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Abstract

CAO is a domain-specific imperative language for cryptography, offering a rich
mathematical type system and crypto-oriented language constructions. We de-
scribe the design and implementation of a deductive verification platform for
CAO and demonstrate that the development time of such a complex verifica-
tion tool could be greatly reduced by building on the Jessie plug-in included
in the Frama-C framework. We discuss the interesting challenges raised by the
domain-specific characteristics of CAO, and describe how we tackle these prob-
lems in our design. We base our presentation on real-world examples of CAO
code, extracted from the open-source code of the NaCl cryptographic library, and
illustrate how various cryptography-relevant security properties can be verified.

Keywords: Formal Verification, Program Verification, Cryptographic
Software, Deductive Verification

1. Introduction

The development of cryptographic software is clearly distinct from other ar-
eas of software engineering. The design and implementation of cryptographic
software is inherently interdisciplinary, drawing on skills from mathematics,
computer science and electrical engineering. However, there is a clear lack of do-
main specific languages and tools for the development of cryptographic software
that can assist developers in facing the challenges that they face. The formal
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verification tool described in this work has been developed to allow the static
analysis of code written in CAO [1], a domain-specific language for cryptogra-
phy. Our tool, which we call CAOVerif, was employed in the formal verification
of an open-source library written in CAO and it has been tuned to enable the
fully automatic verification of simple properties (e.g., safety properties), while
still enabling the interactive validation of more ambitious proof goals.

Deductive program verification and Frama-C. Program verification is the area
of formal methods that aims to statically check software properties based on
the axiomatic semantics of programming languages, usually brought to prac-
tice through the use of contracts – specifications annotated into the programs,
consisting of preconditions, postconditions, invariants, frame conditions, and
other elements. We use the expression deductive verification to distinguish this
approach from other ways of checking properties of programs, such as software
model checking [2, 3, 4]. While the theoretical principles of this form of verifica-
tion have been established for decades now, only in recent years have verification
tools evolved to cover features of realistic programming languages based on con-
tracts (notably an adequate treatment of pointers and dynamic data structures).
Such tools are available for instance for C [5, 6], C# [7] or Java [8].

In this work we build on Frama-C [6], an extensible open-source framework
where static analyses of C programs are implemented by a series of plug-ins.
Jessie [9] is a plug-in that can be used for deductive verification of C programs.
Broadly speaking, Jessie performs the translation between an annotated C pro-
gram and the input language for the Why tool. Why is a Verification Conditions
Generator (VCGen), which produces a set of proof obligations that can be dis-
charged using a multitude of proof tools, including the Coq proof assistant [10],
and the Simplify [11], Alt-Ergo [12], and Z3 [13] automatic theorem provers.

Motivation. Experience shows [14? ] that a tool such as Frama-C has great
potential for verifying a wide variety of security-relevant properties in crypto-
graphic software implementations. However, it is well-known that the intrinsic
characteristics of the C language make it a hard target for formal automated
verification. This problem is amplified when the verification target is in the
domain of cryptography, because implementations typically explore language
constructions that are little used in other application areas, including bit-wise
operations, unorthodox control-flow (e.g., loop unrolling, single-iteration loops
and break statements), intensive use of macros, etc. Our goal is to take ad-
vantage of the characteristics of CAO to construct a domain-specific verification
tool, allowing for the same generic deductive verification techniques that can
be applied over C implementations, but simplifying the verification of security-
relevant properties and, hopefully, providing a higher degree of automation.

Contributions. We describe the design and implementation of CAOVerif, a de-
ductive verification platform for CAO. We show that CAO presents interesting
challenges for formal verification, concerning not only its rich type system, but
also the cryptography-oriented language constructions that it offers. We de-
scribe how we tackle these challenges in our design, namely by presenting what
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we believe to be the first formalisation in first-order logic of the rich mathe-
matical data types that are used in cryptography, for the purpose of deductive
verification. For each CAO data type we present an axiomatic model that can be
used by automatic proof tools to discharge various verification goals. However,
the complex semantics of the CAO data types and the intricacy of our axiomatic
models raises the natural question of whether our formalization is sound. We
therefore describe how we have formally proven the soundness of our axiomatic
models using the Coq proof assistant. Finally, we also demonstrate that the
development time of such a complex verification tool can be greatly reduced by
relying on the Jessie plug-in of the Frama-C framework. We base our presenta-
tion on real-world examples of CAO code, extracted from the open-source code
of the NaCl cryptography library [15]. We show how we fine tuned CAOVerif to
enable the fully automatic formal verification of simple properties (in particular
safety properties), and also how more ambitious proof goals (arising in general
proofs of functional correctness) can be addressed using interactive proofs.

This work is an extended version of [16]. In addition to an axpanded presen-
tation of the design and implementation of CAOVerif, we include as supplemen-
tary material the formal verification of the axiomatic models used in the tool,
as well as a real-world case study that allows us to demonstrate a wider range
of features and capabilities of CAOVerif.

Organisation of the Paper. The next section expands on the application sce-
nario and functional requirements for CAOVerif. Section 3 describes the high-
level implementation choices we have made. In Section 4 we introduce the most
relevant parts of the translations performed by CAOVerif, including the gener-
ation of safety proof obligations. In Section 5 we show how we have proved
the soundness of our axiomatic models in Coq and in Section 6 we describe an
example of a real-world application of CAOVerif. Section 7 discusses related
work and Section 8 has some concluding remarks.

2. Deductive verification of CAO programs

The CAO language. CAO allows for the practical description of cryptography
kernels (e.g., block ciphers and hash functions) and sequences of algebraic oper-
ations (e.g., finite field arithmetics) for public-key cryptography. The language
has been designed to allow the programmer to work over a syntax that is similar
to that of C, whilst focusing on the aspects of cryptographic primitive implemen-
tation that are most critical for security and efficiency. A detailed specification
of CAO can be found in [17, 18]. AppendixA includes source code extracted
from a CAO implementation of the NaCl crypography library.

As a C-like language, CAO includes conditionals and loops, as well as global
variable declarations, function declarations and procedures. The seq statement
permits expressing loop constructions where the number of iterations can be
statically determined. Here, the iterator is an integer variable, seen as read-only
within the loop body. The memory model of CAO is extremely simple (there
is no dynamic memory allocation, evaluation of expressions produces no side
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effects, and the language has a call-by-value semantics). Furthermore, CAO does
not support any input/output constructions, as it is targeted at implementing
the core components in cryptographic libraries.

The syntax of expressions is also similar to that of C, but the native types
and operators in the language are highly expressive and tuned to the specific
domain of cryptography. The CAO type system includes a set of primitive types:
int for arbitrary precision integers, bits[n] for bit strings of finite length, mod[n]
for rings of residue classes modulo an integer (intuitively, arithmetic modulo a
composite integer, or a finite field of order n if the modulus is prime) and bool
for boolean values. Derived types include the product construction struct, the
generic one-dimensional container vector[n] of τ , the algebraic notion of matrix
matrix[i,j] of τ , and the construction of an extension to a finite field τ using a
polynomial p(X), denoted mod[τ <X> / p(X)].2

Algebraic operators are overloaded so that expressions can include integer,
ring/finite-field and matrix operations. The ** operator represents the expo-
nentiation operation, where the basis can be an integer or a value in a modular
type, and the exponent must be a non-negative integer. The natural comparison
operators, extended bit-wise operators, boolean operators and a well-defined set
of type conversion (cast) operators are also supported. Bit string, vector and
matrix access operations are extended with the range selection (..) operator.
Vectors and bit strings can be concatenated using the @ operator.

An implementation of a type-checker for CAO programs has been derived
from the CAO type system formalisation [18]. Hence, we assume that the input
CAO program has been type checked and that CAOVerif has access to an Ab-
stract Syntax Tree (AST) annotated with the resulting type information. We
remark that this includes the concrete sizes of all container types, the mod-
uli and polynomials in rings and finite fields, etc. Furthermore, the CAO type
checker is able to reject all programs where incompatible type parameters are
passed to an operator. For example, the size restrictions associated with matrix
addition and multiplication are enforced by the type system. The same happens
for operations involving bit strings, rings and finite fields, where the type system
checks that operator inputs have matching lengths, moduli, etc.s The soundness
of this type system has recently been established with respect to the semantics
of CAO [19]. This result implies that a correctly typed CAO program can only
give rise to a well-defined set of trapped errors. This notion has a direct bearing
on the discussion of what safety means for CAO programs.

Safety in CAO. Checking that a program will not reach a point of execution that
may result in a catastrophic failure, namely a run-time error, is commonly known
as safety verification. This type of verification goal is admittedly a modest one;
nevertheless, not only is it a critical aspect for practical applications, but it is
also frequently a challenge for existing tools and may become a labour-intensive

2Semantics of an extension field of order nd is defined as arithmetic modulo an irreducible
polynomial p(X) with coefficients in τ , where τ is a field of order n and p(X) has degree d.
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activity. A requirement for CAOVerif is that safety verification should involve
little or no intervention from the end-user.

Program safety in CAO has two dimensions: memory safety and safety of
arithmetic operations. A memory-safe program never fails at run-time by access-
ing an invalid memory address. Memory safety verification is not, in general, a
trivial problem in languages with pointers and heap-based data structures, and
dedicated verification tools are often needed for this task. However, for correctly
typed CAO programs, this problem is reduced to making sure that all indices
used in vector, bit string and matrix index accesses are within the proper range.

The safety of arithmetic operations is more interesting. In CAO we have
four algebraic types: arbitrary precision integers, rings of residue classes mod-
ulo a composite number, finite fields, and matrices thereof. The semantics of
operators over these types is precisely given by the mathematical abstractions
that they capture. This means that the concept of arithmetic overflow does not
make sense in this context, and it leaves as candidate safety verification goals
the possibility that such operators are not defined for certain inputs, and that
such pathological cases might not be caught during type-checking.

Assuming a CAO program correctly type-checks, then matrix addition and
multiplication are intrinsically safe. The safety of integer operations includes
the classic division-by-zero condition. Furthermore, the exponentiation operator
over integers, rings and finite-fields is only defined for non-negative exponents.
Rings and finite fields pose specific interesting problems, as they are not syn-
tactically distinct CAO types. Take the following declarations.3

def a : mod[ 1 3 ] := [ 4 ] ; def b : mod[ 1 0 ] := [ 5 ] ;
def c : mod[ 1 3 ] := 1/a ; def d : mod[ 1 0 ] := 1/b ;

All these operations are safe, except the initialization of d. This is because
the multiplicative inverse modulo 10 is defined only for integers that are co-
prime with 10. This means that, whenever a division occurs in the mod[n] type,
one must also ensure that the divisor is coprime to the modulus. When the
modulus is a prime number, then the mod[n] type represents the finite field of
size n. In this case, the previous problem reduces again to the division-by-zero
case. However, this observation does not help, unless there is a way to verify
that the modulus is indeed a prime number. One way to do this, of course, is to
allow the programmer to vouch for the primality of the modulus. We will return
to this issue in Section 4. Finally, a related problem arises when one considers
the construction of extension fields. In this case, not only must one ensure that
the underlying base type represents a finite field (which might not be the case
for the mod[n] type) but also that the provided polynomial is irreducible.

Extending CAO with annotations. Contract-based program verification requires
the use of an interface specification language to write contracts and other an-
notations embedded in the programs to be verified. CAO-SL is a specification

3Here the [·] syntax on literals distinguishes literals of modular types from integer literals.
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language that can be used in annotations over CAO programs, to express be-
havioral properties of these programs. These annotations are embedded in com-
ments (and thus ignored by the CAO compiler) using a special format recognised
by CAOVerif. CAO-SL is strongly inspired by ACSL [6]; it stands to CAO in the
same way that ACSL stands to C. The logical expressions used in annotations
correspond to CAO expressions with additional constructs. CAO-SL includes the
definition of function contracts with pre- and postconditions, statement annota-
tions (e.g., assertions and loop variants/invariants), and other common annota-
tions. CAO-SL also allows for the declaration of new logic types and functions,
as well as predicates and lemmas. A complete description of CAO-SL can be
found in [1]. In this paper, various features of this language will be introduced
gradually, as we describe the CAOVerif architecture and implementation.

3. Implementation of CAOVerif

CAOVerif follows the same approach used in other scenarios for general-
purpose languages such as Java [20] and C [21]. The CAOVerif architecture
relies on the Jessie plug-in, which itself uses Why as a back-end and is one of
the components integrated into the Frama-C framework. This allowed us to
significantly reduce development time and effort.

Using Jessie as a back-end. Jessie enables reasoning about typical imperative
programs, and it is equipped with a first-order logic mechanism, which facilitates
the design of new models and extensions. In particular, it is possible to use this
feature to define in Jessie a model of the domain-specific types and memory
model of CAO. This means that an annotated CAO program can be translated
into an annotated Jessie program and, from this point on, our verification tool
can rely totally on the functionality of Jessie and Why.

The Jessie input language is a simply typed imperative language with a
precisely defined semantics. Programmers are not expected to produce Jessie
source programs from scratch: Jessie is used as an intermediate language, for
instance for verification of C programs in the Frama-C framework. The language
was developed in parallel with ACSL, and they share many constructions. The
language combines operational and logical features. The operational part refers
to statements, which describe the control flow and instructions that perform
operations on data, including memory updates. The logical part consists of
formulas of first-order logic, attached to statements and functions in the form
of annotations. Jessie provides primitive types such as integers, booleans, reals
and unit (the void type), abstract datatypes, and also allows the definition of
new datatypes. Programs can be annotated using pre- and postconditions, loop
invariants, and other intermediate assertions.

Implementation strategy. A detailed explanation of the implementation strategy
that we adopted in CAOVerif can be found in [16]. In a nutshell, in addition to
the translated CAO program in the Jessie input language, CAOVerif generates
a Jessie prelude that includes a model in first order logic of the CAO types
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used in the program. More precisely, for each CAO type, CAOVerif generates
a theory, including the definition of logical functions together with axioms to
model their behavior. Some lemmas and predicates may also be introduced to
facilitate the process of proving verification goals. Intuitively, the generated
Jessie program should enjoy two types of properties. Firstly, it should allow
for as many assertions as possible to be proved automatically; more precisely,
the verification conditions produced by Jessie, and exported to some external
theorem prover, should as much as possible be discharged automatically. For
this, the models must describe the properties of the object types as completely as
possible. Secondly, the translation should be sound : the Jessie model should not
allow proving assertions about CAO data structures that are not valid according
to the language semantics.

Emphasis on Automation. The fact that Jessie relies onWhy as a VCGen, which
is a multi-prover tool, means that it is possible to export verification conditions
(VC) to a large number of different proof tools, from SMT-solvers to the Coq
interactive proof assistant. The typical workflow is to first discharge “easy”
VCs using an automatic prover, and then interactively handle the remaining
conditions. Our translation enables varying degrees of automation, depending
on the complexity of the verification goals. As is the case with VCGens for
other realistic languages, one expects safety conditions to be proved with a high
degree of automation, whereas a lower degree is acceptable for other properties.

Our approach is multi-tiered in the sense that we start with high-level mod-
els tuned for automatic verification (in particular of safety properties); these
models can then be refined into lower-level models that take advantage of the-
ories supported by specific automatic provers (such as bit strings or integers).
Finally, all models can be further refined into Coqmodels, since interactive proof
may be the last resort for discharging first-order VCs.

The degree of automation that we can achieve in verifying the safety of CAO
programs is quite high. For example, once the code has been suitably annotated,
we are able to carry out the safety verification of the entire CAO implementation
of AppendixA without user intervention, and similarly for other examples4 that
combine finite field, vector and matrix operations across several (not necessarily
leaf) functions. We are also able to deal with more ambitious proof goals, such as
those for functional correctness in this case study, with only minor intervention
from the user in interactively discharging proof obligations.

4. CAO to Jessie translation

We will resort to snippets of CAO code to describe the most interesting parts
of the CAO to Jessie translation carried out by CAOVerif, which essentially
correspond to the rich cryptography-specific data types that are available in

4One such example is the AES implementation from which we extract various snippets
that we include for illustrative purposes in the next section.
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Figure 1: Type translation.

�int� = integer �bits[n]� = bits
�bool� = boolean �matrix[n1,n2] of τ� = matrix �τ�
�void� = unit �mod[τ <X> / p(X)]� = field �τ� �p(X)�
�mod n(p)� = mod p �vector[n1] of τ� = vector �τ�

CAO. In other words, we will focus on the way in which we handle the parts of the
CAO language (including the extension to CAO-SL) that do not directly map to
constructions in the Jessie input language, leaving out the standard imperative
constructions supported by both languages, the CAO types that directly map to
Jessie native types, and the translation of annotations, which is also direct. In
the following, �x� denotes the translation of a part of the input CAO program x
into Jessie. Here x can denote any part of the input AST, e.g., a full program,
a type declaration, an expression, etc.

Figure 1 gives an overview of how CAO type declarations are translated
into Jessie type declarations. Some CAO primitive types are translated to Jessie
primitive types, namely int, bool and void. This means that, for these CAO
data types, we directly benefit from the models already provided by the Jessie
plug-in for reasoning about the target Jessie native types.

The remaining CAO types are mapped into newly declared Jessie logic types.
Note that, for parametrised data types such as mod[n], the target type in Jessie
is named so as to explicitly capture the type parameter. This also explains
why we use the translation operation recursively in Figure 1. In the following,
we discuss how we enrich the generated Jessie input file with logic models that
partially capture the semantics of the translated CAO types, in order to enable
both automatic and interactive reasoning about the input CAO program.

4.1. Container Types

The container types in CAO include the vector[] of, matrix[] of and bits types.
The get and set operations on these types are modeled in Jessie using exactly
the second approach that we described in the example in the previous section.
The only caveat is that they are generalized to two dimensions in the case of
matrices, and that we set Jessie type bool as the content type in the case of bits.

Additionally, CAO includes elaborate operators to deal with these container
types that are fine-tuned to the implementation of cryptographic algorithms,
namely symmetric primitives such as block ciphers and hash functions. As an
example, consider the next snippet from a CAO implementation of the Advanced
Encryption Standard (AES) block cipher.

seq i := 0 to 3 { r [ i , 0 . . 3 ] := (Row) ( ( (RowV) s [ i , 0 . . 3 ] ) |> i ) ; }

What we have here is a sequence of rotation (|>) operations applied to the ith row
of a 4× 4 matrix s. The way in which this is expressed in CAO takes advantage
of the range selection operator (..) that returns a value of the corresponding
container type, with the same contents as the original one, but with appropriate
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Figure 2: Declarations and axioms for vector types.

blit vector �τ� : vector �τ� → vector �τ� → integer → integer → vector �τ�
shift vector �τ� : vector �τ� → integer → vector �τ�
∀v, ofs, i. get vector �τ�(shift vector �τ�(v, ofs), i) = get vector �τ�(v, (ofs + i))

∀src, dest, ofs, len, i. ofs ≤ i < (ofs + len) =⇒
get vector �τ�(blit vector �τ�(src, dst, ofs, len), i) = get vector �τ�(src, i− ofs)

∀src, dest, ofs, len, i. i < ofs ∨ i ≥ (ofs + len) =⇒
get vector �τ�(blit vector �τ�(src, dst, ofs, len), i) = get vector �τ�(dst, i)

dimensions. Here, this operator is used to select an entire row in the matrix,
which is cast into the correct vector type (here the RowV type denotes a vector
of size 4) in order to be rotated. The result is then cast back to the correct
matrix type that can be assigned to the original row slice in matrix r.

Our first-order formalisation of container types deals with shift, rotate, range
selection, range assignment and concatenation (@) operators in container types
using a pattern that relies on two logic functions (shift and blit). We present the
case of the vector type. The model assumes that a vector has infinite length,
i.e., it has a start position, but it is represented as an unbounded memory block.
The only exception to this rule is the extensional equality operator (==), where
translation explicitly refers to the range of valid positions over which equality
should hold. We emphasize that this part of the model deals only with the
functionality of these operators: safety is handled separately by introducing
appropriate assertions, as will be seen in Section 4.5.

Intuitively, the shift vector logic function takes as input a vector of arbitrary
length, starting in position 0, and produces the vector that starts at position i.
The blit vector logic function involves two vectors, source s and destination d,
an index i and a length parameter l. It produces the vector with the contents of
d for indices 0 to i−1, and from i+ l onwards; the l positions in between contain
the region 0..l − 1 of s. The behaviour of these logic functions is modeled by
the declarations and axioms given in Figure 2.

Range Selection. Given a CAO variable μ of type vector[n] of τ , the CAO range
selection operation is modeled in Jessie as follows:

� μ[i..j] � ≡ let x1 = �i� in ( let x2 = �j� in
assert (0 ≤ x1 < n) && (0 ≤ x2 < n) && (x1 ≤ x2); shift vector(�μ�, x1))

where i and j are integer expressions. We remark that although the translation
disregards the upper bound j in the call to shift vector, the type-checking phase
has ensured that the range selection operation μ[i..j] with μ of type vector[n] of
τ , returns type vector[j − i + 1] of τ , thus implicitly taking that upper bound
into account. Furthermore, all future accesses to the resulting vector will be
checked for safety within the valid bounds prescribed by the correct data type.
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Range assignment. Assigning to a region in a vector is modeled directly using
the blit vector function.

�μ1[i..j] := μ2� ≡ �μ1� = let x1 = �i� in ( let x2 = �j� in

{assert (0 ≤ x1 < n) && (0 ≤ x2 < n) && (x1 ≤ x2);

blit vector(�μ2�, �μ1�, x1, x2 − x1 + 1)})
Here, = denotes assignment in Jessie.

Concatenation. Consider the CAO variables μ1 and μ2 of types vector[n1] of τ
and vector[n2] of τ , respectively. The concatenation of vectors μ1 and μ2 can
also be captured using the blit vector function.

�μ1 @ μ2 � ≡ blit vector(�μ2�, �μ1�, n1, n2)

The intuition behind this definition is that concatenation can be seen as a range
assignment operation, where μ2 is assigned to the region of μ1 that starts at
position n1 (recall that in the model vectors are assumed to have infinite length).

Shift and Rotate. To present the shift and rotate operations in a more intu-
itive way, we will turn to the bits type. Both operations are modeled using
the blit vector function. The rotate operations are commonly known as circular
shifts. As an example, consider the bits literal: 0b1101001. The internal repre-
sentation of bits in our model stores the least significant bit (the right-most bit
in the literal) in the 0-th position. This means that an upwards (resp. down-
wards) rotate corresponds to the intuitive interpretation of a left (resp. right)
rotation. An example of a down rotate is therefore 0b1101001 |> 3 = 0b0011101
and an example of an up rotate is 0b1101001 <| 3 = 0b1001110. In our model,
for a CAO expression e of type vector[n] of τ or bits[n], we have:

�e <| i� ≡ �e[n− i .. n− 1] @ e[0 .. n− i− 1]�
≡ blit vector(shift vector(�e�, 0), shift vector(�e�, n− i), i, n− i)

�e |> i� ≡ �e[i .. n− 1] @ e[0 .. i− 1]�
≡ blit vector(shift vector(�e�, 0), shift vector(�e�, i), n− i, i)

where i is a constant of type int. The intuition is that rotations can be seen as
concatenations of the appropriate sub-regions, which in turn are modeled using
the blit vector function.

Logical shifts are handled in a similar way, but resorting to bits null vector
(a logical variable representing the all-zeroes bits value) to fill in the positions
left vacant by the operation, i.e.,

�e � i� ≡ blit vector(shift vector(e, 0), bits null vector, i, n− i)

�e � i� ≡ blit vector(bits null vector, shift vector(�e�, i), n− i, i)

To model the behaviour of the bits null vector logical variable we include the
following axiom in the bits type theory:

∀ integer j. bits get(bits null vector, j) == false;
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We remark that our model of the operations over bit strings is complete, and
therefore allows us to deduce the natural properties of bit string operations. Fur-
thermore, surprisingly complex properties can be derived automatically. Con-
sider, for example, the bistring rotation operation and the property that rotating
n times a bit string of length n in the same direction yields the original bit string:

∀i. 0 ≤ i < n =⇒ �e[i]� == �(e |> n)[i]�
∀i. 0 ≤ i < n =⇒ �e[i]� == �(e <| n)[i]�

Or, more generally, for a bit string of length n1 + n2,

∀i. 0 ≤ i < (n1 + n2) =⇒ �(e <| n1)[i]� == �(e |> n2)[i]�
Our model enables proving these properties automatically using, e.g., Alt-Ergo.

Matrices. Our model of matrices is a direct generalization of the above strategy
to the 2-dimensional case. However, our model of matrices must also account
for the fact that the matrix type in CAO is an algebraic type that supports
addition and multiplication operations (indeed this is why in CAO you can only
define matrices whose contents are themselves algebraic types).

The formalisation of matrices in first-order logic includes the matrix addition
and multiplication arithmetic operations as logic functions

matrix �τ� add,matrix �τ� mult : matrix �τ� → matrix �τ� → matrix �τ�
The functionality of the addition operator is modeled using the following axiom:

Axiom (Matrix addition). Let A and B be matrices of dimensions m× n, and
aij and bij the elements in the ith row and jth column of A and B, respectively.
Then, ∀ j, i. (A+B)ij = aij + bij.

An equivalent axiom for matrix multiplication was not introduced because,
for each possible base type, we would need the (higher-order) logic formalization
of the mathematical (iterative) sequence summation operator Σ.

The translation of expressions with arithmetic operations of typematrix[n1,n2]
of τ is therefore the following:

� μ1 + μ2 � = matrix �τ� add(�μ1�, �μ2�)
� μ1 ∗ μ2 � = matrix �τ� mult(�μ1�, �μ2�).

Bitwise operations. We complete this section with a brief description of how
bit-wise operations are handled in our model, as these are of critical importance
in cryptographic applications. Here we greatly benefit from the design of the
CAO language, where the classic ambivalence between integers and their bit-
level representations (that exists in the C int type) is eliminated by introducing
the bits type. Indeed, CAO programmers can freely use bit strings of any size,
and convert these to and from the type int that represents the mathematical
type Z. A very simple model of bit strings based on vectors of bits (boolean
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values) can be used, although things get more complicated when we need to deal
with type conversions. The Jessie model of bit-wise operations on bits is based
on the following logic functions, which are axiomatized in the obvious way:

bits bitwise xor : bits → bits → bits bits bitwise and : bits → bits → bits

bits bitwise or : bits → bits → bits bits bitwise neg : bits → bits

CAO bit-wise operations are translated as:

�e1 ⊕ e2� ≡ bits bitwise �⊕�(�e1�, �e2�) �! e� ≡ bits bitwise neg(�e�)
where ⊕ ∈ {|,&, }̂ and μ1 and μ2 are expressions of type bits[n].

4.2. Rings, fields and extension fields

Residue classes modulo n. The mod[n] type is an algebraic type. For n ∈ N,
it corresponds to the algebraic ring Zn. Moreover if n is prime, then mod[n]
permits programmers to take full advantage of the fact that Zn is a field.

More in detail, the Jessie model for the mod[n] type is based on the con-
gruence relation defined by n over the integers. For a positive integer n, two
integers a and b are said to be congruent modulo n if a− b is an integer multiple
of n, and this is denoted by a ≡ b (mod n).

For any integer a, the corresponding equivalence class modulo n is denoted
by [a], and it corresponds to the set a + nZ, where nZ (the set of multiples of
n). For all integers a, the unique value r satisfying a = nq+ r ∧ 0 ≤ r < n (for
some integer q) is called the least residue of a modulo n. The set {0, 1, ..., n−1}
is therefore called the set of least residues modulo n. Each residue class modulo
n is represented by a least residue modulo n.

The model of mod[n] starts with the definition of the logic type mod n, which
intuitively is inhabited by the residue classes modulo n. This type is equipped
with logic functions that convert to and from the Jessie integer type, as well as
the mapping that results from their composition.

int of mod n : mod n → integer

mod n of int : integer → mod n

mod n : integer → integer

The conversion to integers captures the homomorphism mapping a residue class
into the corresponding least residue, whereas the converse operation represents
the homomorphism mapping an integer into its residue class. The mod n func-
tion represents the composition of the previous two, and associates to each
a ∈ Z the least residue r ∈ Z of [a]. The model includes a set of axioms for the
following mathematical properties of these functions:

∀x. 0 ≤ int of mod n(x ) ≤ n− 1
∀x. 0 ≤ x ≤ n− 1 =⇒ mod n(x ) = x
∀x. x ≥ n =⇒ mod n(x ) = mod n(x − n)
∀x. x < 0 =⇒ mod n(x ) = mod n(x + n)
∀x. mod n(int of mod n(mod n of int(x ))) = mod n(x )

12



Equipped with these functions we can base our entire model of integers modulo
n on the theory of integers included in Jessie, which permits taking advantage
of built-in arithmetic supported by many automatic provers.

The Jessie translation of arithmetic operations involving expressions of type
mod[n] is based on the homomorphisms declared above. First, int of mod n is
used to get the least residues of the equivalence classes involved in the arith-
metic operation, which is then carried out over the integers. Finally, we apply
mod n of int to the result to recover the equivalence class that represents the
result. Hence, the translation of arithmetic operations on type mod[n] is given
as follows, for op ∈ {+,−, ∗}.

�e1 op e2� ≡ mod n of int(int of mod n(�e1 �) op integer int of mod n(�e2 �))
�e1 ∗∗ e2� ≡ let x = �e2� in assert x ≥ 0;

mod n of int(int of mod n(�e1 �)∗∗integer x )
�e1 / e2� ≡ let x = int of mod n(�e2 �) in assert gcd(x, n) = 1;

mod n of int(int of mod n(�e1 �) ∗integer inv mod(x ,n))

Exponentiation is translated so as to ensure that verification guarantees that
the exponent is nonnegative, which would otherwise result in an error accord-
ing to the semantics of the language. Also note the special case of division.
This is justified because the semantics of division modulo n is not the same as
integer division. Firstly, one must express the correct semantics, which we do
by introducing the logical function inv mod(x, n). Simple properties involving
operations with this function, which are used to automatically discharge some
proof obligations, are axiomatized as:

∀x. gcd(int of mod n(x ), n) = 1 =⇒
mod n(int of mod n(x ) ∗integer inv mod(int of mod n(x ),n)) = mod n(1 )

∀x, y. mod n(int of mod n(x ) ∗integer y) = mod n(1 ) =⇒
inv mod(int of mod n(x ), n) = mod n(y)

Secondly, in the division case, one must generate a proof obligation for the safety
condition that CAO programs should not perform undefined divisions. This
property is trivially true if the divisor is in the range 1 . . . n− 1 and the number
n is prime. Hence we add the following axiom to our model, to automatically
handle these trivial cases.

∀x, n. is prime(n) ∧ (0 < x < n) =⇒ gcd(x, n) = 1

where is prime : integer → boolean is a predicate to check if an integer number
is prime, and gcd : integer → integer → integer is a logic function that calculates
the greatest common divisor of two integer numbers. Note that is prime and
gcd are neither directly defined nor axiomatized, but the programmer can ex-
plicitly assert that some n is prime through a CAO-SL annotation. This enables
automatically discharging safety assertions using gcd.
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Extension Fields. Consider the following type declarations taken from the same
AES implementation referred above:

typedef GF2 := mod [ 2 ] ;
typedef GF2N := mod[GF2<X> / X∗∗8+X∗∗4+X∗∗3+X+1] ;
typedef GF2C := mod[GF2N<Y> / Y∗∗4+1];

Take the first field extension type GF2N. Types of this form are also algebraic
types that model the finite field of order nd where n is a prime number and d is
the degree of the irreducible polynomial p(X). In other words, type declarations
such as this are only valid when n is prime and p(X) is irreducible. In CAO, each
such type represents a specific construction of an extension field represented over
the polynomial ring Zn[X]. The semantics of the algebraic operations over such
types are defined based on polynomial arithmetics modulo p(X).

The theory of extension fields of this form begins with the definition of a
logic type ring mod n that represents the ring of polynomials over the base type
mod[n]. Arithmetic operations over the polynomial ring are not included in the
model, as they do not exist in CAO. However, the following two logic functions
are included to allow constructing elements in the ring.

ring mod n monomial : mod n → integer → ring mod n

ring mod n add : ring mod n → ring mod n → ring mod n

A monomial can be represented by its coefficient (which is an element of mod[n])
and its degree (an integer). A polynomial can be defined as an addition of
monomials. In this way, the CAO literal that corresponds to the irreducible
polynomial p(X) can be represented in our logic model. Although we do not
take advantage of this representation in our axiomatic models, it is essential if
one intends to use an interactive theorem prover to discharge proof obligations
that require a complete formalization of the representation of the extension field.

The central part of the model are the definitions for type field mod n poly p(x)
and the corresponding arithmetic operations. The Jessie translation of the arith-
metic operations defined for type mod[mod[n] <X> / p(X)] is then a direct one:

�e1 op e2� ≡ �e1� opfield mod n poly p(x) �e2�
�e1 ∗∗ e2� ≡ let x = �e2� in assert x ≥ 0;

�e1� ∗∗field mod n poly p(X) x

�e1 / e2� ≡ let x = �e2� in assert x �= 0field mod n poly p(X);

�e1� divfield mod n poly p(X) x

where op ∈ {+,−, ∗}. There are also special cases for exponentiation and divi-
sion, ensuring that safety proof obligations are generated to check if the integer
exponent is nonnegative and that the divisor is different from zero, respectively.

The model also includes a set of axioms that aim to increase the degree
of automation provided by CAOVerif. The idea is the following. There is no
integrated support for this sort of mathematical type in the automatic provers
interfaced with Jessie, and so one can have no hope of dealing automatically
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with complex proof obligations over such types. However, some simple proper-
ties such as cancellation rules can still be captured in first-order logic in order
to deal with more trivial steps. The following axioms, where F stands for
field mod n poly p(X), capture precisely this type of property.

∀a, b. a 
= 0F ∧ b 
= 0F =⇒ a×F b 
= 0F ∀a, b. a 
= 0F =⇒ a divF b 
= 0F

∀a, b. a 
= b =⇒ a −F b 
= 0F ∀a, b. a 
= −b =⇒ a +F b 
= 0F

∀a, b. a 
= 0F =⇒ a (∗∗)F b 
= 0F ∀a. a 
= 0F =⇒ −F a 
= 0F

Finally, literals of the extension field types are modeled in Jessie as vectors of
polynomial coefficients. Therefore, the model also includes logic functions to
access and update these coefficients, together with the usual two axioms for the
theory of arrays.

field mod n poly p(x) get coef : field mod n poly p(x) → integer → mod n

field mod n poly p(x) set coef : field mod n poly p(x) → integer → mod n

→ field mod n poly p(x)

The null polynomial is represented by logical variable field �τ� poly p(x) zero.
An auxiliary axiom states that all of its coefficients are the zero element in τ .

As an example of where our theory can be useful for automation purposes,
consider the following snippet of an AES implementation in CAO.

def SBox( e : GF2N ) : GF2N {
def x : GF2N;
i f ( e == [ 0 ] ) { x := [ 0 ] ; } else { x := [ 1 ] / e ; }
. . .

The safety of this construction relies on the fact that the division in the else
branch of the if statement is only executed if the input parameter is not the zero
element in the field. Our models allow an automatic prover to validate that the
equality comparison with literal [ 0 ] in the condition of the if statement actually
implies that this is the case.

Returning to the example type declarations introduced above, it can be seen
by examining the type declaration of GF2C that the base type of an extension
field can actually be an extension field itself. However, our modeling approach
is exactly the same for this case, with the single caveat that the correct base
type must be considered when defining the ring of polynomials over which the
extension field elements are represented.

4.3. Structs

As in C, structs in CAO are structured types which aggregate a fixed number
of fields, possibly of different types, into a single type. Typically, the struct type
operations are access and update to struct fields, hence the Jessie model for the
CAO structs is very similar to the vectors model. To access and update each
field fieldi : τi, the following two logic functions are declared:

struct �τ� get fieldi : struct �τ� → �τi�
struct �τ� set fieldi : struct �τ� → �τi� → struct �τ�
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Figure 3: Casts (→) and coercions (⇒)

bits[n] ⇒ int

mod[n] → int

int → bits[n]

τ ⇒ mod[τ <X> / p(X)]

vector[n] of τ → mod[τ <X> / p(X)]

mod[τ <X> / p(X)] → vector[n] of τ

matrix[1,n] of τ of τ → vector[n] of τ

matrix[n,1] of τ → vector[n] of τ

vector[n] of τ → matrix[1,n] of τ

vector[n] of τ → matrix[n,1] of τ

The behavior of these functions is axiomatized as expected, although it is slightly
more verbose in order to deal with the fact that our index into the structure is
now an identifier rather than an integer.

4.4. Casts and Coercions

Type conversion operations in CAO can be explicit, in which case they are
called cast operations, or implicit, called coercion operations. Figure 3 presents
the allowed cast (→) and coercion (⇒) operations between CAO types. Several
examples of how these casts are used in CAO programs can be found in the
use case included in AppendixA, e.g., in function crypto scalarmult the value
returned by function curve25519, a finite field element represented as a value of
type mod, is cast into the int type before being cast into a bit string of appropri-
ate site. The translation of CAO programs into Jessie handles these conversions
in the natural way by using appropriate logical functions. We present a few
examples of the simpler conversions:

e :: mod[n] =⇒ �(int) e� = int of mod n(�e�)
e :: int =⇒ �(mod[n]) e� = mod n of int(�e�)
e :: int =⇒ �(bits[n]) e� = bits of int(�e�)
e :: τ =⇒ �(mod[ τ <X> / p(X)]) e� =

field �τ� poly p(x) set coef(field �τ� poly p(x) zero, 0, �e�)
Conversions between matrices and column/row vectors are handled in the nat-
ural way by using get and set operations. Finally, we present the conversion
between extension field types and vector types in more detail, since these are
very useful CAO operators that permit commuting between the abstract alge-
braic view of a finite field, and its concrete representation in a cryptographic
implementation. Indeed, one can construct an extension field value from a vec-
tor representation that contains the coefficients of the corresponding polynomial
over the base field. We model this as

�(mod[ τ <X> / p(X)]) e� =
let x1 = field �τ� poly p(x) zero in ( let x2 = �e� in
let x3 = field �τ� poly p(x) set coef(x2, n− 1, vector �τ� get(x2, n− 1)) in ...
let xn+2 = field �τ� poly p(x) set coef(xn+1, 0, vector �τ� get(x2, 0)) in xn+2)

The inverse conversion is also possible, and is modeled using a similar approach.
This translation further justifies our modeling of extension field literals pre-
sented in the previous section.
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Table 1: Safety proof obligations

Type Operation Proof Obligation Auto

int e1/e2 e2 
= 0 ×
e1 ∗ ∗ e2 e2 ≥ 0

mod n(n) e1/e2 gcd(int of mod n(e2 ), n) = 1 ∧
int of mod n(e2 ) 
= 0 ×

e1 ∗ ∗ e2 e2 ≥ 0

mod[τ <X> / p(X)] e1 / e2 e2 
= 0

vector[n] of τ v[e] 0 ≤ �e� < n
v |> i, v <| i 0 ≤ �i� < n

v[i..j] 0 ≤ �i� < n ∧ 0 ≤ �j� < n ∧
�i� < �j�

matrix[n1,n2] of τ m[e1, e2] 0 ≤ �e1� < n1 ∧ 0 ≤ �e2� < n2

m[i..j, k..l] 0 ≤ �i� < n1 ∧ 0 ≤ �j� < n1 ∧
0 ≤ �k� < n2 ∧ 0 ≤ �l� < n2 ∧

�i� < �j� ∧ �k� < �l�
bits[n] b[e] 0 ≤ �e� < n

b |>i, b<| i 0 ≤ �i� < n
b  i, b � i 0 ≤ �i� < n

4.5. Automatic safety proof obligations

Following the same approach adopted in tools such as Frama-C, the CAO to
Jessie translation in CAOVerif ensures that all statements in the input program
that could potentially result in a safety violation originate the automatic gen-
eration of a verification condition that, if proven, guarantees the safe execution
of the verified code.

We have two classes of safety proof obligations: those related with memory
safety, and those related with algebraic operations. Some of the proof obliga-
tions are automatically generated by the Jessie tool, while others are explicitly
introduced in the generated Jessie code as assertions, during the translation
process. We have encountered examples of these assertions in the models for
exponentiation and division operations presented above. Table 1 presents the
proof obligations that are generated to ensure the safety of memory access and
algebraic operations. Proof obligations automatically generated by the Jessie
plug-in are signaled in the table, corresponding to those that originate from the
use of the Jessie integer type.

To support the automatic verification of safety proof obligations, CAOVerif
also enriches the translated Jessie code with lemmas that capture some number
theoretic assumptions that are implicit in the type checking procedure. We be-
lieve that this approach is also useful in raising the programmer’s awareness as
to the necessity to ensure that these assumptions are true. Concretely, when an
extension field is declared, CAOVerif automatically generates lemmas that cap-
ture the necessary conditions for these declarations to be meaningful according
to the CAO semantics. For extensions mod[mod[n] <X> / p(X)], CAOVerif gen-
erates lemmas for the following two predicates:

is prime(n) ring mod n is irreducible(field mod n poly p(x) generator)
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When the base type for the extension is already an extension field, only the irre-
ducibility lemma is generated. Lemmas can be immediately used in proofs, e.g.,
the first lemma above can be used as an hypothesis in all proof obligations re-
lated to division operations in mod[n] requiring that the divisor is relative prime
to the modulus. Note, however, that the presence of lemmas also originates new
proof obligations corresponding to the validation of the lemmas themselves.

5. Proving the soundness of axiomatic models for CAO types

The correctness of CAOVerif depends critically on the soundness of the ax-
iomatic models introduced in the previous section, with respect to the semantics
of CAO types. In this section we describe how we used the Coq interactive theo-
rem prover to formally establish the soundness of these models. More precisely,
we describe how 1) we formalized the semantics of the CAO native operations
for which CAOVerif includes an axiomatic model; and 2) we interactively proved
the validity of the axioms included in our models with respect to the aforemen-
tioned semantics. We start by briefly explaining how we structured the Coq
library supporting our proof.

Overview of the Coq library. For each of the CAO types we have created a Coq
theory containing a matching type definition in Coq that establishes an interpre-
tation domain for values of that type (with appropriate type parameterization
in the case of modular and container types). Furthermore, for each CAO na-
tive operation that is modeled using first-order logic in CAOVerif, there exists
a corresponding Coq function that is defined to formalize the correct semantics
of the CAO operation. We also include additional Coq function definitions for
the auxiliary logic functions used by CAOVerif (e.g., the shift and blit functions
used in our models for containers). Finally, for each axiom in our Jessie models,
we state a corresponding lemma in Coq. This includes, not only the explicit ax-
ioms we have presented in the previous section, but also additional lemmas to
account for equivalences that are implicitly assumed in the translation carried
out by CAOVerif. Recall that, for performance reasons, there is not a one-to-one
matching between CAO native operations and Jessie logic functions. Instead,
some operations are translated as a combination of calls to logic functions. For
example, addition in type mod[n] is translated as

mod n of int(int of mod n(e1 ) +integer int of mod n(e2 )) ,

which implicitly relies on the following axiom (for all n ≥ 2):

∀v1, v2 . v1 +mod n v2 =
mod n of int(int of mod n(v1 ) +integer int of mod n(v2 )) .

Similarly, vector concatenation is translated as blit vector(μ2, μ1, n1, n2), which
implicitly relies on the following axiom:

∀v1, v2, len1, len2, i. 0 ≤ i < len1 + len2 =⇒
get vector(v1 @ v2, i) = get vector(blit vector(v2, v1, len1, len2), i) .

Such axioms appear explicitly as lemmas in our Coq scripts.

18



Formalizing the interpretation domains of CAO types. To capture the semantics
of CAO types, we used SSReflect (version 1.3pl4),5 which includes formalizations
of all mathematical structures existing in the CAO type system. Technically, we
first defined an interpretation domain for each type, i.e., we associated each CAO
type (now translated into a Coq definition) to a suitable mathematical type in
SSReflect. Our mapping from CAO types to SSReflect types is as follows:

• bool is mapped as the Coq standard bool type.

• int is mapped to the Coq standard Z type.6

• bits[n] is mapped to Boolean tuples n.-tuple bool, i.e. sequences of a fixed
given size.

• mod[n], for arbitrary n ≥ 2, is mapped to the ′In type of the zmodp library,
corresponding to the ring Zn.

• mod[ τ <X>/p(X) ] is mapped to the finFieldType, which represents an
abstract finite field in the finalg library.

• vector[n] of τ is mapped to tuples n.-tuple τ .

• matrix[n1,n2] of τ is mapped to the M[τ ](n1,n2)
type of the matrix library.

An important aspect of this mapping is that, for types int and bool, we are
being consistent with the automatic translation performed by Jessie and Why
(recall that CAOVerif translates these types as native Jessie types, and that these
frameworks already provide a translation path to Coq). Since all the other CAO
types are translated by CAOVerif to logic type declarations in Jessie, which
are translated opaquely into Coq definitions by the Jessie and Why tools, this
allows us to use our Coq library to support interactive Coq proofs of verification
conditions. In other words, as an additional result of this formalization effort,
the resulting Coq libraries yield a formalization of the semantics of CAO types
that can be used to interactively discharge complex proof obligations that may
fall outside of the reach of the axiomatic models included in CAOVerif.

We also remark that our mapping for type mod[ τ <X>/p(X) ] allows us to
validate our axiomatic model for the algebraic operations over extension fields,
as this is limited to simple cancellation rules that apply to all finite fields. We
are not able to formally verify the axioms that deal with the representation of
literals of such types (e.g., stating that the coefficients of the representation of
the zero value are all zero). This is the only part of our axiomatic model that is
left out of our proof, and this is justified by the lack of support in the adopted
version of SSReflect for a formalization of extension field representations.

5SSReflect is an extension to the Coq system that includes the formalisation of a large set of
mathematical components (http://www.msr-inria.inria.fr/Projects/math-components).

6In order to use Coq type Z as a type parameter for our SSReflect formalization of container
types we had to lift it to an instance of ssreflect’s integral domain structure IdomainType.
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Formalizing the semantics of CAO operations. The Coq theories we have created
for each CAO type include a Coq function for each CAO native operation and
Jessie logic function that is explicitly or implicitly axiomatized in CAOVerif. In
order to validate such axioms, we first needed to formalize the correct semantics
for such operations, by including appropriate definitions of the corresponding
Coq functions. Given that the semantics of most CAO types directly matches
the mathematical data types included in SSReflect, defining the majority of
these Coq functions was simply a matter of identifying the correct SSReflect
operation. For example, the logic function that captures addition over mod[n]
is simply defined as addition over ′In. However, for some exceptional cases, the
definitions that capture the correct semantics of the operations are slightly more
elaborate. As an example, we focus on vector operations.

Recall that we have defined the interpretation domain for vectors as tuples
of the appropriate size and type. This means that an operation such as con-
catenation can be formalized directly by using the SSReflect function cat tuple.
However, our axiomatic models for vectors rely heavily on the blit vector and
shift vector functions, whose semantics are oblivious to the concrete size of vec-
tors. We therefore captured their semantics in SSReflect sequences, as follows:

Definition l o g i c v e c t o r := seq T.

Fixpoint takeD n s : seq T :=
i f n i s n’.+1
then i f s i s x : : xs then x : : takeD n’ xs

else v e c t o r d e f a u l t : : takeD n’ [ : : ]
else [ : : ] .

Definition v e c t o r b l i t ( s r c dst : l o g i c v e c t o r )
( o f s l en : nat ) : l o g i c v e c t o r :=

takeD o f s dst ++ takeD len s r c ++ drop ( o f s+len ) dst .

Definition v e c t o r s h i f t ( v : l o g i c v e c t o r )
( i : nat ) : l o g i c v e c t o r := drop i v .

Here drop and the concatenation ++ operations are included in the seq SSReflect
library: drop n s retrieves s after removing its first n items and s1 ++ s2
computes the sequence resulting from the concatenation of the sequences s1
and s2. Also we define takeD n s to retrieve the sequence of the first n elements
of the sequence s, but which appends copies of a distinguished default element
to the end of s when its size is less than n.

Proving the validity of the axiomatic models. The entire effort required to for-
malize and validate the almost 100 lemmas associated with the axiomatic models
used in CAOVerif resulted in a total of over 1300 lines of Coq code. Although
some time was needed to climb the learning curve of the SSReflect extension,
we have found that its context-management tactics and small-scale reflection
facilities greatly facilitated our proofs. To illustrate the general flavor of the
lemmas we have proven, we return to the vector concatenation example that
we have introduced earlier in this section. Establishing the soundness of our
model for concatenation involves two steps: 1) showing that our translation of
the operation using the blit function is sound; and 2) showing that our axiom-
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atization of the blit function is itself sound. In Coq, these two steps appear as
the following lemmas.

Lemma v e c t o r g e t b l i t e q :
( f o ra l l ( s r c : l o g i c v e c t o r ) , ( f o ra l l ( dst : l o g i c v e c t o r ) ,

( f o ra l l ( o f s : nat ) , ( f o ra l l ( l en : nat ) , ( f o ra l l ( i : nat ) ,
i >= o f s /\ i < ( o f s + len ) −>
v e c t o r g e t ( v e c t o r b l i t s r c dst o f s l en ) i =

ve c t o r g e t s r c ( i − o f s ) ) ) ) ) ) .

Lemma v e c t o r g e t b l i t n e q :
( f o ra l l ( s r c : l o g i c v e c t o r ) , ( f o ra l l ( dst : l o g i c v e c t o r ) ,

( f o ra l l ( o f s : nat ) , ( f o ra l l ( l en : nat ) ,
( f o ra l l ( i : nat ) , ( i < o f s ) \/ ( i >= ( o f s + len ) ) −>

v e c t o r g e t ( v e c t o r b l i t s r c dst o f s l en ) i =
ve c t o r g e t dst i ) ) ) ) ) .

Lemma v e c t o r c o n c a t t r a n s l a t i o n :
f o ra l l ( n1 n2 : nat ) ( u1 : n1 . tup l e T) ( u2 : n2 . tup l e T) ,
c a t t up l e u1 u2 = v e c t o r o f l o g i c v e c t o r ( v e c t o r b l i t u2 u1 n1 n2 ) .

The first two lemmas correspond to the axioms that were actually used in our
axiomatic model. Hence, they state that our axiomatization of blit using the get
and set operations over vectors is sound. The third lemma states the soundness
of our translation of the concatenation operation using blit: when seen as a
(n1+n2).-tuple,7 it coincides with the semantics of vector concatenation.

6. Case study: elliptic-curve scalar multiplication in NaCl

We conclude the presentation of CAOVerif by presenting a case study ex-
tracted from the CAO implementation of a core component in the open-source
NaCl cryptographic library [15]. This component is responsible for carrying out
the high-speed elliptic-curve computations required to perform a Diffie-Hellman
secret key agreement protocol. At the high-level, given an elliptic curve point
(p in the code, and typically a public key) and a scalar (n in the code, and typi-
cally a secret key), this component essentially calculates the result of repeatedly
adding the given point to itself, where the number of additions is given by the
integer value of the scalar. Here, addition should be understood as the group op-
eration defined over the set of points of the particular elliptic curve implemented
in NaCl.

The CAO source code for this component is presented in AppendixA and
corresponds to a direct transcription of the NaCl specification. The functionality
offered by this source code can be summarized as follows.

The entry point into the component is the crypto scalarmult function, which
takes as input two 32-byte arrays. This function then recovers the representation
of the elliptic curve point using the unpack function, and also the secret key as
a bit string using the clampC function. Function curve25519 is then called to
actually perform the elliptic curve computations. This function implements

7vector of logic vector is essentially the takeD function mentioned above. Technically, it
also attaches a proof that its return value is a sequence of the specified size.
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an exponentiation algorithm over a representation of the curve proposed by
Montgomery [15]. The exponentiation algorithm in function curve25519 uses as
sub-routines the actual curve addition and doubling (adding a point to itself)
operations implemented by functions addMont and doubleMont, respectively.
These functions operate over a representation of curve points that stores two
coordinates x and z, which is captured by the structured type MontRep.

Before presenting our verification results for this case study we first present
a small example of the output of our translation into the Jessie input language.
This corresponds to function crypto scalarmult.

v e c t o r b i t s j c c r yp t o s c a l a rmu l t ( v e c t o r b i t s j c n input ,
v e c t o r b i t s j c p i npu t )

{
var v e c t o r b i t s j c n = j c n i npu t ;
var v e c t o r b i t s j c p = j c p i npu t ;
var mod 25519 jc pm = mod 25519 o f in t ege r (

i n t e g e r o f b i t s ( jc unpack ( j c p ) ) ) ;
var b i t s j c n c = jc clampC ( j c n ) ;
return j c pack ( b i t s o f i n t e g e r ( in t ege r o f mod 25519 (

j c curve25519 ( j c nc , jc pm ) ) ) )
}

Safety verification. Passing the CAO code in AppendixA to CAOVerif without
any annotations gives rise to 309 automatically generated safety proof obliga-
tions, most of them arising from accesses to vectors and bit strings. Of these,
only 4 proof obligations are not automatically proven by Alt-Ergo, all of them
corresponding to function curve25519:

• One VC stating that index i in the bit string access at line 49 is within
bounds.

• Two VCs that aim to guarantee loop termination (these are inserted au-
tomatically by the Jessie back-end).

• One VC stating that the division in line 63 is safe: CAOVerif can determine
that the divisor is not zero because of the test condition in the if statement,
but it cannot establish that the divisor is coprime to the modulus 2255−19.

The loop annotations in lines 46-47 and the lemma establishing as an hypothesis
that 2255 − 19 is a prime number8 in line 10 are enough to enable CAOVerif to
automatically discharge all proof obligations.

Functional correctness verification. To illustrate how CAOVerif can be used to
address arbitrary verification goals we introduce a simple example aiming to
establish the correctness of function clampC. This function is informally de-
scribed in the NaCl specification as follows: “ClampC maps (a0, a1, ..., a30, a31)
to (a0 − (a0 mod 8), a1, ..., a30, 64 + (a31 mod 64)). In other words, ClampC
clears bits (7, 0, . . . , 0, 0, 128) and sets bit (0, 0 . . . , 0, 0, 64).”

8Of course this lemma appears as a non-verified proof obligation at the end of the verifi-
cation run and one can only hope to verify it interactively.
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The bits to be cleared and the bits to be set are specified by the one-bits
of the provided values, seen as 8-bit words (bit ordering conventions are speci-
fied globally elsewhere in the NaCl specification and we omit them here). The
postcondition for clampC in lines 79-83 captures this specification by directly re-
ferring to the relation between input and output bits, as this is both clearer and
convenient for the proof. Observe that indeed mapping a0 to a0 − (a0 mod 8)
clears the first 3 bits of a0, and mapping a31 to 64 + (a31 mod 64) clears the
8th bit and sets the 7th bit of a31.

In order to verify that the clampC function indeed satisfies this specification,
we first needed to annotate function unpack with a postcondition (lines 66-68),
as this is used by clampC to compute its final result. We also added a set of
assertions to guide automatic provers into intermediate verification results that
allow them to automatically discharge parts of the postcondition for clampC.

With the annotations included in AppendixA, the CAOVerif is able to dis-
charge all but 1 proof obligation automatically (at least within reasonable time):
the postcondition for function unpack. This is due to the large number of nested
logic function applications resulting from the translation of the concatenation
operations: concatenation is translated in Jessie as a blit vector operation, hence
for 31 concatenations we will have 31 nested blit vector operations.

We conclude this section with a short description of how we validated this
proof obligation using Coq. The postcondition for function unpack expresses
that, for 0 ≤ i < 31 and 0 ≤ j < 7, the result of accessing the j-th bit in the
i-th bit string in the input vector n is the same as that of accessing the 8i+ j-th
position in the concatenated bit string result returned by the function. A simple
proof strategy is to exhaustively traverse all the relevant values of i and j and
establishing that equality indeed holds. We adopted this strategy, but rather
than manually expanding all 256 proof iterations, we developed a simple Coq
tactic that implements it based on the following simple lemma.

∀a, b. b ≤ a ∨ P (a) ∧ (∀i. a+ 1 ≤ i < b =⇒ P (i)) =⇒ (∀i. a ≤ i < b =⇒ P (i))

Here, P is instantiated with the property we want to prove (in[i][j]=result[i*8+j]),
parameterized by the values of i; and a and b are instantiated with the lower
and upper bounds of i, respectively.

7. Related work

Formal verification of cryptographic algorithms. Security proofs of high-level
cryptographic protocols using formal methods are primarily carried out using
symbolic techniques based on the Dolev-Yao model [22], given the potential for
automated analysis inherent to this approach. However, it is not always the case
that results obtained in such idealized models apply to real systems using con-
crete cryptographic algorithms. In the last years, significant effort has been put
into bridging this gap, either by pursuing the so-called computational soundness
results for symbolic proof systems [23], or by developing techniques and tools
that enable the formalization and verification of (lower-level) security proofs
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directly in the computational setting. In this latter category, CertiCrypt [24, 25]
is a toolset consisting of two main components, both allowing the formalization
of game-based security proofs, but differing in their degree of automation, flex-
ibility and formal guarantees. CertiCrypt, is fully formalized in the Coq proof
assistant; its verification methods are implemented in Coq and proved correct
w.r.t. program semantics. EasyCrypt, provides more automation by relying on
automated theorem provers to discharge verification conditions.

Our work differs from the above in the fundamental aspect that our aim is
not to reason about the theoretical security of cryptographic algorithms, but
rather about the security properties of implementations of those algorithms.
We see functional correctness as a necessary (albeit most often not sufficient)
condition that permits relating implementation security with theoretical security
properties verified using tools such as those described above. In this sense, our
view is similar to that in [26], where the authors describe the (hand-crafted)
formal verification in Coq of an implementation of the Blum-Blum-Shub [27]
(BBS) pseudo-random number generator. The authors integrate the theoretical
security analysis framework of [28] with the assembly verification framework
of [29], and are able to obtain guarantees of theoretical security for a concrete
assembly implementation of the BBS algorithm.

Recent years have seen significant progress in formal verification techniques
targeting high-level cryptographic protocols such as TLS [30]. Notable efforts
include the automatic inference and security analysis of abstract cryptographic
protocol specifications from high-level language implementations [31]; and the
automatic synthesis of protocol implementations from abstract protocol descrip-
tions subject to prior verification [32]. We have not yet integrated the program
verification capabilities of CAOVerif with a formal verification framework of
theoretical security properties. However, the characteristics of CAO place it at
an intermediate level of abstraction between assembly and the functional lan-
guages typically adopted when targeting high-level protocols [33], which makes
CAO an ideal candidate to serve as the implementation language for tools such
as CertiCrypt and EasyCrypt, and this is an interesting direction for future work.

There have also been significant advances in the use of domain-specific pro-
gramming languages (DSLs) for low-level cryptographic implementation. Cryp-
tol [34] is perhaps the DSL that more closely matches the target application
area of CAO. Cryptol was developed for the specification and implementation
of cryptographic algorithms. It is a functional DSL without global state or
side-effects, which was developed with the main purpose of producing formally
verified hardware implementations of symmetric cryptographic primitives, such
as block ciphers and hash functions. CAO is an imperative language that targets
a wider application domain, although also restricted to cryptography. Indeed,
the CAO language features have been designed to permit expressing not only
symmetric, but also asymmetric cryptographic primitives, in a natural way.
Cryptol is supported by a wide range of formal verification tools, which are in-
tended for industrial use and therefore target specific formal verification use
cases [35]. CAOVerif aims to enable a much wider range of formal verification
use cases and is available under an open-source licence.
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Related verification tools. We now revise general purpose program verification
tools that are closely related to the one described in this paper. First we note
that the verification infrastructure introduced in the Jessie plug-in was already
used in the development of other verification tools, in particular Krakatoa [20],
a tool for the verification of Java code.

Boogie [36] is a verification condition generator similar in spirit to Why. The
input languages to Boogie and Why are both languages with imperative features
and first-order assertions, and in both cases verification condition generation is
based on a weakest precondition calculus. Boogie has front-ends for extensions of
C# and C which enrich the languages with annotations in first-order logic, such
as pre- and postconditions, assertions and loop invariants. The C# extension is
known as Spec# [37]. Boogie performs loop-invariant inference using abstract
interpretation and then generates the verification conditions for Simplify or Z3.
VCC [38], a tool for low-level concurrent C programs, also has Boogie at its core.

Esc/Java [39] is another deductive verification tool for Java programs whose
annotation language is a subset of JML [8], based on an earlier checker for the
Modula-3 language. This tool relies on loop unrolling and includes optimisations
to avoid an exponential blow-up in weakest-precondition computation. It looks
for potential run-time errors in annotated Java programs, but does not model
arithmetic overflow. Jack (Java Applet Correctness Kit) [40] is a static veri-
fication tool for JML-annotated programs. It provides support for annotation
generation and interactive verification of functional specifications, as well as for
automatic verification of common security policies and byte-code programs.

One of the oldest and most successful toolsets at the industrial level is
SPARK [41]. SPARK is both a programming language (in fact a heavily re-
stricted subset of Ada) targeted at the development of safety-critical software,
and a collection of tools for establishing properties of the software. The SPARK
toolset is a comercial product developed by Altan Praxis, supporting both auto-
matic and interactive proof. Lately, independent tools have also been proposed
for the verification of SPARK code. One such tool is HOL-SPARK [42], which
allows proofs to be conducted in the Isabelle [43] interactive proof assistant.
Interestingly, the major case study presented in [42] is on the verification of a
big number library and an implementation of RSA based on this library, which
the authors claim to have taken them three weeks to accomplish.

8. Conclusions

We have presented a model in first-order logic of certain mathematical ob-
jects that have specific interest for cryptography, and a concrete approach to
using this model for the verification of CAO programs. We believe that the pro-
posed model may be of independent interest and can be of use in other areas,
considering that it has been designed to maximise the degree of automation that
can be achieved when feeding proof obligations (related to these mathematical
abstractions) to general Satisfiability Modulo Theories (SMT) solvers. Given
the intricacy of the models, and the complex semantics of the CAO data types,
we have formally proven the soundness of our axiomatic models in Coq.
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AppendixA. CAO implementation of crypto scalar mult

1 typedef byte := unsigned b i t s [ 8 ] ;
2 typedef unpacked := unsigned b i t s [ 2 5 6 ] ;
3 typedef packed := vector [ 3 2 ] of unsigned b i t s [ 8 ] ;
4 typedef skey := unsigned b i t s [ 2 5 5 ] ;
5 typedef Fp := mod[2∗∗255- 1 9 ] ;
6
7 /∗ Curve points in Montgomery representa t ion ∗/
8 typedef MontRep := struct [ def x : Fp ; def z : Fp ; ] ;
9

10 /∗@ lemma i s pr ime Fp : i s p r ime (2∗∗255- 1 9 ) ; ∗/
11
12 /∗ Constant g l o ba l curve parameter ∗/
13 def a2 : Fp := [ 4 8 6 6 6 2 ] ;
14 /∗@ g loba l invariant constant a2 : a2==[486662] ∗/
15
16 /∗ Curve point addi t ion ∗/
17 def addMont (Q,Qpr ,QmQpr : MontRep) : MontRep {
18 def Q3 : MontRep ;
19
20 Q3 . x := [ 4 ] ∗ (Q. x ∗ Qpr . x - Q. z∗Qpr . z )∗∗2 ∗ QmQpr. z ;
21 Q3 . z := [ 4 ] ∗ (Q. x ∗ Qpr . z - Q. z∗Qpr . x )∗∗2 ∗ QmQpr. x ;
22
23 return Q3;
24 }
25
26 /∗ Curve point addi t ion ∗/
27 def doubleMont (Q : MontRep) : MontRep {
28 def Q2 : MontRep ;
29
30 Q2 . x := (Q. x∗∗2 - Q. z ∗∗2)∗∗2 ;
31 Q2 . z := [ 4 ] ∗Q. x∗Q. z ∗(Q. x∗∗2+a2∗Q. x∗Q. z+Q. z ∗∗2) ;
32
33 return Q2;
34 }
35
36 /∗ Curve point sca lar mu l t i p l i c a t i on ∗/
37 def curve25519 (n : skey , base : Fp) : Fp {
38 def i : int := 253 ;
39 def mth , mp1th , one : MontRep ;
40
41 one . x := base ;
42 one . z := [ 1 ] ;
43 mth := one ;
44 mp1th := doubleMont ( one ) ;
45
46 /∗@ invariant -1<=i<=253
47 variant i ∗/
48 while ( i>=0) {
49 i f (n [ i ] == 1) {
50 mth := addMont (mth ,mp1th , one ) ;
51 mp1th := doubleMont (mp1th ) ;
52 }
53 else {
54 mp1th := addMont (mth ,mp1th , one ) ;
55 mth := doubleMont (mth ) ;
56 }
57 i := i - 1 ;
58 }
59 i f (mth . z == [ 0 ] ) {
60 return [ 0 ] ;
61 }
62 else {
63 return (mth . x/mth . z ) ;
64 }
65 }
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66 /∗ Unpacking a byte array ∗/
67 /∗@ ensures ( f o ra l l i , j , k : int ;
68 (0<=i<32 && 0<=j<8 && k==i ∗8+ j ) ==> in [ i ] [ j ]== r e s u l t [ k ] ) ∗/
69 def unpack ( in : packed ) : unpacked {
70 return ( in [ 0 ] @ in [ 1 ] @ in [ 2 ] @ in [ 3 ] @ in [ 4 ] @ in [ 5 ] @
71 in [ 6 ] @ in [ 7 ] @ in [ 8 ] @ in [ 9 ] @ in [ 1 0 ] @ in [ 1 1 ] @
72 in [ 1 2 ] @ in [ 1 3 ] @ in [ 1 4 ] @ in [ 1 5 ] @ in [ 1 6 ] @ in [ 1 7 ] @
73 in [ 1 8 ] @ in [ 1 9 ] @ in [ 2 0 ] @ in [ 2 1 ] @ in [ 2 2 ] @ in [ 2 3 ] @
74 in [ 2 4 ] @ in [ 2 5 ] @ in [ 2 6 ] @ in [ 2 7 ] @ in [ 2 8 ] @ in [ 2 9 ] @
75 in [ 3 0 ] @ in [ 3 1 ] ) ;
76 }
77
78 /∗ Reconstructing the secre t key ∗/
79 /∗@ ensures r e s u l t [0]== 0b0 && r e s u l t [ 1 ]==0b0 &&
80 r e s u l t [2]== 0b0 && r e s u l t [ 2 5 4 ] == 0b1
81 ensures ( f o ra l l i , j : int ;
82 0<=i<32 && 0<=j<8 && 2< i ∗8+j<254 ==>
83 n [ i ] [ j ]== r e s u l t [ i ∗8+ j ] )
84 ∗/
85 def clampC(n : packed ) : skey {
86 def key : skey ;
87 def pack : unpacked ;
88
89 pack := unpack (n ) ;
90
91 pack [ 0 . . 2 ] := 0b000 ;
92 /∗@ assert pack [0]==0b0 ∗/
93 /∗@ assert pack [1]==0b0 ∗/
94 /∗@ assert pack [2]==0b0 ∗/
95
96 pack [254 . . 255 ] := 0b01 ;
97 /∗@ assert pack [254]==0b1 ∗/
98 /∗@ assert pack [255]==0b0 ∗/
99

100 /∗@ assert ( f o ra l l i , j : int ;
101 0<=i<32 && 0<=j<8 && 2< i ∗8+j<254 ==> n [ i ] [ j ] == pack [ i ∗8+ j ] )∗/
102
103 key := pack [ 0 . . 2 5 4 ] ;
104 /∗@ assert ( f o ra l l k : int ; 0<=k<=254 ==> key [ k ] == pack [ k ] )∗/
105 /∗@ assert ( f o ra l l i , j : int ;
106 0<=i<32 && 0<=j<8 && 2< i ∗8+j<254 ==> n [ i ] [ j ] == key [ i ∗8+ j ] )∗/
107 return key ;
108 }
109
110 /∗ Packing a byte array ∗/
111 def pack ( in : unpacked ) : packed {
112 def out : packed ;
113
114 seq i := 0 to 31 {
115 out [ i ] := in [8∗ i . . 8∗ i +7] ;
116 }
117
118 return out ;
119 }
120
121 /∗ Entry point ∗/
122 def c ryp to s ca l a rmu l t (n , p : packed ) : packed {
123 def pm : Fp := (Fp) unpack (p ) ;
124 def nc : skey := clampC(n ) ;
125
126 return ( pack ( ( unpacked ) ( int ) curve25519 ( nc ,pm) ) ) ;
127 }
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