed by Laranjo et al. [21], which groups several
MIVboxes, which are scattered by various healthcare
institutions. The main goal of MyEndoscopy is to link
different entities and standardize the patient’s clinical
process management, to promote the sharing of information
between different entities [21].

The MIVbox device has a web-based distributed
architecture and it is capable of acquisition, processing,
archiving and diffusion of endoscopic procedure results
[21]. The main goal of the MIVcontrol module is to replace
the pedal, currently used by gastroenterologists to capture
interesting frames, by voice commands that interact directly
with the MIVacquisition module. The MIVacquisition
module receives the video directly from the endoscopic
tower and provides it to all the MIVbox modules [20].

In Fig. 1 is presented a simple workflow describing the
moments that occur in a gastroenterology medical
appointment, in the healthcare institution, that results in an
Endoscopy Procedure. The MIVcontrol module can be
seamlessly integrated into the current workflow by allowing
the gastroenterologist to control the MIVacquisition module
by using voice commands during the endoscopic procedure.

In Fig. 2 is presented the overall system architecture, as a
component of the MIVbox device. The MIVcontrol module
uses the live audio streaming from a microphone to
recognize commands and send them to the MIVacquisition
module.

The process that leads to the creation of a model is
presented on Fig. 3. It uses a corpus of pre-labeled audio
data to create a speech model that can be used in the
MIVcontrol module. This speech model is a combination of
acoustic and language models.

Microphone MIVbox

MIVcontrol

Feature Extraction

Model Comparison

MIVacquisition Commands

Audio Acquisition
Word Boundary

Detection

Fig. 2 MIVcontrol global architecture

LmCreate

Audio

Text Acoustic Model

Language Model

Speech Model

AmCreate

Feature Extraction

Hidden Markov
Models

Dictionary

Grammar

Fig. 3 MIVcontrol model training procedure

The process is split in two main sub-processes: creation

of the textual model, named lmCreate, and the creation of
the acoustic model, named amCreate. Since the acoustic
model requires parts of the textual model, it must be
generated last. The lmCreate process creates the textual
model based on the textual data in the corpus, while the

Patient´s
Symptoms

Endoscopy)
Procedure

MIVcontrol

Report
Writing

Results
Appointment

Image Capture
Video Acquisition Control

Initial
Appointment

Fig. 1 Workflow for a gastroenterology medical appointment

Advances in Information Science and Applications - Volume II

ISBN: 978-1-61804-237-8 406

amCreate process analyzes the pre-recorded audio data
using the same feature extraction steps used in the
MIVcontrol module, and uses HMM to learn how to classify
the commands contained in the language model.

IV. IMPLEMENTATION
The creation of the speech model used in the MIVcontrol

module, from higher to lower level comprises three different
phases, namely language model, dictionary and acoustic
model.

A. Language Model
The language model is a high-level description of all

valid phrases (i.e. combination of words) in a certain
language. Statistical language models try to predict all the
valid utterances in a language, by combining all the
recognized words into every possible combination [22].
Context-Free Grammars are restricted forms of a language
model, that restrict the recognized phrases to a
predetermined set, and discard those that do not fit that
model [23].

The decision to adopt a certain language model depends
mostly on its intended application. While statistical
language models are useful for open-ended applications, like
dictation and general-purpose recognition, context-free
grammars are suitable for specific applications, like
command-and-control systems.

SphinxBase requires the grammar to be defined in Java
Speech Grammar Format (JSGF), which is a platform-
independent standard format to define context-free
grammars, using a textual representation so that it can be
human-readable [24]. The statistical language model is
automatically created based on the command list.

B. Dictionary
The dictionary is a map between each command and the

phonemes it contains. A phoneme is defined as the basic
unit of phonology, which can be combined to form words.
Its internal representation consists of using the ARPAbet to
represent phonemes as ASCII characters. The ARPAbet
does not allow representing the entire International Phonetic
Alphabet (IPA), but it is sufficient for small vocabularies,
such as the one required by this application [25].

Since the list of required commands is small, all the
dictionaries used were created manually.

C. Acoustic Model
The acoustic model is trained using SphinxTrain and

maps audio features to the phonemes they represent, for
those included in the dictionary. The training performed by
SphinxTrain requires previous knowledge of the dictionary
and a transcription for each utterance, in order to map each
utterance to its corresponding phonetic information. It also
requires the data to be in a particular audio format. In order
to minimize clerical errors and cut the time need to analyze
the data to a minimum, all the technical considerations and
index building were abstracted away in a script referred to
as amCreate.

SphinxTrain requires the folder tree presented on Fig. 4,
where “model” denotes the model name.

Fig. 4 Folder tree required by SphinxTrain.

The folder directory has two top folders, namely the etc

and the wav.
The etc folder contains all the metadata and configuration

parameters needed to train the acoustic model, as well as the
dictionary. It contains both a list of all the phonemes used in
the model and a list of filler phonemes, such as silences, that
should be ignored. It also has a list of all the files to be used
during both training and testing phases, as well as a
mapping between each audio file and its corresponding
transcription. This mapping corresponds to the labeled data
to be the input to the HMM.

The wav folder simply contains all the collected data, as
audio files, organized in subfolders by speaker
identification, with a subfolder for each set of uttered
commands.

The system processes continuous audio in real-time,

splits it in commands and produces a line of text for each
recognized command. If the spoken command is not
recognized, an empty line is produced. The MIVcontrol
module runs on the MIVbox.

The audio picked up by the microphone is stored in a
memory buffer. The first pre-processing stage involves
splitting the incoming audio into different utterances, or sets
of words, by tracking silent periods between them. To
account for noise present during recording, any audio with
volume below a certain threshold is considered a silence.

Each segmented utterance then goes through a similar
process. The audio is processed creating a set of features,
and then the Semi-Continuous HMM finds the most likely
utterance contained in its dictionary. This is the final output,
corresponding to a command given to the system.

If there is Internet access and the data to be recognized is
not sensitive, it is possible to use an online speech
recognition service, such as the Google Speech API [26], as
a fallback mechanism.

Advances in Information Science and Applications - Volume II

ISBN: 978-1-61804-237-8 407

V. METHODOLOGIES
 The parameters that have a bigger impact on the model’s

accuracy are the number of tied states used in the HMM and
the number of Gaussian mixture distributions, so testing will
focus on this parameters. Before testing begins, the data is
split randomly between training and testing stacks, with the
testing stack receiving 10% of the data. That same data is
tested varying both the number of tied states in the HMM
and the number of Gaussian distributions. The accuracy of
the model is represented as a Word Error Rate (WER),
which combines both false positives and false negatives into
a single metric. This is done because this module acts as
middleware, being used by other modules on a global
system. The context where the commands are spoken can
then be considered, which is not evaluated here.
Furthermore, this methodology is consistent with the
literature on the subject.

The results were obtained on a computer with 2 GB of
RAM and an Intel Celeron CPU, with two cores and a clock
speed of 1.10GHz. The operative system used was Fedora
19, 32 bits version. The compiler used was gcc v4.8.2, using
PocketSphinx v0.8 and SphinxBase v0.8, both from the
official repositories. The training used CMUcltk v0.7,
compiled from source, and SphinxTrain v1.0.8, from the
official repositories. The training data was collected with the
built-in laptop microphone, in both noisy and quiet
conditions, to better correspond to the concrete use-case.

VI. RESULTS
The audio corpus in which the system was tested

contained two languages, Portuguese and English, with a
total of 1405 recordings, totaling 25 minutes of speech,
recorded by 5 female and 7 male speakers. To test this
model, SphinxTrain tried to predict the contents of the
testing data using the model created with the training data.
The main parameters that can be tweaked are the number of
tied states in the HMM and the number of Gaussian
mixtures distributions.

The effect of the number of tied states in the HMM is
shown on Table 1.

Table 1 Effect of the number of tied states on the WER

The effect of the number of Gaussian mixtures
distributions on the error rate is shown on Table 2.

Since the trained model is small, the differences in
processing time are negligible. That defined the optimal
conditions for training 8 Gaussian mixture distributions with
100 tied states in the HMM. With this configuration, the

system classified the Portuguese model with 11.22 % WER
and the English model with 4.55 % WER.

Table 2 Effect of the number of Gaussians on the WER

VII. DISCUSSION
As a proof-of-concept, this system managed to create a

voice recognizer for a very small vocabulary to be used as a
command and control system, leveraging the capabilities of
the CMU Sphinx project. It was created as an alternative to
cloud-based solutions, such as Google Speech API. In a
medical environment, cloud-based solutions pose certain
challenges that might degrade their performance, such as
increased communications security, a need to keep recurring
costs on non-medical equipment to a minimum, and also
privacy and legal reasons on systems that deal with sensitive
data. Having a system that can be installed inside the
healthcare institutions’ network without external
dependencies is a plus for the reasons presented above.

PocketSphinx was based on work done for SPHINX II,
which was not designed as a real-time recognizer. With all
the optimizations it has received, it is possible to use it in
real-time with acceptable performance, even in
underpowered computers.

VIII. CONCLUSION AND FUTURE WORK
In summary, this paper presents an automatic speech

recognition system designed specifically to solve a problem
that affects gastroenterologists. The system is capable of
running on the background continuously without human
physical intervention, and so it is capable of replacing the
pedal and buttons commonly used in current endoscopic
systems. It was designed to be used seamlessly with the
MyEndoscopy system that is being tested in some healthcare
institutions.

The next step will involve improving the integration with
the MyEndoscopy system, including a more robust testing
phase, which is facilitated by the fact that PocketSphinx is a
cross-platform library.

To increase the usefulness of the system, it is important
to collect more data, particularly with different voice
features. It is also possible to apply newer training
algorithms to the same data, and test how they affect the
models created. The SphinxTrain suite was created using
CMU Sphinx recognizers, but there are more recent projects
that are able to produce models compatible with
PocketSphinx-based recognizers. Those newer systems may
generate better models with the same data.

REFERENCE
[1] E. H. O’Neil, “Recreating Health Professional Practice for a New

Century,” San Francisco, CA, 1998.

Advances in Information Science and Applications - Volume II

ISBN: 978-1-61804-237-8 408

[2] N. Summerton, “Positive and negative factors in defensive
medicine: a questionnaire study of general practitioners.,” BMJ,
vol. 310, no. 6971, pp. 27–29, Jan. 1995.

[3] J. M. Canard, J.-C. Létard, L. Palazzo, I. Penman, and A. M.
Lennon, Gastrointestinal Endoscopy in Practice, 1st ed.
Churchill Livingstone, 2011, p. 492.

[4] A. P. Harvey, R. J. McCrindle, K. Lundqvist, and P. Parslow,
“Automatic speech recognition for assistive technology devices,”
in Proc. 8th Intl Conf. Disability, Virtual Reality & Associated
Technologies, Valparaíso, 2010, pp. 273–282.

[5] M. Aymen, A. Abdelaziz, S. Halim, and H. Maaref, “Hidden
Markov Models for automatic speech recognition,” in 2011
International Conference on Communications, Computing and
Control Applications (CCCA), 2011, pp. 1–6.

[6] S. Young, G. Evermann, D. Kershaw, G. Moore, J. Odell, D.
Ollason, V. Valtchev, and P. Woodland, “HTK FAQ.” [Online].
Available: http://htk.eng.cam.ac.uk/docs/faq.shtml. [Accessed:
03-Feb-2014].

[7] K.-F. Lee, H.-W. Hon, and R. Reddy, “An overview of the
SPHINX speech recognition system,” IEEE Trans. Acoust., vol.
38, no. 1, pp. 35–45, 1990.

[8] X. Huang, F. Alleva, H.-W. Hon, M.-Y. Hwang, K.-F. Lee, and
R. Rosenfeld, “The SPHINX-II speech recognition system: an
overview,” Comput. Speech Lang., vol. 7, no. 2, pp. 137–148,
Apr. 1993.

[9] P. Lamere, P. Kwok, E. Gouvea, B. Raj, R. Singh, W. Walker, M.
Warmuth, and P. Wolf, “The CMU SPHINX-4 speech
recognition system,” in IEEE Intl. Conf. on Acoustics, Speech
and Signal Processing (ICASSP 2003), Hong Kong, 2003, vol. 1,
pp. 2–5.

[10] K. Vertanen, “Baseline WSJ Acoustic Models for HTK and
Sphinx: Training recipes and recognition experiments,”
Cavendish Lab. Univ. Cambridge, 2006.

[11] G. Ma, W. Zhou, J. Zheng, X. You, and W. Ye, “A comparison
between HTK and SPHINX on chinese mandarin,” in IJCAI
International Joint Conference on Artificial Intelligence, 2009,
pp. 394–397.

[12] D. Huggins-Daines, M. Kumar, A. Chan, A. W. Black, M.
Ravishankar, and A. I. Rudnicky, “Pocketsphinx: A Free, Real-
Time Continuous Speech Recognition System for Hand-Held
Devices,” 2006 IEEE Int. Conf. Acoust. Speed Signal Process.
Proc., vol. 1, pp. I–185–I–188, 2006.

[13] D. Huggins-Daines, “PocketSphinx v0.5 API Documentation,”
2008. [Online]. Available:
http://www.speech.cs.cmu.edu/sphinx/doc/doxygen/pocketsphinx
/main.html. [Accessed: 20-Feb-2014].

[14] V. John, “Phonetic decomposition for Speech Recognition of
Lesser-Studied Languages,” in Proceeding of the 2009
international workshop on Intercultural collaboration - IWIC
’09, 2009, p. 253.

[15] A. Varela, H. Cuayáhuitl, and J. A. Nolazco-Flores, “Creating a
Mexican Spanish version of the CMU Sphinx-III speech
recognition system,” in Progress in Pattern Recognition, Speech
and Image Analysis, vol. 2905, A. Sanfeliu and J. Ruiz-
Shulcloper, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2003, pp. 251–258.

[16] Y. Wang and X. Zhang, “Realization of Mandarin continuous
digits speech recognition system using Sphinx,” 2010 Int. Symp.
Comput. Commun. Control Autom., pp. 378–380, May 2010.

[17] H. Hyassat and R. Abu Zitar, “Arabic speech recognition using
SPHINX engine,” Int. J. Speech Technol., vol. 9, no. 3–4, pp.
133–150, Oct. 2008.

[18] G. Salvi, “Developing acoustic models for automatic speech
recognition,” 1998.

[19] K. Kirchhoff, G. A. Fink, and G. Sagerer, “Combining acoustic
and articulatory feature information for robust speech
recognition,” Speech Commun., vol. 37, no. 3–4, pp. 303–319,
Jul. 2002.

[20] J. Braga, I. Laranjo, D. Assunção, C. Rolanda, L. Lopes, J.
Correia-Pinto, and V. Alves, “Endoscopic Imaging Results: Web
based Solution with Video Diffusion,” Procedia Technol., vol. 9,
pp. 1123–1131, 2013.

[21] I. Laranjo, J. Braga, D. Assunção, A. Silva, C. Rolanda, L. Lopes,
J. Correia-Pinto, and V. Alves, “Web-Based Solution for
Acquisition, Processing, Archiving and Diffusion of Endoscopy
Studies,” in Distributed Computing and Artificial Intelligence,
vol. 217, Springer International Publishing, 2013, pp. 317–24.

[22] P. Clarkson and R. Rosenfeld, “Statistical language modeling
using the CMU-cambridge toolkit,” in 5th European Conference

on Speech Communication and Technology, 1997, pp. 2707–
2710.

[23] A. Bundy and L. Wallen, “Context-Free Grammar,” in Catalogue
of Artificial Intelligence Tools, A. Bundy and L. Wallen, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1984, pp. 22–23.

[24] A. Hunt, “JSpeech Grammar Format,” 2000.
[25] R. A. Gillman, “Automatic Verification of Hypothesized

Phonemic Strings in Continuous Speech,” Arlington, Virginia,
1974.

[26] B. Ballinger, C. Allauzen, A. Gruenstein, and J. Schalkwyk, “On-
Demand Language Model Interpolation for Mobile Speech
Input,” Elev. Annu. Conf. Int. Speech Commun. Assoc., no.
September, pp. 1812–1815, 2010.

Advances in Information Science and Applications - Volume II

ISBN: 978-1-61804-237-8 409

