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Desulfotomaculum nigrificans and D. carboxydivorans are moderately thermophilic members of 
the polyphyletic spore-forming genus Desulfotomaculum in the family Peptococcaceae. They are 
phylogenetically very closely related and belong to ‘subgroup a’ of the Desulfotomaculum cluster 
1. D. nigrificans and D. carboxydivorans have a similar g rowth substrate spectrum; they can grow 
with glucose and fructose as electron donors in the presence of sulfate. Additionally, both species 
are able to ferment fructose, although fermentation of glucose is only reported for D. 
carboxydivorans. D. nigrif icans is able to grow with 20% carbon monoxide (CO) coupled to sul-
fate reduction, while D. carboxydivorans can grow at 100% CO with and without sulfate. Hydro-
gen is produced during growth with CO by D. carboxydivorans. Here we present a summary of 
the features of D. nigrificans and D. carboxydivorans together with the description of the complete 
genome sequencing  and annotation of both strains. Moreover, we compared the genomes of both 
strains to reveal their differences. This comparison led us to propose a reclassification of D. 
carboxydivorans as a later heterotypic synonym of D. nigrif icans. 

http://dx.doi.org/10.1601/nm.4330�
http://dx.doi.org/10.1601/nm.9604�
http://dx.doi.org/10.1601/nm.9604�
http://dx.doi.org/10.1601/nm.4329�
http://dx.doi.org/10.1601/nm.4330�
http://dx.doi.org/10.1601/nm.4330�
http://dx.doi.org/10.1601/nm.4303�
http://dx.doi.org/10.1601/nm.3876�
http://dx.doi.org/10.1601/nm.4330�
http://dx.doi.org/10.1601/nm.9604�
http://dx.doi.org/10.1601/nm.4329�
http://dx.doi.org/10.1601/nm.4303�
http://dx.doi.org/10.1601/nm.4329�
http://dx.doi.org/10.1601/nm.4330�
http://dx.doi.org/10.1601/nm.9604�
http://dx.doi.org/10.1601/nm.9604�
http://dx.doi.org/10.1601/nm.9604�
http://dx.doi.org/10.1601/nm.4330�
http://dx.doi.org/10.1601/nm.9604�
http://dx.doi.org/10.1601/nm.9604�
http://dx.doi.org/10.1601/nm.4330�
http://dx.doi.org/10.1601/nm.9604�
http://dx.doi.org/10.1601/nm.9604�
http://dx.doi.org/10.1601/nm.9604�
http://dx.doi.org/10.1601/nm.4330�


D. nigrif icans and D. carboxydivorans 

656 Standards in Genomic Sciences 

Introduction 
In 1965, the genus Desulfotomaculum was created 
for sulfate-reducing bacteria that form heat-
resistant spores [1]. One of the first species that 
was included in this new genus was D. nigrificans 
Delft 74, which was originally described as 
“Clostridium nigrificans” by Werkman and Weaver 
(1927) [2]. Later, Starkey (1938) renamed it to 
“Sporovibrio desulfuricans” [3] before it was finally 
renamed as D. nigrificans [1]. D. nigrificans is a 
moderate thermophile that typically grows with 
fructose and glucose coupled to sulfate reduction 
[1,4]; without sulfate, only growth with fructose 
was observed. Utilizing sugars is rare among 
Desulfotomaculum species. Additionally, D. 
nigrificans was described to be able to grow with a 
number of other substrates including lactate, eth-
anol, alanine, formate, and carbon monoxide 
(20%) coupled to sulfate reduction [5,6]. 

Another moderately thermophilic  
Desulfotomaculum species that can grow with glu-
cose and CO is D. carboxydivorans CO-1-SRB [6]. D. 
carboxydivorans was isolated from sludge in an 
anaerobic bioreactor treating paper mill 
wastewater [6] and was described to be the first 
sulfate-reducing bacterium able to grow at 100% 
CO. D. carboxydivorans converted CO in the pres-
ence and absence of sulfate and produced hydro-
gen during CO conversion. D. carboxydivorans can 
also grow with glucose. In contrast to D. 
nigrificans, D. carboxydivorans degrades glucose 
both with and without sulfate. 

Phylogenetically, D. carboxydivorans is most close-
ly related to D. nigrificans. However, D. nigrificans 
is not able to produce hydrogen from CO. There-
fore, by comparing the genomes of these strains, 
the physiological differences might be explained. 
Here we present a summary of the features of D. 
nigrificans and D. carboxydivorans, together with 
the description of the complete genome sequenc-
ing and annotation of both strains. Moreover, we 
compared the genomes of both strains to reveal 
differences between these phylogenetically very 
closely related strains. This comparison led us to 
propose to that D. carboxydivorans is a later het-
erotypic synonym of D. nigrificans. 

Classification and features 
Comparison of the 16S rRNA gene sequences of D. 
carboxydivorans CO-1-SRB DSM 14880 and D. 
nigrificans DSM 574 revealed that the two bacteria 

are highly related (99% sequence similarity). Both 
strains are part of the Desulfotomaculum cluster 1 
subgroup a, together with D. aeronauticum, D. 
putei, D. hydrothermale, “D. reducens” and D. 
ruminis (Figure 1). 

D. nigrificans and D. carboxydivorans are Gram-
positive, sulfate-reducing, rod shaped bacteria 
with rounded ends (0.3-0.5 μm thick and 3-6 μm 
long [1]; 0.5-1.5 μm thick and 5-15 μm long [6], 
respectively) (Figure 2 and Figure 3). They have a 
similar temperature range for growth and can 
both grow optimally at 55°C. Additional similari-
ties can be found in the substrates used for 
growth. Both D. nigrificans and D. carboxydivorans 
can grow with fructose, glucose and alanine. These 
substrates are incompletely oxidized to acetate, 
coupled to sulfate reduction. Other suitable elec-
tron acceptors in addition to sulfate are thiosul-
fate and sulfite. Neither nitrate nor elemental sul-
fur are used as electron acceptors. 

In the absence of an electron acceptor, D. 
nigrificans is able to grow by fermentation of fruc-
tose and pyruvate [7]. Additionally, D. nigrificans 
has been reported to grow with lactate and etha-
nol in syntrophic interaction with 
Methanobacterium thermoautotrophicum [5]. 
Syntrophic growth of D. carboxydivorans has nev-
er been tested. D. carboxydivorans is able to grow 
in the absence of an electron acceptor with CO 
(100%), pyruvate, lactate, glucose and fructose 
[6]. The cellular fatty acid patterns of the two 
strains were analyzed by Parshina et al. [6] and 
Krishnamurthi et al. [8]. Both fatty acid patterns 
are similar and the dominating fatty acids were 
identified as 16:0, iso 15:0, iso 17:0, anteiso 15:0, 
18:0 and iso 16:0. Collins and Widdel [9] analyzed 
the respiratory lipoquinone content of D. 
nigrificans DSM 574 and found MK7 as the pre-
dominant isoprenoid quinone. A summary of the 
classification and general features of D. nigrificans 
and D. carboxydivorans is presented in Table 1 and 
2, respectively. 

Genome sequencing and annotation 
Genome project history 
D. nigrificans and D. carboxydivorans were select-
ed for sequencing in the DOE Joint Genome Insti-
tute Community Sequencing Program 2009, pro-
posal 300132_795700 'Exploring the genetic and 
physiological diversity of Desulfotomaculum spe-
cies'. They are important for their position in sub-
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group a of the Desulfotomaculum cluster 1. Se-
quencing the complete genome of the two strains 
was proposed as it would allow the study of the 
genetic and physiological diversity within sub-
group a. Furthermore, a comparison of the two 
genomes should reveal the genes involved in CO 
metabolism and the H2 production in D. 
carboxydivorans. The genome projects of D. 
nigrificans and D. carboxydivorans are listed in the 

Genome OnLine Database (GOLD) [23] as project 
Gi03933 and Gc01783, respectively. The two 
complete genome sequences were deposited in 
Genbank. Sequencing, finishing and annotation of 
the two genomes were performed by the DOE 
Joint Genome Institute (JGI). A summary of the 
project information of D. nigrificans and D. 
carboxydivorans is shown in Table 3. 

 

 
Figure 1. Neighbor joining  tree based on 16S rRNA sequences showing the phylogenetic affiliation of 
Desulfotomaculum and related species divided in the subgroups of Desulfotomaculum cluster 1. DSM 
574 and DSM 14880 are in bold type. The sequences of different Thermotogales were used as outgroup, 
but were pruned f rom the tree. Closed circles represent bootstrap values between 75 and 100%. The 
scale bar represents 10% sequence divergence. 
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Table 1. Classification and general features of D. nigrif icans DSM 574 according  to the MIGS recommendations [10] 
MIGS ID Property Term Evidence codea 

  Domain Bacteria TAS [11] 

  
Phylum Firmicutes 

TAS [12-14] 

  
Class Clostridia  

TAS [15,16] 

 Current classification 
Order Clostridiales 

TAS [17,18] 

  
Family Peptococcaceae 

TAS [17,19] 

  
Genus Desulfotomaculum  

TAS [17,20,21] 

  
Species Desulfotomaculum nigrif icans 

TAS [17,20] 

  
Type strain Delft 74 

TAS [12-14] 

 Gram stain negative, with a Gram-positive cell wall structure  

 Cell shape rods, rounded ends, sometimes paired TAS [1] 

 Motility Slight tumbling, peritrichous flagella TAS [1] 

 Sporulation oval, terminal or subterminal, slightly swelling  the cell TAS [1] 

 Temperature range 30-70 °C TAS [1] 

 Optimum temperature 55 °C TAS [1] 

 Carbon source  glucose and other carbohydrates TAS [1,4,5] 

 Energy source heterotrophic TAS [1,4,5] 

 Electron acceptor sulfate, thiosulfate and sulfite. TAS [4] 

MIGS-6 Habitat 
soils, compost heaps, thermal spring 
water, spoiled foods. 

TAS [1] 

MIGS-6.3 Salinity not reported  

MIGS-22 Oxygen obligate anaerobic TAS [1] 

MIGS-15 Biotic relationship free living TAS [1] 

MIGS-14 Pathogenicity none TAS [1] 

MIGS-4 Geographic location Delft, The Netherlands  

MIGS-5 Sample collection time   

MIGS-4.1 Latitude 52.011  

MIGS-4.2 Longitude 4.360  

MIGS-4.3 Depth not reported  

Evidence codes - TAS: Traceable Author Statement (i.e., a direct report exists in the literature); NAS: Non-traceable 
Author Statement (i.e., not directly observed for the living , isolated sample, but based on a generally accepted property 
for the species, or anecdotal evidence). Evidence codes are from the Gene Ontology project [22]. 
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Table 2. Classification and general features of D. carboxydivorans DSM 14880 according  to the MIGS recom-
mendations [10] 

MIGS ID Property Term Evidence codea 

  Domain Bacteria TAS [11] 

  Phylum Firmicutes TAS [12-14] 

  Class Clostridia  TAS [15,16] 

 Current classification Order Clostridiales TAS [17,18] 

  Family Peptococcaceae TAS [17,19] 

  Genus Desulfotomaculum  TAS [17,20,21] 

  Species Desulfotomaculum carboxydivorans TAS [17,20] 

  Type strain CO-1-SRB TAS [12-14] 

 Gram stain negative, with a Gram-positive cell wall structure TAS [6] 

 Cell shape rods, rounded ends, sometimes paired. TAS [6] 

 Motility twisting  and tumbling motion TAS [6] 

 Sporulation oval, terminal or subterminal TAS [6] 

 Temperature range 30-68°C TAS [6] 

 Optimum temperature 55°C TAS [6] 

 Carbon source  100% CO, with and without sulfate TAS [6] 

 Energy source hydrogenogenic and heterotrophic g rowth TAS [6] 

 Electron acceptor sulfate, thiosulfate and sulfite. TAS [6] 

MIGS-6 Habitat Paper mill waste water sludge  

MIGS-6.3 Salinity 0-17 g  NaCl l-1 TAS [6] 

MIGS-22 Oxygen obligate anaerobe TAS [6] 

MIGS-15 Biotic relationship free living TAS [6] 

MIGS-14 Pathogenicity none  

MIGS-4 Geographic location Eerbeek, the Netherlands TAS [6] 

MIGS-5 Sample collection time 1999 TAS [6] 

MIGS-4.1 Latitude 52.104217 TAS [6] 

MIGS-4.2 Longitude 6.060133 TAS [6] 

MIGS-4.3 Depth not reported  

Evidence codes - TAS: Traceable Author Statement (i.e., a direct report exists in the literature); NAS: Non-
traceable Author Statement (i.e., not directly observed for the living , isolated sample, but based on a generally 
accepted property for the species, or anecdotal evidence). Evidence codes are from the Gene Ontology project 
[22]. 
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Figure 2. Scanning electron microscopic photograph of DSM 574 

 
Figure 3. Scanning electron microscopic photograph of DSM 14880 
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Growth conditions and DNA isolation 
D. nigrificans and D. carboxydivorans were grown 
anaerobically at 55oC in bicarbonate buffered me-
dium with lactate and sulfate as substrates [6]. 
DNA of cell pellets was isolated using the standard 
DOE-JGI CTAB method recommended by the DOE 
Joint Genome Institute (JGI, Walnut Creek, CA, 
USA). Cells were resuspended in TE (10 mM tris; 1 
mM EDTA, pH 8.0). Subsequently, cells were lysed 
using lysozyme and proteinase K, and DNA was 
extracted and purified using CTAB and phe-

nol:chloroform:isoamylalcohol extractions. After 
precipitation in 2-propanol and washing in 70% 
ethanol, the DNA was resuspended in TE contain-
ing RNase. Following a quality and quantity check 
using agarose gel electrophoresis in the presence 
of ethidium bromide, and spectrophotometric 
measurement using a NanoDrop ND-1000 spec-
trophotometer (NanoDrop® Technologies, Wil-
mington, DE, USA). 

 

Table 3. Genome sequencing  project information of DSM 574 and DSM 14880.  
MIGS ID Property Term (for DSM 574) Term (for DSM 14880) 

MIGS-31 Finishing  quality Permanent draft Finished 

MIGS-28 Libraries used 

Three genomic libraries: 
454 standard library, 454 PE 
libraries (7kb insert size), 
one Illumina library 

Four genomic libraries: one 454 
pyrosequence standard library, two 
454 PE libraries (4kb and 11 kb insert 
size), one Illumina library 

MIGS-29 Sequencing platforms 
Illumina GAii, 454 GS FLX 
Titanium 

Illumina GAii, 454 GS FLX Titanium 

MIGS-31.2 Fold coverage 
462.8 × Illumina; 35.2 × 
pyrosequence 

116.8 × Illumina; 50.6 × 
pyrosequence 

MIGS-30 Assemblers 

Newbler version 2.3-
PreRelease-June 30,2009, 
VELVET version 1.0.13, 
phrap version SPS - 4.24 

Newbler version 2.3-PreRelease-June 
30, 2009, VELVET version 1.0.13, 
phrap version SPS - 4.24 

MIGS-32  Gene calling  method Prodigal 1.4, GenePRIMP Prodigal 1.4, GenePRIMP 

 INSDC ID AEVP00000000 CP002736.1 

 Genome Database release December 10, 2010 August 13, 2012 

 Genbank Date of Release February 17, 2011 May 23, 2011 

MIGS-13 GOLD ID Gi03933 Gc01783 

 NCBI project ID 46699 50757 

 Source material identifier DSM 574T DSM 14880T 

 Project relevance 

Obtain insight into the phy-
logenetic and physiolog ical 
diversity of 
Desulfotomacum species. 

Obtain insight into the phylogenetic 
and physiolog ical diversity of 
Desulfotomacum species, and 
hydrogenogenic CO conversion. 
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Genome sequencing and assembly 
The genome of D nigrificans strain Delft 74 (DSM 
574) was sequenced using a combination of 
Illumina and 454 sequencing platforms. All gen-
eral aspects of library construction and sequenc-
ing can be found at the JGI website [24]. 
Pyrosequencing reads were assembled using the 
Newbler assembler (Roche). The initial Newbler 
assembly consisting of 75 contigs in two scaffolds 
was converted into a phrap [25] assembly by mak-
ing fake reads from the consensus, to collect the 
read pairs in the 454 paired end library. Illumina 
GAii sequencing data (3,053.3 Mb) was assembled 
with Velvet [26] and the consensus sequences 
were shredded into 1.5 kb overlapped fake reads 
and assembled together with the 454 data. The 
454 draft assembly was based on 127.9 Mb 454 
draft data and all of the 454 paired end data. 
Newbler parameters are -consed -a 50 -l 350 -g -m 
-ml 21. The Phred/Phrap/Consed software pack-
age [25] was used for sequence assembly and 
quality assessment in the subsequent finishing 
process. After the shotgun stage, reads were as-
sembled with parallel phrap (High Performance 
Software, LLC). Whenever possible mis-
assemblies were corrected with gapResolution 
[24], Dupfinisher [27], or sequencing cloned 
bridging PCR fragments with subcloning. Some 
gaps between contigs were closed by editing in 
Consed, by PCR and by Bubble PCR primer walks 
(J.-F. Chang, unpublished). Some mis-assembly is 
still possible in the current assembly that consists 
in seven contigs and one scaffold. A total of 268 
additional reactions and one shatter library were 
necessary to close gaps and to raise the quality of 
the final contigs. Illumina reads were also used to 
correct potential base errors and increase consen-
sus quality using a software Polisher developed at 
JGI [28]. The error rate of the final genome se-
quence is less than 1 in 100,000. Together, the 
combination of the Illumina and 454 sequencing 
platforms provided 498.0× coverage of the ge-
nome. The final assembly contained 332,256 
pyrosequence and 37,872,777 Illumina reads. 
The same protocol applied to the D. 
carboxydivorans strain CO-1-SRB (DSM 14880) 
genome allowed to produce finished assembly 
without gaps. Illumina GAii sequencing data 
(334.0Mb) was assembled with Velvet 0.7.63 and 
the 454 draft assembly was based on 138.8 MB of 
sequence. A total of 290 additional reactions were 
necessary to close some gaps and to raise the 

quality of the final contigs. Illumina reads were 
also used to correct potential base errors and in-
crease consensus quality using a software Polisher 
developed at JGI [28]. The error rate of the final 
genome sequence is less than 1 in 100,000. To-
gether, the combination of the Illumina and 454 
sequencing platforms provided 167.4× coverage 
of the genome. The final assembly contained 
543,495 pyrosequence and 9,254,176 Illumina 
reads 

Genome annotation 
Genes were identified using Prodigal [29] as part 
of the DOE-JGI genome annotation pipeline [30], 
followed by a round of manual curation using the 
JGI GenePRIMP pipeline [31]. The predicted CDSs 
were translated and used to search the National 
Center for Biotechnology Information (NCBI) 
nonredundant database, UniProt, TIGR-Fam, Pfam, 
PRIAM, KEGG, COG, and InterPro databases. Addi-
tional gene prediction analysis and functional an-
notation was performed within the Integrated Mi-
crobial Genomes - Expert Review (IMG-ER) plat-
form [32]. 

Genome properties 
The genome of D. nigrificans and D. 
carboxydivorans consist of one chromosome of 
3,052,787 and 2,892,255 nucleotides with a GC 
content of 46.28 and 46.63%, respectively (Table 
4). Of the 3,112 genes in the genome of D. 
nigrificans, 98 are RNA genes of which 6 16S rRNA 
genes. A total of 2,340 genes of the 3,014 protein 
coding genes are assigned to COG functional cate-
gories. The distribution of these genes into COG 
functional categories is presented in Table 5. The 
distribution of the 2,174 COG assigned genes of D. 
carboxydivorans into COG functional categories is 
also presented in Table 5. Of the 2,844 predicted 
genes in the D. carboxydivorans genome, 2,747 are 
protein coding genes and 97 RNA genes, of which 
8 are 16S rRNA genes. Both strains have sets of 
multiple 16S rRNA genes. Within the sets and 
among the sets most of the genes are 99.5-99.9% 
identical. Each strain has one differently deviating 
16S rRNA gene, the difference probably originat-
ing from differential gene loss. In addition, 3.09% 
of the total genes of D. carboxydivorans are identi-
fied as pseudo genes. More genome statistics of D. 
nigrificans and D. carboxydivorans are displayed in 
Table 4. 
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Table 4. Genome statistics of DSM 574 (A) and DSM 14880 (B)  
Attribute A. Genome (total) B. Genome (total) 
 Value % of total Value % of total 
Genome size (bp) 3,052,787 100 2,892,255 100.00 
DNA coding reg ion (bp) 2,595,629 85.02 2457154 84.96 
DNA G+C content (bp) 1,412,511 46.28 1,348,537 46.63 
Total genes 3,112 100 2,844 100 
RNA genes 98 3.15 97 3.41 
Protein-coding genes 3,014 96.85 2,747 96.59 
Genes in paralog  clusters 1,542 49.55 1,363 47.93 
Genes assigned to COGs 2,340 75.19 2,174 76.44 
Pseudo genes 137 4.40 88 3.09 
Genes with signal peptides 582 18.70 504 17.72 
Genes with transmembrane helices 721 23.17 647 22.75 

 
Figure 4. Graphical map of the DSM 574 (upper) and DSM 14880 (lower) chromosome. In both maps one 
genome was compared to the other. When genes were not similar or present in the other genome it resulted 
in gaps. The indicated variable reg ions with their function can also be found in Table 6 and the supplemen-
tary data S1. 
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Table 5. Number of DSM 574 and DSM 14880 genes associated with the general COG functional categories. 

  DSM 574 DSM 14880 

Code Description Value %agea Value %agea 

J Translation 153 5.97 152 3.39 

A RNA processing  and modification 1 0.04 0 0.00 

K Transcription 153 5.97 139 5.85 

L Replication, recombination and repair 210 8.20 172 7.23 

B Chromatin structure and dynamics 1 0.04 1 0.04 

D Cell cycle control, mitosis and meiosis 45 1.76 45 1.89 

Y Nuclear structure 0 0.00 0 0.00 

V Defense mechanisms 22 0.86 22 0.93 

T Signal transduction mechanisms 171 6.71 148 6.22 

M Cell wall/membrane biogenesis 132 5.15 126 5.3 

N Cell motility 70 2.73 68 2.86 

Z Cytoskeleton 0 0.00 0 0.00 

W Extracellular structures 0 0.00 0 0.00 

U Intracellular trafficking and secretion 65 2.54 64 2.69 

O Posttranslational modification, protein turnover, chaperones 83 3.24 85 3.57 

C Energy production and conversion 217 8.47 211 8.87 

G Carbohydrate transport and metabolism 125 4.88 98 4.12 

E Amino acid transport and metabolism 224 8.74 216 9.08 

F Nucleotide transport and metabolism 62 2.42 60 2.52 

H Coenzyme transport and metabolism 134 5.23 133 5.59 

I Lipid transport and metabolism 40 1.56 36 1.51 

P Inorganic ion transport and metabolism 104 4.06 101 4.25 

Q Secondary metabolites biosynthesis, transport and catabolism 29 1.13 27 1.14 

R General function prediction only 261 10.19 250 10.51 

S Function unknown 241 9.41 224 9.42 

- Not in COGs 772 24.81 670 23.56 

a) The total is based on the total number of protein coding genes in the annotated genome. 
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Table 6. Description of genes present in the variable reg ions depicted in Figure 4. 
Variable reg ion Functions 

1A 
Transposases, recombinases, transport proteins, isomerases, histidine kinase and threonine de-
hydrogenase 

1B Transposases, recombinases, resolvase and alcohol dehydrogenase 

1C Helicases, DNA-methylation, endonuclease and recombinase 

1D 
TRAP transporter, Threonine dehydrogenase, 2 keto-4-petnenoate hydratase, sugar kinase, 
aldolase, glycerol dehydrogenase and mannonate dehydratase 

1E Pilus assembly, proteases and hypothetical proteins dominate this variable reg ion 

1F 
Protease, DNA methylase, RNA polymerase, recombinase, cytochrome c biogenesis, Fe2+ 
transport system and many hypothetical proteins 

1G 
Transposase, secretory protein secB, nucleotide sugar dehydrogenase, glycosyltransferase, sug-
ar epimerase, O-antigen ligase and copper amine oxidase 

1H 
Pyruvate ferredoxin oxidareductase, transport proteins, sugar phosphate permease, threonine 
dehydrogenase, transporsase, DNA methylase and endonuclease 

1I 
Growth inhibitor protein, terminase, phage portal protein, secretory protein, recombinase and 
many hypothetical proteins 

2A 
Endonuclease, DNA methylase, transposase, ATP binding  protein, ATPase, threonine kinase, 
pyridoxamine 5’phosphate oxidase, ferric reductase, many hypothetical proteins and the 
CODH-ECH complex 

2B CRISPR-Cas 

2C 
DNA-helicases, -methyltransferase, and -replication protein, restriction protein and many hypo-
thetical proteins 

2D Urea metabolism 

2E Mainly transport proteins and agmatinase 

2F 
Alpha ribazole phosphatase, metal dependent phosphohydrolase, phenylacetate-CoA ligase, 
methyltransferase, amine oxidase, aldehyde dehydrogenase, transposase, phage tail component 
and many hypothetical proteins 

2G Pilus associated proteins 

2H Recombinase, integrase, AAA ATPase, restriction modification system, deoxyribonuclease 

2I Many transferase proteins 
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Insights into the genomes 
Incomplete oxidation of organic compounds 
D. nigrificans and D. carboxydivorans oxidize or-
ganic substrates such as lactate, pyruvate, ethanol 
and sugars incompletely to acetate. Both genomes 
have gene copies that are predicted to encode L-
lactate dehydrogenases (DesniDRAFT_1264, 2906; 
Desca_0533) and D-lactate dehydrogenase 
(DesniDRAFT_0054, 1145, 1691; Desca_0863, 
2222), which are involved in the oxidation of lac-
tate to pyruvate. For incomplete oxidation of py-
ruvate to acetate via acetyl-CoA D. nigrificans and 
D. carboxydivorans have genes encoding a putative 
pyruvate dehydrogenase (DesniDRAFT_1250, 
2504, 1245 and Desca_0770, 0146, 0775, respec-
tively) and subsequently an acetyl-CoA synthetase 
(DesniDRAFT_2242 and Desca_0484, respective-
ly). Although the two strains cannot grow with 
succinate, fumarate and malate as electron do-
nors, genes to metabolize these compounds are 
present in both genomes. D. nigrificans and D. 
carboxydivorans have genes putatively coding for 
a fumarate reductase (DesniDRAFT_0617-15 and 
Desca_1387-89), fumarate hydratase 
(DesniDRAFT_0612-13 and Desca_1391-92), mal-
ate dehydrogenase (DesniDRAFT_0618 and 
Desca_1386), and a pyruvate carboxylase 
(DesniDRAFT_1477-78 and Desca_2116-17) that 
might be involved in the oxidation of succinate, 
fumarate and malate to pyruvate. For growth on 
ethanol, both genomes contain alcohol dehydro-
genases (DesniDRAFT_0051, 0320, 0326, 0367, 
1219, 2126, 2174, 2779; Desca_0375, 0418, 1671, 
1913, 1943, 2553, 2558) and acetaldehyde dehy-
drogenases (DesniDRAFT_0038; Desca_1928). 
For sulfate reducers to oxidize acetate to CO2, ei-
ther the complete tricarboxylic acid (TCA) cycle or 
acetyl-CoA pathway has to be present [33]. Since 
D. nigrificans and D. carboxydivorans cannot grow 
with acetate, it was expected neither strain would 
possess a complete TCA cycle; which was verified 
by a lack of the putative genes that code for ATP-
dependent citrate synthase, aconitase, and 
isocitrate dehydrogenase. All genes coding for the 
acetyl-CoA pathway are present in both genomes, 
except for the genes encoding the acetyl-CoA syn-
thase subunit and the FeS-protein large and small 
subunit. Probably the gene coding for the acetyl-
CoA synthetase is also involved in the acetyl-CoA 
production from acetate and coenzyme A. 

Sugar metabolism 
D. nigrificans and D. carboxydivorans are able to 
utilize glucose and fructose as electron donors in 
the presence of sulfate. Additionally, both species 
are able to ferment fructose, although fermenta-
tion of glucose is only reported for D. 
carboxydivorans [5,6]. The capability of utilizing 
sugars for growth is unusual among 
Desulfotomaculum species. The other 
Desulfotomaculum species that belong to cluster I, 
sub group a, D. ruminis, D. aeronauticum, D. putei 
and D. hydrothermale (with the exception of “D. 
reducens”), are not able to grow with glucose or 
fructose [34-36]. Glucose metabolism in D. 
nigrificans was studied before [4]. Akagi and Jack-
son showed that the majority of the glucose was 
degraded by the Embden-Meyerhof-Parnas path-
way and in several instances the glucose followed 
the Entner-Doudoroff pathway [4]. The Embden-
Meyerhof-Parnas pathway and the pentose phos-
phate pathway are predicted to be complete in the 
genome of D. nigrificans and D. carboxydivorans. 
However, genes coding for the 6-
phosphogluconate dehydratase and the 2-keto-3-
deoxy-6-phosphogluconate aldolase, the two 
characteristic enzymes of the Entner-Doudoroff 
pathway, were not found in the genome of D. 
nigrificans and D. carboxydivorans. A 
phosphotransferase system (PTS) for glucose-
specific transport was not found in either genome. 
Such a system is present in the genome of the glu-
cose-utilizer D. reducens (Dred_0332). Genes cod-
ing for the fructose-specific PTS are present in an 
operon structure in D. nigrificans 
(DesniDRAFT_2286 and 2291) and D. 
carboxydivorans (Desca_2698 and 2703). This sys-
tem is likely involved in fructose uptake and its 
subsequent phosphorylation to fructose-1-
phosphate. The fructose-1-phosphate thus formed 
can be further phosphorylated by 1-
phosphofructokinase to fructose-1,6-bisphosphate 
(DesniDRAFT_2290 and Desca_2702). 

Unlike D. nigrificans and D. carboxydivorans, D. 
ruminis and D. kuznetsovii are not able to grow 
with glucose or fructose. However, they have the 
genes that code for all the enzymes involved in the 
Embden-Meyerhof-Parnas pathway present in 
their genome. What is missing in their genome is 
the PTS for fructose-specific transport. This sug-
gests that the absence of this PTS system prevents 
the use of fructose for growth. 
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Growth on one-carbon substrates 
D. nigrificans and D. carboxydivorans can grow 
with formate plus sulfate in the presence of yeast 
extract and acetate as a carbon source. Since the 
genomes lack a complete acetyl-CoA pathway, D. 
nigrificans and D. carboxydivorans are not able to 
produce acetyl-CoA from formate and need an ad-
ditional carbon source. The two genomes have 
similar genes that putatively code for three 
formate dehydrogenases (FDHs). The first FDH 
consists of an alpha subunit (DesniDRAFT_0989, 
Desca_1018), which is located next to a 
hydrogenase (DesniDRAFT_0990, Desca_1017) 
and a flavoprotein (DesniDRAFT_0988 and 
Desca_1019). The flavoprotein has one predicted 
transmembrane helix. Therefore, these genes 
might code for one intracellular membrane asso-
ciated FDH. The second FDH gene cluster 
(DesniDRAFT_1389-1392, Desca_2053-2055) pu-
tatively codes for a confurcating cytoplasmic FDH. 
The third is predicted to code for an extracellular 
FDH (DesniDRAFT_1396-1397, Desca_2059-2060) 
associated with the membrane by a proposed 10 
transmembrane helixes containing protein 
(DesniDRAFT_1395, Desca_2058). BLAST results 
and orthologous BLAST analysis [37] indicate that 
this transmembrane helix protein is orthologous 
to cytochrome b. Therefore, electron transport 
from this FDH might go through cytochrome b. 
D. nigrificans and D. carboxydivorans are able to 
grow with CO in the presence of yeast extract. 
However, D. nigrificans grows with up to 20% of 
CO coupled to sulfate reduction, while D. 
carboxydivorans can grow with 100% CO with and 
without sulfate. These physiological differences 
should also be visible in the genome for the genes 
involved with carbon monoxide dehydrogenase 
(CODH). Figure 5 shows the organization of the 
CODH catalytic subunit (cooS) and neighboring 
genes in D. nigrificans and D. carboxydivorans. D. 
nigrificans has two cooS genes in the genome 
(DesniDRAFT_0854 and 1323) while D. 
carboxydivorans has three (Desca_0349, 1148, 
1990). The organization of the cooS and neighbor-
ing genes in D. nigrificans is similar to that of two 
of the cooS and neighboring genes in D. 
carboxydivorans. However, one cooS gene cluster 
in the D. carboxydivorans genome cannot be found 
in the genome of D. nigrificans. The genes in this 
cluster are similar to genes described to be in-
volved in the H2 production from CO oxidation 

[38-41]. Carboxydothermus hydrogenoformans was 
the first bacterium described to have multiple 
cooS genes, one of which is united in a cluster with 
hydrogenase genes [40]. The hydrogenase module 
of this gene cluster represents a membrane-bound 
energy-converting hydrogenase (ECH) capable of 
energizing the membrane by proton translocation. 
Among sequenced Desulfotomaculum species, only 
D. carboxydivorans, D. acetoxidans, and D. ruminis 
possess putative genes coding for ECHs. However, 
in the latter two genomes, ECH encoding genes do 
not cluster with cooS genes. Earlier analysis 
showed that clustering of cooS genes and ECH 
genes is a characteristic feature of hydrogenogenic 
carboxydotrophs [42]. The presence of the puta-
tive ECH-cooS gene cluster in D. carboxydivorans 
explains its ability to grow hydrogenogenically on 
CO. 

In D. nigrificans there are no CODH involved genes 
in close proximity of the cooS genes, apart from 
one cooC gene (DesniDRAFT_0855). Apparently, 
this is sufficient for D. nigrificans to grow with 
20% of CO coupled to sulfate reduction. However, 
D. ruminis, another Desulfotomaculum species in 
cluster 1a (Figure 1) of which the genome was re-
cently described [43], also has the cooS gene 
(Desru_0859) downstream of a transcriptional 
regulator (Desru_0858) and upstream of the cooC 
gene (Desru_0860) but that bacterium is not able 
to grow on CO and sulfate. The reason for this is 
not yet clear. 

A cluster of nitrogenase genes (Dtox_1023 to 
1030) has been described in the genome of 
Desulfotomaculum acetoxidans [44]. In the ge-
nomes of D. nigrificans and D. carboxydivorans 
very similar gene clusters occur 
(DesniDRAFT_0869-0858 and Desca_1134-1144). 
Notably, in both cases there are cooS genes in the 
vicinity (DesniDRAFT_0854 and Desca_1148). 
They are located on another DNA strand and are 
convergently directed. Since the low-potential 
carbon monoxide seems to be a good electron do-
nor for nitrogen fixation, this proximity might be 
more than mere coincidence. This would suggest 
that small amounts of CO could be oxidized by D. 
nigrificans in the absence of sulfate. D. ruminis also 
has a similar gene cluster (Desru_3454-3445). 
However, in contrast to the genomes of D. 
nigrificans and D. carboxydivorans no cooS gene is 
nearby in the genome of D. ruminis. 
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Figure 5. Organization of cooS and neighboring  genes in DSM 574 (A) and DSM 14880 (B). Abbrevia-
tions: HP, hypothetical protein; TR, transcriptional regulator. 

Methyltransferase genes as present in D. 
kuznetsovii that might point to possible growth 
with methanol or methylated amines were not 
found in the genomes of D. nigrificans and D. 
carboxydivorans. These two strains accordingly, 
do not grow with methanol. Growth on methylat-
ed amines were never tested, but the genome sug-
gests there is no growth possible with these com-
pounds. 

Hydrogen metabolism 
D. nigrificans and D. carboxydivorans have a simi-
lar hydrogenase composition that is dominated by 
[FeFe] hydrogenases, as observed in other 
Desulfotomaculum spp. Each of the two bacteria 
has 9 [FeFe] hydrogenases, divided in the follow-
ing groups: Three copies of trimeric bifurcating 

hydrogenases (DesniDRAFT_0775-0777, 
DesniDRAFT_0770-0772 and DesniDRAFT_1331-
1333; Desca_1224-1226, Desca_1230-1232 and 
Desca_1996-1998); two copies of a monomeric 
hydrogenase (DesniDRAFT_0646 and 
DesniDRAFT_0308; Desca_1356 and Desca_1680); 
one HsfB-type hydrogenase encoding a PAS-
sensing domain that is likely involved in sensing 
and regulation (DesniDRAFT_0986 and 
Desca_1021); one hydrogenase that is part of a 5-
gene operon also encoding one membrane protein 
and two flavin-dependent oxidoreductases 
(DesniDRAFT_1073-1077 and Desca_0931-0935); 
and finally two copies of a membrane-associated 
hydrogenase (DesniDRAFT_1068-1070 and 
DesniDRAFT_2001-2003; Desca_0940-0938 and 
Desca_2453-2455). The catalytic subunit 
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(DesniDRAFT_1068, 2001 and Desca_0940, 2453) 
of this hydrogenase contains a tat signal motif, 
which suggests that the hydrogenase complex is 
positioned extracellular. Moreover, the membrane 
associated subunit is a 10 transmembrane helix 
containing protein that is orthologous to cyto-
chrome b. This is similar to the extracellular FDH. 
The high number of hydrogenases in the genomes 
of the two bacteria indicate a high metabolic flexi-
bility. This is important for changing growth strat-
egies, from, for example, sulfate respiration to 
syntrophic growth. A syntrophic co-culture of D. 
nigrificans and Methanobacterium 
thermoautotrophicum on lactate and ethanol was 
described [5]. Syntrophic consortia are able to 
grow from very small free energy changes due to 
their ability to overcome thermodynamically diffi-
cult reactions. Reverse electron transfer is an es-
sential part of this. The genes coding for the bifur-
cating hydrogenases and the confurcating formate 
dehydrogenase in the D. nigrificans genome are 
therefore likely candidates to be involved in 
syntrophic growth on lactate and ethanol. 
A membrane-associated ECH is present only in D. 
carboxydivorans, as mentioned above, and no oth-
er [NiFe] hydrogenases are present. Other mem-
brane associated complexes found in the genome 
of D. nigrificans and D. carboxydivorans are com-
plex I (DesniDRAFT_0902-0892 and Desca_1110-
1120) and a H+-pumping membrane-bound 
pyrophosphatase (DesniDRAFT_2060 and 
Desca_2506). 

Electron acceptor metabolism 
The genes for the assimilatory sulfate reduction 
are organized in an identical way in D. nigrificans 
and D. carboxydivorans. ATP-sulfurylase 
(DesniDRAFT_1837, Desca_2237) is followed by 
adenosine-5´-phosphosulfate (APS) reductase 
(DesniDRAFT_1836-1835, Desca_2378-2377), and 
the QmoAB complex (DesniDRAFT_1834-1833, 
Desca_ 2376-2375). A qmoC gene is absent but 
seems to be substituted by heterodisulfide 
reductases (Hdr) CB (DesniDRAFT _1838-1839, 
Desca_ 2381-2380). This organization is also 
found in D. ruminis and D. reducens. The position 
of the HdrCB is switched to the other side in D. 
acetoxidans, D. gibsoniae, D. alcoholicoviorans, 
Desulfurispora thermophila, and Desulfarculus 
baarsii (which owns a Gram-positive aprBA [45]). 
In contrast to these organisms, D. kuznetsovii, 
Ammonifex degensii, Desulfovirgula thermocuniculi, 

and Gram-negative sulfate-reducing bacteria 
which posses a Gram-positive aprBA [45] like 
Desulfomonile tiedjei and Syntrophobacter 
fumaroxidans have a complete qmoABC complex 
(for D. kuznetsovii: Desku_ 1075, Desku_1076, 
Desku_1078). 
The genes for the dissimilatory sulfite reductase 
found and their organization are identical to all 
other six Desulfotomaculum genomes published so 
far and most other Gram-positive sulfate-reducing 
bacteria. The dsrAB genes (DesniDRAFT_2256-
2255, Desca_2666-2665) are linked to a dsrD gene 
(DesniDRAFT_2254, Desca_2664). Both organisms 
also contain a truncated DsrMK complex 
[46](DesniDRAFT_2267-2268, Desca_2678-2679) 
which is linked to a dsrC gene (DesniDRAFT_2266, 
Desca_2677) as it was found in D. ruminis [43]. 
This truncated DsrMK is generally found in Gram-
positive sulfate-reducing bacteria and not re-
stricted to members of the genus 
Desulfotomaculum. 
D. nigrificans and D. carboxydivorans lack nitrate 
reduction genes for reduction of nitrate to N2. Ni-
trate reductase, nitric-oxide forming nitrite 
reductase, nitric-oxide reductase and nitrous-
oxide reductase are all absent in both genomes. 
However, a nitrite/sulphite reductase 
(DesniDRAFT_1001, 2506; Desca_0162, 1181) and 
an ammonia forming nitrite reductase 
(DesniDRAFT_0204; Desca_2313) are present in 
the genome of D. nigrificans and D. 
carboxydivorans. No taurine degradation pathway 
was detected in the genome of either strain, but it 
was described for the closely related D. ruminis 
[43]. 

Fumarate reductases 
Using fumarate as an electron acceptor for growth 
of D. nigrificans and D. carboxydivorans has not 
been tested yet. However, a fumarate reductase is 
present in the genomes of the two bacteria. The 
three genes encode for a FAD containing catalytic 
subunit (DesniDRAFT_0617; Desca_1387), an iron 
sulfur containing subunit (DesniDRAFT_0616; 
Desca_1388), and a membrane associated cyto-
chrome b (DesniDRAFT_0615 and Desca_1389). 
This cytochrome b protein might perform an elec-
tron interaction with the cytochrome b of the ex-
tracellular FDH (Figure 6, panel B). This interac-
tion could occur as described in Wolinella 
succinogenes, where fumarate can be used as an 
electron acceptor for growth on formate [47]. 
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Figure 6. Schematic representation of putative formate dehydrogenases in the genome of DSM 574 and DSM 14880 
(A). Including  the hypothesized electron interaction of the putative extracellular membrane bound formate dehy-
drogenase with the putative fumarate reductase (B). The electron acceptor fumarate is reduced to succinate by using 
formate as an electron donor. Gene locus tag  numbers and α -, β-, and γ-subunits are depicted. Moreover, predicted 
iron-sulfur clusters and other metal-binding  sites are indicated. 



Visser et al. 

http://standardsingenomics.org 671 

Comparative genomics 
Distinct genes in Desulfotomaculum carboxydivorans  
and D. nigrificans 
To reveal genomic differences between these two 
very closely related species, a bidirectional BLAST 
of the protein coding genes was performed. BLAST 
analyses were performed using standard settings 
and best hits were filtered for 70% sequence cov-
erage and 40% identity (supplementary data S1). 
A total of 2,529 homologous genes were found 
(Figure 7). The distinct genes were screened for 
operon structure and function, revealing genes 
involved in CRISPR, urea metabolism and 
hydrogenogenic CO metabolism in D. 
carboxydivorans. 
CRISPR genes in D. carboxydivorans were found to 
have low sequence coverage and or identity with 
genes in the D. nigrificans genome (Figure 3). The-
se genes involved two CRISPR-Cas systems, which 
we classified as a I-C subtype (Desca_0534-0540) 
and a III-A subtype (Desca_0572-0576). D. 
nigrificans has one CRISPR-Cas system subtype, I-
A (DesniDRAFT_2444-2452), which is also present 
in D. carboxydivorans (Desca_0726-0734). The 
presence of multiple CRISPR-Cas systems and the 

occurrence of the different subtypes in one strain 
has been described previously [49,50] and shows 
that the co-occurrence of subtype I-A with I-C and 
III-A is a common feature. However, it also shows 
that D. carboxydivorans is part of the 2% of bacte-
ria that have a III-A subtype without a III-B sub-
type. 
The genome of D. carboxydivorans also contains 
genes coding for a urease (Desca_0743-0749) and 
urea transport (Desca_0738-0742) (Figure 3). 
Urease catalyzes the reaction of urea to CO2 and 
ammonia. Urea is very common in the environ-
ment and is a nitrogen source for many bacteria 
[51]. The genome of D. nigrificans lacks the genes 
coding for an urease, which indicates that D. 
nigrificans is relatively more restricted regarding 
its nitrogen source. Other interesting genes that 
are present in the D. carboxydivorans genome and 
not in the D. nigrificans genome are genes in-
volved in the carbon monoxide dehydrogenase 
(CODH) and hydrogenase as described above. 

 

 
Figure 7. Venn diagram showing a comparison of the protein coding genes of DSM 574 and DSM 14880. The 
number of overlapping protein coding genes is g iven inside the areas of the circles and the total number of de-
rived protein sequences used for each strain is shown in parentheses. The figure was created using  the program 
Venn diagram plotter available from the Pacific Northwest National Laboratory Software Distribution Center [48].
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Taxonomic conclusions 
The overall similarity of the genome sequences of 
the type strains of D. nigrificans and D. 
carboxydivorans was estimated by using the Ge-
nome-To-Genome Distance Calculator (GGDC) as 
described previously [52]. This program calcu-
lates DNA-DNA similarity values by comparing the 
genomes to obtain high-scoring segment pairs 
(HSPs) and inferring distances from a set of three 
formulas (1, HSP length/total length; 2, identi-
ties/HSP length; 3, identities/total length). Ac-
cording to the GGDC the average estimated DNA-
DNA similarity value between the two type strains 
is 86.5 ± 5.5% and thus clearly above 70%, which 
is the widely accepted threshold value for assign-
ing strains to the same species [53]. The high simi-
larity of the genome sequences of both type 
strains was further supported by the average nu-
cleotide identity of shared genes (ANI), which 
proved to be above 99%. This ANI value is much 
higher than the 95 to 96% value shown to corre-
spond to the 70% DNA-DNA hybridization level 
[54]. Moreover, the two strains have almost iden-
tical 16S rRNA gene sequences (>99%) and a high 
number of shared genes (Figure 7). It should be 
mentioned that the previously reported and de-
posited rRNA gene sequence of D. nigrificans DSM 
574 contained a lot ambiguities and some missing 
nucleotides, which are counted as mismatches by 
BLAST. Therefore, we reanalyzed the rRNA gene 
sequences of D. nigrificans deposited in the NCIMB 
culture collections and confirmed the identity of 
the rRNA gene sequence found in the genome of 
DSM 574. We propose that the species should be 
united under one name. According to the rules of 
priority as given by the Bacteriological Code [55] 
the name D. nigrificans should be used for the uni-
fied taxon, with D. carboxydivorans as a later het-
erotypic synonym. 

Emended description of 
Desulfotomaculum nigrificans 
(Werkman and Weaver 1927) Camp-
bell and Postgate 1965 
The description is as given by Campbell and 
Postgate [1] and Parshina et al. [6] with the fol-
lowing modifications. 

The cells are Gram-positive, rod-shaped with 
rounded ends, 0.3-1.5 x 2-15 µm, single or some-
times paired. Motility with tumbling or twisting 
movements conferred by peritrichous flagella. 
Terminal or subterminal oval endospores that are 
slightly swelling the cells. Thermophilic and 
neutrophilic with an temperature optimum of 
55°C. NaCl is not required for growth. The follow-
ing substrates are utilized, coupled to the reduc-
tion of sulfate to sulfide: DL-lactate, pyruvate, eth-
anol, L-alanine, D-fructose, D-glucose. Acetate and 
methanol are not utilized. Substrates are incom-
pletely oxidized to acetate. In the presence of 0.5 
g/l yeast extract, lithoheterotrophic growth is 
possible, such as growth on H2 and CO2 with sul-
fate or growth on 20% CO with sulfate for D. 
nigrificans strain Delft 74 and growth on 100% CO 
with or without sulfate for strain CO-1-SRB. Suita-
ble electron acceptors with lactate as substrate 
are sulfate, sulfite and thiosulfate, but not ele-
mental sulfur or nitrate. Fermentation of pyruvate 
and fructose; strain CO-1-SRB is also able to fer-
ment DL-lactate, glucose and CO. The prevalent 
respiratory lipoquinone is MK7 with only small 
amounts of MK6. The dominating cytochromes are 
of type b. Major cellular fatty acids are 16:0, iso 
15:0, iso 17:0, anteiso 15:0, 18:0 and iso 16:0. The 
DNA G+C content is around 46 mol%. The type 
strain is Delft 74 (=NCIMB 8395 = DSM 574 = 
ATCC 19998 = NBRC 13698). 
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