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Abstract: We report measurements of the molecular first hyperpolarizability, thermal stability, 
photophysical, piezoelectric and ferroelectric properties of a benzothiazole derivative bearing an 
arylthiophene π-conjugated bridge both in solution and when embedded into a poly (L-lactic acid) (PLLA) 
matrix in the form of electrospun fibers with an average diameter of roughly 500 nm. The embedded 
nanocrystalline phenylthienyl-benzothiazole derivative, with crystal sizes of about 1.4 nm resulted in a good 
piezoelectric response from these functionalized electrospun fibers, indicative of a polar crystalline structure. 

 

 

Introduction 

Benzothiazole derivatives have attracted significant 
attention recently due to their desirable optical (linear and 
nonlinear) properties. They have been shown to possess 
high quantum fluorescence yields and excellent molecular 
hyperpolarizabilities which can be tuned by 
functionalization of the azole skeleton with 5-membered 
heterocycles (pyrrole, thiophene) at position 2. This 
modification creates the potential for numerous innovative 
applications of these π-conjugated systems as ligands for 
phosphorescent coordination complexes including 
transition metals, antennas for lanthanoid elements (Li et 
al. 2012; Kuwabara et al. 2012; Wang et al. 2011; Liu et al. 
2011), in nonlinear optics (e.g. second harmonic generators 
(SHG) or two photon absorbers (TPA)) (Miller et al. 1994, 
Varanasi et al. 1996; Albert et al. 1997; Breitung et al. 
2000; Hrobarik et al. 2004; Cui et al. 2006; Coe et al. 
2006; Razus et al. 2007; Jin et al. 2009; Hrobárik et al. 
2010; Hrobáriková et al. 2010; Hrobarik et al. 2011; 
Kariduraganavar et al. 2011), as well as fluorescent 

dopants in the fabrication of organic light emitting devices 
(OLEDs) (Tao et al. 2011, Mishra et al. 2009; Mabrouk et 
al. 2010; Fu et al. 2009a; Fu et al. 2009b; Xu et al. 2007; 
Zhang et al. 2001). Recently we reported the synthesis and 
characterization of the optical properties of novel 
benzothiazole derivatives bearing bithiophene, 
arylthiophene and (bi)thienylpyrrole π-bridges in solution 
(Costa et al. 1997, Batista et al. 2004; Costa et al. 2006; 
Batista et al. 2007; Pina et al. 2010; Raposo et al. 2011a; 
Raposo et al. 2011b; Raposo et al. 2011c; Coelho et al. 
2012a; Coelho et al. 2012b) in liquid crystals (Garcia-
Amorós et al. 2013; Garcia-Amorós et al. 2014), and in 
PMMA or Zeonex matrixes (Coelho et al. 2013; Pina et al. 
2007). Our theoretical studies (Pina et al. 2010; Raposo et 
al. 2011a) were focused on the optimization of the ground-
state molecular geometries guided by the results of density 
functional theory (DFT) calculations for donor-acceptor 
systems in which the benzothiazole heterocycle played the 
role of an acceptor group. The experimental studies were 
mainly focused on the nonlinear optical, photochromic, 
emissive and OLEDs properties of these compounds. 
Evaluation of the SHG in solution, using hyper-Rayleigh 



 

 

scattering technique, showed that benzothiazole derivatives 
functionalized with arylthiophene, bithiophene or 
thienylpyrrole π-bridges have high molecular 
nonlinearities with first hyperpolarizability values that are 
20–33 times higher than that of the well-known p-
nitroaniline (pNA) molecule (Batista et al. 2004; Costa et 
al. 2006; Raposo et al. 2011a; Raposo et al. 2011b).  
The present work was motivated by an interest to extend 
the possible applications of benzothiazole derivatives 
bearing thiophenic bridges. A significant limitation in this 
regard has been the inability to grow crystals with good 
quality and size compatible for practical applications. One 
possibility of overcoming this problem is to incorporate the 
compound inside a host polymer matrix using a nano-
manufacturing process. Our approach consists in 
embedding functional nanocrystalline structures inside 
aligned polymer nanofibers by the electrospinning 
technique (Isakov et al. 2010a; Isakov et al. 2011a, Isakov 
et al. 2011b; Isakov et al. 2012)  
Indeed, some of us recently reported evidence of strong 
polar properties of chromophores embedded in polymer 
nanofibers. Significant second harmonic generation and 
piezoelectric responses were obtained in nanofibers 
produced by the electrospinning technique. Due to the 
strong processing electric field and mechanical stretching 
applied during the drawing of the fibers, the 
electrospinning process can produce anisotropic 
piezoelectric nanofibers with enhanced properties (Li et al. 
2003; Persano et al. 2013; Isakov et al. 2011b). 
Here we report the molecular linear and nonlinear optical 
properties, of a benzothiazole derivative bearing an 
phenylthiophene bridge (BZT 1), previously synthesised 
by some of us (Costa et al. 1997). We also report the 
thermal stability as well as the piezoelectric response of 
electrospun PLLA nanofibers with embedded crystalline 
BZT 1. To the best of our knowledge this is the first time 
that the nonlinear optical properties in solution and in 
PLLA fibers are reported. 
 

Experimental 

Instruments  

Fluorescence spectra were collected using a FluoroMax-4 
spectrofluorometer. UV-visible absorption spectra (200–
700 nm) were obtained using a Shimadzu UV/2501PC 
spectrophotometer. The fluorescence quantum yield was 
measured using a solution of 9,10-diphenylanthracene in 
ethanol as standard (φF =0.95) (Morris et al. 1976). 
Thermogravimetric analysis of samples was carried out 
using a TGA instrument model Q500 from TA 
Instruments, under high purity nitrogen supplied at a 
constant 50 mL min-1 flow rate. All samples were 
subjected to a 20 ºC min-1 heating rate and were 
characterized between 25 and 500 ºC. 
 

Nonlinear optical measurements using the hyper-Rayleigh 
scattering (HRS) method  

Hyper-Rayleigh scattering (HRS) was used to measure the 
first hyperpolarizability β of response of the molecules 
studied. The experimental set-up for hyper-Rayleigh 
measurements has been previously described in detail 
(Raposo et al. 2011a). The incident laser beam came from a 
Q-switched Nd:YAG laser operating at a 10 Hz repetition 
rate with approximately 5 mJ of energy per pulse and a 
pulse duration (FWHM) close to 12 ns at the fundamental 
wavelength of 1064 nm. The incident beam was weakly 
focused (beam diameter ~0.5 mm) into the solution 
contained in a 5 cm long cuvette. 
 The hyper-Rayleigh signal was normalized at each pulse 
using the second harmonic signal from a 1 mm quartz plate 
to compensate for fluctuations in the temporal profile of 
the laser pulses due to longitudinal mode beating. Dioxane 
was used as a solvent, and the β values were calibrated 
using a reference solution of pNA also dissolved in 
dioxane at a concentration of 1 x 10-2 mol dm-3 (external 
reference method). All solutions were filtered (0.2 µm 
porosity) to avoid spurious signals from suspended 
impurities.  
We took particular care to avoid reporting artificially high 
hyperpolarizibilities due to a possible contamination of the 
hyper Rayleigh signal by molecular fluorescence near 532 
nm by employing two different narrow band interference 
filters (CVI model F1.5-532-4) and “wide” (CVI model 
F03-532-4) with passbands of 1.29 nm and 2.18 nm (full 
width at half maximum) respectively. This allows us to 
estimate the amount of hyper-Rayleigh and fluorescence 
signal (Raposo et al. 2011a).  
 

Local piezoelectric measurements using PFM  

The piezoresponse force microscopy (PFM) signal was 
investigated using a commercial atomic force microscopy 
(AFM) setup where the conducting tip is used both to 
excite the piezoelectric vibrations and to study the 
vibrational response via an additional lock-in amplifier 
connected to the photodiode and synchronized with the 
driving voltage. PFM images were obtained using a Ntegra 
Aura, NT-MDT instrument where ac and dc voltages were 
applied between the counter electrode and the conductive 
tip. The PFM micrograph was obtained in the PFM mode 
(frequency of ac voltage was 50 kHz and amplitude was 1 
V peak-to-peak). During scanning, the vertical signal from 
photodiode was amplified by a Stanford Research SR-
830A lock-in amplifier and imaged using an auxiliary 
channel of the microscope. The hysteresis loop was 
acquired after each dc voltage step was applied to the top 
of the single BZT 1 fiber. 

Results and discussion 

Electrospinning of nanofibers 

The benzothiazole derivative (BZT 1, Figure 1) 
functionalized with an arylthiophene π-conjugated bridge 
was synthesized through a previously described synthetic 
methodology (Costa et al. 1997) by reaction of o-
aminobenzenethiol with 5-phenylthiophene-2-



 

 

carbaldehyde, in DMSO at 120 °C for 30–60 min. The 
reaction is initiated by the formation of the corresponding 
imine that cyclises spontaneously, yielding the 
benzothiazoline, which is oxidised to the benzothiazole, in 
the presence of DMSO.  

N

S
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Fig. 1. Molecular structure of phenylthienyl-benzothiazole (BZT) 1 

Several attempts were made to obtain appropriate BZT 
crystals for structure determination by single crystal X-ray 
diffraction and study of crystalline physico-chemical 
properties. However this was not possible due to fragility 
of the obtained crystals which were not suitable for 
structural work. However they could be used in a 
crystalline form by using an approach that combines 
nanomanufacturing process and molecular engineering 

(Isakov et al. 2011b). The approach consists in fabrication 
of mesocrystalline structures of aligned polymer 
nanofibers with embedded functional materials by the 
electrospinning technique. 
The compound has been incorporated in poly (L-lactic 
acid) (PLLA) fiber host by the conventional 
electrospinning technique. PLLA was chosen as a host 
polymer matrix as it permits the use of an appropriate 
solvent for both polymer and BZT 1 compound. To 
prepare the solution, (0.4 g, 4.71 x 10-6 mol) of poly(L-
lactic acid) (PLLA, Mw~85 000, purchased from Aldrich 
and used as received) was dissolved in 4 ml of chloroform 
and mixed with 1.0 ml of dimethylformamide (DMF, both 
purchased from Aldrich) and (0.1 g, 3.41 x 10-4 mol) of 
BZT 1. The obtained solution was stirred for several hours 
under ambient conditions prior to performing the 
electrospinning. The precursor solutions were loaded into a 
syringe with its needle connected to the anode of a high 
voltage power supply (Spellmann CZE2000). The electric 
potential and distance between needle and collector were 
12-15 kV and 10-12 cm respectively. The obtained fibers 
are smooth and uniform with an average diameter of 
roughly 500 nm. 
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Fig. 2 (a) Normalized emission spectra of BZT nanofibers and the pure 
compound in absolute ethanol; (b) single-photon fluorescence image 
(50x50µm) of BZT 1 nanofibers. The fluorescence was observed in the 

wavelength range of 430–470 nm following excitation at a wavelength of 
405 nm. 

 

Optical and thermal properties  

The photochemical and photophysical properties of 
compounds such as BZT 1 can be attributed to the 
presence of two different chromophores (benzothiazole 
and arylthiophene). The absorption and emission spectra of 
BZT were measured in absolute ethanol (10-4 and 10-6 M 
solutions respectively). Electronic absorption spectra of the 
BZT in absolute ethanol show an intense charge-transfer 
absorption band in the UV/Vis region (λmax= 362 nm; Log 
ε = 4.43, λemi= 430 nm). 
The relative fluorescence quantum yield was determined 
using a 10-6 M solution of 9,10-diphenylanthracene in 
ethanol as a standard (φF =0.95) (Morris et al. 1976). The 
BZT compound displays a high fluorescence quantum 
yield of 0.58 (Table 1, Fig. 2a). The absorption and 
emission of BZT 1 in PLLA nanofibers exhibit a red shift 
of 32 and 34 nm relative to the corresponding data in 
ethanol (Fig. 2). Red-shifts can indicate a more extended 
conjugation, in turn attributable to stretched molecular 
conformations along the fiber longitudinal axis. A higher 
density related to a more effective molecular packing at 
nanoscale can also lead to some self absorption of the 
emitted fluorescence, also contributing to a red shift of the 
observed emission.  
The molecular first hyperpolarizability β of BZT 1 was 
measured by hyper-Rayleigh scattering (HRS) method 
(Raposo et al. 2011a), at a fundamental wavelength of 
1064 nm of a Q-switched Nd:YAG laser. Dioxane was 
used as the solvent, and the β values were measured 
against a reference solution of pNA (Kaatz and Shelton 
1996; Reis 2006) in order to obtain quantitative values, 
while care was taken to properly account for possible 
fluorescence of the dyes (see experimental section for 
more details). The static hyperpolarizability β0 value 
(Oudar 1977; Oudar and Chemla 1977; Zyss and Oudar 
1982) was estimated using a simple two-level model 
neglecting damping. They are therefore only indicative and 
should be treated with caution (Table 1). The nonlinear 
optical chromophore BZT 1 exhibits a molecular 
nonlinearity β of 51x10-30 esu which is 3 times higher than 
that of the well-known pNA molecule for an incident laser 
wavelength of 1064 nm (the corresponding β0 values are 
2.6 times higher than that of pNA).   
It is well known that, not only a high hyperpolarizability 
but also a good thermal stability is critical for practical 
application of organic materials. Consequently, the thermal 
stability of BZT 1 was evaluated by thermogravimetric 
analysis. BZT 1 exhibits a high decomposition temperature 
(Td= 345 ºC), measured at a heating rate of 20 ºC min–1 

under a nitrogen atmosphere (Fig. 3). 
 



 

 

 
Table 1. UV-vis absorption and emission data in ethanol, β and β0 values 
for BZT 1 in dioxane and BZT 1+ PLLA. 
 

Cpd. 
Absorption Emission βa 

(10-30 
esu) 

β0
b 

(10-30 
esu) 

λmax 
(nm) 

log ε λmax 

(nm) 
Stokes’ 

shift (nm) 
ϕ 

BZT 1 362 4.43 430 68 0.58 51 22 
PLLA 330 - 425 95 - - - 

1 + PLLA 394 - 464 70 - - - 
pNA 352 - - - - 16.9 8.5 

 

a All the compounds are transparent at the 1064 nm fundamental 
wavelength. 
b Data corrected for resonance enhancement at 532 nm using the two-
level model with β0 = β [1-(λmax/1064)2][1-(λmax/532)2]; damping 
factors not included at 1064 nm (Oudar 1977; Oudar and Chemla 
1977; Zyss and Oudar 1982). 
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Fig. 3 Thermal analysis data for BZT 1 through TGA recorded under a 
nitrogen atmosphere, measured at a heating rate of 20 ºC min–1. 

 

Local piezoelectric and ferroelectric properties 

For practical applications of organic materials with high 
molecular hyperpolarizability it is important that molecules 
crystallize in a non-centrosymmetric unit cell packing, a 
necessary condition for observing crystalline polar 
phenomena such as second harmonic generation, 
piezoelectricity and pyroelectricity. Piezoresponse force 
microscopy (PFM) (Balke et al. 2009)  was employed to 
investigate the local piezoelectric properties of BZT 1 
nanofibers. The PFM technique is based on the detection of 
an electromechanical response of the sample to an applied 
electric voltage and is described elsewhere (Isakov et al. 
2010b). The piezo-response contrast is obtained in the 
form of mixed signal Acosϕ (where A is the amplitude and 
ϕ is the phase shift between driving and detected signal) 
providing information on the polarization direction. 
Figure 4 presents the PFM images obtained from a single 
BZT nanofiber deposited on a conductive substrate. The 
first image shows the as-electrospun nanofiber before any 
external polarization field was applied. In the next two 
images (Fig. 4b-c) the out-of-plane PFM contrast is shown 
after applying +100 V (image b) and then –100 V DC 
voltage (image c) to the conductive cantilever tip during 10 
s. The strong contrast observed in the PFM images is 
caused by an induced deformation in response to the 
applied “read” ac electric field and represents the 
polarization vector P components of the fiber.  

 
Fig. 4 Vertical PFM images observed in an individual BZT nanofiber: a) 
as-electrospun nanofibers (before poling); b) PFM image after applying a 
voltage  of  +100 V at the fixed tip during 10 s; c) image after applying  a 
voltage  of  -100 V. 

The contrast on the PFM image is roughly proportional to 
the longitudinal piezoelectric coefficient and is determined 
by the projection of the polarization vector normal to the 
substrate. The phase ϕ of the signal depends on the 
orientation of the polarization, thus the “bright’’ contrasts 
for the measured Acosϕ signal suggest that the polarization 
head is terminated at the substrate plane while the dark 
contrasts correspond to the polarization pointing 
downward to the surface. 
Figure 5 presents nested piezoresponse hysteresis loops 
measured on the same BZT 1-nanofiber. The local 
longitudinal remnant piezo-response signal was measured 
after the application of continuously increasing DC voltage 
pulses to the conductive tip fixed on the surface of the BZT 
1 fiber. The existence of two switchable polarization states 
is thus confirmed by the PFM measurements in a dynamic 
regime in which the bias is continuously swept between 
positive and negative values. After the first hysteresis, the 
closed loops were repeatedly acquired, indicating that the 
polarization switching is quite robust in this material. The 
corresponding effective piezoelectric coefficient (remnant 
value) was estimated to be d33 ≈ 20 pm/V. This value is 
comparable to the piezoelectric coefficient of a poled 
poly(vinydelene fluoride) film and dabcoHReO4 
nanofibers (Isakov et al. 2014). The switching of 
polarization definitely indicates the ferroelectric nature and 
an acentric crystalline structure for BZT 1, as 
ferroelectricity is only possible in polar crystallographic 
point groups lacking a center of inversion (Nye 2000). 
 
 
 



 

 

Fig. 5 Piezoresponse hysteresis obtained in a single as-electrospun BZT 
1 fiber. 

 

Conclusions 

Evaluation of the first molecular hyperpolarizability β of 
BZT 1 in a dioxane solution and thermal stability by TGA 
analysis revealed that BZT 1 is an efficient second-
harmonic generator. Local piezoelectric measurements 
confirm that the heterocyclic system crystallizes in a 
nanocrystalline acentric structure when embedded in 
electrospun nanofibers. The local domain switching under 
an external electric field was studied by means of 
piezoresponse hysteresis loop acquisition. The observed 
out-of-plane hysteresis loop provides direct evidence for 
the switching of polarization in BZT 1 nanofibers and its 
ferroelectric properties.  
We emphasize that even though it was not possible to 
obtain a viable bulk crystalline material, the use of the 
electrospinning technique allowed us to produce a 
nanocrystalline form of BZT 1 which clearly displays polar 
properties.   
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