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ABSTRACT: Vibrations in rock masses can be a significant hazard, leading to human discomfort and structural
damage. Recent cases of subway or tunnel excavation near existing dams in Portugal have raised again the
importance of this topic. Traditional statistical tools have been used to study wave propagation in rock, but fall
short when rock fracturing or faulting radically changes the way vibration propagates. Numerical models such as
finite-element or finite-difference models also have some insufficiencies, namely in the way discontinuities are
represented. We propose the utilization of bonded particle models based on the Particle Discrete Element Method.
Synthetic rock samples are generated and their static elastic properties are calibrated by manipulating micro-
properties (assembly organization and normal and shear contact stiffness). The static and dynamic properties of
the rock cores are tested and the complete elastic response of the model is evaluated and discussed.

1 INTRODUCTION

Ground vibrations can lead to structural damage,
induce equipment failure and hinder human activi-
ties. Rock blasting is one of the main generators of
vibration, and when the structures, equipment or pop-
ulations that are affected are on the same rock mass,
attenuation is low and vibration levels can be very high.

Standard statistical methods have been used for
some decades to address these problems, but fall
short in many situations were rock fracturing or fault-
ing radically changes the way vibration propagates.
In these situations, numerical models such as finite-
element or finite-difference models also have some
insufficiencies, namely in the way rock fractures are
represented.

Particle discrete element models can contribute by
complementing fundamental studies, as they allow
visualization of internal behaviour of rock. On the
other hand, it is very likely that, with the advent of
powerful hardware and adequate codes, we will be able
to perform real scale calculations with particle models
in the near future.

This work (Andrade 2012) investigates the gen-
eration and calibration process of discrete element
particle models with well-defined static and dynamic
properties. In this context, synthetic rock samples
are generated and their static elastic properties are

calibrated by manipulating micro-properties (assem-
bly organization and shear contact stiffness). Then the
dynamic properties of the rock cores are tested through
the simulation of shear and compression wave velocity
tests.

We are able to develop empirical relations between
static and dynamic micro and macro properties,
rendering the process of static and dynamic model
construction more evident and easy and also relate the
emergent dynamic behaviour of the model to that of
real rock samples.

This work presents an introduction to the defini-
tion of a synthetic environment that aims to simu-
late the core mechanisms of the wave propagation
in rock. Such an environment is necessary to study
aspects of stress wave interaction with rock masses
that are difficult and expensive to investigate in real
conditions.

1.1 Static and dynamic properties of rock

Hard rock response’s under static or quasi-static
mechanical loading is well understood, as it has been
one of the main areas of research in rock mechanics
from its inception. In the more recent years, techniques
such as micro-acoustics and computed tomography
scans have unveiled the behaviour of the microscopic
constituents of rock. Most of these studies have been
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performed in the laboratory but some acoustic emis-
sion studies have been performed in situ, allowing
the understanding the microfracturation that occurs in
rock well before the first visible signs of rock failure.

In what concerns the study of rock dynamic prop-
erties, it has been much less intense and started later
on, for obvious reasons. Also the relation between lab-
oratory sized cores and real size rock masses under
dynamic loads started being studied much later, but it is
today gaining momentum due to more recent demands:
optimization of blasting, vibration mitigation in mines,
urban construction sites and railroads.

Simultaneously, micromechanical models of rock,
which have been available for a number of decades
(Cundall & Strack 1979) bloomed with the impulse
of the enormous increase of computing power and
the gradual enhancement and adaptation of the two
and three-dimensional codes to the new hardware, in
particular the parallelization of code to modern CPU
architecture.

These numerical methods can simulate the richness
of macroscopic response of rock without resorting to
complex mathematical formulations. The complexity
emerges from the interaction of a large number of
particles which react to proximity and contact using
very simple contact laws. When compared with the
finite element or finite difference methods, which are
more efficient from a computational point of view,
micromechanical methods have the advantage of rep-
resenting explicitly the imperfections and fractures
of rock, allowing a greater interaction and learning
between simulation and testing. When it comes to
dynamic behaviour, this advantage is even greater,
since it is very difficult to grasp what happens inside
the rock during high-speed testing.

1.2 Micromechanical modelling of rock

The particle element method allows the microme-
chanical modelling of rock through a densely packed,
non-structured, assembly of circular or spherical par-
ticles, simulating in two or three-dimensions the basic
static and dynamic mechanics of rock behaviour. Dis-
crete element models that employ a time-steeping
algorithm are particularly well suited for this task,
since they easily perform dynamic and static analysis
in the same model, with the same material proper-
ties, allowing the inherent response of the material
to each environment emerge. Although the charac-
terization of static properties have been reported by
several authors, few works, if any exist on the emergent
dynamic properties of particle models.

1.3 Synopsis

In the first part of this work the generation of the base
model and its static properties are described. Then the
influence of ball radius and contact stiffness on the
elastic constants of the model are studied (Young mod-
ulus and Poisson ratio). On the third part the wave
propagation test to measure and calculate dynamic
elastic properties is described and finally the influence

of the DEM model parameters variation on static and
dynamic properties is presented and discussed.

2 METHODOLOGY

2.1 Generation of a hard rock bonded particle
model

The characteristics of a micromechanical model can be
divided in two groups: one corresponds to the geom-
etry and the second to the microscopic properties of
the particles and contacts. The geometry is defined not
only by the width and height of the sample, which in
this case is rectangular, but also by the statistical size
distribution of the particles and their arrangement in a
compact assembly.

The procedure adopted to generate the particle
assembly (Potyondy & Cundall 2004) consists of five
sequential steps. A closed domain is limited by walls,
and filled with a number of particles generated at ran-
dom positions. The particles are initially generated
with half of their final radius. After the insertion of
all particles, their radius is expanded gradually and
they are allowed to rearrange themselves in a self-
balanced assembly. The average stress in the sample
is measured and the particle radii are reduced until the
stress state is similar to the desired value, which in this
case is close to zero in both directions. Finally, parti-
cles touching two or less particles are expanded and
allowed to move until they touch at least three neigh-
bours, resulting in a dense and well packed assembly.
Then, friction, shear and tension strength is assigned to
the contacts between particles that touch or are within a
set tolerance and walls delimiting the model sample are
deleted. This five-step method builds an assembly of
particles with a pre-determined distribution of micro-
properties. The assembly and micro-properties results
in a mechanical response that has to be evaluated
through mechanical testing, in this case semi-static
compression and wave transmission between the ends
of the model.

Since the object of this study is the elastic response
of the rock, contacts were not allowed to fail, which
was achieved by setting their bond strength to values
much higher than those induced by the stress waves,
while staticYoung modulus was calculated in the elas-
tic phase of the model. As to the density, its choice
is straightforward, since it is equal to the density of
the real rock corrected for the assembly porosity. Con-
tact stiffness is not so easily to assign, since there is no
direct way of knowing the resultant macroscopic prop-
erties that will result from the model. Several authors
(Fakhimi & Villegas 2007) have worked on this topic
and suggested calibration methods, both in the form
of calibration curves, which still demand some fine-
tuning, or directed trial-and-error. This method can be
time consuming if the model is large. Since the models
in this study were relatively small and the authors expe-
rienced in this procedure, calibration was quite easy,
and the desired macroscopic response was attained in
less than four iterations. In each of these iterations, the
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Figure 1. Image of the rock core model and detail showing
the connections between balls.

following procedure was followed. First, contact bond
strength is set to very high values, so that an elastic
response is obtained during the calibration; then, the
normal contact stiffness Kn and shear contact stiff-
ness Ks are set to initial values, which can be obtained
from a previous calculation or from parametric curves.
A uniaxial compression test of the sample is done and
a Young’s modulus is obtained. Kn is then adjusted to
increase or decrease until an acceptable match of the
Young’s modulus is attained, and during this adjust-
ment Ks varies in the same proportion as Kn. The
Poisson ratio is then adjusted to the desired value by
keeping Kn constant while Ks is changed, since Poisson
modulus is related to the Kn/Ks ratio. At the end of
this step both Young and Poisson moduli are set and
the calibration is finished.

The reference model in this study is 50 mm wide and
100 mm tall, the minimum ball radius is 0.25 mm and
the maximum is 0.415 mm, 1.66 times larger. Particle
density was set to 2941 kg/m3. The normal to shear
contact stiffness ratio is 2.5 and the normal stiffness is
equal to 40 × 109 Pa.

Two synthetic samples generated with the same
sequence of commands have different responses, since
there is randomness in the particle arrangement, hence
the contact networks will be different. This is similar
to the response of rock, where samples taken from the
same core have slightly different properties.

In the current case the authors didn’t aim to repro-
duce a previously defined macroscopic behaviour, but
to find out how the same set of micro-properties and
their variation results in terms of static and dynamic
behaviour.

2.2 Static testing and properties

Figure 2 shows the plot of normal stress against vertical
deformation in an unconfined compression test. The
pictures in the plot show the forces between particles in

Figure 2. Plot of force-displacement curve in unconfined
compressive test until failure and superposition of contact
forces in the model at start and end of the simulation (red
line denotes tension and black lines compression). Notice
the initial effect of self-weight (left insert figure) and the
final pattern of forces showing the formation of diagonal
macro-fracture in the rock. Forces on the right are many times
larger than on the left.

the beginning and end of the simulation. At the begin-
ning of the test, the predominant stress is due to the
self-weight of the model. At the end, the vertical com-
pressive stress is predominant and shear cracks are
completely defined.

Young and Poisson moduli are calculated in a similar
fashion as a laboratory test, by considering the normal
stress and the associated vertical and horizontal defor-
mations, measured between the ends of the model or in
its interior. The elastic parameters were calculated for
the reference model and thirty other models where one
of the following parameters was changed: ball radius,
ball radius ratio (ratio between maximum and mini-
mum ball dimensions), contact normal stiffness and
ratio of normal and shear contact stiffness.

2.3 Dynamic testing and properties

After the generation, calibration and static testing of
each model, it is tested for dynamic properties. This
test is similar to a laboratory Ultra-Sound test: a wave
is generated in the bottom boundary and is received
in the opposite wall. The frequency of the wave was
picked up so that the wave is preserved while travel-
ling across the model, according to previous work by
Resende et al. (2010).

The distance between the ends of the model is
then divided by the time lapse between generation
and wave arrival. Both shear and compressive waves
can be generated, although there are specific difficul-
ties to each type of wave. Figure 3 show the location
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Figure 3. Location of the probes where particle velocity was
extracted and detail of the model with identification of the
precise probe particles’ locations.

Figure 4. Particle velocity plot at section S3 for identifica-
tion of compressive and shear wave arrival time.

of the probed particles. In each section five particles
were selected and their velocity time-histories were
analysed.

Figure 4 shows the vertical and horizontal parti-
cle velocities extracted from a calculation where a
compressive and a shear wave were injected at the bot-
tom of the model. The vertical velocity and horizontal
velocities were then measured at the top of the model
and analysed to determine wave arrival time. It is clear
from the analysis of the two plots that it is easier to
identify compressive wave arrival, since shear waves
are prone to contamination from the faster P wave. It
is interesting to note that the same problem is recur-
rent in laboratory testing of shear wave velocity, and
the same strategies for wave identification are applied
here.

Wave phase velocity VP or VS is then calculated
from dynamic test results using:

where L is the distance between the actuator and
the sensor and t is the time interval between wave
generation and wave arrival.

As shear and compressive wave velocities are
determined in the model, both dynamicYoung’s modu-
lus Edyn and Poisson coefficient υdyn can be calculated.
If Poisson coefficient is calculated first,

Then using rock density ρ, Young’s modulus
becomes:

3 RESULTS

3.1 Geometric properties: ball radius and radius
ratio

Figure 5 shows the evolution of both static and
dynamic properties when the ball size varies. The
first observation is that dynamic properties are always
higher than static properties. This is apparent in the
majority of rock materials and is extensively docu-
mented (Barton 2007). This has also been reported in
previous tests with particle models of rock. The par-
ticle models simulate the real mechanics of particle
adjustment under static load and the wave propagation
from particle to particle.

The variation of particle size, while keeping the par-
ticle radius ratio (larger particle diameter over smaller
particle diameter) constant does not change the elas-
tic parameters significantly. It is interesting to notice
that both in the Young and Poisson moduli the differ-
ence between static and dynamic properties seems to
diminish with higher ball size.

Difference between static and dynamic properties
also decreases when the ball size ratio increases, as
observed in Figure 6. But here, a more interesting
effect is evident: when all particles are of the same
size, i.e. the particle size ratio is equal to one, there
is smaller complexity of the particle assembly and
both static and dynamic Young’s modulus increases
abruptly. It should be noted that PFC manuals advise
the use a value of Rmax/Rmin of 1.66 for rock material.

3.2 Normal contact stiffness and ratio of shear and
contact stiffness

Figure 7 confirms an intuitive tendency: as the normal
and shear contact stiffness increase, the global stiff-
ness of the model does to. This is well known, but
it is interesting to see what happens in the dynamic
case. It also shows that if normal stiffness is constant
and shear stiffness decreases (making the Kn/Ks ratio
grow) global stiffness of the model decreases, but the
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Figure 5. Evolution of static and dynamicYoung’s modulus
(top) and Poisson’s ratio (bottom) with ball radius.

decrease here is not linear, indicating that even if shear
stiffness is very low, the normal stiffness assures the
“skeleton” of the rock.

It is interesting to note what happens to Poisson
ratio. When the contact stiffness increases (Figure 8)
the Poisson ratio variation is small. But when the con-
tact stiffness ratio increases, that is, normal stiffness is
more important than shear stiffness, the Poisson mod-
ulus increases because the lateral movement of the
particles becomes less constrained (Figure 9).

3.3 Dynamic properties

Figures 10 shows the evolution of P-wave velocity with
contact stiffness and contact stiffness ratio (S-wave
evolution is similar to P-wave’s and is not shown here
for lack of space).

Stress waves are faster when normal contact stiff-
ness increases slow down as the stiffness ratio

Figure 6. Evolution of static and dynamicYoung’s modulus
(top) and Poisson’s ratio (bottom) with ball radius ratio.

Figure 7. Evolution of static Young modulus with contact
stiffness and contact stiffness ratio.

decrease, and both get faster as the stiffness increases.
But to find out what happens to elastic constants, the
influence of both waves must be considered through
equations 2 and 3 and compiled in next section.

875



Figure 8. Evolution of static Poisson modulus with normal
contact stiffness.

Figure 9. Evolution of static Poisson modulus with contact
stiffness ratio.

Figure 10. Evolution of compressive wave velocity with
contact stiffness ratio.

3.4 Comparison of static and dynamic properties

Finally, we compare, in Figure 11, the static and
dynamic properties for a constant contact normal
stiffness (Kn) of 60 GPa. Two observations are impor-
tant. First, the major tendencies are similar in both
Young and Poisson modulus for static and dynamic
elastic parameters. Second, the dynamic Young mod-
ulus is larger than the static, but only when Kn/Ks is

Figure 11. Evolution of static and dynamic elastic proper-
ties with contact stiffness ratio.

larger than 2.0. It is useful to notice that Potyondy &
Cundall (2004) suggest that to simulate static
behaviour of hard rock, the contact stiffness ratio
should be above this value.

4 CONCLUSIONS

This paper presented a comparative investigation on
the static and dynamic elastic macroscopic response
of Bonded Particle Models of hard rock cores.

The study of static behaviour of this class of mod-
els is well advanced, but the dynamic range is still
in its start. The authors think that particle models
will be intensely used on more complex environ-
ments such as dynamic, thermo-hydraulic-mechanical
coupled analysis, fractured rock masses, etc.

The tendencies found in this study confirm that the
elastic dynamic response of bonded particle models
follows the patterns exhibited in experimental inves-
tigations, paving the way for further use of these
techniques in more complex applications.
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