
 

 

  
Abstract — In this paper it is presented a solution for replacing 

the current endoscopic exams control mechanisms. This kind of 
exams require the gastroenterologist to perform a complex 
procedure, using both hands simultaneously, to manipulate the 
endoscope’s buttons and using the foot to press a pedal in order to 
perform simple tasks such as capturing frames. The last procedure 
cannot be accomplished in real-time because the gastroenterologist 
needs to press an additional programmable button on the 
endoscope to freeze the image and then press the pedal to capture 
and save the frame. The presented solution replaces the pedal with 
a hands-free voice control module and it is capable of running on 
the background continuously without human physical intervention. 
This system was designed to be used seamlessly with the 
MyEndoscopy system that is being tested in some healthcare 
institution and uses the PocketSphinx libraries to perform real-time 
recognition of a small vocabulary in two different languages, 
namely English and Portuguese. 
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I. INTRODUCTION 
OWADAYS it is accepted by most healthcare 
professionals that information technologies and 

informatics are crucial tools to enable a better healthcare 
practice. The Pew Health Professions Commission (PHPC) 
recommended that all healthcare professionals should be 
able to use information technologies [1]. The technological 
evolution has led to an enormous increase in the production 
of objective diagnostic tests and a decrease on the reliance 
of more subjective problem solving methods, which should 
increase the quality of the service provided, and can even be 
seen as a consequence of the increased accountability of 
healthcare institutions in relation to the legislation [2]. 

EsophagoGastroDuodenoscopy (EGD) and Colonoscopy 
occupy relevant positions amongst diagnostic tests, since 
they combine low cost and good medical results. The 
current endoscopic exams require the gastroenterologist to 
perform a complex procedure using both hands 
simultaneously to manipulate the endoscope’s buttons and 
using the foot to press the pedal in order to perform such 
simple tasks as capturing frames. The last procedure cannot 
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be accomplished in real-time because the gastroenterologist 
needs to press an additional programmable button on the 
endoscope to freeze the image and then press the pedal to 
capture and save the frame [3]. This approach to the 
problem is not optimal and raises several new issues, such 
as limiting the movements of everyone involved and 
requiring the gastroenterologist to perform a complex 
procedure, distracting him/her from the task at hand. A new 
hands-free interface that allows for a richer control scheme 
would solve some of the existing snags. 

A novel approach to this problem consists of adding a 
voice recognition module to the system, providing a hands-
free control. This module, called MIVcontrol, will be 
integrated into the device called MIVbox (more details are 
given in section 3). 

The main goal of the MIVcontrol module is to create a 
simple speech recognition system for recognizing a very 
small vocabulary of simple pre-determined commands. The 
recognized commands are used to control the 
MIVacquisition, creating a hands-free control system that 
should be able to replace the current solution. This system 
can perform frame capturing in real-time, without the need 
to use any extra buttons. 

The system should be speaker-independent and have a 
very low error rate, even on noisy environments, and it 
should be able to capture audio from a microphone 
continuously, so that it can run in the background without 
human intervention. This will require automatic word 
segmentation, to make recognition possible. 

The rest of the paper is organized as follows: in section 2 
it is presented a review of related work in the area of speech 
recognition, from its theoretical foundations to practical 
systems already being used. In section 3 is outlined the 
overall system architecture and how it integrates with the 
MyEndoscopy system. In section 4 is presented specific 
details about the implementation of the solution, whereas in 
section 5 the methodology used in the study is exhibited. 
Finally, the results and their assessment are presented in 
section 6 and 7, followed by conclusions in section 8. 

 

II. RELATED WORK 
Automatic Speech Recognition (ASR) is a process by 

which a computer processes human speech, creating a 
textual representation of the spoken words. This process has 
two main areas of study, i.e. discrete speech and continuous 
speech. Discrete speech is useful for the creation of voice 
command interfaces, while continuous speech, also known 
as dictation, mimics the way two humans communicate. 
Though the ultimate objective of having a system capable of 
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recognizing everything anyone can say in multiple 
languages has yet to be achieved, research has been focused 
on smaller-scale approaches [4]. 

A. Theoretical Foundations 
Aymen et al. [5] presented the theoretical foundation of 

Hidden Markov Models (HMM) that underpin most modern 
implementations of automatic speech recognition. The 
authors present the distinction between speech recognition, 
which aims to recognize almost anyone’s speech, and voice 
recognition, which creates systems trained to particular 
users. The model is constructed based on a large corpus of 
recorded speech, annotated with the respective transcription. 
The HMM requires three different sub-models: 
1) The acoustic model consists of different features for 

each utterance the system recognizes; 
2) The lexical model tries to identify sounds considering 

the context; 
3) The language model identifies the higher-level 

characteristics of speech, such as words and sentences. 
The HMM searches the model for similar patterns that fit 

into the given audio input, producing probable matches. The 
HMM’s advantages over previous learning algorithms 
consists of easy implementation on a computer and 
automated training without human intervention. This stems 
from the fact that it is assumed that in short-time ranges the 
process is stationary, vastly reducing the computational 
effort [5]. 

B. Implementations 
There are several HMM implementations, but the most 

advanced are the HTK Toolkit [6] and the CMU Sphinx 
system [7]. 

Hidden Markov Model Toolkit (HTK) is a set of libraries 
used for research in automatic speech recognition, 
implemented using HMM. The HTK codebase is owned by 
Microsoft, but managed by the Cambridge University 
Engineering Department. Since HTK has been largely 
abandoned, since the last release (v3.4.1) was made in 2009, 
the CMU Sphinx system is getting more attention from the 
speech recognition community [6]. 

The original SPHINX was the first accurate Large 
Vocabulary Continuous Speech Recognition (LVCSR) 
system, using HMM as its underlying technology, that 
managed to be speaker independent [7]. The next version, 
SPHINX-II, was an improved version that was both faster 
and more accurate, created by most of the same authors, 
using HMM as its underlying technology. It was developed, 
from the beginning, as an open source project, creating a 
community around it [8]. The next version, SPHINX-III, is 
an offline version of the previous systems, with a different 
internal representation to allow for greater accuracy. The 
signals go through a much larger amount of pre-processing 
before they even reach the recognizer [7]. Current hardware 
is capable of running the recognizer for SPHINX-III in 
almost real-time, but it is not suitable to processing in such 
conditions. SPHINX-4 is a complete rewrite to create a 
more modular and flexible system that can accept multiple 
data sources elegantly. It is a joint venture with Mitsubishi 
Electric Research Laboratories and Sun Microsystems, 
using the Java programming language. As with the third 
version, its intended use is offline processing, not real-time 

applications [9]. Vertanen [10] tested both the HTK and the 
Sphinx systems with the Wall Street Journal (WSJ) corpus 
and found no significant differences in error rate and speed. 
This conclusion is corroborated by other researchers [11]. 

Huggins-Daines et al. [12] optimized CMU Sphinx II for 
embedded systems, primarily those with ARM architecture. 
To balance the loss of precision required in other 
optimizations, the CMU Sphinx III Gaussian mixture model 
was back-ported. They managed to have a 1000-word 
vocabulary running at 0.87 times real-time on a 206 MHz 
embedded device, with an error rate of 13.95% [12]. “Times 
real-time” is a notation that indicates the amount of time 
required to process live data. In this case, the system can 
process 1 second of data in 0.87 seconds, which makes it 
suitable to real-time recognizing. This work has lead to the 
creation of the PocketSphinx project, an open source 
initiative to continue this work. This project is in active 
development, and it has bindings for C and Python [13]. 

C. Practical systems 
Vijay [14] studied the problem of phonetic 

decomposition in lesser-studied languages, like Native 
American and Roma language variants, using the 
PocketSphinx system. While the system does not implement 
the complex rules of these languages, it is possible to 
leverage the existing system to recognize unknown 
languages, using a relatively simple lookup table that maps 
sounds to phones [15]. Varela et al. [15] adapted the system 
to the Mexican Spanish language. The authors created a 
language and an acoustic model, based on an auto-attendant 
telephonic system, and achieved an error rate of 6.32% [15]. 
The same process was followed for other languages, like 
Mandarin [16], Arabic [17], Swedish [18]. These examples 
show that the PocketSphinx system is flexible enough so 
that it is relatively easy for people with phonetics training to 
extend it to other languages. 

Harvey et al. [4] researched how ASR systems could be 
integrated with their project aimed at developing a device to 
help the elderly, both inside and outside the home. The 
authors identified the following challenges associated with 
ASR systems used for voice command interfaces [4]: 
1) Important differences between users; 
2) Similarity between certain sounds; 
3) Short words provide less data for the system to analyze, 

which may lead to increased error rates; 
4) Different recognition languages lead to variable error 

rates using the same system. 
Specifically to their project, the authors found that 

medical conditions, which frequently affect the elderly, 
create different speech patterns and their tolerance to errors 
is quite low. With that in mind, the authors leveraged the 
Sphinx library for its maturity and features. Focusing on the 
creation of models and general optimization tasks, the 
authors managed to create a multilingual system that has a 
2-second processing time on embedded systems, with error 
rates above 70% [4]. 

Kirchhoff et al. [19] suggested other methods to improve 
the ASR systems’ performance. One proposal consists of 
replacing the current feature-extraction algorithms with 
others specially designed to discriminate certain sound 
classes depending on the intended use, or through the use of 
noise reduction algorithms, which can improve the data 
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analysis and increase the models’ accuracy, using the same 
data collection routines. A different approach is collecting 
more out-of-band information to increase the amount of data 
available to the system. This might include different 
processing front-ends for feature extraction (although this 
may be of limited use) or even non-acoustic data, such as 
visual information [19]. 

III. ARCHITECTURE 
As referred before, the gastroenterologist needs to use a 

pedal to capture and save the frame, and with the proposed 
solution the pedal is replaced with a hands-free voice 
control module, called MIVcontrol. This module was 
developed to tackle the problems that healthcare 
professionals face when performing an endoscopic 
procedure. This module is part of the MIVbox device, which 
is integrated in the MyEndoscopy system.  

MyEndoscopy is the name of the global system 
developed by Laranjo et al. [21], which groups several 
MIVboxes, which are scattered by various healthcare 
institutions. The main goal of MyEndoscopy is to link 
different entities and standardize the patient’s clinical 
process management, to promote the sharing of information 
between different entities [21]. 

The MIVbox device has a web-based distributed 
architecture and it is capable of acquisition, processing, 
archiving and diffusion of endoscopic procedure results 
[21]. The main goal of the MIVcontrol module is to replace 
the pedal, currently used by gastroenterologists to capture 
interesting frames, by voice commands that interact directly 
with the MIVacquisition module. The MIVacquisition 
module receives the video directly from the endoscopic 
tower and provides it to all the MIVbox modules [20]. 

In Fig. 1 is presented a simple workflow describing the 
moments that occur in a gastroenterology medical 
appointment, in the healthcare institution, that results in an 
Endoscopy Procedure. The MIVcontrol module can be 
seamlessly integrated into the current workflow by allowing 
the gastroenterologist to control the MIVacquisition module 
by using voice commands during the endoscopic procedure. 

In Fig. 2 is presented the overall system architecture, as a 
component of the MIVbox device. The MIVcontrol module 
uses the live audio streaming from a microphone to 
recognize commands and send them to the MIVacquisition 
module.   

The process that leads to the creation of a model is 
presented on Fig. 3. It uses a corpus of pre-labeled audio 
data to create a speech model that can be used in the 
MIVcontrol module. This speech model is a combination of 
acoustic and language models. 
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Fig. 2 MIVcontrol global architecture 
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Fig. 3 MIVcontrol model training procedure 

 
The process is split in two main sub-processes: creation 

of the textual model, named lmCreate, and the creation of 
the acoustic model, named amCreate. Since the acoustic 
model requires parts of the textual model, it must be 
generated last. The lmCreate process creates the textual 
model based on the textual data in the corpus, while the 
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Fig. 1 Workflow for a gastroenterology medical appointment 
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amCreate process analyzes the pre-recorded audio data 
using the same feature extraction steps used in the 
MIVcontrol module, and uses HMM to learn how to classify 
the commands contained in the language model. 

 

IV. IMPLEMENTATION 
The creation of the speech model used in the MIVcontrol 

module, from higher to lower level comprises three different 
phases, namely language model, dictionary and acoustic 
model. 

A. Language Model 
The language model is a high-level description of all 

valid phrases (i.e. combination of words) in a certain 
language. Statistical language models try to predict all the 
valid utterances in a language, by combining all the 
recognized words into every possible combination [22]. 
Context-Free Grammars are restricted forms of a language 
model, that restrict the recognized phrases to a 
predetermined set, and discard those that do not fit that 
model [23]. 

The decision to adopt a certain language model depends 
mostly on its intended application. While statistical 
language models are useful for open-ended applications, like 
dictation and general-purpose recognition, context-free 
grammars are suitable for specific applications, like 
command-and-control systems.  

SphinxBase requires the grammar to be defined in Java 
Speech Grammar Format (JSGF), which is a platform-
independent standard format to define context-free 
grammars, using a textual representation so that it can be 
human-readable [24]. The statistical language model is 
automatically created based on the command list. 

B. Dictionary 
The dictionary is a map between each command and the 

phonemes it contains. A phoneme is defined as the basic 
unit of phonology, which can be combined to form words. 
Its internal representation consists of using the ARPAbet to 
represent phonemes as ASCII characters. The ARPAbet 
does not allow representing the entire International Phonetic 
Alphabet (IPA), but it is sufficient for small vocabularies, 
such as the one required by this application [25]. 

Since the list of required commands is small, all the 
dictionaries used were created manually. 

C. Acoustic Model 
The acoustic model is trained using SphinxTrain and 

maps audio features to the phonemes they represent, for 
those included in the dictionary. The training performed by 
SphinxTrain requires previous knowledge of the dictionary 
and a transcription for each utterance, in order to map each 
utterance to its corresponding phonetic information. It also 
requires the data to be in a particular audio format. In order 
to minimize clerical errors and cut the time need to analyze 
the data to a minimum, all the technical considerations and 
index building were abstracted away in a script referred to 
as amCreate. 

SphinxTrain requires the folder tree presented on Fig. 4, 
where “model” denotes the model name. 

 

 
Fig. 4 Folder tree required by SphinxTrain. 

 
The folder directory has two top folders, namely the etc 

and the wav. 
The etc folder contains all the metadata and configuration 

parameters needed to train the acoustic model, as well as the 
dictionary. It contains both a list of all the phonemes used in 
the model and a list of filler phonemes, such as silences, that 
should be ignored. It also has a list of all the files to be used 
during both training and testing phases, as well as a 
mapping between each audio file and its corresponding 
transcription. This mapping corresponds to the labeled data 
to be the input to the HMM. 

The wav folder simply contains all the collected data, as 
audio files, organized in subfolders by speaker 
identification, with a subfolder for each set of uttered 
commands. 

 
The system processes continuous audio in real-time, 

splits it in commands and produces a line of text for each 
recognized command. If the spoken command is not 
recognized, an empty line is produced. The MIVcontrol 
module runs on the MIVbox. 

The audio picked up by the microphone is stored in a 
memory buffer. The first pre-processing stage involves 
splitting the incoming audio into different utterances, or sets 
of words, by tracking silent periods between them. To 
account for noise present during recording, any audio with 
volume below a certain threshold is considered a silence. 

Each segmented utterance then goes through a similar 
process. The audio is processed creating a set of features, 
and then the Semi-Continuous HMM finds the most likely 
utterance contained in its dictionary. This is the final output, 
corresponding to a command given to the system. 

If there is Internet access and the data to be recognized is 
not sensitive, it is possible to use an online speech 
recognition service, such as the Google Speech API [26], as 
a fallback mechanism. 
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V. METHODOLOGIES 
 The parameters that have a bigger impact on the model’s 

accuracy are the number of tied states used in the HMM and 
the number of Gaussian mixture distributions, so testing will 
focus on this parameters. Before testing begins, the data is 
split randomly between training and testing stacks, with the 
testing stack receiving 10% of the data. That same data is 
tested varying both the number of tied states in the HMM 
and the number of Gaussian distributions. The accuracy of 
the model is represented as a Word Error Rate (WER), 
which combines both false positives and false negatives into 
a single metric. This is done because this module acts as 
middleware, being used by other modules on a global 
system. The context where the commands are spoken can 
then be considered, which is not evaluated here. 
Furthermore, this methodology is consistent with the 
literature on the subject. 

The results were obtained on a computer with 2 GB of 
RAM and an Intel Celeron CPU, with two cores and a clock 
speed of 1.10GHz. The operative system used was Fedora 
19, 32 bits version. The compiler used was gcc v4.8.2, using 
PocketSphinx v0.8 and SphinxBase v0.8, both from the 
official repositories. The training used CMUcltk v0.7, 
compiled from source, and SphinxTrain v1.0.8, from the 
official repositories. The training data was collected with the 
built-in laptop microphone, in both noisy and quiet 
conditions, to better correspond to the concrete use-case. 

VI. RESULTS 
The audio corpus in which the system was tested 

contained two languages, Portuguese and English, with a 
total of 1405 recordings, totaling 25 minutes of speech, 
recorded by 5 female and 7 male speakers. To test this 
model, SphinxTrain tried to predict the contents of the 
testing data using the model created with the training data. 
The main parameters that can be tweaked are the number of 
tied states in the HMM and the number of Gaussian 
mixtures distributions. 

The effect of the number of tied states in the HMM is 
shown on Table 1. 

 
Table 1 Effect of the number of tied states on the WER 

 
 

The effect of the number of Gaussian mixtures 
distributions on the error rate is shown on Table 2. 

Since the trained model is small, the differences in 
processing time are negligible. That defined the optimal 
conditions for training 8 Gaussian mixture distributions with 
100 tied states in the HMM. With this configuration, the 

system classified the Portuguese model with 11.22 % WER 
and the English model with 4.55 % WER. 
 
Table 2 Effect of the number of Gaussians on the WER 

 
 

VII. DISCUSSION 
As a proof-of-concept, this system managed to create a 

voice recognizer for a very small vocabulary to be used as a 
command and control system, leveraging the capabilities of 
the CMU Sphinx project. It was created as an alternative to 
cloud-based solutions, such as Google Speech API. In a 
medical environment, cloud-based solutions pose certain 
challenges that might degrade their performance, such as 
increased communications security, a need to keep recurring 
costs on non-medical equipment to a minimum, and also 
privacy and legal reasons on systems that deal with sensitive 
data. Having a system that can be installed inside the 
healthcare institutions’ network without external 
dependencies is a plus for the reasons presented above. 

PocketSphinx was based on work done for SPHINX II, 
which was not designed as a real-time recognizer. With all 
the optimizations it has received, it is possible to use it in 
real-time with acceptable performance, even in 
underpowered computers. 

VIII. CONCLUSION AND FUTURE WORK 
In summary, this paper presents an automatic speech 

recognition system designed specifically to solve a problem 
that affects gastroenterologists. The system is capable of 
running on the background continuously without human 
physical intervention, and so it is capable of replacing the 
pedal and buttons commonly used in current endoscopic 
systems. It was designed to be used seamlessly with the 
MyEndoscopy system that is being tested in some healthcare 
institutions. 

The next step will involve improving the integration with 
the MyEndoscopy system, including a more robust testing 
phase, which is facilitated by the fact that PocketSphinx is a 
cross-platform library. 

To increase the usefulness of the system, it is important 
to collect more data, particularly with different voice 
features. It is also possible to apply newer training 
algorithms to the same data, and test how they affect the 
models created. The SphinxTrain suite was created using 
CMU Sphinx recognizers, but there are more recent projects 
that are able to produce models compatible with 
PocketSphinx-based recognizers. Those newer systems may 
generate better models with the same data. 
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