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PARACOCCIDIOIDES BRASILIENSIS: VIRULENCE FACTORS AND HOST SUSCEPTIBILITY 

 
ABSTRACT 
 

In the last decades, significant advances were accomplished on the study of neglected fungal 

diseases, mainly in defining the pathogen genetics and host risk factors. Paracoccidioidomycosis, 

a mycosis caused by Paracoccidioides species, is one of these diseases, and it is estimated to 

affect 10 million individuals in countries from Latin America. Over the last years, genomic and 

transcriptome studies on this fungus raised important questions, especially on the consequences 

that the multinucleated nature and morphological heterogeneity of Paracoccidioides brasiliensis 

can have on triggering host defence mechanisms. However, these aspects were never addressed. 

Moreover, the lack of efficient molecular tools to further explore P. brasiliensis has been 

hindering the identification of genetic factors that govern virulence and the polymorphic nature of 

the yeast pathogenic phase, as well as the mechanisms underlying its dimorphic behaviour. 

The highly heterogeneous yeast morphology and budding patterns are considered a hallmark of 

this fungus, and previous genetic studies have highlighted the relevance of the cell division cycle 

42 (CDC42) expression on such phenotype. Nevertheless, the morphological trends followed by 

each Paracoccidioides isolate were never evaluated. Similarly, a possible association between 

genetic factors determining the fungus morphology and the morphological pattern of each isolate 

was never addressed.  

To address these issues, a detailed morphogenetic evaluation was carried out in the yeast-form 

of 11 clinical and environmental Paracoccidioides isolates from the different groups of P. 

brasiliensis and Paracoccidioides lutzii species. We found that each phylogenetic group does not 

follow any characteristic morphologic profile, whereas bud area and shape of each isolate reveals 

to be highly dependent on the mother cell, indicating a high level of conservation of these traits 

throughout cell progeny. Importantly, we also found strong correlations between PbCDC42 

expression (a molecule known to control the morphological behavior of the yeast phase) and both 

the shape of mother and bud cells and the area of the buds. Altogether, these findings further 

explore the polymorphic nature of P. brasiliensis, providing information on the trends followed by 

P. brasiliensis.  

During the conidia/mycelium-to–yeast transition, a known requirement for the pathogenesis of 

this fungus, several morphological and phenotypical alterations occur. Among these alterations, 

the auxotrophy to organic sulfur compounds that is associated to the yeast phase of P. 
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brasiliensis is particularly striking. Although this yeast-phase related nutritional requirement is 

shared with other dimorphic fungi, the molecular bases underlying it are yet to be uncovered. In 

this sense, we addressed the role of SconCp, the negative regulator of the inorganic sulfur 

assimilation pathway, in the fungus dimorphism and virulence. By means of genetic down-

regulation of SCONC, we show that P. brasiliensis can overcome its yeast-auxotrophy to organic 

sulfur compounds, being able to assimilate inorganic sulfur. However, this revealed to drastically 

reduce the ATP and NADPH cellular levels, leading to increased oxidative cellular stress. This 

redox imbalance, consequence of the activation of the inorganic sulfur assimilatory pathway, 

probably led to the decreased virulence of the knock-down isolates, as we show using a mouse 

model of infection. Our data provides relevant insights on the mechanisms controlling P. 

brasiliensis dimorphism, revealing SconCp as a novel virulence determinant. 

P. brasiliensis yeast form is also characterized by its multinucleated nature. Thus, knowing that 

during the infection fungal cell death is likely to result in the release of large amounts of DNA, 

one could expect the triggering of innate immune mechanisms of the host via Toll-Like 

Receptor 9 (TLR9). This molecule is the member of the TLR family known to recognize 

unmethylated CpG sequences in DNA molecules. Nevertheless, TLR9 role during P. brasiliensis 

infections was never assessed. We herein demonstrate that activation of this receptor upon 

recognition of P. brasiliensis yeast cells is an event that seems to be crucial in early-times of 

infection. Lack of this receptor caused the premature death of the hosts (in a mouse model of 

infection with P. brasiliensis yeast cells), associated with signs of organ-pathology and high 

production of pro-inflammatory cytokines. One possible explanation for this profile can be the 

abnormal neutrophilia observed in TLR9-depleted infected mice. Overall, we show that TLR9 

activation is immuno-protective in early stages of P. brasiliensis infections, playing an important 

role on the development of a controlled cell-mediated response. 

 

The work developed throughout this thesis provides new data on the morphological traits followed 

by the pathogenic fungus P. brasiliensis, and further establishes the relevance of CDC42 on the 

heterogeneity of cell shape. Moreover, we present new data on the yeast-phase metabolism, 

further clarifying how dimorphism impacts sulfur metabolism and its relevance for pathogenesis. 

We also provide relevant data for the elucidation of the mechanisms prompted by the host for the 

development of an appropriate immune response against P. brasiliensis infections, bringing 
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together the multinucleated nature of this pathogen with the protective activation of the pattern 

recognition receptor TLR9.   
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PARACOCCIDIOIDES BRASILIENSIS: FACTORES DE VIRULÊNCIA E SUSCEPTIBILIDADE 

DO HOSPEDEIRO 

 

RESUMO 

 

Nas últimas décadas obtiveram-se avanços significativos no estudo de doenças negligenciadas, 

nomeadamente no que concerne à elucidação da genética do organismo patogénico e de 

factores de risco do hospedeiro. A paracoccidioidomicose, uma micose causada por espécies de 

Paracoccidioides, é um desses casos, estimando-se afectar cerca de 10 milhões de indivíduos 

em países da América Latina. Diversos estudos, nomeadamente aqueles focados na genómica e 

transcriptómica de isolados de Paracoccidioides brasiliensis, têm levantado questões 

importantes, particularmente no que respeita ao efeito que a sua natureza multinucleada e 

variabilidade morfológica possa ter na activação de mecanismos de defesa do hospedeiro, um 

aspecto nunca abordado até à data. Além destes aspectos, a ausência de ferramentas 

moleculares é um factor que tem vindo a dificultar tanto a identificação de factores genéticos 

envolvidos na virulência e natureza polimórfica da fase leveduriforme do fungo, bem como a 

elucidação dos mecanismos subjacentes ao seu comportamento dimórfico.  

Uma particularidade da fase leveduriforme destas espécies é a sua heterogeneidade morfológica, 

assim como os seus padrões de gemulação. Estudos anteriores salientam a importância do gene 

CDC42 (cell division cycle 42) na definição destas características, no entanto, estas nunca foram 

determinadas individualmente para cada isolado de Paracoccidioides. Outro aspecto nunca 

abordado é a identificação de possíveis associações entre factores genéticos que determinem a 

morfologia do fungo e o padrão morfológico de cada isolado.  

De forma a elucidar estes aspectos, realizou-se uma detalhada análise morfogenética da fase 

leveduriforme de 11 isolados clínicos e ambientais de Paracoccidioides pertencentes a espécies 

de P. brasiliensis e Paracoccidioides lutzii. Os nossos resultados demonstram a ausência de um 

perfil morfológico característico para cada uma das linhagens destas espécies. No entanto, a 

área e forma das gémulas de cada isolado revelou-se altamente dependente da célula-mãe, 

sugerindo um elevado nível de conservação destas características ao longo das várias gerações. 

De referir também as fortes correlações encontradas entre a expressão do gene PbCDC42, uma 

peça importante no controlo do comportamento morfológico da fase leveduriforme, e a forma 

das células-mãe e gémulas, assim como com a área das gémulas. Estes dados permitem 
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ampliar o conhecimento actual referente à natureza polimórfica de P. brasiliensis, 

nomeadamente no que respeita à clarificação das suas características morfológicas. 

Em P. brasiliensis, diversas alterações morfológicas e fenotípicas ocorrem durante o processo de 

transição da fase de conídeo/micélio para a fase leveduriforme, um processo fundamental 

inerente à patogenicidade do fungo. Para além destas alterações, a auxotrofia da fase 

leveduriforme para compostos de enxofre orgânico é também uma característica marcante. 

Embora este requisito nutricional seja comum a outros fungos dimórficos, as suas bases 

moleculares nunca foram clarificadas. Neste contexto, procedeu-se à avaliação do papel da 

proteína SconC, um regulador negativo da via de assimilação do enxofre inorgânico, no 

dimorfismo e virulência do fungo. Através da redução de expressão do gene SCONC por 

manipulação genética demonstrou-se que, nestas circunstâncias, a fase leveduriforme das 

células de P. brasiliensis consegue ultrapassar a sua auxotrofia a compostos de enxofre 

orgânico, utilizando fontes de enxofre inorgânico. No entanto, esta alteração metabólica levou a 

uma redução drástica dos níveis celulares de ATP e NADPH, provocando um aumento 

significativo do stress oxidativo. Este facto pode explicar a diminuição de virulência observada 

nas estirpes de P. brasiliensis reduzidas na expressão do gene SCONC, como verificado 

experimentalmente em ensaios com ratinhos. Os resultados aqui apresentados fornecem 

informações relevantes relativas ao controlo dos mecanismos subjacentes ao processo dimórfico 

de P. brasiliensis, evidenciando SconCp como uma molécula determinante no processo de 

virulência. 

A forma leveduriforme de P. brasiliensis é também caracterizada pela sua natureza 

multinucleada. Durante o processo de infecção, a morte celular do fungo pode resultar na 

libertação de elevadas quantidades de DNA, levando eventualmente à activação de mecanismo 

de imunidade inata via receptores Toll-like 9 (TLR9) por parte do hospedeiro. O TLR9 é a 

molécula da família dos receptores Toll-like responsável pelo reconhecimento de sequências CpG 

não-metiladas em moléculas de DNA. No entanto, o papel deste receptor no contexto de 

infecções por P. brasiliensis nunca foi explorado. Neste trabalho demostrou-se que a activação 

deste receptor é um processo que parece ser crucial durante as fases iniciais de infecção com P. 

brasiliensis. Utilizando como modelo ratinhos deletados em TLR9, verificou-se uma morte 

prematura do hospedeiro aquando da sua infecção com células de P. brasiliensis, associada a 

sinais de patologia em vários órgãos e elevada produção de citocinas pró-inflamatórias. Este 

perfil pode estar associado ao elevado recrutamento de neutrófilos para o local de infecção. Em 
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suma, demonstrou-se que a activação de TLR9 é imuno-protectora em fases iniciais de infecções 

por P. brasiliensis, tendo um papel preponderante no controlo do desenvolvimento de uma 

resposta imune mediada por células. 

 

O trabalho desenvolvido no âmbito desta tese acrescenta novos conhecimentos relativamente à 

morfologia de P. brasiliensis, relevando-se a importância dos níveis de expressão do gene CDC42 

no perfil morfológico da fase leveduriforme do fungo. São também apresentados novos dados 

sobre o metabolismo da fase leveduriforme de P. brasiliensis, permitindo esclarecer o impacto 

do dimorfismo celular no metabolismo de enxofre e sua relevância na patogenicidade do fungo. 

São também apresentados dados essenciais que permitem novos conhecimentos sobre os 

mecanismos desenvolvidos pelo hospedeiro numa resposta imune apropriada a infecções por P. 

brasiliensis, associando-se a natureza multinucleada do fungo com a activação de mecanismos 

de defesa via TLR9.             
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OBJECTIVES AND OUTLINE OF THE THESIS 

 

The work presented throughout this thesis was developed in the context of the project Unravelling 

the specific involvement of the small Rho-like GTPase Cdc42 in the highly polymorphic nature of 

Paracoccidioides brasiliensis yeast cells, funded by Fundação para a Ciência e a Tecnologia 

(Grant Number: PTDC/BIA-MIC/108309/2008) and coordinated by Doutor Fernando Rodrigues. 

All the work was performed in the Microbiology and Infection research domain of the Life and 

Health Sciences Research Institute (ICVS/3B’s), School of Health Sciences, University of Minho, 

Braga, Portugal. 

The main objectives of the research conducted in the scope of this thesis aimed to (i) 

characterize Paracoccidioides isolates morphologically and explore possible associations between 

each isolate morphological trends and genetic factors (ii) understand the molecular basis 

underlying P. brasiliensis dimorphism and its association with the fungus auxotrophy to organic 

sulfur compounds (iii) provide new data on the role of TLRs in host responses against P. 

brasiliensis.  

Chapter 1 consists of a general introduction, presenting a review of the current knowledge and 

up-to-date literature on P. brasiliensis biology and paracoccidioidomycosis, with special emphasis 

on the genetics underlying the fungus morphology and dimorphism, the basis of sulfur 

metabolism, studies on fungus virulence factors and host-immune responses to P. brasiliensis.  

Chapter 2 focuses on the morphological characterization of the different clades of 

Paracoccidioides species. To achieve this objective, a detailed morphometric evaluation of 

different clinical and environmental P. brasiliensis isolates comprising all the phylogenetic 

lineages, including a strain from Paracoccidioides lutzii species (Pb01), was performed. 

Moreover, correlations between the analyzed morphological parameters and PbCDC42 

expression levels were estimated. We have therefore explored the highly polymorphic nature of P. 

brasiliensis, providing additional evidences on how the morphology of this fungus is controlled, 

corroborating the key role of PbCDC42 in defining P. brasiliensis yeast cell area and shape.  

In chapter 3, P. brasiliensis dimorphic traits are discussed. The role of sulfur metabolism during 

the dimorphic processes is explored, taking into special consideration the yeast-phase auxotrophy 

to organic sulfur. The data presented in this chapter highlights the key role of SconC, the 

negative regulator of the inorganic sulfur assimilatory pathway, during mycelium-to-yeast 

transition, providing valuable information on the fungus metabolism and genetics. Moreover, 
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important data was obtained for the establishment of a new virulence determinant, a relevant 

achievement for the future development/design of new therapeutic strategies against 

paracoccidioidomycosis. 

Chapter 4 centers on the study of immune responses developed by the host upon P. brasiliensis 

infection, specifically on the role played by TLR9. An in vivo approach was employed to determine 

the outcome of infection in TLR9-depleted mice, and in vitro studies were performed to dissect 

the immunological profile followed by the host in early-times of infection. Data presented during 

this chapter adds important knowledge on host-immunity against P. brasiliensis, suggesting 

TLR9-driven responses essential for the early development of an appropriate protective immune 

response.  

In chapter 5, concluding remarks are presented, bringing together Chapter 2, 3 and 4 in the 

context of the initially proposed objectives. Furthermore, future prospects for the investigation of 

P. brasiliensis are depicted, highlighting the further elucidation of other virulence determinants 

and how host-immune responses are governed during infection. 
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ABBREVIATIONS 

 

4-HPPD  4-hydroxyl-phenyl pyruvate dioxygenase 

aRNA  antisense-RNA 

ATMT  Agrobacterium-tumefaciens mediated transformation 

ATP  Adenosine-5'-triphosphate 

BMDM  Bone marrow-derived macrophage 

CLR  C-type lectin receptor  

DC  Dendritic cell 

DNA  Deoxyribonucleic acid 

DHE  Dihydroethidium 

DHR 123 Dihydrorhodamine 123  

ESTs  Expressed sequence tag 

FCM  Flow cytometry   

HIV  Human immunodeficiency virus  

NADPH  Nicotinamide adenine dinucleotide phosphate 

NK  Natural killer 

PAMP  Pathogen-associated molecular pattern 

PCM  Paracoccidioidomycosis 

PCR  Polymerase chain-reaction 

PFGE  Pulse field gel electrophoresis 

PLB  Phospholipase B 

PMN  Polymorphonuclear neutrophil 

RDA  Representational difference analysis 

RNA  Ribonucleic acid 

SSH  Subtractive suppression hybridization 

TLR  Toll-like receptor 
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PARACOCCIDIOIDES BRASILIENSIS BIOLOGY 

 

PHYLOGENY AND CRYPTIC SPECIATION 

P. brasiliensis was first described in 1908 by Adolf Lutz, who reported the disease caused by this 

fungus as a new “American hyphoblastomycosis” (Lutz 1908). In 1911, Alfonse Splendore 

proposed the denomination of Zymonema brasiliense to the fungus, which was altered to 

Paracoccidioides brasiliensis in 1930 by Floriano de Almeida (Palmeiro 2005). P. brasiliensis is a 

dimorphic ascomycete fungus taxonomically related to the family Ajellomycetaceae (order 

Onygenales, phylum Ascomycota) (Bagagli, Theodoro et al. 2008). Together with Blastomyces 

dermatitidis, Coccidioides immitis, Coccidioides posadasii and Histoplasma capsulatum, these 

species belong to a fungal group that is common to most agents of endemic systemic mycoses 

(Bagagli, Theodoro et al. 2008). Due to the fact that a teleomorphic form of the fungus has not 

yet been revealed, P. brasiliensis was for long time considered to be a single species, despite the 

high genetic variability found among different isolates (Soares, Madlun et al. 1995; Montoya, 

Moreno et al. 1997; Nino-Vega, Calcagno et al. 2000). The inability to determine the sexual stage 

in fungi such as P. brasiliensis led to the development of phylogenetic analysis of molecular 

markers as a technique for species recognition and determination of the reproductive mode 

(Tibayrenc 1996). In this sense, Matute and co-workers were the first to define three distinct and 

unrecognized species within the P. brasiliensis taxa, based on sequence analysis of eight regions 

of five nuclear loci (Matute, McEwen et al. 2006). Two of these phylogenetic species were 

described as monophyletic (PS2, comprising Brazilian and Venezuelan isolates, and PS3, 

comprising Colombian isolates), while the third one as paraphyletic (S1, comprising isolates from 

Brazil, Argentina, Peru, Venezuela and Paraguay) (Fig. 1). Isolates belonging to S1 and PS2 

clades were found to be sympatric and recombinant, whereas those from PS3 allopatric and 

clonal (Matute, McEwen et al. 2006). Recently, a genetically different population comprising 17 

isolates, including Pb01, was assembled as a new species, named Paracoccidioides lutzii. 

Isolates from the P. lutzii species are endemic to the Brazilian Central-Western region (Fig. 1), 

and tend to present phenotypic characteristics that differentiate them from P. brasiliensis (e.g. 

virulence, resistance to fungicides) as well as different responses to the host (Teixeira, Theodoro 

et al. 2009). 

The isolates belonging to this new cluster were found to be genotypically similar among them, but 

distinct from the S1/PS2/PS3 clade. As reported by Teixeira and co-workers, isolates from these 
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Paracoccidioides species exhibit significant morphological and genetic differences compared to 

the isolates from the P. brasiliensis species. Additionally, recombination analysis revealed 

independent events inside P. lutzii and S1/PS2/PS3 clades, suggesting reproductive isolation 

(Teixeira, Theodoro et al. 2009).   

 

 

 

Figure 1. Geographic distribution of the phylogenetic species of Paracoccidioides 

genus (adapted from Teixeira et al, 2009). 

 

 

ECOLOGY 

Although the natural habitat of Paracoccidioides species has not yet been precisely determined, 

epidemiological data indicates that the natural reservoir for this fungus lies in a humid 

environment (Brummer, Castaneda et al. 1993) mainly in geographic areas of South and Central 

America (Simoes, Marques et al. 2004). Although the fungus has been sporadically isolated from 

commercial dog chow (Ferreira, Freitas et al. 1990), penguin excreta from Antarctica (Gimenez, 

Tausk et al. 1987) and feces from bats (Grose and Tamsitt 1965), several studies indicate that it 

can be found with high incidence in the nine-banded armadillo, Dasypus novemcinctus, a wild 
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mammal usually found in South America and that lives in the soil (Bagagli, Sano et al. 1998; 

Corredor, Castano et al. 1999; Silva-Vergara, Martinez et al. 2000; Bagagli, Franco et al. 2003). 

In these animals unusual granulomas were found, containing fungal cells (Bagagli, Sano et al. 

1998; Silva-Vergara, Martinez et al. 2000). Their low body temperatures (32-350C) make these 

animals the ideal host to P. brasiliensis. It is however important to stress that the isolation of P. 

brasiliensis from soil samples, an important aspect to be considered for the correct definition of 

the fungus natural habitat, is very hard to accomplish. This is probably due to the fungus slow 

growth and restricted ability to compete or survive in the presence of natural soil microbiota 

(Bagagli, Bosco et al. 2006).  

The virulence, genetic and molecular profiles of P. brasiliensis isolates recovered from animals 

reveal to be highly variable (Sano, Defaveri et al. 1998; Sano, Tanaka et al. 1998; Hebeler-

Barbosa, Montenegro et al. 2003), a trend also followed by clinical isolates collected from 

patients. This indicates that both humans and animals present a milieu required for the optimal 

growth of P. brasiliensis that is likely to be similar (Bagagli, Sano et al. 1998; Franco, Bagagli et 

al. 2000).   

Although large advances have been made in determining P. brasiliensis ecological niche, it is of 

utmost importance to improve knowledge concerning the best environmental conditions for 

fungal development, such as temperature, salt tolerance and interaction with other soil 

microorganisms. This would help on defining the fungus ecological niche allowing to accurately 

determine the circumstances and conditions that allow the fungus to grow and disseminate in the 

host. 

 

MORPHOLOGY 

P. brasiliensis is a dimorphic fungus that, at temperatures around 370C, is present as yeast (the 

pathogenic form for humans), whereas at temperatures below 280C develops as mycelium (the 

non-pathogenic form) (Brummer, Castaneda et al. 1993). Mycelial phase of P. brasiliensis is 

characterized by the formation of white, small and irregular colonies (Fig. 2A). Usually it takes 

around 15 to 20 days (depending on the strain) to form these colonies, in temperatures ranging 

from 19 to 28ºC (Brummer, Castaneda et al. 1993). When in this morphological state, the cell wall 

is composed of two layers, being the outermost composed by -1,3-glucan and the innermost having 

a reduced chitin composition when compared to the yeast phase (13% of the cell wall) (Kanetsuna, 

Carbonell et al. 1969). Microscopically, hyphae are multinucleated, septated and thin (Fig. 2B). 
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When cultured in media with reduced concentrations of carbohydrates and low temperatures, it is 

possible to observe the formation of diverse types of propagules such as arthroconidia or conidia 

(Samsonoff, Salazar et al. 1991). Unlike yeast or mycelia, these structures are uninucleated and 

small sized, whereas exhibiting thermal dimorphism that can give rise either to mycelia or yeast cells 

(McEwen, Restrepo et al. 1987). 

 
 

 

 

 

Figure 2 – Mycelial and yeast forms of P. brasiliensis. (A) Macroscopic features of the mycelial form; (B) 

Differential Interference Contrast (DIC) observation of mycelial cells (C); Macroscopic features of the yeast 

form; (D) Differential Interference Contrast (DIC) observation of yeast cells. (J. F. Menino et al, unpublished 

data). 

 

The yeast phase of P. brasiliensis is characterized by cells with a soft, wrinkle and cream colored 

aspect, with sizes ranging from 4 to 30 µM (Brummer, Castaneda et al. 1993) (Fig. 2C). These 

cells have an extended duplication time, and as a consequence their growth becomes 

macroscopically visible only after 3 or 4 days of incubation. Most of the isolates have a long to 

elongated form, having a thick two-layered refractile cell wall (200 to 600 nm) and a cytoplasm 

that contains prominent lipid droplets. One of the hallmarks of the yeast phase of this fungus is 

the existence of multiple-budding mother cells, that can give rise to more than eight daughter 

cells (Fig. 2D). The appearance of such structures is usually denominated as “pilot’s wheel” 

(Brummer, Castaneda et al. 1993; San-Blas, Nino-Vega et al. 2002).  

Yeast cells are also characterized for presenting variable areas with irregular shape, which can go 

from round to elongated or distorted cells, and by their multinucleated nature, with cells 
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presenting several nuclei with different sizes. The yeast cell wall is composed by -1,3-glucan 

containing small amounts of -1,3- or -1,6-glycosidic linkages, and -1,3-glucan (present in a 

much lesser extent) with a slime surface of complex mucopolysaccharides. Internally, it presents an 

elevated chitin composition (43% of the cell wall) (Kanetsuna, Carbonell et al. 1969).  

The molecular basis underlying the pathogenic yeast-phase phenotypic characteristics of P. 

brasiliensis are still poorly understood. This is a relevant aspect, since it has been demonstrated 

that certain fungi modulate their morphology during host invasion to escape phagocytosis, therefore 

contributing to their pathogenicity (Chaffin 2008; Okagaki, Strain et al. 2010). Studies with P. 

brasiliensis demonstrate that yeast cells’ shape and area can impact on the fungus virulence and 

disease progression (Svidzinski, Miranda Neto et al. 1999). Recent data on this matter highlighted 

the role of cell division cycle 42 (CDC42) in P. brasiliensis morphology (Almeida, Cunha et al. 2009). 

This gene encodes an essential GTPase that belongs to the Rho/Rac subfamily of Ras-like GTPases 

(Johnson 1999). Studies addressing the role of this molecule in various organisms (Saccharomyces 

cerevisiae, Schizosaccharomyces pombe, Candida albicans, Caenorhabditis elegans) suggested that 

yeast budding frequency, temporal and spatial regulation of polarized growth, morphological switch 

control or even mating are attributed to its function (Fig. 3) (Miller and Johnson 1994; Drubin and 

Nelson 1996; Yaar, Mevarech et al. 1997; Steven, Kubiseski et al. 1998; Caviston, Tcheperegine et 

al. 2002; Howell, Savage et al. 2009). 

 

Figure 3 - Cdc42 during budding yeast polarization. Depending on the stimuli, budding yeast can polarize in different 

ways, whether leading to budding or formation of shmoos. The polarization of septins, actin, microtubule structures 
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and membrane trafficking allows a polarized growth, that leads during budding to the formation of a bud and during 

mating to the formation of a shmoo (adapted from Etienne-Manneville, 2004). 

 

In 2009, Almeida and co-workers unravelled for the first time a role for PbCdc42p in P. brasiliensis 

morphology. Using antisense RNA (aRNA) technology, several mutants were obtained in unrelated P. 

brasiliensis isolates, with a large range of ranking of expression down-regulation of PbCDC42. The 

authors linked the expression of this gene to the area and shape of yeast cells, since down-regulation 

of PbCDC42 resulted in cells with a more organized and controlled growth, with mutant cells being 

less elongated and polymorphic and more spherical when compared to the wild-type counterparts 

(Fig. 4). In addition to its crucial role in controlling yeast cell morphology, the authors also show that 

diminished levels of PbCDC42 impair the virulence levels of the fungus, since increased 

phagocytosis by macrophages and abrogated virulence in a mouse model of infection was 

demonstrated (Almeida, Cunha et al. 2009). 

 

 

Figure 4 - Silencing of PbCDC42 leads to a more homogenous cell growth. Confocal microscopy observation of PI and FITC-ConA 

double-stained wild-type and two PbCDC42 knock-down yeast strains, PbICVS-2 and -5. White bars correspond to 5 µm (adapted 

from Almeida el at, 2009). 

 

Although these findings provide genetic support for the relevance of PbCDC42 expression on the cell 

area, shape and virulence of P. brasiliensis, it becomes imperative to question if the high diversity of 

yeast cell shape and areas found for isolates from each cryptic group and among the different clades 

could be related with the expression levels of PbCDC42 as a widespread event in P. brasiliensis. The 

clarification of these subjects could represent an important achievement for the discrimination of 

factors that can be directly or indirectly involved in the virulence of each isolate/cryptic group. 

 

DIMORPHISM IN P. BRASILIENSIS 

Temperature is a crucial factor to promote transition from the conidia/mycelial phase to the 

yeast phase in P. brasiliensis, a feature also shared with other dimorphic fungi such as H. 
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capsulatum and B. dermatitidis (Medoff, Kobayashi et al. 1987; Medoff, Painter et al. 1987). At 

environmental temperatures, P. brasiliensis occurs at the mycelial/conidia form. However, during 

the infective process, it changes to the yeast phase, in a process triggered in order to survive and 

disseminate throughout the host (Brummer, Castaneda et al. 1993; San-Blas, Travassos et al. 

2000). The morphological changes undergone by P. brasiliensis throughout conidia/mycelium-to-

yeast transition are clearly linked to its virulence, since alterations in the cell shape facilitates 

host tissue penetration, dissemination, intracellular colonization, and expression of virulence 

factors (San-Blas, Travassos et al. 2000). Some of the most significant alterations experienced by 

P. brasiliensis occur in the cell wall. During transition, extensive modifications occur, mainly due 

to a switch in glucan polymer linkage from -1,3-glucan to -1,3-glucan (Sorais, Barreto et al. 2010) 

and alterations in the lipid composition (Toledo, Suzuki et al. 1995). This is a reversible process, 

since the shift to temperatures below to those of the host allow transition to the conidia/mycelial 

phase (Medoff, Painter et al. 1987).  

At the biochemical level, important changes occur, following a strictly regulated process. 

Paracoccidioides cells undergoing mycelium-to-yeast transition experience three main stages: 

stage 1, characterized by several degrees of uncoupling of oxidative phosphorylation, leading to a 

decrease on the cellular ATP levels, respiration rates and concentrations of electron transport 

components; stage 2, where cells decrease or cease respiration, demanding cysteine or other 

sulfhydryl-containing compounds to maintain viability; stage 3, characterized by the complete 

formation of yeast cells (Medoff, Painter et al. 1987). However, the molecular basis underlying 

this transition started to be uncovered only in the last decade. Several studies addressing these 

matters identified genes and overall pathways required for the thermodimorphic process and 

pathogenicity. The usage of techniques such as construction of expression sequence tags (ESTs) 

and library collections, studies based on DNA microarrays and subtractive suppression 

hybridization (SSH), in silico determination of over-expressed genes and cDNA representational 

difference analysis (RDA), have proven to be powerful methods of genetic analysis tools for the 

investigation of P. brasiliensis morphogenesis and virulence. In 2005, a large-scale gene 

expression analysis carried by Nunes and co-workers using high throughput microarray 

technology, enabled the identification of 2.583 genes displaying statistically significant 

modulation during transition (Nunes, Costa de Oliveira et al. 2005). Some of these genes 

encoded proteins involved in processes such as (i) signal transduction (ii) protein synthesis (iii) 

cell wall metabolism (iv) genome structure (v) oxidative stress response (vi) growth control (vii) 
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development. Among these, the gene encoding 4-hydroxyl-phenyl pyruvate dioxygenase (4-

HPPD), an enzyme associated to the catabolism of aromatic amino acids, was highly 

overexpressed during the mycelium-to-yeast differentiation. This enzyme seems to be crucial 

during the mycelium-to-yeast transition, as its in vitro inhibition was able to stop growth and 

differentiation of the yeast phase of the fungus (Nunes, Costa de Oliveira et al. 2005). Studies 

using in silico electronic subtraction and cDNA microarrays also provided relevant data on genes 

being up or down-regulated in either one of the morphological states, such as genes related to 

cell cycle, stress response, drug resistance and signal transduction pathways (Felipe, Andrade et 

al. 2005). In a recent study, the inhibition of mitochondrial complexes III and IV or alternative 

oxidase (AOX) delayed mycelium-to-yeast transition of the fungus, whereas the association of AOX 

with complex III or IV inhibitors blocked the morphological switch. Expression of AOX was shown 

to be developmentally regulated throughout the differentiation process, being the highest 

expression levels achieved in the first 24 h and during the yeast exponential growth phase 

(Martins, Dinamarco et al. 2011). 

To identify genes specifically expressed during infection, ESTs from infected mice were isolated. 

Costa and co-workers showed that, during liver infection, genes involved in the utilization of 

multiple carbon sources were activated, which included glucose and glyoxylate cycle substrates. 

In addition, genes for nitrogen metabolism and biosynthesis, as well as lipid biosynthesis, were 

highly expressed. These findings suggest that nitrogen and lipid compounds are probably not 

easily obtained from the host, while the availability of carbohydrates for energy maintenance is 

not limited (Costa, Borges et al. 2007). Bailao and co-workers found that several genes related to 

melanin biosynthesis, iron acquisition and cell defense were being highly expressed during 

infection in a mouse model of infection (Bailao, Schrank et al. 2006). However, when using blood 

as culture medium, only genes related to cell wall remodeling/synthesis were being up-regulated 

(Bailao, Schrank et al. 2006). Furthermore, microarray data revealed that genes involved in 

respiratory and metabolic processes of sugars, amino acids, proteins and lipids, synthesis of 

transcription factors and transporters (small peptides, sugars, ions and toxins), and 

methionine/cysteine metabolism were up-regulated in the yeast phase of the fungus, whereas in 

the mycelial phase they were differentially expressed (Monteiro, Clemons et al. 2009).  

Significant differences in the expression levels of genes related to the sulfur metabolism were 

described when comparing both morphological phases of P. brasiliensis. In one study, genes 

coding enzymes involved in the “de novo” synthesis of cysteine were found to be up-regulated in 
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the yeast phase, suggesting that P. brasiliensis actively synthesize cysteine from inorganic 

sulfate. Relevantly, the authors claim that inorganic sulfate is not required during the transition 

process, since cells can undergo transition between both morphological phases in the absence of 

these compounds (Andrade, Paes et al. 2006). In a different study, a large-scale analysis of gene 

expression revealed that transcriptional factors responsible for activation or repression of the 

inorganic sulfur assimilatory pathway were up-regulated in the yeast phase, though in different 

extents. The authors suggest that, although P. brasiliensis cannot use inorganic sulfur as single 

sulfur source, it can use both organic and inorganic pathways during the dimorphic transition 

processes (Ferreira, Marques Edos et al. 2006). 

Although important advances were achieved in comprehending how P. brasiliensis morphological 

growth is controlled, the dimorphic events underlying the infectious process are far from being 

genetically well characterized. This is mainly due to the impossibility to perform gene disruptions 

in P. brasiliensis, a fact that has been hampering functional testing on putative master regulators 

mediating mycelium-to-yeast transition. 

 

SULFUR METABOLISM 

As referred above, genes from the sulfur metabolic pathway are differentially expressed during 

mycelium-to-yeast transition. This is a relevant aspect since, in addition to temperature, the 

inability of P. brasiliensis yeast cells to assimilate inorganic sulfur (a characteristic shared by H. 

capsulatum and B. dermatitidis) is the only condition known to affect this dimorphic process 

(Boguslawski and Stetler 1979; Paris, Duran-Gonzalez et al. 1985; Medoff, Kobayashi et al. 

1987; Maresca and Kobayashi 1989). These species are auxotrophic for organic sulfur 

compounds such as cysteine, cystine or methionine in the yeast phase, being unable to grow on 

their absence. On the other hand, the mycelial phase is prototrophic to organic sulfur 

compounds, as these fungus can use both organic and inorganic sulfur (Boguslawski and Stetler 

1979; Paris, Duran-Gonzalez et al. 1985; Medoff, Painter et al. 1987; Maresca and Kobayashi 

1989). Sulfur compounds are involved in amino acid synthesis and in other major synthetic 

pathways. While methionine is required for the synthesis of the great majority of proteins in all 

organisms, cysteine is crucial for their structure, stability and catalytic function (Marzluf 1997). 

The complex regulatory circuitry of sulfur metabolism must operate in order to insure the 

fulfillment of the cell requirements, either by controlling the level of entry of sulfur into the 

assimilatory pathway or via distinct steps within the main pathway itself (Marzluf 1997; Kopriva, 
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Suter et al. 2002). The assimilation of inorganic sulfur by fungi leads to “de novo” synthesis of 

cysteine, which is dependent on the organism needs for organic sulfur. The process begins with 

the sulfate uptake by the cell through sulfate permeases present in cell membranes, in an 

energy-dependent process. Once inside the cell, inorganic sulfur is phosphorylated, leading to the 

formation of adenosine-5-phosphosulfate (APS) which is on its turn phosphorylated, yielding a 

high-energy sulfate donor, 3’-phosphoadenosine-5’ phosphosulfate (PAPS), known as “active 

sulfate” (Fig. 5). 

 

 

Figure 5 – Schematic representation of the inorganic sulfur assimilatory pathway. 1 – sulfate permease; 2 – 

ATP sulfurylase; 3 – APS kinase; 4 – PAPS reductase; 5 – sulfite reductase. (Adapted from Pilsyk and 

Paszewski, 2009). 

 

In the final stage of this process, PAPS is reduced to sulfite and sulfide by the enzymes PAPS 

reductase and sulfite reductase, respectively, in order to generate cysteine (Fig. 5).  

In organisms such as plants and fungi, the presence of a lateral branch whereby PAPS is 

converted to Choline-O-Sulfate results in the production of an internal pool off inorganic sulfate, 

that can re-enter the pathway, depending on the cell cysteine requirements (Marzluf 1997). 

Recent studies have addressed the genetics underlying the differential sulfur requirements of P. 

brasiliensis species. Transcriptomic analysis reported so far identified numerous genes involved 

in the sulfur assimilatory pathway that are differentially expressed, depending on the 

morphological state of the cell. Methionine permease was found up-regulated in the yeast phase 

(Marques, Ferreira et al. 2004). Similarly, ATP sulfurylase, APS kinase, Choline sulfatase and 

PAPS reductase have their expression levels highly up-regulated in the yeast phase compared to 

the mycelial phase (Felipe, Andrade et al. 2005; Andrade, Paes et al. 2006). More recently, 

METR, the homologue of cys-3 and metR genes from Neurospora crassa and Aspergillus 

nidulans, respectively, were found with a 35-fold increase in the yeast phase compared to the 

mycelial phase (Ferreira, Marques Edos et al. 2006). METR is a member of the bZIP family of 

DNA-binding proteins. The bZIP domain consists of a leucine zipper, responsible for dimerization, 

and an immediate upstream basic region, essential for specific binding to DNA (Marzluf 1997). 

Under conditions of extracellular abundance of inorganic sulfur, METR acts as a transcriptional 
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factor that promotes the expression of genes encoding for permeases and enzymes involved in 

the acquisition of extracellular inorganic sulfur (Marzluf 1997). SCONC, the homologue of scon-2, 

MET30 and sconC genes from N. crassa, S. cerevisiae, and A. nidulans, respectively, was also 

found with a 1,2-fold increase expression in the yeast phase compared to the mycelial phase 

(Ferreira, Marques Edos et al. 2006). This gene is a member of SCF, a multiprotein ubiquitin 

ligase complex (Marzluf 1997; Thomas and Surdin-Kerjan 1997; Patton, Willems et al. 1998), 

that in conditions of organic sulfur abundance leads to the proteolysis of MetR , “switching off” 

the inorganic sulfur assimilatory pathway (Fig. 6). The cross-talk of these two regulators has been 

suggested to be responsible for P. brasiliensis yeast-phase auxotrophy for organic sulfur 

compounds, by preventing pathogenic yeast cells to assimilate inorganic sulfur. 

 

 

Figure 6 – Schematic representation of sulfur-mediated catabolic repression by proteolysis of MetR. In 

conditions of abundance of organic sulfur, SconC promotes ubiquitin-mediated proteolysis of MetR, inhibiting 

the transcription of enzymes required for inorganic sulfur assimilation (adapted from Goldman et al, 2012). 

 

Although considerable information concerning a possible link between P. brasiliensis dimorphism 

and the sulfur metabolism has been provided in the last few years, this matter must be further 

dissected. Since conidia/mycelium-to-yeast transition is an essential step for the development of 

PCM, one cannot exclude the hypothesis that the fungus virulence can depend on the sulfur 

metabolism. Therefore, an approach at the molecular level on the sulfur metabolism could shed 

light on the unraveling of novel virulence determinants. 
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GENETICS AND MOLECULAR TOOLS 

Despite the recent advances on the development of molecular tools to study P. brasiliensis 

genetic/genomic trends, there is still a long way to go towards a definitive elucidation of these 

matters. Importantly, the lack of an accurately described sexual phase in P. brasiliensis has also 

hindered the usage of classic genetic approaches to study this fungus. Over the past few years, 

the usage of techniques such as pulsed-field gel electrophoresis (PFGE), DNA hybridization and 

microfluorometry led to the estimation of P. brasiliensis genome size ranging from 23 to 31 

mega base-pairs (Mb) for the yeast phase (Cano, Cisalpino et al. 1998; Feitosa, Cisalpino et al. 

2003), similarly to what is described for other pathogenic fungi such as H. capsulatum and C. 

immitis (Pan and Cole 1992; Carr and Shearer 1998). Interestingly, in these studies some 

isolates were found to present twice the genome content previously referred, suggesting that P. 

brasiliensis yeast cells could have a diploid DNA content. In 2007, Almeida and co-workers 

developed an optimized Flow-cytometry (FCM) protocol, and by analyzing the GP43 gene, P. 

brasiliensis was shown to have a haploid DNA content per nuclei, with a genome size ranging 

from 26.3 to 35.5 Mb for the yeast phase. A similar genome size was described for conidia (30.2 

Mb), allowing one to exclude the hypothesis of ploidy shift during morphogenesis (Almeida, 

Matute et al. 2007). Moreover, the authors showed no association between genome size/ploidy 

and the clinical/epidemiological feature of the studied isolates.  

More recently, the genome of two P. brasiliensis strains (Pb03 and Pb18) and one P. lutzii strain 

(Pb01) was completely sequenced (data available at http:// 

www.broadinstitute.org/annotation/genome/paracoccidioides_brasiliensis/MultiHome.html). The 

genome sizes ranged from 29.1 to 32.9 Mb, encoding 7.61 to 8.13 genes. Additionally, 94% of 

Pb18 assembly was successfully anchored to an optical map consisting of five linkage groups, 

possibly corresponding to five complete chromosomes. Interestingly, this study also suggest a 

genetic predisposition for Onygenales to degrade plant and animal substrates, enabling species 

such as P. brasiliensis to transfer from soil to animal hosts (Desjardins, Champion et al. 2011). 

The development of manageable molecular techniques has recently allowed increasing 

knowledge on P. brasiliensis genomics, mainly regarding functional genomic studies by means of 

genetic random insertion mutagenesis via Agrobacterium tumefaciens mediated-transformation 

(ATMT) (Bundock, den Dulk-Ras et al. 1995). A. tumefaciens is a bacterial plant pathogen 

carrying a tumor-inducing (Ti) plasmid containing a DNA segment (T-DNA) that is randomly and 

separately inserted into the plant genome during infection (Hoekema, Roelvink et al. 1984). 
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Using this organism, Bundock and co-workers developed an efficient protocol to allow the 

integration of the T-DNA segment from A. tumefaciens into eukaryotic organisms other than 

plants, such as S. cerevisiae (Bundock, den Dulk-Ras et al. 1995). The authors also 

demonstrated that the route of integration of foreign DNA into the recipient organism is 

dependent on host factors, since integration in S. cerevisiae was accomplished by homologous 

recombination, instead of random integration in the genome.  

Based on this technique, an efficient protocol was developed by Almeida and co-workers in order 

to insert exogenous DNA into P. brasiliensis genome (Almeida, Carmona et al. 2007), by co-

cultivation of A. tumefaciens and P. brasiliensis cells. Several parameters were revealed to be 

essential during the process, such as the ratio of A. tumefaciens/P. brasiliensis cells, co-

cultivation conditions (time of air-drying, light exposure) and recovery time of host cells.  

More recently, this methodology was employed to perform genetic manipulation in P. brasiliensis 

by means of gene expression down-regulation using antisense-RNA sequences targeting specific 

genes of the host. This technique employs the ATMT methodology, and through in silico analysis 

an in vitro manipulation, an artificial vector containing a resistance marker (e.g. hygromycin B 

phosphotransferase gene) and the aRNA sequence (Fig. 7) is inserted into P. brasiliensis 

genome, that depending on intrinsic factors, can lead to the reduction of the expression of the 

target gene (Menino, Almeida et al. 2012). 

 

 

Figure 7 – Transfer-DNA (T-DNA) construct for aRNA silencing of a P. brasiliensis target gene via Agrobacterium tumefaciens-

mediated transformation. T-DNA harboring the hygromycin B phosphotransferase (HPH) gene driven by the A. nidulans 

glyceraldehyde 3-phosphate (GPDA) promoter and transcriptional terminator (TRPC) with aRNA oligonucleotide under the control 

of the calcium-binding protein (CBP1) promoter from H. capsulatum. The construct is carried out in the pUR5750 vector (adapted 

from Menino et al, 2012). 

 

Altogether, this methodologies are currently being applied by several research groups in the 

context of P. brasiliensis genetics, and it is now possible to study the structural organization and 

dynamic processes in P. brasiliensis by the observation of fluorescent-tagged proteins, and to 
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perform targeted down-regulation of gene expression (Almeida, Cunha et al. 2009; Hernandez, 

Almeida et al. 2010; Menino, Almeida et al. 2012). Using this approach, one can access the 

function of each gene in its pathway, and understand how P. brasiliensis control disease-related 

processes such as dimorphism, temperature-dependent behavior, and metabolic pathways vital 

for its survival inside the host.    

 

PARACOCCIDIOIDOMYCOSIS 

 

EPIDEMIOLOGY: DEMOGRAPHICS-GEOGRAPHICAL DISTRIBUTION 

Paracoccidioidomycosis (PCM), a disease caused by Paracoccidioides species, is characterized 

by long latency periods (Brummer, Castaneda et al. 1993). As previously referred, this fact has 

hindered the precise determination of the site where the infection initiated and the exact 

ecological niche and route of infection followed by P. brasiliensis. However, over the years data 

has been collected supporting that the infectious process most likely starts by the inhalation of 

asexual propagules of the saprobic mycelial phase of the fungus existing in nature. 

Epidemiological data further support this via of infection, as determined by the appearance of 

PCM in farmers from agricultural regions (Brummer, Castaneda et al. 1993). Once the 

propagules reach the lower airway, a complex is formed leading to the generation of secondary 

systemic lesions arising through lymphatic and blood dissemination to various organs of the host 

(San-Blas, Nino-Vega et al. 2002; Wiwanitkit 2010; Marques 2012). It is estimated that the 

annual incidence of the disease in endemic areas is around 1 new case per 100.000 inhabitants, 

with a mortality rate of 1.65 cases per 1.000.000 inhabitants (Restrepo, McEwen et al. 2001). 

This disease is more common among farmers and rural workers between 30 and 40 years old, 

although 3 to 10% of the reported cases are from children and young adults (Brummer, 

Castaneda et al. 1993). Relevantly, this disease affects mainly males, in a proportion of 113 

males to 1 woman. It is believed that the presence of estrogens, especially estradiol, is the main 

reason behind this differential gender-infection, since it seems to block conidia/mycelium-to-yeast 

transition (Restrepo, Salazar et al. 1984; Aristizabal, Clemons et al. 1998).   

PCM is considered an autochthonous disease from northern Argentina to southern Mexico, with 

higher incidence in Brazil, accounting for 80% of the reported cases, followed by Columbia, 

Venezuela and Argentina (Fig. 8), (Brummer, Castaneda et al. 1993).  
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Figure 8 – Geographic distribution of PCM in Central and Latin America. Blue 

specifies areas with incidence of the disease (adapted from Duane et al, 

2013). 

 

In Brazil, PCM is the leading death cause of non-immunosuppressed patients due to systemic 

mycosis, and ranked as tenth as cause of death among infectious and parasitic diseases. 

Moreover, PCM is one of the responsible diseases for death among individuals with Human 

Immunodeficiency Virus (HIV) (Benard and Duarte 2000; Wanke and Aide 2009). Interestingly, 

reports of clinical PCM cases were shown in United States, Europe and Japan (Ajello and 

Polonelli 1985; Miyaji and Kamei 2003). The most reliable explanation for this fact is related with 

the population flow from Latin American to these countries, or short periods of immigration 

related with work or tourism in Latin America.  

 

PATHOBIOLOGY AND CLINICAL FORMS 

As previously referred, P. brasiliensis conidia produced by the saprobic mycelia act as infectious 

propagules (McEwen, Bedoya et al. 1987; Brummer, Castaneda et al. 1993). After inhalation of 

conidia by the host, a complex morphological shift to the pathogenic yeast phase occurs. The 

infectious process can give rise either to asymptomatic conditions or active disease, initially 

causing pulmonary lesions in the lungs of the host with the persistence of viable P. brasiliensis 

cells (called latent foci). Another possible outcome is the formation of extrapulmonary latent foci, 

by the dissemination of the fungus to other organs and tissues (Benard 2008). 
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PCM occurs mostly in immunocompetent individuals, with a gender-trend towards males 

(Brummer, Castaneda et al. 1993; Borges-Walmsley, Chen et al. 2002). Comorbidities such as 

alcoholism, malnutrition and acquired or iatrogenic immunosuppression disrupting host-agent 

equilibrium account as major reasons for the development of active disease (Benard 2008).  

The standard diagnosis method of PCM is based on the microscopic identification of P. 

brasiliensis in clinical specimens or tissue. In fact this is an effective and inexpensive method, as 

it relies on the direct examination using 10% potassium hydroxide applied to a smear sample 

(Wanke and Aide 2009). In patients presenting oral or other skin lesions, the most common 

technique is based on the histological examination of tissue samples, using silver methenamine 

or periodic acid-Schiff stain. To better define the diagnosis and to evaluate treatment responses 

and disease recurrence, serological tests such as double-immunodiffusion, immunoenzymatic 

assays and counter-immunoelectrophoresis were proven to be valuable tools (Del Negro, Pereira 

et al. 2000; de Camargo 2008; Wanke and Aide 2009). Recently, the usage of molecular 

techniques such as PCR and real-time PCR revealed to increase the specificity of PCM diagnosis 

(Gomes, Cisalpino et al. 2000; Motoyama, Venancio et al. 2000; Buitrago, Merino et al. 2009). 

Moreover, some authors have also developed immunoenzymatic assays as an attempt to detect 

specific P. brasiliensis antigens like GP43 and GP70 in patients with PCM (Mendes-Giannini, 

Bueno et al. 1989; Gomez, Figueroa et al. 1998; Marques da Silva, Colombo et al. 2003; 

Marques da Silva, Queiroz-Telles et al. 2004). 

Treatment of PCM is dependent on the severity of the disease and the clinical picture presented 

by the patient. The therapeutic strategies involve the elimination of the fungus, mainly based in 

sulphonamides, amphotericin B and azole derivatives (Yasuda 2005; Wanke and Aide 2009). In 

the absence of treatment, PCM is a fatal disease.  

 

There are two different patterns which the disease may progress: the acute/subacute form and 

the chronic form.  

 

Acute form: This is the most common form of infection in children, youth and adults under 30 

years old, representing 10% of all PCM cases. The involvement of the monocytic phagocytic 

system results in manifestations such as fever, weight loss, lymph node enlargement, 

hepatosplenomegaly and bone marrow dysfunction (Fig. 9). In this clinical form lung involvement 

is very rare, and the clinical picture is characterized by the rapid progression of the disease, with 
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the patient’s general condition being seriously impaired within weeks or few months. The rate of 

treatment success is approximately around 70% (Ramos and Saraiva Ldo 2008; Buitrago, Bernal-

Martinez et al. 2011).  

 

 

Figure 9 – Acute form of PCM. Large ulcerative lesion on face with infiltrated 

borders and hemorrhagic borders (adapted from Marques et al, 2012). 

 

Chronic form: This form affects mostly adult males, and is characterized by a slow progression of 

the disease, contrarily to the acute/subacute form. Due to this fact, the need of health assistance 

is only necessary several months after the onset of the disease. The fungus dissemination 

throughout the oral mucosa (Fig. 10) prompts the patient to seek dental consultation. The most 

common symptoms are related to a single organ or system (unifocal) or to several organs 

(multifocal). This form of PCM usually involves oropharynx, skin, lymph nodes, adrenal glands 

and the lungs and mucosae of the upper respiratory tract, as opposed to the acute/subacute 

form. In some rare cases, the central nervous system, bones, joints, genital organs, eyes, thyroid 

and organs of the cardiovascular system may be compromised. The most common sequels can 

be both respiratory insufficiency and Addison’s disease (Colombo, Faical et al. 1994; Ramos and 

Saraiva Ldo 2008).  



Chapter 1                                                                                                                                                                        General introduction 
 

20 
 

 

Figure 10 – Chronic form of PCM. (A) Superficial ulcerative lesion with hemorrhagic dots on gingiva. (B) Ulcerative and infiltrative 

lesion with multiple hemorrhagic dots and crusts on the upper gingiva and lip. (Adapted from Marques et al, 2012). 

 

VIRULENCE FACTORS 

Several aspects have to be considered for the determination of the specific attributes of P. 

brasiliensis to invade the host and disseminate, causing disease. Among others, the fungus 

dimorphism, the optimal temperature for fungal growth, adherence to host cells, cell wall 

components and enzyme production, are aspects that one has to explore for the identification of 

possible virulence factors of the fungus underlying the infectious process.  

As referred previously, P. brasiliensis dimorphic conidia/mycelium-to-yeast transition can be 

considered a virulence factor, since this is a mandatory process that the fungus as to undergo to 

survive and disseminate in the host (Brummer, Castaneda et al. 1993; Silva-Vergara, Martinez et 

al. 2000; San-Blas, Nino-Vega et al. 2002; Klein and Tebbets 2007). This morphological switch 

leads to the remodeling of the cell wall constituents, mainly composed by lipids, proteins and 

polysaccharides (Kanetsuna and Carbonell 1970). During transition, the chitin content of the cell 

wall has a 3-fold increase, being α-1,3 glucan the glucoside bond in the yeast phase, whereas in 

the mycelial phase it is β-1,3 glucan (San-Blas and San-Blas 1977). San-Blas and co-workers 

showed that the virulence of different P. brasiliensis isolates is directly correlated with the levels 

of α-glucan. By reducing α-glucan levels by extended in vitro P. brasiliensis cultures, the fungus’ 

virulence revealed to decrease (San-Blas 1985). Although these studies point α-glucan as a 

virulence factor, it is still not well understood. On the other hand, GP43, a 43-KDa glycoprotein 

that participates in the interaction with the host at different levels, is recognized as the key P. 

brasiliensis virulence factor. This protein was characterized as being an adhesin, as supported by 

experiments with a hamster model of infection. The adhesion of GP43 to extracellular laminin 

and fibronectin was demonstrated to enhance the fungus pathogenicity (Vicentini, Gesztesi et al. 

1994). Popi and co-workers verified that GP43 impairs phagocytosis and fungicidal activity of 
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macrophages from resistant and susceptible mice, allowing P. brasiliensis to evade host defense 

mechanisms (Flavia Popi, Lopes et al. 2002). Recently, isolates with a specific GP43 genotype 

were found to be less virulent, whereas its expression was shown to be regulated not only at the 

transcriptional level but also at the protein/secretion level (Carvalho, Ganiko et al. 2005). Another 

element identified as a putative virulence factor was the pigment melanin, highly common in 

dimorphic fungi. Melanized P. brasiliensis cells are less phagocytized and more resistant to 

reactive oxygen species produced by host cells (da Silva, Marques et al. 2006; Silva, Thomaz et 

al. 2009).  

As previously referred, P. brasiliensis CDC42 is a pivotal molecule for the definition of the fungus 

morphology (Almeida, Cunha et al. 2009). The authors also presented evidences linking this 

gene to virulence, since down-regulation of CDC42 expression levels increased phagocytosis by 

murine macrophages. Depending on the level of CDC42 down-regulation, virulence could be 

abrogated, as demonstrated using a mouse model of infection (Almeida, Cunha et al. 2009).  

Extracellular phospholipase B (PLB) was equally identified as a putative virulence factor, as co-

cultures with P. brasiliensis cells and alveolar macrophages resulted in higher expression levels 

of PLB. This up-regulation decreases the expression of pro-inflammatory cytokines, a 

circumstance that can impair host innate immunity (Soares, de Andrade et al. 2010). More 

recently, HAD32, the putative member of the haloacid dehalogenase (HAD) superfamily of 

hydrolases, was demonstrated to play an important role in P. brasiliensis virulence. By knocking-

down P. brasiliensis HAD32, Hernandez and co-workers obtained mutants with lower adherence 

capacity to human epithelial cells and decreased virulence, as was demonstrated in a mouse 

model of infection (Hernandez, Almeida et al. 2010). 

The usage of differential transcriptomic analysis has allowed researchers to identify genes that 

can putatively be considered virulence factors or, at least, be involved in the infectious process. 

However, the low number of molecular tools hampers the deeper exploration of the functionality 

of these genes. Given this, the exploration and modulation of morphology-related genes can 

represent a worthy focus of study, since P. brasiliensis dimorphic behavior is the central aspect 

underlying the infectious process. 

 

HOST IMMUNE RESPONSES TO P. BRASILIENSIS 

Upon P. brasiliensis infection, the host must activate immunological non-specific and specific 

mechanisms to sustain fungus proliferation and disease. While many individual exposed to the 
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fungus develop an asymptomatic infection, others are highly susceptible, developing conspicuous 

PCM (Brummer, Castaneda et al. 1993).  

The initial contact of P. brasiliensis cells with host tissue triggers a congestive-exudative 

inflammatory reaction, characterized by a predominant afflux of neutrophils. Eventually, these 

cells are replaced by macrophages, which are arranged in loose nodules and multinucleated 

giant cells. During the inflammatory process, epithelioid histiocytes are found and a lympho-

plasmacytic halo is formed. At this stage, the formation of a PCM granuloma consists of a 

nodular arrangement of epithelioid histiocytes and multinucleated giant cells of the Langhans and 

foreign body types, many of these cells containing fungi. Usually, a central area of suppuration 

and inflammatory exudate rich in lymphocytes is formed, with plasma cells and eosinophils 

permeating or surrounding the granulomatous reaction being found. Fibrosis is generally seen 

surrounding the granulomas or necrotic areas, that are gradually replaced by fibrous scar tissue 

(Moreno and Guzman de Espinosa 1976; de Camargo and de Franco 2000). 

It is thought that the formation of the granuloma is related to host immune responses to 

components of the cell wall being expressed by P. brasiliensis (Calich, da Costa et al. 2008; 

Fortes, Miot et al. 2011). The analysis of epithelioid granulomas from skin or mucosal biopsies of 

PCM patients reveal the presence of macrophages and epithelioid cells surrounded by a 

peripheral mantle of T-cells, with the predominance of a CD4+ population (Moscardi-Bacchi, 

Soares et al. 1989). This seems to indicate that T-lymphocytes and macrophages are actively 

involved in the process of granuloma formation, therefore playing an important role against P. 

brasiliensis. 

Although the available literature is clear on the clarification of how the host develops an immune 

response against the fungus at later stages of infection, most of the studies focusing on the 

comprehension of the initial mechanisms triggered in the host by P. brasiliensis are performed 

using in vitro and in vivo approaches, using as model of infection either resistant or susceptible 

mice. This is mainly due to the fact that PCM infection and disease in humans is usually 

diagnosed long periods after infection (Brummer, Castaneda et al. 1993; Borges-Walmsley, Chen 

et al. 2002). 

The main host defence immune mechanisms against P. brasiliensis are those cell-mediated, 

namely linked to T-helper 1 (Th1) type of immune response, rather than humoral (Taborda, 

Juliano et al. 1998; Kashino, Fazioli et al. 2000; Souza, Correa et al. 2001).  
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The first steps of resistance against P. brasiliensis infection triggered by the host rely on 

macrophages, natural killer (NK) cells, neutrophils and monocytes, and their antifungal activity is 

induced either by the fungus or cytokines produced by phagocytes (Calich, Vaz et al. 1998; 

Pagliari, Pereira et al. 2010). 

Macrophages, as host and effector cells for these intracellular fungi, are of major importance, 

being alveolar macrophages thought to be crucial for the initial steps of fungal contention. 

Studies with susceptible mice reveal that alveolar macrophages recovered after P. brasiliensis 

infection are unable to produce hydrogen peroxide, whereas those from resistant mice produce 

high levels of this compound (Cano, Singer-Vermes et al. 1995). Several studies on nitric oxide 

(NO) production by macrophages refer opposite effects of this compound on the fungicidal ability 

of activated macrophages, depending on the stage of infection. Some authors support the idea 

that high production levels of NO in initial steps of infection increase fungicidal ability of 

macrophages, while others claim that this higher production can interfere with acquired-immune 

responses, leading to the suppression of T-cell mediated immunity (Bocca, Hayashi et al. 1998; 

Gonzalez, de Gregori et al. 2000; Nascimento, Calich et al. 2002; Gonzalez, Aristizabal et al. 

2004). 

On the other hand, studies on the role of Natural Killer (NK) cells reveal that their function in 

PCM varies according to the host or the site where these are driven. In the peripheral blood of 

PCM patients, NK cells were found in great numbers, but with low cytotoxic activity (Peracoli, 

Soares et al. 1991), whereas splenic-NK cells from mice were shown to be immunoprotective 

(Jimenez and Murphy 1984).  

Moreover, the production of cytokines by host cells is crucial for the correct modulation and 

development of an appropriate response against P. brasiliensis. Interferon-gamma (IFN-g) was 

found to be the most important protective cytokine in models using susceptible, intermediate and 

resistant mice (Cano, Kashino et al. 1998; Souto, Aliberti et al. 2003). While TNF-α and IL-12 

also play a protective role for containing the disease (Deepe, Romani et al. 2000; Arruda, Franco 

et al. 2002; Souto, Aliberti et al. 2003), IL-4 can be either protective or disease promoting, 

depending on hosts’ genetic background (Pina, Valente-Ferreira et al. 2004). 

Additionally, the secretion of antimicrobial proteins such as cell-wall-degrading enzyme lysozyme, 

the iron-chelating protein lactoferrin, the membrane-permeabilizing members of the defensin, 

cathelicidin, and pentraxin families (Calich, da Costa et al. 2008) complement the action NK and 

phagocytes (Soares, Calvi et al. 2001; Calvi, Peracoli et al. 2003; Pagliari, Pereira et al. 2010). 
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The development of the immune response is a controlled mechanism, since an exacerbated pro-

inflammatory profile can be detrimental for the host. CD4+ CD25+ Regulatory T cells (Treg) were 

shown to play a major role in controlling immune responses to P. brasiliensis. On their absence 

during the infectious process, an exacerbated inflammatory response can lead to the 

development of autoimmune diseases (Moraes-Vasconcelos, Grumach et al. 2005), while their 

excessive activation may be associated with susceptibility (Ferreira, de Oliveira et al. 2010).  

 

INNATE-IMMUNE MECHANISMS: P. BRASILIENSIS RECOGNITION BY TOLL-LIKE RECEPTORS 

Cells from the innate-immune system sense the presence of strange/invading microorganisms 

using conserved, transmembrane or intracytoplasmatic receptors, named Pattern Recognition 

Receptors (PRRs). These receptors have the ability to sense conserved molecular structures 

shared by microorganisms, known as Pathogen-Associated Molecular Patterns (PAMPs) 

(Medzhitov 2001; Janeway and Medzhitov 2002). Among these PRRs, the Toll-Like Receptors 

(TLRs) are the most widely known, along with non-TLRs such as nucleotide-binding 

oligomerization domain (NOD)-like proteins and the C-type lectin receptors (CLRs) (Akira, 

Uematsu et al. 2006). Upon recognition of the invading organism, the activation of PRRs leads to 

the subsequent activation of cells from the innate-immune system and production of mediators, 

that are used to eliminate the invading microorganism and control the adaptive immune 

response (Medzhitov 2001; Schnare, Barton et al. 2001).  

Since the discovery of TLRs, several studies have focused on the elucidation of their roles on the 

recognition of a large variety of fungal pathogens. To the best of our knowledge, 13 TLRs have 

been described so far, and either individually or forming dimers, these receptors have the ability 

to recognize a wide variety of pathogen-derived products (Fig. 11). The importance of these 

receptors relies on their ability to activate cells expressing these receptors and signal for the 

recruitment of phagocytes to the site of infection, thus leading to microbial killing (Akira and 

Takeda 2004; Reis e Sousa 2004).  
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Figure 11 - Ligands of toll-like receptors (TLRs). TLRs are able to recognize a variety of pathogen-derived products: 

lipopolysaccharide (LPS) is the ligand for TLR4; bacterial lipoproteins are recognized by a TLR2/6 dimer; triacylated lipopeptides 

by a TLR2/1 dimer; CpG oligonucleotides by TLR9; flagellin by TLR5. TLR11 in mice senses uropathogenic bacteria. A TLR2/6 

dimer recognizes zymosan for anti-fungal responses. Anti-viral responses are mediated by TLR4 which senses F protein from RSV, 

TLR3 which senses double-stranded RNA (poly I:C), TLR7 and TLR8 which sense single-stranded RNA (ss RNA). Protozoal 

glycosyl-phosphatidyl-inositol (GPI-) anchor proteins are recognized by TLR2. Products of inflamed tissue are sensed by TLR4 

(adapted from Mogensen, 2009). 

 

In 2002, Netea and co-workers were the first to describe the role of TLRs on the recognition of a 

fungal pathogen (Netea, Van Der Graaf et al. 2002). As described by the author, TLR4 plays a 

protective role against C. albicans, as mice lacking the receptor were more susceptible to the 

disease, due to an impairment of chemokine expression and neutrophil recruitment (Netea, Van 

Der Graaf et al. 2002). TLR2 was also accessed in the context of Candida infections. While some 

authors show a protective role of this TLR for this pathogen, others claim it is dispensable (Netea, 

Sutmuller et al. 2004; Villamon, Gozalbo et al. 2004). MyD88, an important adaptor protein 

recruited by several TLRs for the signaling pathway, was also described to play a protective role 

during C. albicans infections. This molecule was shown signal for increased phagocytosis, killing 

and synthesis of cytokines by Candida-infected cells (Marr, Balajee et al. 2003; Villamon, Gozalbo 

et al. 2004). Studies with Cryptococcus neoformans also addressing these matters suggest that 

TLR4 and TLR2 marginally contribute to host response against this fungus, while others support 

a protective role for TLR2 and MyD88 (Yauch, Mansour et al. 2004; Biondo, Midiri et al. 2005; 

Nakamura, Miyagi et al. 2006). Several studies focusing on another pathogenic fungus, 

Aspergillus fumigatus, reveal a protective role for TLR2 and 4 on hosts’ activation of an 

appropriate immune response, due to their contribution for the activation of polymorphonuclear 

neutrophils (PMN) and cytokine secretion (Wang, Warris et al. 2001; Meier, Kirschning et al. 

2003; Netea, Warris et al. 2003; Bellocchio, Moretti et al. 2004). 

In the past few years, P. brasiliensis infections have been target of immunological-related studies, 

specifically those aiming to understand how the innate-immune system is triggered via TLRs. In 

1985, Calich and co-workers provided data on the role played by TLR4 on P. brasiliensis 
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recognition. According to the author, TLR4-deficient mice intraperitonially infected with the fungus 

were more resistant to infection (Calich, Singer-Vermes et al. 1985). Recently, in vitro and in vivo 

experiments presented evidences showing that TLR4 recognition of P. brasiliensis lead to severe 

fungal infection, related to a pro-inflammatory pattern (Loures, Pina et al. 2010). In these 

experiments, TLR4 knock-out macrophages infected in vitro presented decreased fungal loads, 

associated with impaired synthesis of nitric oxide, IL-12, and macrophage chemotactic protein 1 

(MCP-1). Accordingly, in vivo infection of TLR4-defective mice resulted in reduced fungal burdens 

and decreased levels of pulmonary nitric oxide, pro-inflammatory cytokines, and antibodies. On 

the other hand, in vivo infection of wild-type mice had as outcome the production of high levels of 

IL-12 and tumor necrosis factor alpha (TNF-α), besides cytokines of the Th17 type of CD4 T cells. 

This pattern suggests a pro-inflammatory role for TLR4 signaling upon P. brasiliensis recognition, 

which can be deleterious to the host. TLR2 was also investigated in the scope of P. brasiliensis 

infections. This receptor was shown to be important in regulating the development of Th17-driven 

immune responses, since its absence results in increased Th17 immunity, ultimately causing a 

diminished expansion of regulatory T cells and increased lung pathology (Loures, Pina et al. 

2009). 

. 

Although some major advances were accomplished for a better comprehension on host 

responses to P. brasiliensis, the peculiarities of this fungus such as its dimorphic behavior, 

morphological characteristics, multinucleated nature and budding pattern, are some of the 

aspects that still have to be addressed in a host-fungus approach. In particular, a more profound 

investigation on the role that immunological elements such as TLRs may play during the 

infectious process can be of utmost importance for the risk stratification of individuals to PCM 

and for the development of therapeutic strategies.  
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MORPHOLOGICAL HETEROGENEITY OF PARACOCCIDIOIDES BRASILIENSIS: 
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ABSTRACT 

 

Paracoccidioides brasiliensis budding pattern and polymorphic growth were previously shown to 

be closely linked to the expression of PbCDC42 and to influence the pathogenesis of this fungus. 

In this work, a detailed morphogenetic evaluation was carried out for the yeast-form of 11 

different clinical and environmental P. brasiliensis isolates from the 3 phylogenetic lineages (S1, 

PS2 and PS3) and one isolate from Paracoccidioides lutzii species (Pb01), as well as a PbCDC42 

knock-down strain. High variations in the shape and size of mother and bud cells for each isolate 

were observed and revealed no characteristic morphologic profile for each phylogenetic group. In 

all isolates studied, the bud size and shape were demonstrated to be highly dependent on the 

mother cell. Importantly, we found strong correlations between PbCDC42 expression and both 

the shape of mother and bud cells and the size of the buds in the evaluated isolates and knock-

down strain. Our results revealed that PbCDC42 expression can explain approximately 80 % of 

both mother and bud cell shape and 19 % of bud cell size, thereby supporting that the PbCDC42 

expression level is a relevant predictor of P. brasiliensis morphology. Altogether, these findings 

quantitatively describe the polymorphic nature of the P. brasiliensis yeast form and provide 

additional support for the key role of PbCDC42 expression on yeast cell morphology. 

 

INTRODUCTION 

 

The fungus Paracoccidioides brasiliensis is a etiological agent of paracoccidioidomycosis (PCM), 

an endemic disease restricted to Latin America with high incidence in Brazil, Colombia and 

Venezuela (Restrepo, McEwen et al. 2001). P. brasiliensis is a thermo dimorphic fungus growing 

as mycelium at environmental temperatures and shifting to the pathogenic yeast-form at host 

temperatures (Brummer, Castaneda et al. 1993). The yeast-form of P. brasiliensis shows a 

multiple-budding pattern and presents a variable size with irregular shape (Kashino, Calich et al. 

1987). To date, several studies have focused on the characterization of genes that are involved in 

the regulation of P. brasiliensis yeast morphology or other phenotypical traits (Kurokawa, Lopes 

et al. 2005; Almeida, Cunha et al. 2009). Our previous work has highlighted the role of the cell 

division cycle 42 (CDC42) gene on mother and bud cell size, as knocking-down PbCDC42 

resulted in more spherical cells with reduced virulence when compared to wild-type cells 

(Almeida, Cunha et al. 2009). Also, specific inhibition of the interactions of C. albicans CDC42 
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with its downstream effectors was demonstrated to inactivate and even reverse the pathogenicity-

related morphologic transition of C. albicans (Su, Li et al. 2007). In this study, we performed a 

quantitative characterization of P. brasiliensis yeast cell morphology and the number of buds of 

several clinical and environmental isolates belonging to the four phylogenetic lineages S1, PS2, 

PS3 and “Pb01-like” (Teixeira, Theodoro et al. 2009). PbCDC42 expression levels of the P. 

brasiliensis isolates were quantified and their correlation with the evaluated morphological 

parameters was tested.  

 

MATERIALS AND METHODS 

 

Microorganisms and culture media. Paracoccidioides wild-type and mutant strains used in this 

study are listed in Table 1. For maintenance, Paracoccidioides isolates were sub-cultured every 

seven days on brain heart infusion (BHI) (Duchefa, The Netherlands) solid medium 

supplemented with 1 % glucose. For the morphological and expression studies, Paracoccidioides 

yeast cells were grown in BHI liquid medium supplemented with 1 % glucose and gentamicin 

(50µg/mL) at 37 oC with aeration on a mechanical shaker (220 rpm). Cell growth was monitored 

at different time points over a period of 148 h and cells were collected during the exponential 

growth phase (72h of growth, 1.65 ± 0.8 x 107 cells/mL) for all experiments. 

 

Table 1. Paracoccidioides   isolates used in this study. 

Phylogenetic 

group 
Isolate  Location Source 

Reference 

P. lutzii Pb01 Goiás, Brazil Chronic PCM (Teixeira, Theodoro et al. 2009) 

S1 Pb18 Sao Paulo,Brasil Chronic PCM (Teixeira, Calich et al. 1987) 

S1 PbT8B1 Botucatu,Brasil Armadillo (Hebeler-Barbosa, Montenegro et al. 2003) 

PS2 Pb03 São Paulo,Brasil Chronic PCM (Morais, Barros et al. 2000) 

PS2 Pb04 São Paulo,Brasil Chronic PCM (Morais, Barros et al. 2000) 

PS2 Pb02 Caracas,Venezuela Chronic PCM (Morais, Barros et al. 2000) 

PS3 PbGarcia Antioquia, Colombia Chronic PCM (Hoyos, McEwen et al. 1984) 

PS3 PbGarcia /PbICVS-6 N.A.* Genetically modified (Almeida, Cunha et al. 2009) 

PS3 Pb60855 Antioquia, Colombia Chronic PCM (Gomez, Nosanchuk et al. 2001) 

N.S.** Pb54180 N.S.** Chronic PCM N.S.** 

N.S.** PbMeredia N.S.** Chronic PCM N.S.** 

N.S.** PbM. Benitez N.S.** Chronic PCM N.S.** 

*N.A. – Not applicable; **N.S. – Not specified 
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Quantitative real-time polymerase chain reaction (qRT-PCR). Total RNA was isolated using TRIzol 

methodology (Invitrogen, USA) and RNA samples were subsequently treated with 2U of DNaseI 

(Ambion, USA) by incubation for 1h at 37 oC. Absence of DNA contamination was assessed by 

PCR amplification for the GP43 gene. Total RNA (1µg) was reverse transcribed using the iScript 

cDNA Synthesis kit (Bio-Rad, France) following manufacturer’s instructions and 1µL of cDNA 

used as a template for real-time quantification using the SsoFast EvaGreen SuperMix (Bio-Rad, 

France). Real-time quantification of PbCDC42 transcripts and the endogenous reference β-tubulin 

(TUB2) were carried out on a CFX96 Real-Time System (Bio-Rad, France) using previously 

described primers (Almeida, Cunha et al. 2009). All measurements were done in triplicate, and 

melting curve analysis performed to exclude non-specific amplification. 

 

Microscopy. To accurately determine morphometric properties of cell populations, cell samples 

were taken from exponentially growing cultures and fixed as described (Almeida, Cunha et al. 

2009), and microscopic images recorded with a DXC390 digital camera (Sony, Japan) using a 

40 X objective on a motorized Axioplan 2 microscope (Zeiss, Germany). In these images cell size 

and shape were analyzed using StereoInvestigator software (MicroBrightField, Williston, USA). 

Cell size was evaluated as projected area in µm², and cell shape was rated in values ranging 

from 0 (perfect ellipse) to 1 (perfect circle). A minimum of 150 mother cells and respective buds 

were analyzed for each morphological parameter. Representative images of isolates were 

acquired by Differential Interference Contrast Microscopy on an Olympus BX61 microscope 

equipped with a high-resolution DP70 digital camera. 

 

Statistical analysis. Data are reported as the mean ± standard error of the mean (SEM) and all 

assays were repeated at least three times. All statistical analysis was performed using SPSS 

statistics 19 package. The One-way ANOVA and Tukey's Post Test was applied for all multiple 

comparisons. Linear regression analysis was performed applying Pearson coefficient, taking into 

account the correlation (R2), degrees of freedom (df1 and df2) and slope of the curve (β). For all 

data analysis statistical significance was considered at the level of 0.001 (2-tailed, 95 % 

confidence interval).  
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RESULTS 

 

HETEROGENEOUS MORPHOLOGY AND BUD NUMBER OF P. BRASILIENSIS YEAST-FORM 

For morphometric analysis of the P. brasiliensis yeast-form, we selected 11 clinical and 

environmental isolates (Table 1) and performed a quantitative analysis of size and shape of at 

least 150 mother cells and respective buds. Microscopic observations confirmed the highly 

polymorphic nature of P. brasiliensis and revealed, for each isolate, a great heterogeneity in 

terms of mother and bud cell size and shape (Fig. 1.1). The results indicated high variations 

between isolates, especially regarding mother and bud cell size, ranging from those displaying 

large mother and bud cells (Pb02 and Pb54180, Fig. 1.1A, B and C) to those isolates showing 

smaller cells (PbT8B1, PbMeredia and Pb03, Fig. 1.1A, B and C). Cell shape among isolates 

showed less variability, with Pb02 being the strain with more elongated cells (Fig 1.1A, D and E). 

Analyzing the morphological data in Fig. 1.1, Pb02 stands out from the rest of the isolates, with 

statistically significant differences (p<0.001) concerning all the parameters analyzed.  
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Figure1.1 - P. brasiliensis yeast cells reveal high morphological heterogeneity. (A) Differential Interference Contrast 

microscopy observation of wild-type yeast cells. White bars correspond to 20 µm (100x magnification). Morphometric 

analysis using StereoInvestigator software of 150 mother cells and respective buds of eleven distinct wild-type P. 

brasiliensis isolates for average yeast cells size (µm2) of (B) mother cell and (C) bud cell and average yeast cells 

shape [given in values ranging from 0 (perfect ellipse) to 1 (perfect circle)] of (D) mother cell  and (E) bud cell. All the 

differences were statistically significant among isolates (p < 0.001).  

P. lutzii 
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In general, a high variation in the average bud number per mother cell was observed between 

and within each phylogenetic group (Fig. 1.1A and Fig. 1.2). Isolate Pb03 in particular presented 

a high number of buds (>5 buds) compared to the other isolates with on average only two or 

three buds.  

 

 

Figure 1.2 - P. brasiliensis yeast cells reveal distinct number of buds in the same isolate and among isolates. 

Morphometric analysis using StereoInvestigator software of 150 mother cells and respective buds of eleven distinct 

wild-type P. brasiliensis isolates for average number of buds per mother cell. All the differences were statistically 

significant among isolates (p < 0.001). 

 

BUD SHAPE IS HIGHLY DEPENDENT ON THE MOTHER CELL SHAPE 

To model the relationship between mother cell size and the corresponding bud size, as well as 

the shape and correlation with the number of buds per cell, a linear regression analysis was 

performed. This allowed the identification of significant predictors (independent variable; 

considered here as mother cell size and shape) of a dependent variable (bud size and shape), 

allowing to infer bud cell morphological features by analyzing those of the mother cell. Our data 

show that mother cell shape is a strong predictor of the bud cell shape. The results indicated that 

around 96 % of the bud shape can be explained by the shape of the mother cell (Fig. 2B), 

suggesting an inherited phenotypic feature. Elongated and polymorphic mother cells gave rise to 

elongated and highly polymorphic buds (Fig. 1.1A, D and E). For the mother size versus bud size, 
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we could observe that 24 % of the bud cell size could be explained by the size of the mother cell 

(Fig. 2A).  

 

 

 

Figure 2 - P. brasiliensis bud cells shape and size (µm2) are positively correlated with mother cells shape and size 

(µm2), respectively. (A) Linear regression analysis applied to average mother cell shape and average bud cell shape 

per strain. Approximately 96 % of bud cell shape can be explained by mother cell shape (adjusted R2 = 0.962, df1=1, 

df2=9, β=0.983). (B) Linear regression analysis applied to average mother cell size and average bud cell size per 

strain. Approximately 24 % (adjusted R2 = 0.238, df1=1, df2=9, β=0.560) of bud cell size can be explained by mother 

cell size. 

 

Although generally bigger mother cells generated larger bud cells (Fig. 1.1A. B and C) the weaker 

correlation found for size when compared with shape might indicate that other factors are also 

involved (Almeida, Cunha et al. 2009). Altogether, these data indicate that regarding cell 

morphology, mother cell shape is a stronger predictor of bud cell shape, and that to a lesser 

extent bud cell size can be deduced from the mother size, indicating that P. brasiliensis 

morphology is in part conserved throughout the progeny. 
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PBCDC42  EXPRESSION IS A STRONG PREDICTOR OF P. BRASILIENSIS YEAST CELLS 

MORPHOLOGICAL PARAMETERS  

Taking into consideration our previous work that suggested a role for PbCDC42 in P. brasiliensis 

morphology and virulence (Almeida, Cunha et al. 2009), we questioned whether the expression 

levels of this gene were predictive of the previously analyzed morphological parameters. We 

observed a clear trend for higher PbCDC42 expression levels in isolates with higher mother and 

bud cell size and more elliptic cell shape (e.g. Pb02, Fig. 1.1A and Fig. 3). Consistently, lower 

PbCDC42 expression levels were associated with less polymorphic, rounder and smaller isolates 

(e.g. Pb03, Fig. 1.1A and Fig. 3).  

 

 

Figure 3 - PbCDC42 is heterogeneously expressed among the different analyzed isolates and demonstrates no 

correlation to the cryptic speciation. PbCDC42 expression levels obtained by qRT-PCR were normalized against the 

internal reference TUB2. All the differences were statistically significant among isolates (p<0.001). 

 

To assess the predictor effect of PbCDC42 expression on the analyzed morphological 

parameters, we performed a linear regression analysis. Per strain each morphological parameter 

(considered the dependent variables) was plotted against their corresponding PbCDC42 

expression levels (considered as the independent variable). Our data showed that there was no 

significant correlation between mother cell size and PbCDC42 expression levels (data not shown). 

P. lutzii 
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Conversely, a positive correlation indicating that PbCDC42 expression explained 19 % of bud cell 

size was detected (Fig. 4C). Importantly, both mother and bud cell shape is strongly correlated 

with PbCDC42 expression. Approximately 79 % of mother cell shape and 80 % of bud cell shape 

can be explained by PbCDC42 expression (Fig. 4A and B). The correlations observed between the 

shape parameter and the PbCDC42 expression levels were negative, meaning that higher 

PbCDC42 expression levels result in more elongated and elliptic cells. To confirm these trends, 

we applied the correlation analysis to the morphological parameters of strain PbGarcia and those 

of its genetically modified counterpart PbICVS-6 (Almeida, Cunha et al. 2009) (with 25±5 % 

PbCDC42 expression level relative to wild-type strain PbGarcia (Table 1 and Fig. 3) (Fig. 4D, E 

and F). The data show that reducing PbCDC42 expression in the PbICVS-6 strain resulted in 

quantitative morphological alterations that fitted to the confidence intervals of the fit line for the 

values obtained for the wild-type isolates. Overall, the correlations obtained were conserved for 

the PbCDC42 knockdown strain PbICVS-6, indicating that the expression of this gene can be 

considered a good predictor for P. brasiliensis cell morphology. 
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Figure 4 - Morphology of P. brasiliensis isolates is strongly correlated with PbCDC42 expression. (A) Linear 

regression analysis applied to average PbCDC42 expression per strain versus average mother cell shape. 

Approximately 79 % (adjusted R2 = 0.787, df1=1, df2=9, β=-0.899) of mother cell shape can be explained by 
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PbCDC42 expression (increasing expression levels of PbCDC42 lead to more elliptical and longer mother cells). (B) 

Linear regression analysis applied to average PbCDC42 expression per strain versus average bud cell shape. 

Approximately 80 % (adjusted R2 = 0.802, df1=1, df2=9, β=-0.906) of bud cell shape can be explained by PbCDC42 

expression (increasing expression levels of PbCDC42 lead to more elliptical and longer bud cells). (C) Linear 

regression analysis applied to average PbCDC42 expression per strain versus average bud cell size (µm2). 

Approximately 19 % (adjusted R2 = 0.191, df1=1, df2=9, β=-0.521) of the bud cell size can be explained by PbCDC42 

expression (increasing expression levels of PbCDC42 lead to larger bud cells). (D, E and F) Linear trends observed 

for wild-type isolates are followed by the PbCDC42 knock-down strain PbICVS-6. Morphological parameters from 

PbGarcia wild-type strain and one PbCDC42 knock-down strain (PbICVS-6) applied to the confidence intervals of the 

fit line for the values in wild-type isolates for (D) average PbCDC42 expression per strain versus average mother cell 

shape, (E) average PbCDC42 expression per strain versus average bud cell shape and (F) average PbCDC42 

expression per strain versus average bud cell size (µm2). PbCDC42 expression levels obtained by RT-PCR were 

normalized with the internal reference TUB2. 

 

DISCUSSION 

 

Morphological transition during host invasion is a relevant factor for fungal pathogenesis 

(Karkowska-Kuleta, Rapala-Kozik et al. 2009). Moreover, recent data showed that the variability of 

cell size within a fungal cell population affects pathogenicity via alteration of phagocytosis 

(Almeida, Cunha et al. 2009; Okagaki, Strain et al. 2010). P. brasiliensis is known to have a 

highly polymorphic yeast-form, even within the same isolate (Kashino, Calich et al. 1987; 

Brummer, Castaneda et al. 1993; Svidzinski, Miranda Neto et al. 1999). This aspect is still poorly 

characterized, especially at the level of how gene expression can modulate the cell size and 

shape. We have previously shown that PbCDC42 expression levels are associated with the size 

and shape of P. brasiliensis within a single isolate (Almeida, Cunha et al. 2009), raising the 

question whether PbCDC42 expression levels are correlated to the morphological features of wild-

type P. brasiliensis isolates in general.  

Our findings revealed that P. brasiliensis has, besides its multiple-budding and highly 

polymorphic nature, no clearly defined cell size, shape and bud number for each isolate or even 

each phylogenetic group. A high variability in yeast cell morphology was uncovered between 

isolates within and between the phylogenetic groups, demonstrating that the morphologic 

characteristics of this fungus cannot be considered a predictor for phylogenetic classification. 

However, correlations between mother and bud morphological parameters, in particular shape 

and size, where found, demonstrating that bud cell morphology is highly dependent on mother 
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cell morphological traits. The microscopic analysis herein presented gives new insights on the 

morphological characterization of different isolates from each phylogenetic group as well as of 

each isolate. Moreover, the role of PbCDC42 expression on the yeast morphology was further 

established using both wild-type isolates and a PbCDC42 knockdown strain. We found strong 

statistical correlations between PbCDC42 expression and mother and bud cell shape as well as 

bud cell size, indicating that this variable may explain the existing heterogeneity among P. 

brasiliensis strains. The data herein presented represent novel quantitative insights on the 

complex polymorphic nature of P. brasiliensis, and give indications for morphological factors that 

can influence the virulence of each isolate, as suggested before (Svidzinski, Miranda Neto et al. 

1999; Su, Li et al. 2007). The results also reinforce that PbCdc42p could be a good drug target 

for therapy against paracoccidioidomycosis, as suggested for Candida albicans infections [6]. 
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           P. BRASILIENSIS VIRULENCE IS AFFECTED BY SCONC, THE NEGATIVE 
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ABSTRACT 

 

Conidia/mycelium-to-yeast transition of Paracoccidioides brasiliensis is a critical step for the 

establishment of paracoccidioidomycosis, a systemic mycosis endemic in Latin America. Thus, 

knowledge of the factors that mediate this transition is of major importance for the design of 

intervention strategies. So far, the only known pre-requisites for the accomplishment of the 

morphological transition are the temperature shift to 37ºC and the availability of organic sulfur 

compounds. In this study, we investigated the auxotrophic nature to organic sulfur of the yeast 

phase of Paracoccidioides, with special attention to P. brasiliensis species. For this, we 

addressed the role of SconCp, the negative regulator of the inorganic sulfur assimilation pathway, 

in the dimorphism and virulence of this pathogen. We show that down-regulation of SCONC 

allows initial steps of mycelium-to-yeast transition in the absence of organic sulfur compounds, 

contrarily to the wild-type fungus that cannot undergo mycelium-to-yeast transition under such 

conditions. However, SCONC down-regulated transformants were unable to sustain yeast growth 

using inorganic sulfur compounds only. Moreover, pulses with inorganic sulfur in SCONC down-

regulated transformants triggered an increase of the inorganic sulfur metabolism, which 

culminated in a drastic reduction of the ATP and NADPH cellular levels and in higher oxidative 

stress. Importantly, the down-regulation of SCONC resulted in a decreased virulence of P. 

brasiliensis, as validated in an in vivo model of infection. Overall, our findings shed light on the 

inability of P. brasiliensis yeast to rely on inorganic sulfur compounds, correlating its metabolism 

with cellular energy and redox imbalances. Furthermore, the data herein presented reveal 

SconCp as a novel virulence determinant of P. brasiliensis. 

 

INTRODUCTION 

 

Paracoccidioides brasiliensis is a dimorphic fungus and a causative agent of 

paracoccidioidomycosis, an endemic mycosis affecting the population from Latin America 

countries such as Brazil, Colombia and Venezuela (Brummer, Castaneda et al. 1993). The 

infective process comprises a temperature-dependent morphological switch of the fungus from 

the conidia/mycelium phase at environmental temperatures (around 26ºC) to the pathogenic 

yeast phase at the mammalian host temperature (around 37ºC) (Brummer, Castaneda et al. 

1993; Restrepo, McEwen et al. 2001). In addition to the well-studied temperature requisite, the 
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knowledge of other regulators mediating both morphogenesis and virulence in P. brasiliensis is 

scarce. Thus, a better understanding of P. brasiliensis metabolic processes is essential to unravel 

its virulence determinants, offering novel targets for prophylaxis and/or therapeutics intervention.  

Several studies show that sulfur metabolism is directly correlated with virulence of bacteria and 

dimorphic fungi like Histoplasma capsulatum (Maresca, Lambowitz et al. 1981; Fu, Paietta et al. 

1989; Senaratne, De Silva et al. 2006; Bhave, Muse et al. 2007). Sulfur compounds play a role 

in the formation of functional thiol (-SH) groups, crucial for innumerous cellular components and 

signaling processes (Ziegler 1985; Dickinson and Forman 2002). Despite the relevance of sulfur 

as constituent of essential organic molecules such as coenzyme-A and glutathione (Brosnan and 

Brosnan 2006), the preferential pathway of sulfur assimilation, from either organic or inorganic 

compounds, in pathogenic fungi is not completely understood. Sulfur requirements of P. 

brasiliensis differ between the mycelium and the yeast phase of the fungus. Similarly to other 

dimorphic fungi, the growth of P. brasiliensis in the yeast phase depends on organic sulfur 

sources (Boguslawski and Stetler 1979; Paris, Duran-Gonzalez et al. 1985; Medoff, Painter et al. 

1987). In contrast, and despite being auxotrophic for organic sulfur compounds such as cysteine 

or methionine, P. brasiliensis is prototrophic in the mycelial phase (Boguslawski and Stetler 

1979; Paris, Duran-Gonzalez et al. 1985; Medoff, Painter et al. 1987).  

Recent transcriptomic approaches revealed that genes related to sulfur metabolism are 

differentially expressed in the mycelium and yeast phase of P. brasiliensis (Medoff, Painter et al. 

1987; Ferreira, Marques Edos et al. 2006). In particular, expression of inorganic sulfur 

metabolism-related genes was markedly up-regulated in the yeast phase of this fungus (Marques, 

Ferreira et al. 2004; Felipe, Andrade et al. 2005; Andrade, Paes et al. 2006; Ferreira, Marques 

Edos et al. 2006; Tavares, Silva et al. 2007). For example, a 35-fold increase in the expression of 

METR, the positive regulator of the inorganic sulfur assimilation pathway, was observed (Ferreira, 

Marques Edos et al. 2006). Another differentially expressed gene is SCONC, which as METR is 

highly expressed in the yeast phase and down-regulated in the mycelial phase of P. brasiliensis 

(Ferreira, Marques Edos et al. 2006). SCONC gene encodes a negative regulator of the inorganic 

sulfur assimilatory pathway, orchestrating the repression of genes from the sulfur assimilatory 

pathway by promoting MetR proteolysis (Marzluf 1997; Nunes, Costa de Oliveira et al. 2005). 

However, the low levels of SCONC in the mycelial phase allow P. brasiliensis to use inorganic 

sulfur. Therefore, the cross-talk of these two regulators has been suggested to be responsible for 

the yeast-phase auxotrophy for organic sulfur compounds, by preventing the assimilation of 



Chapter 3                                                                P. brasiliensis virulence is affected by SconC, the negative 

regulator of inorganic sulfur assimilation 

45 
 

inorganic sulfur by the pathogenic yeast cells. Although the molecular bases underlying the 

distinct sulfur requirements of P. brasiliensis are presently more elucidated, the physiological 

aspects behind the sulfur-dependent dimorphic behavior are far from being understood. A recent 

transcriptome study showed that SCONC was being highly expressed in P. brasiliensis yeast cells 

recovered from infected mice than in those cultured in vitro (Costa, Borges et al. 2007). 

Therefore, a stronger repression of inorganic sulfur assimilation seems to be in place during 

infection, indicating that yeast cells alter their metabolism in vivo, most probably due to higher 

access to organic sulfur. It is likely that this change plays a role in the fungus pathogenesis. For 

these reasons, a better understanding of the impact played by SconCp on the sulfur-dependent 

dimorphic processes in P. brasiliensis is crucial, as it may highlight a new P. brasiliensis 

virulence factor.  

To address these questions, we down-regulated the expression of SCONC in isolates from 

different Paracoccidioides species and investigated its impact both on the inorganic sulfur 

assimilatory pathway and on the dimorphic transition. In addition, we evaluated the role of 

SconCp as a possible P. brasiliensis virulence factor, using an in vivo mouse model of infection. 

We herein present evidence that P. brasiliensis SconCp acts as a regulator of dimorphism by 

modulating the inorganic sulfur metabolism, thereby influencing the virulence of this pathogenic 

fungus. 

 

MATERIAL AND METHODS 

 

Microorganisms and culture media: Paracoccidioides wild-type species and SCONC down-

regulated strains are listed in Table 1. Yeast cells were maintained at 37oC by subculturing in 

brain heart infusion (BHI) (Duchefa) solid media supplemented with 1% glucose and gentamicin 

(50 µg/mL). For the expression studies, Paracoccidioides yeast cells were grown in synthetic 

McVeigh Morton (MMvM) liquid medium (Restrepo and Jimenez 1980) at 37oC with aeration on a 

mechanical shaker (220 rpm). For the in vivo assays, yeast cells were grown in BHI liquid 

medium supplemented with 1% glucose and gentamicin (50 µg/mL) at 37oC with aeration on a 

mechanical shaker (220 rpm). Cell growth was monitored for 148 h by microscopic counting 

using a Neubauer counting chamber and cells were collected during the exponential growth 

phase (72 h of growth, 1.65 ± 0.8 x 107 cells/mL) for the infection. 
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Table 1. Paracoccidioides isolates used in this study. 

Phylogenetic 

group 
Isolate  Location Source Reference 

P. lutzii Pb01 Brazil Chronic PCM (Teixeira, Theodoro et al. 2009) 

P. lutzii Pb01 AsSCONC D N.A.* This study 

PS3 Pb60855 Colombia Chronic PCM (Gomez, Nosanchuk et al. 2001) 

PS3 Pb60855 AsSCONC A N.A.* This study  

PS3 Pb60855 AsSCONC B N.A.* This study  

     

*N.A. – Not applicable 

 

Agrobacterium tumefaciens strain LBA1100 (Beijersbergen, Dulk-Ras et al. 1992) was used as 

the recipient for the binary vector constructed in this study. Bacterial cells were maintained at 

28°C in Luria Bertani (LB) medium containing kanamycin (100 µg/ml). Escherichia coli JM109 

competent cells (Promega) were grown at 37ºC in LB medium supplemented with appropriate 

antibiotics and were used as the host for plasmid amplification and cloning. 

For the morphological transition, complete MMvM (MMvM +Cys/+SO4
2-) [supplemented with L-

cysteine (1.7 mM) as organic sulfur source and MgSO4.7H2O (2 mM) and (NH4)2SO4 (15 mM) as 

inorganic sulfur sources], MMvM without inorganic sulfur compounds supplementation (MMvM 

+Cys/-SO4
2-) and MMvM without organic sulfur compounds supplementation (MMvM -Cys/+SO4

2-) 

were used. Briefly, for the yeast-to-mycelium transition yeast cells were cultured at 37ºC to the 

exponential growth phase in complete MMvM, washed 3 times with sterile phosphate-buffered 

saline (PBS), and inoculated at a final concentration of 1x106 cells/mL in the appropriated 

medium. The cultures were then transferred to a mechanical shaker (220 rpm) at 26ºC and 

cultured until complete transition was accomplished. For the mycelium-to-yeast transition, 

mycelium was cultured at 26ºC in complete MMvM medium, and washed 3 times with sterile 

PBS. The cultures were then transferred to a mechanical shaker (220 rpm) at 37ºC and cultured 

till no more morphological changes were being observed. 

 

Construction of Paracoccidioides SCONC antisense-RNA (AsSCONC) isolates: Plasmid DNA 

extraction, recombinant DNA manipulations, and E. coli transformation procedures were 

performed as described elsewhere (Almeida, Carmona et al. 2007). P. brasiliensis wild-type 
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strain ATCC 60855 DNA was extracted from yeast cultures during exponential growth and a high-

fidelity proof-reading DNA polymerase (NZYTech) was employed to amplify an aRNA 

oligonucleotide sequence targeting the coding sequence of SCONC. The AsSCONC sequence was 

inserted into the plasmid pCR35 under the control of the calcium-binding protein (CBP1) 

promoter region from H. capsulatum as previously described (Rappleye, Engle et al. 2004). The 

aRNA cassette was subsequently cloned into the transfer DNA (T-DNA) region of the binary vector 

pUR5750 (Figure 1A) and mobilized to A. tumefaciens LBA1100 ultracompetent cells by 

electroporation as previously described (Almeida, Carmona et al. 2007). Transformants were 

isolated by selection on kanamycin at 100 µg/ml.  

Insertion of recombinant T-DNA harboring the AsSCONC cassette and a hygromycin B resistance 

marker into the genome of Paracoccidioides yeast cells was accomplished by A. tumefaciens-

mediated transformation (ATMT) (Almeida, Carmona et al. 2007). Briefly, A. tumefaciens 

LBA1100 carrying binary vector pUR5750 harboring the AsSCONC sequence was grown 

overnight in LB liquid medium with antibiotics at 28ºC with agitation. Bacterial cells were spun 

down, washed, set to an OD660nm of 0.30 in induction medium (IM) (de Groot, Bundock et al. 

1998) with acetosyringone (Sigma, USA) (200µM), and re-incubated at 28ºC until an OD660nm of 

approximately 0.80. Paracoccidioides yeast cells were grown in BHI batch cultures to the 

exponential growth phase and cells were washed with IM and adjusted to a final concentration of 

1x108 cells/ml using direct microscopic counts (Neubauer counting chamber procedures). A 

1:10 A. tumefaciens/Paracoccidioides ratio was inoculated onto sterile Hybond N membrane 

(Amersham Biosciences, USA) on solid IM for co-cultivation at 25ºC for 3 days. Prior to 

incubation, co-cultivation plates with cellular mixtures were air dried in a safety cabinet for 30 

min. Following co-cultivation, membranes were transferred to BHI liquid medium containing 

cefotaxime (200 µg/ml), cells dislodged by aid of a spatula, and the cell suspension incubated 

for 48 h at 36ºC, 200 rpm, before plating on selective BHI media (HygB 75 µg/ml). Selection 

plates were monitored for colony forming ability at 36ºC for 15 days. Randomly selected HygB 

resistant transformants confirmed by PCR were tested for mitotic stability and selected for further 

assays. An identical procedure was followed to obtain the Paracoccidioides lutzii Pb01 AsSCONC 

transformant.   

 

Quantitative real-time polymerase chain reaction (qRT-PCR): Paracoccidioides yeast cultures were 

inoculated from a single colony and grown to exponential phase in complete MMvM at 37ºC (200 
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rpm). Medium was refreshed once after 4 days. Total RNA (1 µg) from wild-type and AsSCONC 

transformants was isolated according to TRIzol protocol (Invitrogen, USA) and RNA samples were 

subsequently treated with 2U of DNaseI (Ambion, USA) by incubation for 1 h at 37oC. The 

absence of DNA contamination in the samples was confirmed by the lack of PCR amplification of 

the GP43 gene in the isolated RNA. Total RNA (1 µg) was reverse transcribed using the iScript 

cDNA Synthesis kit (Bio-Rad, France) following manufacturer’s instructions and 1 µL of cDNA 

used as a template for real-time quantification using the SsoFast EvaGreen SuperMix (Bio-Rad, 

France) following manufacturer’s instructions. Real-time quantification was carried out on a 

CFX96 Real-Time System (Bio-Rad, France) using threshold cycle (Ct) values for β-tubulin (TUB2) 

transcripts as the endogenous reference. The primer sequences were designed and synthesized 

by NZYTech and are described in Table 2. All measurements were performed in triplicate. A 

single melting peak was obtained for each gene analyzed in all samples. 

 

Table 2. List of primers used in this study. 

Gene name Sequence (5' to 3') 

β-tubulin (TUB2) 
Forward aga aca tga tgg ctg ctt cc 

Reverse gcg cat ctg atc ttc gac ttc 

Sulfur controler (SCONC) 
Forward gaa tgg tgc gaa cat cac ag  

Reverse cca gga tta tct caa aaa gc 

bZIP transcription factor (METR) 
Forward ttc ttg agc cac cga ttc tcc 

Reverse gga gcg cac cgt taa gga g 

Sulfate permease (SP) 
Forward tgg tca gtt ggc ttg tga ac 

Reverse tta gca tca acc tgg gga ac 

Choline-O sulfatase (CHS) 
Forward tga aca acg ctt gac cag tg 

Reverse cgg aag aca tat cat ggt acc 

ATP sulfurylase (MET3) 
Forward cgt tgg agg aaa ggt tga ag 

Reverse ctc gat gca tgg gat tta tc 

PAPS reductase (MET16) 
Forward cca att cct aga acc gca ag 

Reverse gag ttt gga gag cat gtc gag 

Sulfite reductase (MET10) 
Forward ccc acc gat atc cat acc ac  

Reverse tcc ata ggc ctc ctt gaa ga 
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Microscopy: To evaluate cell morphology during the dimorphic processes, four morphotypes were 

determined according to Nunes and co-workers (2005) (Nunes, Costa de Oliveira et al. 2005). 

Paracoccidioides cells were collected during the transition process (yeast-to-mycelium or 

mycelium-to-yeast) in complete MMvM, MMvM +Cys/-SO4
2- and MMvM -Cys/+SO4

2- and fixed as 

previously described (Almeida, Cunha et al. 2009). A total of 300 morphological units were 

counted for each culture (in triplicate), and the estimation of each morphological state (from 

yeast to mycelium and vice-versa) was performed in terms of percentage. Morphological units 

were counted using a Zeiss Axioskop equipped with a Carl Zeiss AxioCam (Carl Zeiss, Jena). 

 

Determination of P. brasiliensis growth curve in yeast cells: Yeast cells of P. brasiliensis wild-type 

Pb60855 and AsSCONC transformants were grown in MMvM, MMvM +Cys/-SO4
2- and MMvM -

Cys/+SO4
2- at 37ºC and samples were collected to determine cell number, using a standard 

Neubauer system, at different times until stationary growing phase was reached. All cultures were 

started from an initial concentration of 1x105 cells/mL.  

 

ATP/NADPH measurements: ATP measurements were performed according to (Ashe, De Long et 

al. 2000). Briefly, cells were collected by centrifugation and the pellet was frozen with liquid 

nitrogen and stored at -80ºC. For the measurements, the pellet was mixed with 200 µL of 5% 

trichloroacetic acid (TCA) and vortexed twice for one minute, with one minute interval on ice. The 

mix was centrifuged for 1 min at 4ºC and 10 µL of the supernatant were added to 990 µL of 

reaction buffer (25 mM HEPES, 2 mM EDTA, pH 7.75). Of this mixture, 100 µL were added to 

100 µL of Enliten Luciferin/Luciferase Reagent (Promega) and luminescence was measured on a 

ThermoScientific Fluoroskan Ascent FL.  

NADPH measurements were performed according to manufacturer’s instructions (NADP/NADPH 

Assay Kit, Abcam). Briefly, cells were collected by centrifugation and washed with ice-cold PBS. 

After pelleting 2x105 cells for each sample, 400 µL of NADP/NADPH extraction buffer was added. 

Two freeze/thaw cycles (20 min on dry-ice followed by 10 min at room-temperature) were 

applied, and after vortexing for 10 sec the supernatant was collected. Of each supernatant, 50 µL 

were incubated with 100 µL of NADP cycling mix for 5 min at room temperature. Next step, 10 

µL of NADPH developer were added to each sample and the mixture was incubated at room 

temperature for 1 hour. Total NADP (NADP+ + NADPH) and NADPH only were measured at OD450nm 

on a Bio-Rad 680 Micro-plate Reader. 
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Pulse with inorganic sulfur sources: P. brasiliensis wild-type Pb60855 and AsSCONC yeast 

strains were cultured to the exponential phase of growth in complete MMvM (MMvM +Cys/+SO4
2-) 

at 37ºC (200 rpm). Cells were collected, washed three times in sterile PBS, and transferred to 

MMvM without inorganic sulfur compounds supplementation (MMvM +Cys/-SO4
2-) to a final 

concentration of 1x106 cells/mL. A pulse with inorganic sulfur sources [MgSO4
.7H2O (final 

concentration 2 mM) and (NH4)2SO4 (final concentration 15 mM)] was given to all the cultures, 

and samples were collected 15 and 30 min after the pulse for posterior analysis. 

 

Measurement of reactive oxygen species: Intracellular reactive oxygen species (ROS) were 

detected by dihydrorhodamine (DHR-123) or dihydroethidium (DHE) (Molecular Probes) staining. 

For evaluation of H2O2 levels, cells were incubated with 15 mg/mL of DHR-123 for 90 min at 

30ºC in the dark, washed with PBS and measured by flow cytometry. For evaluation of O2
- levels, 

cells were incubated with 5 mM DHE for 10 min at 30ºC in the dark, washed with PBS and 

evaluated by flow cytometry. All measurements were performed in a BD™ LSR II flow cytometer. 

A minimum of 100,000 cells per sample was acquired at low/medium flow rate. Offline data was 

analyzed with the flow cytometry analysis software package FlowJo 7.6.1. 

 

 

In vivo infection: Eight-week-old C57BL/6 male mice were obtained from Charles River 

(Barcelona,Spain). Mice were housed under specific-pathogen-free conditions with food and water 

ad libitum. C57BL/6 WT mice were infected intravenously (i.v.) with 1x106 P. brasiliensis yeast 

cells grown to the exponential phase in BHI liquid medium (either wild-type Pb60855 or each of 

the corresponding AsSCONC transformants). Prior to infection, cells were washed 3 times with 

lipopolysaccharide (LPS)-free PBS (Gibco), passed through a syringe to eliminate cell clumps, 

and submitted to Neubauer counting procedures (each mother and bud cells were considered as 

individual counts). Mice survival was monitored for 80 days. 

  

Ethics statement: This study was approved by the Portuguese national authority for animal 

experimentation Direção Geral de Veterinária (ID:DGV 594 from 1st June 2010). Animals were 

kept and handled in accordance with the guidelines for the care and handling of laboratory 

animals in the Directive 2010/63/EU of the European Parliament and of the Council. 
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Statistics: Data are reported as the mean ± standard error of the mean (SEM) and all assays 

were repeated at least three times. All statistical analyses were performed using the GraphPad 

Prism Software version 5.01. The survival curves, representative of two independent experimental 

infections (Fig. 7, n=20 mice), were compared using the Chi square Logrank Test. For the 

experiments comparing two groups (see Figure 1B, 2B-F, 5, 6), a two-tailed unpaired Student t 

test was performed. Welch’s correction was applied when making multiple comparisons. For all 

data analysis statistical significance was considered at the level of 0.05 (2-tailed, 95% confidence 

interval). 

 

RESULTS 

 

SILENCING OF THE PARACOCCIDIOIDES SCONC GENE LEADS TO THE UP-REGULATION OF 

GENES INVOLVED IN THE INORGANIC SULFUR METABOLISM 

To evaluate the impact of SCONC down-regulation in the yeast phase of P. brasiliensis, we 

constructed an antisense RNA sequence targeting the coding sequence of the SCONC gene 

(Figure 1A) for genome integration using ATMT methodology (Almeida, Carmona et al. 2007; 

Almeida, Cunha et al. 2009). Two independent SCONC down-regulated transformants for P. 

brasiliensis wild-type 60855 (Pb60855 AsSCONC A and Pb60855 AsSCONC B) were selected. 

Due to the yet impossible gene disruption and complementation in P. brasiliensis (Almeida, 

Carmona et al. 2007; Almeida, Cunha et al. 2009), we replicated our findings by down-regulating 

SCONC in the strain Pb01 of Paracoccidoides lutzii. For this strain one clone (Pb01 AsSCONC D) 

was also selected for analysis. The percentage of reduction in the expression levels of SCONC in 

the AsSCONC transformants was calculated by comparison to expression levels in the respective 

wild-type strains (Figure 1B). For Pb60855 AsSCONC A and Pb60855 AsSCONC B the 

percentages of SCONC down-regulation were around 73% and 30%, respectively, whereas for 

Pb01 AsSCONC D it was around 50%. 
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Figure 1. Silencing of SCONC expression by targeted antisense RNA in Paracoccidioides species cells decreases 

mRNA levels. (A) Structure of aRNA Transfer DNA (T-DNA) cassette inserted into P. brasiliensis yeast cells via ATMT 

in order to silence SCONC. The antisense RNA (AsSCONC) sequence was placed under control of the calcium 

binding protein promoter from H. capsulatum (CBP1) with hygromycin B phosphotransferase (HPH) gene under 

control of the glyceraldehyde 3-phosphate promoter from A. nidulans (PGPDA). (B) Gene expression levels of SCONC 

in Paracoccidioides clones harboring silencing oligonucleotides targeting the SCONC coding sequence compared to 

the respective wild-type strain. Cells were grown to the exponential phase in complete MMvM (MMvM +Cys/+SO4
2-) at 

37ºC and collected for gene expression evaluation. Asterisks represent statistical differences between wild-type and 

down-regulated strains (***p<0.001). Percentage of gene expression levels reduction was obtained comparing 

SCONC levels of each clone to those of the wild-type strains. SCONC expression levels determined by qRT-PCR were 

normalized to expression of the internal reference gene β-tubulin (TUB2). Bars represent means and standard 

deviations. 

 

To evaluate the impact of SCONC silencing in the inorganic sulfur assimilatory pathway (Figure 

2A), we analyzed the expression levels of several genes described to be involved in this pathway 

(Marzluf 1997) using exponential yeast cells cultured in complete MMvM. Although similar 

differences in the expression of the targeted genes were found for both transformants AsSCONC 

A and B, differences for AsSCONC A were consistently more pronounced, probably due to the 

better efficiency of SCONC silencing in this transformant (Figure 1B). The expression of the gene 

encoding sulfate permease (SP), the membrane transporter responsible for inorganic sulfate 

uptake in P. brasiliensis (Ferreira, Marques Edos et al. 2006), was found to be significantly up-

regulated in Pb60855 AsSCONC A when compared to the wild-type strain (Figure 2B). Also up-

regulated in the AsSCONC transformants was the expression of several downstream genes of the 
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inorganic sulfur assimilatory pathway (Figure 2C-E) and that of choline sulfatase (CHS) (Figure 

2F), an enzyme of the lateral branch of the inorganic sulfur assimilation pathway, that uses as 

substrate choline-O-sulfate, a osmoprotectant and an additional intracellular source of inorganic 

sulfur (Marzluf 1997). Overall, our data is in line with previous reports (Burton and Metzenberg 

1972; Piotrowska, Natorff et al. 2000; Uthman, Dockal et al. 2005; Ferreira, Marques Edos et al. 

2006) showing a key role for SCONC as a negative transcriptional regulator of the inorganic 

sulfur metabolism. 

 

 

 

 

Figure 2. Sulfur assimilatory pathway and interplay with the glutathione system and pentose phosphate pathway.  
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(A) SconCp orchestrates MetRp proteolysis, therefore resulting in the transcriptional repression of several genes from 

this pathway. The interplay between sulfur assimilatory pathway and the pentose phosphate pathway for the inter-

conversion of NADP+ and NADPH will impact on the levels of reduced glutathione (GSH), therefore on cells redox 

balance. (B) SCONC down-regulation results in increased expression levels of inorganic sulfur assimilation pathway 

related genes. Expression profiles of genes coding sulfate permease (SP), ATP sulfurylase (MET 3), PAPS reductase 

(MET 16), sulfite reductase (MET 10) and choline-O sulfatase (CHS) in wild-type strain Pb60855 and two down-

regulated clones, Pb60855 AsSCONC A and Pb60855 AsSCONC B grown to the exponential phase in complete 

MMvM (MMvM +Cys/+SO4
2-) at 37ºC. Asterisks represent statistical differences between wild-type strain and aRNA 

clones (*p<0.05; ***p<0.001). SCONC expression levels determined by qRT-PCR were normalized to expression of 

the internal reference gene β-tubulin (TUB2). Bars represent means and standard deviations.  

 

SCONC DOWN-REGULATION PROMOTES MYCELIUM-TO-YEAST TRANSITION IN THE ABSENCE 

OF ORGANIC SULFUR SOURCES, BUT DOES NOT SUPPORT YEAST GROWTH   

Considering that Paracoccidoides conidia/mycelium-to-yeast morphological switch is a critical 

step in the infective process (Brummer, Castaneda et al. 1993) and that the high expression of 

SCONC may be responsible for the organic-sulfur auxotrophy of the yeast phase (Ferreira, 

Marques Edos et al. 2006), we next investigated the effects of SCONC down-regulation on both 

transitions yeast-to-mycelium and mycelium-to-yeast. To address the yeast-to-mycelium transition, 

we cultured yeast cells of Paracoccidioides wild-type and AsSCONC transformants at 26ºC in 

three different media: complete MMvM, MMvM without inorganic sulfur compounds 

supplementation (MMvM +Cys/-SO4
2-) and MMvM without organic sulfur compounds 

supplementation (MMvM -Cys/+SO4
2-). The presence of each morphotype (Fig. 3.1A) during the 

transition process was evaluated over time. As expected, the yeast-to-mycelium transition was 

successfully accomplished in both wild-type strains (Pb60855 and Pb01) and in the respective 

AsSCONC transformants, in complete medium or in the absence of either inorganic or organic 

sulfur compounds (Fig. 3.1B, 3.2A and 3.3A). To investigate the mycelium-to-yeast transition, we 

cultured mycelium of wild-type strains and AsSCONC transformants in the above mentioned 

media at 37ºC. Both Pb60855 and Pb01 wild-type strains were able to completely convert to the 

yeast phase in complete MMvM and MMvM without inorganic sulfur supplementation (Fig. 3.1C 

and 3.3B). The same was observed for all the AsSCONC transformants (Fig. 3.1C 3.2B and 

3.3B). However, wild-type strains were unable to switch from the mycelial to the yeast phase or 

other intermediate phases in MMvM without organic sulfur (Fig. 3.1C and 3.3B). These results 

confirmed the auxotrophy of the yeast phase of Paracoccidioides species for organic sulfur 

compounds, as previously reported (Medoff, Painter et al. 1987; Ferreira, Marques Edos et al. 
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2006). Conversely, the morphological switch of the AsSCONC transformants to the yeast phase 

in MMvM without organic sulfur was compromised, occurring at a lower efficiency (Figure 3C and 

Supp. Figures 1B and 2B). 

 

 

Figure 3.1. Down-regulation of SCONC in P. brasiliensis allows mycelium-to-yeast transition in the absence of organic 

sulfur compounds. (A) Representative DIC pictures of each morphotype considered during the morphological 

transition. Magnification: x40 (White bars represent 200 µm). (B) Evaluation of Pb60855 and Pb60855 AsSCONC A 

morphotypes during yeast-to-mycelium transition at 26ºC in complete MMvM (MMvM +Cys/+SO4
2-), MMvM without 

inorganic sulfur compounds supplementation (MMvM +Cys/-SO4
2-) and MMvM without organic sulfur compounds 

supplementation (MMvM -Cys/+SO4
2-); (C) Evaluation of Pb60855 and Pb60855 AsSCONC A morphotypes during 
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mycelium-to-yeast transition at 37ºC in complete MMvM (MMvM +Cys/+SO4
2-), MMvM without inorganic sulfur 

compounds supplementation (MMvM +Cys/-SO4
2-) and MMvM without organic sulfur compounds supplementation 

(MMvM -Cys/+SO4
2-).  

 

For all AsSCONC transformants, the cultures under transition contained a considerable 

percentage of yeast cells (approximately 10% for Pb60855 AsSCONC A, approximately 5% for 

Pb60855 AsSCONC B and approximately 30% for Pb01 AsSCONC D). Nonetheless, the majority 

of cells were in intermediate phases and no mycelial cells were present in cultures with Pb60855 

AsSCONC A and Pb01 AsSCONC D. Although our transcriptional data indicates that SCONC 

down-regulation would allow the yeast cells to consume inorganic sulfur compounds by the de-

repression of the corresponding metabolic pathway (Fig. 2A), a complete transition was not 

observed in the absence of organic sulfur compounds.  

 

 

Figure 3.2. . Down-regulation of SCONC in P. brasiliensis allows mycelium-to-yeast transition in the absence of 

organic sulfur compounds. Evaluation of Pb60855 AsSCONC B morphotypes during: (A) Yeast-to-mycelium transition 

at 26ºC in complete MMvM (MMvM +Cys/+SO4
2-), MMvM without inorganic sulfur compounds supplementation 

(MMvM +Cys/-SO4
2-) and MMvM without organic sulfur compounds supplementation (MMvM -Cys/+SO4

2-); (B) 

Mycelium-to-yeast transition at 37ºC in complete MMvM (MMvM +Cys/+SO4
2-), MMvM without inorganic sulfur 

compounds supplementation (MMvM +Cys/-SO4
2-) and MMvM without organic sulfur compounds supplementation 

(MMvM -Cys/+SO4
2-).  
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Figure 3.3. . Down-regulation of SCONC in P. lutzii SCONC allows mycelium-to-yeast transition in the absence of 

organic sulfur compounds. Evaluation of Pb01 and Pb01 AsSCONC D morphotypes during: (A) Yeast-to-mycelium 

transition at 26ºC in complete MMvM (MMvM +Cys/+SO4
2-), MMvM without inorganic sulfur compounds 

supplementation (MMvM +Cys/-SO4
2-) and MMvM without organic sulfur compounds supplementation (MMvM -

Cys/+SO4
2-); (B) Mycelium-to-yeast transition at 37ºC in complete MMvM (MMvM +Cys/+SO4

2-), MMvM without 

inorganic sulfur compounds supplementation (MMvM +Cys/-SO4
2-) and MMvM without organic sulfur compounds 

supplementation (MMvM -Cys/+SO4
2-). 

 

To investigate if SCONC silencing was affecting the growth of Paracoccidioides yeast cells, we 

next analyzed the growth profiles of Pb60855 and Pb60855 AsSCONC A in the three media 

previously mentioned. We have chosen to perform these assays with Pb60855 AsSCONC A as it 

was the transformant with the lowest SCONC expression. As shown in Figure 4A, P. brasiliensis 

was not able to surpass its auxotrophy to organic sulfur sources, even when SCONC was down-

regulated. Concomitantly, when in the presence of organic sulfur compounds, both wild-type 

Pb60855 and AsSCONC A showed similar growth patterns, indicating that inorganic sulfur 
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compounds are not required for the growth of the yeast phase (Figure 4B). However, when both 

organic and inorganic sulfur sources were present in the medium, Pb60855 AsSCONC A 

revealed a significantly lower growth rate and final optical density compared to the wild-type 

strain (Figure 4C), indicating that inorganic sulfur was having a negative effect on the biomass 

yield.  

  

 

 

 

 

 

Figure 4. P. brasiliensis AsSCONC transformants do not grow in medium supplemented with inorganic sulfur 

sources only. P. brasiliensis AsSCONC transformants are unable to grow in medium supplemented with inorganic 

sulfur sources only (MMvM -Cys/+SO4
2-) and do not sustain yeast growth together with low biomass yield in medium 

with both organic and inorganic sulfur sources (MMvM +Cys/+SO4
2-). Pb60855 and Pb60855 AsSCONC A yeast cells 

were grown in: (A) complete MMvM (MMvM +Cys/+SO4
2-); (B) MMvM without inorganic sulfur supplementation 

(MMvM +Cys/-SO4
2-); (C) MMvM without organic sulfur compounds supplementation (MMvM -Cys/+SO4

2-); Cells were 

cultured at 37ºC and samples were collected at specific time points to determine growth curves.  
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SILENCING OF SCONC REDUCES CELLULAR ATP LEVELS AND NADPH POOL THUS 

INCREASING ROS ACCUMULATION 

As the growth rate and final optical density in complete MMvM were lower in cultures of the 

AsSCONC transformants compared to wild-type cultures (Figure 4C), we hypothesized that 

inorganic sulfur metabolism was leading to a reduction on the ATP and NADPH cellular pools 

(Figure 2A). To confirm this hypothesis, both wild-type Pb60855 and Pb60855 AsSCONC A and 

B strains were cultured in MMvM without inorganic sulfur compounds and pulsed with inorganic 

sulfur [MgSO4.7H2O (2 mM) and (NH4)2SO4 (15 mM)]. Intracellular levels of ATP and NADPH were 

subsequently measured after 0, 15 and 30 min. The ATP and NADPH pool was lower in the 

AsSCONC transformants at basal levels (0 min) than the observed for the wild-type strain (Figures 

5A and B), except for the NADPH levels in Pb60855 AsSCONC B transformant. The pulse with 

inorganic sulfur compounds resulted in a significant decrease of the ATP and NADPH levels in 

the AsSCONC transformants, while those of the wild-type strain remained constant (Figures 5A 

and B). Taking into consideration the ATP and NADPH requirements for the inorganic sulfur 

metabolism (Figure 2A), these results are consistent with the metabolic ability of the AsSCONC 

transformants to use inorganic sulfur compounds.     

 

 

Figure 5. Down-regulation of SCONC impairs the ATP/NADPH pool in the presence of inorganic sulfur compounds. 

(A) ATP content in wild-type strain Pb60855, Pb60855 AsSCONC A and Pb60855 AsSCONC B, cultured at 37ºC to 
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the exponential growth phase in MMvM without inorganic sulfur compounds supplementation (MMvM +Cys/-SO4
2-) at 

time 0, and 15 and 30 min after a pulse with inorganic sulfur [MgSO4.7H2O (2 mM) and (NH4)2SO4 (15 mM)]. 

Asterisks represent significant differences between 0 min and either 15 min or 30 min for each strain (*p<0.05; 

***p<0.01); (B) % of NADPH relative to NADP++NADPH in wild-type strain Pb60855, Pb60855 AsSCONC A and 

Pb60855 AsSCONC B cultured at 37ºC to the exponential growth phase in MMvM without inorganic sulfur 

compounds supplementation (MMvM +Cys/-SO4
2-) at time 0, and 15 and 30 min after a pulse with inorganic sulfur 

[MgSO4.7H2O (2 mM) and (NH4)2SO4 (15 mM)]. Asterisks represent significant differences between 0 min and either 

15 min or 30 min for each strain (***p<0.001). Bar graphs indicate mean and standard deviation in three 

independent experiments. Statistical analysis was performed comparing 15 and 30 min to time 0 for each clone. 

 

The cellular NADPH pool is critical for the maintenance of the reduced glutathione pool and thus 

for the maintenance of the cellular redox balance. Therefore, we next evaluated the accumulation 

of ROS such as superoxide anions and H2O2 in the wild-type strain and AsSCONC transformants 

after a pulse with inorganic sulfur compounds [MgSO4.7H2O (2 mM) and (NH4)2SO4 (15 mM)]. 

This was performed by FACS analysis using dihydroethidium (DHE) and dihydrorhodamine 123 

(DHR), respectively, as fluorescence markers (Mesquita, Weinberger et al. 2010). We found that 

both AsSCONC transformants presented higher levels of superoxide anions and H2O2 at time 0 

than those of the wild-type strain (Figure 6A and B). Moreover, there was a statistically significant 

increase of both ROS species overtime in the AsSCONC transformants upon the inorganic sulfur 

pulse, while in the wild-type strain ROS levels were maintained (Figure 6A and B). These results 

reveal that by diverting NADPH to sulfur metabolism (Figure 2A) AsSCONC cells accumulate 

more ROS such as H2O2 (Figure 6B). The alteration of the cellular redox balance in these cells 

most probably leads to an amplification loop of ROS generation that, in addition to the uncoupling 

of oxidative phosphorylation during P. brasiliensis mycelium-to-yeast transition, accounts for the 

observed increased levels of superoxide anions (Figure 6A). 



Chapter 3                                                                P. brasiliensis virulence is affected by SconC, the negative 

regulator of inorganic sulfur assimilation 

61 
 

 

 

Figure 6. AsSCONC transformants present high intracellular levels of reactive oxygen species.  

(A) FACS measurements of superoxide anions using the probe dihydroethidium (DHE) in wild-type strain Pb60855, 

Pb60855 AsSCONC A and Pb60855 AsSCONC B, cultured at 37ºC in MMvM without inorganic sulfur compounds 

supplementation (MMvM +Cys/-SO4
2-) at time 0 and 15 and 30 min after a punch with inorganic sulfur compounds. 

Asterisks represent significant differences between 0 min and either 15 min or 30 min for each strain (**p<0.01; 

***p<0.001); (B) FACS measurements of H2O2 using dihydrorhodamine 123 (DHR) in wild-type strain Pb60855, 

Pb60855 AsSCONC A and Pb60855 AsSCONC B, cultured at 37ºC in MMvM without inorganic sulfur compounds 

supplementation (MMvM +Cys/-SO4
2-) at time 0 and 15 and 30 min after a pulse with inorganic sulfur compounds 

[MgSO4.7H2O (2 mM) and (NH4)2SO4 (15 mM)]. Asterisks represent significant differences between 0 min and either 

15 min or 30 min for each strain (**p<0.01; ***p<0.001). Bar graphs indicate mean and standard deviation of 

fluorescence/cell (arbitrary units) measured in 1x105 cells per sample in three independent experiments. Statistical 

analysis was performed comparing 15 and 30 min to time 0 for each clone.  

 

SCONCp CONTRIBUTES TO THE IN VIVO VIRULENCE OF P. BRASILIENSIS  

So far our data clearly implicate SconCp in Paracoccidioides mycelium-to-yeast morphological 

switch, thus making SconCp a good candidate for a virulence factor of this fungus. To address 
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this question, C57BL/6 male mice were intravenously infected with 1X106 exponential yeast cells 

of wild-type Pb60855 strain and its respective AsSCONC transformants. We found that 67 days 

post-infection all mice infected with the wild-type strain had succumbed (Figure 7), which is in 

accordance with the virulence pattern normally observed for this strain. In contrast, Pb60855 

AsSCONC B transformant revealed an intermediate virulence level in what regards the survival of 

the infected mice (Figure 7). Mice infected with Pb60855 AsSCONC A transformant survived up 

to 80 days post-infection (Figure 7), suggesting a less virulent phenotype for this transformant. As 

observed before, the phenotype of each transformant when compared to the wild-type strain is 

correlated with the level achieved for SCONC down-regulation (which was highest for 

transformant A). Our results strongly suggest SconCp as an essential player on P. brasiliensis 

species virulence.  

 

Figure 7. Silencing of SCONC decreases virulence of P. brasiliensis yeast cells. Representative survival curves of an 

experimental i.v. infection carried out in C57BL/6 mice (n=20) with 1x106 wild-type Pb60855, Pb60855 AsSCONC A 

and Pb60855 AsSCONC B yeast cells grown to the exponential phase in BHI. Asterisks represent significant 

differences between mice infected with Pb60855 and mice infected with either Pb60855 AsSCONC A or Pb60855 

AsSCONC B. 

 

DISCUSSION 

 

Recent studies uncovered several genes involved in the pathogenicity of P. brasiliensis and its 

degree of virulence, including CDC42 (Almeida, Cunha et al. 2009; Menino, Osorio et al. 2012), 

GP43 (Stambuk, Puccia et al. 1988; Almeida, Unterkircher et al. 1998; de Almeida, de Moraes et 

al. 1998), HAD32 (Hernandez, Almeida et al. 2012) and AOX (Hernandez, Garcia et al. 2011). 

However, the research on P. brasiliensis genetic determinants that govern conidia/mycelium-to-



Chapter 3                                                                P. brasiliensis virulence is affected by SconC, the negative 

regulator of inorganic sulfur assimilation 

63 
 

yeast transition and subsequently fungal virulence has been highly neglected. The understanding 

of the mechanisms underlying the morphological transition of P. brasiliensis from the 

conidia/mycelial phase to the pathogenic yeast phase is essential, as this is critical for the 

establishment and development of paracoccidioidomycosis. In the last decades, the only known 

factor attributed to this morphological switch was the temperature shift that occurs once P. 

brasiliensis conidia/mycelium reach the lungs of the host (San-Blas, Restrepo et al. 1992; 

Brummer, Castaneda et al. 1993; Tercarioli, Bagagli et al. 2007).  

In this study we evaluated the effect of SconCp, the negative regulator of the inorganic sulfur 

assimilatory pathway, in P. brasiliensis dimorphism and virulence. Knowing from previous studies 

that SCONC is highly expressed in the yeast phase of P. brasiliensis, and that it blocks the 

assimilation of inorganic sulfur sources (Marques, Ferreira et al. 2004; Andrade, Paes et al. 

2006; Ferreira, Marques Edos et al. 2006; Tavares, Silva et al. 2007), we down-regulated 

Paracoccidioides SCONC using a gene silencing approach (Almeida, Cunha et al. 2009). The 

reduction of SCONC expression levels led to the up-regulation of several genes belonging to the 

inorganic sulfur pathway. These results are in line with data obtained for other fungi. Mutations in 

sconC1 and sconC2 genes from Aspergillus nidulans were shown to impair methionine-mediated 

sulfur metabolite repression, allowing the fungus to the produce sulfur-metabolism related 

enzymes (Natorff, Balinska et al. 1993; Piotrowska, Natorff et al. 2000). Characterization of a 

Neurospora crassa mutant in SCON-2 gene also revealed a de-repression of the sulfur 

metabolism, contrarily to the wild-type strain (Burton and Metzenberg 1972). In Saccharomyces 

cerevisiae, mutations in MET30 (the homolog of SCONC from P. brasiliensis) revealed to impair 

the repression of the sulfur network (Thomas, Kuras et al. 1995).  

Knowing that the conidia/mycelium-to-yeast transition is a requisite for the development of 

paracoccidioidomycosis (Brummer, Castaneda et al. 1993), we tested whether down-regulation 

of SCONC and consequent up-regulation of inorganic sulfur pathway-related genes impacted on 

the dimorphic process. We found that upon de-repression of the inorganic sulfur pathway by 

down-regulation of SCONC, the yeasts’ auxotrophy for organic sulfur sources was surpassed. 

Consequently, the mycelium-to-yeast transition in media supplemented only with inorganic sulfur 

sources was possible. These data further support a regulatory role for SconCp during the 

dimorphic process, by repressing inorganic sulfur metabolism related genes.  

Concomitantly, a similar occurrence was found upon down-regulation of SCONC in 

Paracoccidioides species other than P. brasiliensis, such as in P. lutzii species. This is a good 
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indicator that, although great sequence and morphological divergences separate these species, 

P. brasiliensis and P. lutzii share the same regulatory sulfur mechanisms and dimorphic traits. 

Although P. brasiliensis cells were able to assimilate inorganic sulfur sources, they could not 

accomplish a complete transition in the absence of organic sulfur compounds. Together with this, 

the fact that down-regulated transformants presented lower biomass yields in medium 

supplemented with both inorganic and organic sulfur sources, led us to question if the 

assimilation of inorganic sulfur was causing a metabolic imbalance, thereby affecting growth of P. 

brasiliensis yeast cells. The high demand of ATP and NADPH for inorganic sulfur metabolism 

(Figure 2A) could be hampering both the energy available for cellular processes and the ability of 

P. brasiliensis to scavenge ROS. Our results show that the usage of inorganic sulfur sources in 

AsSCONC transformants indeed decreased the availability of total NADPH overtime. This fact, 

together with the natural low activity of glucose-6-phosphate dehydrogenase in the yeast phase of 

P. brasiliensis, the main cellular source of NADPH (Kanetsuna and Carbonell 1966), could 

explain the high accumulation of H2O2 and superoxide anions in AsSCONC transformants. This is 

possibly resulting in a decrease of the reduced glutathione pool, thus impairing the cellular redox 

balance. In fact, an interplay between the sulfur assimilatory pathway and the formation of the 

reduced form of glutathione, a powerful anti-oxidant (Nuttall, Martin et al. 1998), is well described 

in some fungi (Townsend, Tew et al. 2004; Sato, Shimatani et al. 2011). A similar observation 

was reported upon selenium uptake by S. cerevisiae cells. Selenium metabolites share a highly 

similar chemical and physical nature with sulfur metabolites, and are both thought to follow the 

same metabolic routes. In conditions of sulfur deficiency, selenium uptake by S. cerevisiae cells 

led to an intracellular redox imbalance, linked to a disproportionate ration between the reduced 

form of glutathione and the oxidized one, a circumstance shown to be detrimental for cell viability 

(Mapelli, Hillestrom et al. 2012).  

As for an implication of the inorganic sulfur metabolism in the energy available for cellular 

processes, we were able to detect a decrease on the intracellular pool of ATP in the AsSCONC 

transformants. Since the uncoupling of oxidative phosphorylation during P. brasiliensis mycelium-

to-yeast transition is known to reduce the levels of ATP (Medoff, Painter et al. 1987), the 

remaining ATP pool in the AsSCONC transformants is likely not fulfilling the cellular requirements 

upon inorganic sulfur metabolism. Taken together, our findings on the alterations of the cellular 

pools of both NADPH and ATP can be accountable for the low biomass yields of the AsSCONC 

transformants, and their inability to grow on the yeast phase using only inorganic sulfur sources.  
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Finally we also show that the down-regulation of SCONC profoundly alters the outcome of the 

infection in an in vivo mouse model of infection. In fact, the AsSCONC transformants were less 

virulent to mice, being the degree of virulence correlated with the efficiency of SCONC silencing.  

Therefore, our data suggest a novel role for SconCp as a virulence factor for P. brasiliensis. Lack 

of virulence of SCONC down-regulated transformants is likely due to an impairment of the cells’ 

antioxidant properties and energy in the form of ATP, as discussed herein. Since the silencing of 

this molecule can in fact abrogate the in vivo virulence of P. brasiliensis, it will be essential to 

explore the modulation of SconCp in P. brasiliensis as a tool to obtain an attenuated vaccine, and 

also possible ways to abrogate the expression or the activity of SconCp in a therapeutic 

perspective. 
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                                                                            CHAPTER 4 

TLR9 ACTIVATION DAMPENS THE EARLY INFLAMMATORY RESPONSE TO 

PARACOCCIDIOIDES BRASILIENSIS, IMPACTING HOST SURVIVAL 
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ABSTRACT 

 

Paracoccidioides brasiliensis causes paracoccidioidomycosis, one of the most prevalent systemic 

mycosis in Latin America. Thus, understanding the characteristics of the protective immune 

response to P. brasiliensis is of interest as it may reveal targets for disease control. The initiation 

of the immune response relies on the activation of pattern recognition receptors, among which 

are TLRs. Both TLR2 and TLR4 have been implicated in the recognition of P. brasiliensis and 

regulation of the immune response. However, the role of TLR9 during the infection by this fungus 

remains unclear. We used in vitro and in vivo models of infection by P. brasiliensis, comparing 

wild type and TLR9 deficient (-/-) mice, to assess the contribution of TLR9 on cytokine induction, 

phagocytosis and outcome of infection. We show that TLR9 recognizes either the yeast form or 

DNA from P. brasiliensis by stimulating the expression/production of pro-inflammatory cytokines 

by bone marrow derived macrophages, also increasing their phagocytic ability. We further show 

that TLR9 plays a protective role early after intravenous infection with P. brasiliensis, as infected 

TLR9-/- mice died at higher rate during the first 48 hours post infection than wild type mice. 

Moreover, TLR9-/- mice presented tissue damage and increased expression of several cytokines, 

such as TNF-α and IL-6. The increased pattern of cytokine expression was also observed during 

intraperitoneal infection of TLR9-/- mice, with enhanced recruitment of neutrophils. The phenotype 

of TLR9-/- hosts observed during the early stages of P. brasiliensis infection was reverted upon a 

transient, 48 hours post-infection, neutrophil depletion. Our results suggest that TLR9 activation 

plays an early protective role against P. brasiliensis, by avoiding a deregulated type of 

inflammatory response associated to neutrophils that may lead to tissue damage. Thus 

modulation of TLR9 may be of interest to potentiate the host response against this pathogen.  

 

INTRODUCTION 

 

Paracoccidioides brasiliensis is a causative agent of paracoccidioidomycosis (PCM), one of the 

most prevalent systemic mycosis in Latin America (Brummer, Castaneda et al. 1993). One of P. 

brasiliensis biological hallmarks is its particular temperature-dependent morphological 

dimorphism. This fungus switches from the environmental non-pathogenic mycelial/conidial form 

at ambient temperatures to the pathogenic multiple budding yeast form, with an high variability of 

cell sizes, when exposed to temperatures similar to those of the mammalian host (Almeida, 
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Cunha et al. 2009; Garcia, Hernandez et al. 2010; Menino, Osorio et al. 2012). The mechanism 

of infection by P. brasiliensis entails the inhalation of airborne conidia that, when in the lung and 

exposed to host temperatures, undergo a complex morphological switch to the pathogenic yeast 

form (McEwen, Bedoya et al. 1987; Brummer, Castaneda et al. 1993). PCM is divided in two 

different forms: the acute or sub-acute form and the chronic form, depending on the natural 

course of infection and clinical manifestations of the patient (Franco 1987; Brummer, Castaneda 

et al. 1993). The clinical manifestations rely on the virulence of P. brasiliensis infecting strain, the 

degree and type of immune response triggered, the tissues infected, and importantly, on intrinsic 

characteristics of the host (Shikanai-Yasuda, Telles Filho Fde et al. 2006; Benard 2008).  

Despite the fact that a large number of individuals are exposed to the fungus, only a minority 

develops the disease, suggesting that, for the majority of the population, a protective immune 

response is developed (Musatti, Rezkallah et al. 1976; Franco 1987). Therefore, the 

understanding of the protective characteristics of the immune response to P. brasiliensis is of 

interest as it may reveal targets for disease control. The initiation of the immune response relies 

on the activation of the innate immune system upon recognition of pathogen-associated 

molecular patterns (PAMPs) (Janeway and Medzhitov 2002). This recognition is mediated by the 

family of pattern recognition receptors (PRRs) that is composed by a large number of receptors in 

immune cells (Akira 2001; O'Neill 2006). Activation of PRRs culminates with the expression of 

several immune mediators, including pro- and anti-inflammatory cytokines and also with the 

activation of a series of microbicidal mechanisms that aim at eliminating the pathogen 

(Medzhitov 2001). The most widely recognized type of PRRs are the toll-like receptors (TLRs) 

(Kawai and Akira 2007). Over the past few years, several studies have demonstrated a relevant 

role for TLRs in the recognition of fungal pathogens, such as P. brasiliensis, Candida albicans, 

Aspergillus fumigatus, and Cryptococcus neoformans (Shoham, Huang et al. 2001; Netea, Van 

Der Graaf et al. 2002; Braedel, Radsak et al. 2004; Netea, Van der Graaf et al. 2004; Villamon, 

Gozalbo et al. 2004; Calich, da Costa et al. 2008; Carvalho, Pasqualotto et al. 2008). The role of 

MyD88, an adaptor protein used by all TLRs (with the exception of TLR3), during P. brasiliensis 

infection remains controversial, with some authors reporting that this protein is not essential for 

an effective response against P. brasiliensis (Gonzalez, Yanez et al. 2008), and others claiming 

that MyD88 is important for the activation of innate fungicidal mechanisms and for the induction 

of the effector and regulatory cells of the adaptive immune response (Loures, Pina et al. 2011). A 

role for both TLR2 and TLR4 in the recognition and internalization of P. brasiliensis has been 
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reported in human monocytes and neutrophils (Bonfim, Mamoni et al. 2009). In a model of 

experimental PCM, TLR2 deficiency leads to increased Th17 immunity associated with 

diminished expansion of regulatory T cells and increased lung pathology due to unrestrained 

inflammatory reactions (Loures, Pina et al. 2009). In contrast, P. brasiliensis recognition by TLR4 

leads to an increased production of Th17 cytokines, enhanced pro-inflammatory immunity, and 

impaired expansion of regulatory T cells, resulting in a more severe form of infection (Loures, 

Pina et al. 2010). However, the involvement of TLR9 in P. brasiliensis infection has not yet been 

addressed. Several lines of evidence suggest that TLR9 may play a role in infection by P. 

brasiliensis, similarly to what is already described for other pathogenic fungi, such as A. 

fumigatus, C. albicans and C. neoformans (Bellocchio, Montagnoli et al. 2004; Nakamura, 

Miyazato et al. 2008; Ramirez-Ortiz, Specht et al. 2008; van de Veerdonk, Netea et al. 2008; 

Ramaprakash, Ito et al. 2009; Mansour, Tam et al. 2012). Firstly, P. brasiliensis DNA is known to 

have large numbers of CpG motifs (Souza, Correa et al. 2001), the natural ligand to TLR9 (Rutz, 

Metzger et al. 2004). Secondly, due to the fungus multinucleated nature (McEwen, Restrepo et 

al. 1987; Almeida, Matute et al. 2007), a high amount of DNA is expected to be released upon 

cell death during infection. Thirdly, previous studies show that, in in vitro models, P. brasiliensis 

DNA increases the phagocytic index of macrophages, whereas in in vivo models of P. brasiliensis 

infection, TLR9 activation may act as a Th1-promoting adjuvant in a time/concentration 

dependent-manner (Souza, Correa et al. 2001; Amaral, Garcia et al. 2005).   

 

In this study, we investigated the role of TLR9 in the recognition of P. brasiliensis, and its 

influence on the infective process and evolution of the disease. Our results show that TLR9 

recognizes P. brasiliensis, playing a major regulatory role during early times of in vivo infection 

with its absence making the host more prone to increased liver pathology and premature death, 

mainly mediated by neutrophils. 

 

MATERIAL AND METHODS  

 

Microorganisms and culture media: The strain ATCC 60855 of P. brasiliensis registered at the 

American Type Culture Collection (Rockville, MD) was used throughout this experiment. Yeast 

cells were maintained at 37oC by subculturing in brain heart infusion (BHI) (Duchefa) solid media 

supplemented with 1 % glucose and gentamicin (50 µg/mL). For both in vitro and in vivo assays, 
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yeast cells were grown in BHI liquid medium supplemented with 1 % glucose and gentamicin (50 

µg/mL) at 37oC with aeration on a mechanical shaker (220 rpm). Cell growth was monitored for 

148 h by microscopic counting using a Neubauer’s Chamber and cells were collected during the 

exponential growth phase (72 h of growth, 1.65 ± 0.8 x 107 cells/mL) for all the experimental 

assays. 

 

Ethics statement: This study was approved by the Portuguese national authority for animal 

experimentation Direção Geral de Veterinária (ID: DGV 594 from 1st June 2010). Animals were 

kept and handled in accordance with the guidelines for the care and handling of laboratory 

animals in the Directive 2010/63/EU of the European Parliament and of the Council. 

 

Mice: Eight-week-old C57BL/6 mice were obtained from Charles River (Barcelona, Spain) and 

eight-week-old TLR9-/- (generated in a C57BL/6 background) were kindly provided by P. Vieira 

(Pasteur Institute of Paris, France). Mice were housed under specific-pathogen-free conditions 

with food and water ad libitum.  

 

In vivo infection: C57BL/6 WT or TLR9-/- mice were infected intravenously (i.v.) with 1x106 P. 

brasiliensis yeast cells grown to the exponential phase in BHI liquid medium. Prior to infection, 

cells were washed 3 times with lipopolysaccharide (LPS)-free phosphate-buffered saline (PBS) 

(Gibco), passed through a syringe to eliminate cell clumps, and submitted to Neubauer counting 

procedures (each mother and bud cells were considered as individual counts). Mice were 

monitored daily for 32 days. Mice showing severely impaired mobility in the first 48 hours of 

infection were sacrificed and liver and blood were collected for later analysis. For the peritoneal 

cavity model of infection, mice were injected intraperitoneally (i.p.) with 1x106 P. brasiliensis yeast 

cells grown and treated as described above. Mice were sacrificed 6 hours post-infection and, 

after peritoneal lavage with 4 ml of PBS, total leukocyte number was determined. 

 

Histological studies: Liver from dying mice were harvested in the time-period comprehending 48 

h post-infection, fixed in 3.8% phosphate-buffered formalin and embedded in paraffin. Light-

microscopy studies were performed on tissue sections stained with hematoxylin and eosin (HE) 

as previously described (Oliveira, Fraga et al. 2005). The histological analysis was performed by 
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the presence of necrotic areas and the type of inflammatory infiltrate (when present) in each field 

of 10× objective. 

 

Neutrophil depletion: C57BL/6 WT and TLR9-/- mice were made neutropenic by treatment with 

the monoclonal antibody (MAb) RB6-8C5, as previously described (Appelberg, Castro et al. 1994; 

Appelberg, Castro et al. 1995). Briefly, mice were injected i.v. in the lateral tail vein with 200 mg 

of MAb RB6-8C5, and 6 h later infected i.v. with 1x106 P. brasiliensis yeast cells grown to the 

exponential phase in BHI liquid medium and treated as indicated before. Mice were monitored as 

indicated before during the first 2 days of infection. 

 

Preparation of fungal DNA: P. brasiliensis DNA was extracted from exponentially growing cells. 

Briefly, cells were disrupted using a mix of lysis buffer (1 mM EDTA, 10 mM Tris–HCl, 1% SDS, 

100 mM NaCl) and phenol/chloroform/isoamylalcohol (25:24:1). Heat-shock treatment (45 min 

at 65ºC) was performed and the aqueous phase was treated using a column-based method (in-

column proteinase K and RNAse treatments were performed). To elute DNA, LPS-free water was 

used. 

 

In vitro infection: Bone marrow-derived macrophages (BMDMs) from C57BL/6 WT and TLR9-/- 

mice were prepared as described previously (Oliveira, Fraga et al. 2005; Zhang, Majlessi et al. 

2009; Neves, Silvestre et al. 2010). BMDMs were seeded in 24-well plates at 5 ×105 cells/well 

and kept at 37ºC and 5% CO2 atmosphere. Cells were challenged with 5 µg of P. brasiliensis DNA 

extracted from exponentially growing cells. In other experiments, BMDMs from C57BL/6 WT and 

TLR9-/- mice seeded as described above were challenged with P. brasiliensis yeast cells grown to 

the exponential phase, with late-stationary growing cultures or with P. brasiliensis lysed cells, 

using a 2:1 multiplicity of infection (MOI; yeast/ BMDMs ratio) for 24 h. Prior to infection, fungal 

cells were washed 3 times with LPS-free PBS, passed through a syringe to eliminate cell clumps, 

and submitted to Neubauer counting procedures (mother and bud cells were considered as 

individual counts). Supernatants from stimulated BMDMs were collected 24 h post-infection and 

stored at -80ºC for later cytokine analysis.  

 

P. brasiliensis phagocytosis assays: BMDMs from C57BL/6 WT and TLR9-/- prepared as 

previously described (Oliveira, Fraga et al. 2005) were seeded in 24-well plates at 5 ×105 
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cells/well, kept at 37ºC and 5% CO2 atmosphere and infected with P. brasiliensis yeast cells 

grown to the exponential phase using a 2:1 multiplicity of infection (MOI; yeast/macrophage 

ratio) for 3 h. The wells were then washed three times with PBS to eliminate non-phagocytized 

cells, BMDMs were lysed with sterile H2O and the remaining phagocytized yeast cells were 

collected to determine total phagocytosis, using a Neubauer’s Chamber. For the experiments, P. 

brasiliensis cells treated with DNase were also used. Briefly, after collecting and washing, P. 

brasiliensis yeast cells grown to the exponential phase were incubated at 37ºC for 1 h with 20 µg 

of DNaseI (Ambion). As control, heat-inactivated DNase (70ºC for 1 h) was used. 

 

ELISA: Cytokine levels were measured in serum collected from infected animals or in 

supernatants of infected cell cultures by capture enzyme-linked immunosorbent assay (ELISA) 

(eBioscience). The ELISA procedure was performed according to the manufacturer’s protocol, 

and absorbances were measured with a Bio-Rad 680 Micro-plate Reader. 

 

Flow cytometry: Quantification of neutrophils and mononuclear cells influx to the peritoneal cavity 

during the i.p. infection with P. brasiliensis was performed by flow cytometry (FCM) on a BD LSR 

II flow cytometer. Cells collected from the peritoneal cavity were stained, using specific antibodies 

for CD11b, CD11c, GR-1 and Ly6G to distinguish neutrophils and mononuclear cells populations, 

and a minimum of 100,000 cells per sample was acquired at low/medium flow rate. Offline data 

was analyzed with the flow cytometry analysis software package FlowJo 7.6.1. 

 

Real-time polymerase chain reaction (RT-PCR): Total RNA (1 µg) was isolated according to TRIzol 

methodology (Invitrogen). For liver samples, small portions were homogenized in between 

microscopy slides, suspended in 1 mL of TRIzol reagent and kept at -80ºC for later analysis. For 

the i.p. experiment around 5x105 cells from the peritoneal exudates were used, suspended in 

250 uL of TRIzol reagent and stored at -80ºC for later analysis. RNA integrity was checked by the 

presence of clear 18S and 28S rRNA bands in agarose gel electrophoresis. The absence of DNA 

contamination in the samples was confirmed by the absence of PCR amplification of the ubiquitin 

gene in the isolated RNA. Total RNA (1 µg) was reverse transcribed using the iScript cDNA 

Synthesis kit (Bio-Rad) following manufacturer’s instructions and 1 µL of cDNA used as a 

template for real-time quantification using the SsoFast EvaGreen SuperMix (Bio-Rad) following 

manufacturer’s instructions. Real-time quantification was carried out on a CFX96 Real-Time 
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System (Bio-Rad) using threshold cycle (Ct) values for ubiquitin transcripts as the endogenous 

reference. The primer sequences were designed and synthesized by TIB Mol. Biol. and were as 

follows: UBQ forward, TGG CTA TTA ATT ATT CGG TCT GCA T; UBQ reverse, GCA AGT GGC TAG 

AGT GCA GAG TAA; IL-10 forward, TTT GAA TTC CCT GGG TGA GAA; IL-10 reverse, GCT CCA 

CTG CCT TGC TCT TAT T; IL-17 forward, CTC AGA CTA CCT CAA CCG TTC CA; IL-17 reverse, 

TTC CCT CCG CAT TGA CAC A; TNF forward, GCC ACC ACG CTC TTC TGT CT; TNF reverse, TGA 

GGG TCT GGG CCA TAG AAC; MIP2 forward, CTC AGT GCT GCA CTG GT; MIP2 reverse, AGA 

GTG GCT ATG ACT TCT GTC T; IL-6 forward, TCG TGG AAA TGA GAA AAG AGT TG; IL-6 reverse, 

TAT GCT TAG GCA TAA CGC AC TAG. All measurements were performed in triplicate. A single 

melting peak was obtained for each gene analyzed in all samples. 

 

Statistics: Data is reported as the mean ± standard error of the mean (SEM) and all assays were 

repeated at least three times. All statistical analysis was performed using the GraphPad Prism 

Software version 5.01. For the experiments comparing two groups (see Fig. 1A and B, 4 and 5), 

a two-tailed unpaired Student t test was performed. Welch’s correction was applied when making 

multiple comparisons. The One Way ANOVA test was performed in data presented in Fig. 1C 

using Turkey’s multiple comparison post-test. The survival curves, representative of three 

independent experimental infections (Fig. 2, n=21 mice), are represented using the Kaplan-Meier 

estimator, and Gehan-Breslow-Wilcoxon test was applied. For all data analysis statistical 

significance was considered at the level of 0.05 (2-tailed, 95% confidence interval). 

 

RESULTS 

 

TRIGGERING OF TLR9 BY P. BRASILIENSIS MODULATES MACROPHAGE CYTOKINE 

PRODUCTION AND PHAGOCYTOSIS 

Since previous studies have reported the recognition of fungal DNA by TLR9 (van de Veerdonk, 

Kullberg et al. 2008), we questioned if P. brasiliensis triggers TLR9-mediated responses in 

macrophages. For that, we stimulated BMDMs generated from wild-type (WT) and TLR9-/- mice 

with purified P. brasiliensis DNA. Our results showed that purified P. brasiliensis DNA induced the 

secretion of TNF-α and IL-6 by BMDMs in a TLR9 dependent way (Fig. 1A). Next, we tested if 

TLR9 could also recognize P. brasiliensis DNA in the yeast cellular context and whether this 

depended on the cellular physiological stage and integrity. We stimulated WT and TLR9-/- BMDM 
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with either P. brasiliensis cells from exponential or late-stationary growing cultures or with lysed 

cells. We found that BMDMs stimulated with P. brasiliensis yeast-form produced TNF-α in a TLR9 

dependent manner (Fig. 1B), although the response was higher for late-stationary growing and 

lysed cells.  

 

In addition to cytokine expression, TLR triggering also associates with the onset of phagocytosis 

(Sanjuan, Dillon et al. 2007; Blander 2008). We next investigated if TLR9 activation by the yeast-

form of P. brasiliensis impacted phagocytosis. The percentage of phagocytosis of P. brasiliensis 

by BMDMs was significantly reduced when P. brasiliensis yeast cells were treated with DNase or 

when TLR9-/- BMDMs were used (Fig. 1C). When heat inactivated DNase was used, the 

percentage of phagocytosis by WT macrophages was similar to that observed when no treatment 

was performed, whereas TLR9-/- macrophages maintained the phagocytic profile, indicating that 

DNase is not interfering with phagocytosis. Thus, our data indicate that TLR9 activation is 

required for maximal P. brasilisensis phagocytosis. 
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Figure 1 – Outcome of in vitro stimulation of macrophages from WT and TLR9-/- mice. (A) - Protein levels after 

stimulation with 5 µg of P. brasiliensis DNA for 24 h. Asterisks represent significant differences between WT and 

TLR9 TLR9-/- mice (**P<0.01, *P<0.05). IL-6 was also found with higher expression levels in dendritic cells from 

TLR9-/- mice when compared to dendritic cells from WT mice (data not shown) (B) – Protein levels after stimulation 

with wild-type P. brasiliensis ATCC 60855 yeast cells grown either to the exponential or late-stationary phase for 24 h 

using a MOI of 2:1, and lysed cells. Asterisks represent significant differences between WT and TLR9 -/- mice. IL-6 

levels were below detection limits; (C) - Percentage of total phagocytosis of wild-type P. brasiliensis ATCC 60855 

yeast cells grown to the exponential phase using a MOI of 2:1. Asterisks represent significant differences between 
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macrophages from WT mice stimulated with P. brasiliensis yeast cells and either macrophages from WT mice 

stimulated with P. brasiliensis yeast cells pre-treated with DNase (WT+DNase) (*P<0.05) or macrophages from TLR9-

/- mice stimulated with P. brasiliensis yeast cells (TLR9-/-) (*P<0.05). Pre-treatment of P. brasiliensis yeast cells with 

DNase does not affect phagocytosis by TLR9-/- macrophages (data not shown). When cells were treated with heat 

inactivated DNase, the phagocytic profile of WT macrophages is restored (WT -/-+DNase*), while for TLR9-/- 

macrophages it is not altered (TLR9-/-+DNase*). 

 

TLR9 HAS A PROTECTIVE ROLE IN THE EARLY PHASE OF P. BRASILIENSIS INFECTION  

Given the in vitro impact of P. brasiliensis recognition by TLR9, we next sought to investigate a 

role for this receptor during the course of an in vivo experimental infection. WT and TLR9-/- mice 

were intravenously infected with P. brasiliensis and the survival rates followed over time. We 

found that 24 days post-infection 100% of TLR9-/- mice had succumbed, whereas for WT mice this 

was only observed 31 days post-infection (Fig. 2).  

 

Figure 2 – Outcome of in vivo intravenous infection of WT and TLR9-/- mice with P. brasiliensis. Representative 

survival curves using the Kaplan-Meier estimator of an experimental intravenous infection carried out in WT and 

TLR9-/- C57BL/6 mice (n= 21) with 1x106 wild-type P. brasiliensis ATCC 60855 yeast cells grown to the exponential 

phase. The estimated mean survival for WT mice is 13.6±2.0, while for TLR9 -/- mice is 6.8±1.4 (Gehan-Breslow-

Wilcoxon test was applied). Data is expressed as percentage of live animals. The observed differences during the first 

48 h post- infection were statistically significant (***P<0.001). 

 

Furthermore, the estimated mean survival for WT mice was of 13.6±2.0 days, while for TLR9 -/- 

mice it was reduced to 6.8±1.4 days (p<0.001; Fig. 2). Even more striking was the observation 

that during the first 48 h post-infection, TLR9-/- infected mice showed severe impaired mobility, 
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with a significant number of animals being humanely sacrificed as a result. As shown in Fig. 2, 

during this early period the mortality of the TLR9-/- mice was approximately 43%, while WT mice 

showed no signs of disease. Thus, our data highlight an unexpected protective role of TLR9 

during the early phases of P. brasiliensis infection. 

 

ABSENCE OF TLR9 ASSOCIATED WITH INCREASED IMMUNOPATHOLOGY EARLY DURING P. 

BRASILIENSIS INFECTION 

In view of the key protective role observed for TLR9 during the early stages of P. brasiliensis 

infection, we next investigated several parameters that could be associated with the premature 

death of TLR9-/-- infected animals. Since during the initial period of infection (the first 48h) 

differences in the lungs of infected animals are difficult to assess, we performed a histological 

analysis of the liver of the infected animals. We found that whereas the livers of infected WT 

animals showed a normal structure, those of TLR9-/- hosts presented small areas of 

granulocytes/neutrophil infiltrates and of necrosis (Fig. 3).  

 

Figure 3 –Histological sections of liver stained with HE from TLR9 -/- C57BL/6 mice (A to F) and WT C57BL/6 mice 

(G and H) intravenously infected with 1x106 wild-type P. brasiliensis ATCC 60855 yeast cells grown to the 

exponential phase. Magnification: x10 (A, B, D, E, G and H); x40 (F) and x60 (C). Squares represent either tissue 

with inflammatory infiltrates (A and B) or with necrotic areas (D and E). Figures C and F represent magnifications of 

B and E, respectively. Results are from one representative experiment of two independent experiments. White bars 

represent 200 µm. 
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To dissect further if the histological differences observed were associated to the intensity of the 

immune response between WT and TLR9-/- animals, we assessed cytokine expression in the liver 

and blood of infected animals. In the liver, the expression of both pro- and anti-inflammatory 

cytokines, namely TNF-α, IL-6 and IL-10, was increased in the absence of TLR9 (Fig. 4A-E). 

Likewise, a significant increase of circulating levels of IL-6 was observed in TLR9-/--infected mice 

(Fig. 4G). Moreover, a trend towards higher levels of circulating TNF-α was detected (Fig. 4F) 

whereas those of IL-10 were below detection limit (data not shown).  
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Figure 4 – Cytokine levels detected upon intravenous infection of WT and TLR9 -/- C57BL/6 mice (n=21) with 1x106 

wild-type P. brasiliensis ATCC 60855 yeast cells grown to the exponential phase. Samples were taken from dying 

mice during the first 48 h post-infection. As control, samples from the same number of healthy WT mice (n=9) were 
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collected. (A-E) – Expression profile of TNF-α, IL-6, MIP-2, IL-17, and IL-10 at mRNA level in liver from the mice. 

Asterisks represent significant differences between WT and TLR9 -/- mice (*P<0.05); (F and G) - Protein levels of TNF-α 

and IL-6 detected via ELISA in the blood serum of challenged mice. Asterisks represent significant differences 

between WT and TLR9-/- mice (**P<0.01). There is also a trend towards higher TNF-α levels in TLR9-/- mice, though 

no statistically significant differences were detected. Bars represent means and standard deviations. 

 

 

To further validate if the absence of TLR9 correlated with an exacerbated immune response to P. 

brasiliensis, and to study differential patterns of cellular recruitment in WT versus TLR9 -/- mice, we 

used a model of i.p. infection The analysis of the peritoneal exudates revealed that the cytokine 

expression was increased in the absence of TLR9 (Fig. 5A-E). Of notice, a marked increased 

expression of both MIP-2 and IL-17, known to be associated with neutrophil recruitment 

(Ohtsuka, Lee et al. 2001; Kolls and Linden 2004; Burdon, Martin et al. 2005), was found in the 

absence of TLR9 (Fig. 5C, D). Consistently, in TLR9-/- mice we found an increased recruitment to 

the peritoneal cavity of both mononuclear cells (macrophages and dendritic cells) and 

neutrophils, with a special significance of the latter ones (Fig. 5F-H). Thus, the data obtained for 

peritoneal infection recapitulates that obtained for intravenous infection.  
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Figure 5 – Outcome of intraperitoneal infection of WT and TLR9 -/- C57BL/6 mice (n=10) with 1x106 P. brasiliensis 

yeast cells grown to the exponential phase. (A-E) - Expression profile of TNF-α, IL-6, MIP-2, IL-17, and IL-10 at mRNA 
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level in cells collected from the peritoneal cavity of WT and TLR9 -/- mice. Peritoneal lavages were performed 6 h after 

infection and gene expression levels were accessed by RT-PCR. Asterisks represent significant differences between 

WT and TLR9-/- mice (*P<0.05); (F-H) - Influx of neutrophils and mononuclear cells to peritoneal cavities of WT and 

TLR9-/- mice. Peritoneal lavages were performed 6 h after infection, and total and differential leukocyte counts were 

done. An average of 2.1x106 ± 1.4x106 cells was collected. Asterisks represent significant differences between WT 

and TLR9-/- mice (*P<0.05, **P<0.01). Bars represent means and standard deviations. 

 

 

NEUTROPHILIA MEDIATES THE EARLY DEATH OF P. BRASILIENSIS-INFECTED TLR9-/- MICE 

Considering the high influx of neutrophils to the peritoneal cavity of TLR9 -/- mice, which correlated 

with the high expression of MIP-2 and IL-17 found in the liver and peritoneal cavity, we next 

evaluated if this could be the detrimental factor during the infectious process of TLR9 -/- hosts. For 

this purpose, we depleted neutrophils in WT and TLR9-/- mice prior to infection with P. brasiliensis, 

using a specific monoclonal antibody (MAb RB6-8C5). I.p. injection of MAb RB6-8C5 abrogated 

neutrophils from 6 h to up to 48 h post-injection (data not shown, (Appelberg, Castro et al. 

1994)). As shown in figure 6, depletion of neutrophils reverted the highly susceptible phenotype 

observed in TLR9-/- mice during the first two days of infection. Depletion of neutrophils in WT mice 

had no influence on the mice survival during the first 48 h post-infection (Fig. 6). Therefore, a 

high neutrophil recruitment to the site of infection appears to be responsible for the death 

observed in the absence of TLR9 during the early stages of P. brasiliensis infection. 

 

 

Figure 6 – Outcome of in vivo intravenous infection of WT and TLR9-/- neutropenic mice with P. brasiliensis. 

Representative survival curves of an experimental intravenous infection carried out in WT and TLR9 -/- C57BL/6 mice 
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(n= 21) with 1x106 wild-type P. brasiliensis ATCC 60855 yeast cells grown to the exponential phase. Mice were 

treated i.v. with the neutrophil-depleting MAb RB6-8C5 6 h pre-infection. Grey lines represent the survival curve of 

the experimental intravenous infections carried out in WT and TLR9 -/- C57BL/6 mice (n= 21) with 1x106 wild-type P. 

brasiliensis ATCC 60855 yeast cells grown to the exponential phase. 

 

DISCUSSION 

 

Since the discovery of TLRs and their major role in host recognition of conserved molecular 

structures from microorganisms, particularly those of invading pathogens, enormous advances 

have been made in comprehending how the immune system responds to pathogenic organisms. 

It is well established that the first phase of an immune response involves innate immune 

mechanisms (Beutler 2004), namely those triggered by TLR activation (Janeway and Medzhitov 

2002; Levitz 2010; Romani 2011). These receptors are present in neutrophils, monocytes and 

macrophages, cells that besides their phagocytic activity are crucial for the signaling and 

amplification of the response against the pathogen (van de Veerdonk, Kullberg et al. 2008).  

The knowledge on PRR recognition and activation of an efficient immune response against P. 

brasiliensis has progressively increased, mainly in what concerns TLR2, TLR4, and Dectin-1 

(Calich, Pina et al. 2008; Bonfim, Mamoni et al. 2009). However, a role for TLR9 during P. 

brasiliensis infection has only been addressed in the context of vaccination (Amaral, Garcia et al. 

2005), despite the evidences for the involvement of this TLR in other fungal infections 

(Nakamura, Miyazato et al. 2008; Ramirez-Ortiz, Specht et al. 2008; van de Veerdonk, Netea et 

al. 2008; Wang, Lee et al. 2011). Considering the high DNA content and number of 

unmethylated CpG oligonucleotides of this multinucleated fungus (Souza, Correa et al. 2001), a 

role for this receptor during P. brasiliensis infection is likely. We herein demonstrate that P. 

brasiliensis purified DNA activated TLR9 in macrophages, leading to the expression of cytokines. 

This is in line with previous studies showing that fungal DNA is recognized by TLR9. A. fumigatus 

DNA stimulates the production of pro-inflammatory cytokines in mouse and human dendritic cells 

(Ramirez-Ortiz, Specht et al. 2008). Similarly, murine dendritic cells express IL-12p40 and CD40 

upon stimulation with DNA from C. neoformans (Nakamura, Miyazato et al. 2008). Human 

monocytes and macrophages from TLR9-/- mice were described to produce less IL-10 than cells 

from control mice when stimulated with C. albicans (van de Veerdonk, Netea et al. 2008).  

Despite TLR9 activation by purified P. brasiliensis DNA, upon macrophage stimulation with P. 

brasiliensis yeast cells grown to the exponential phase, TLR9 was activated in a lesser extent. 
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This finding is likely due to the low exposure of DNA in this case, as when yeast cells on late 

stationary phase or lysed cultures were used, TLR9 recognized P. brasiliensis more prominently, 

leading to the production of pro-inflammatory cytokines by macrophages. Even though intact P. 

brasiliensis yeast cells did not fully activate TLR9 to induce the production of pro-inflammatory 

cytokines, in the absence of this receptor macrophages showed a decreased ability to phagocyte 

P. brasiliensis. Our findings are in line with previous studies showing that P. brasiliensis DNA 

activates macrophages, promoting their capacity to phagocyte P. brasiliensis (Souza, Correa et 

al. 2001). Altogether, our data indicate that TLR9 triggering affected the overall responsiveness of 

macrophages to P. brasiliensis. Furthermore, during infection, the release of DNA from P. 

brasiliensis is expected to occur following fungal cell death, thus suggesting that TLR9 activation 

in vivo is very likely to happen. 

To assess the role of TLR9 in P. brasiliensis infections, we used in vivo models of infection. As 

our results show, TLR9 is crucial for mice survival in early times of infection (first 48 h). 

Remarkably, we found that, in mice showing severe signs of disease, lack of TLR9 increased the 

expression of pro-inflammatory cytokines in the liver. Earlier studies on immune responses to 

other organisms have revealed that an excessive inflammatory response, mainly due to high 

levels of TNF, can lead to premature death of the host cells (Cerami 1993; Kulkarni, Huh et al. 

1993; Rink and Kirchner 1996; Rock and Kono 2008). In the context of P. brasiliensis infection, 

it was demonstrated that an excessive inflammatory response may be detrimental rather than 

protective. A more severe disease development in mice susceptible to P. brasiliensis was 

associated with the presence of increased IL-12 and IFN-γ levels in the lungs, suggesting that the 

production of pro-inflammatory mediators does not always correlate with immunoprotection 

(Gonzalez, Sahaza et al. 2003). In addition to high TNF expression, we also found increased 

expression of MIP-2 and IL-17 in the liver and cells from the peritoneal cavity of P. brasiliensis-

infected TLR9-/- mice. A detrimental role of IL-17 during P. brasiliensis infection was previously 

described as TLR2 and TLR4 deficiency associate with an increase of Th17 responses, lung 

pathology and more severe forms of infection (Loures, Pina et al. 2009; Loures, Pina et al. 

2010). Both IL-17 and MIP-2 have been previously associated with neutrophil recruitment (Kolls 

and Linden 2004; Burdon, Martin et al. 2005; Henningsson, Jirholt et al. 2010; Pelletier, Maggi 

et al. 2010). In line with this, we observed a high influx of granulocytes/neutrophils into the 

peritoneal cavity of TLR9-/- i.p. infected animals. This enhanced neutrophil recruitment could thus 

be contributing to the detrimental response observed in P. brasiliensis-infected TLR9-/- animals. 
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Indeed, upon transient neutrophil depletion, TLR9-/- mice survived during the first 48 hours post-

infection, resembling the phenotype of WT mice. Therefore, the susceptibility profile observed for 

TLR9-/- mice early after infection with P. brasiliensis likely associates with an exacerbated 

neutrophil recruitment to the site of infection and/or with a particular detrimental phenotype of 

neutrophils. Although neutrophils are crucial during acute inflammatory response and 

subsequent resolution of fungal infection, in some situations, due to excessive release of oxidants 

and proteases, these cells may be responsible for injury to organs and fungal sepsis (Bellocchio, 

Moretti et al. 2004; Zelante, De Luca et al. 2007). In addition to fungal infection, neutrophilia can 

also be harmful to the host in the context of other infections, such as M. tuberculosis and P. 

aeruginosa (Ras, Theron et al. 1992; Eruslanov, Lyadova et al. 2005; Cruz, Fraga et al. 2010; 

Lowe, Redford et al. 2012).  

Our data implicating TLR9 in the phagocytic activity of macrophages raises the hypothesis that, in 

the absence of TLR9, less P. brasiliensis cells are phagocytized. Thus, in the absence of this 

receptor, the extracellular P. brasiliensis cells may contribute to an exacerbated recruitment of 

neutrophils, which can result in a deregulated immune response. Since a significantly higher 

recruitment of dendritic cells and neutrophils is observed upon infection of TLR9 -/- hosts, it is 

possible that the higher cytokine expression observed in this scenario results from the fact that 

more producing cells are present. Therefore, a fine tuned balance is required during infection 

with P. brasiliensis, in order to protect the host from infection. Several mechanisms must operate 

to achieve this balance, as is the case reported for TLR2/TLR4 activation (Loures, Pina et al. 

2009). It is also important to refer that P. brasiliensis can be triggering TLR9-independent 

mechanisms in macrophages, as supported in the literature (Takaoka, Wang et al. 2007; Ishii, 

Kawagoe et al. 2008). One cannot rule out the hypothesis of a parallel activation of other 

receptors together with TLR9. Several studies refer that Dectin-1 interaction with TLR9 results in 

a sinergistyc induction of IL-10, TNF-α, IL-2, IL-6 and IL-23 and down-regulation of IL-12 

(Dennehy, Ferwerda et al. 2008; Gerosa, Baldani-Guerra et al. 2008). Studies with A. fumigatus 

reported a link between TLR2-mediated recognition and the phagocytic response (Luther, 

Torosantucci et al. 2007), whereas internalization of TLR2 with A. fumigatus phagossome was 

demonstrated (Chai, Kullberg et al. 2009). As it has been shown for TLR2/TLR4, it is also 

possible that TLR9 signaling is involved in the instruction of appropriate regulatory T cell 

responses, a hypothesis currently under investigation. 
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Overall, this study highlights the relevant role of TLR9/neutrophils for the nature of the immune 

response to P. brasiliensis, and paves the way to the development of new 

preventive/therapeutical strategies, as resistance patterns of the host can be of great value on 

the comprehension of susceptibility and pathogenesis of P. brasiliensis infections. 
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Fungi are a group of microorganisms that, in a vast majority, interact with humans without 

causing any kind of disease. However, there are certain groups of fungi that are opportunistic 

pathogens (e.g. Candida and Aspergillus species), usually causing disease in 

immunocompromised hosts, and those that are naturally pathogenic, causing disease even in 

immunocompetent host (e.g. Histoplasma capsulatum, Coccidioides immitis and 

Paracoccidioides brasiliensis). Among this last group of organisms, some share important 

features. Fungi such as H. capsulatum, Blastomyces dermatitidis and Paracoccidioides 

brasiliensis possess particular morphological characteristics and an inherent ability to change 

from the multicellular filamentous form to a unicellular form during the infectious process. 

P. brasiliensis is a thermodimorphic fungus and a causative agent of paracoccidioidomycosis, an 

endemic mycosis affecting population from Latin America countries such as Brazil, Colombia and 

Venezuela (Brummer, Castaneda et al. 1993; Restrepo, McEwen et al. 2001). The infective 

process comprises a temperature-dependent morphological switch of the fungus from the 

conidia/mycelial phase at environmental temperatures (below 26ºC) to the pathogenic yeast 

phase at the mammalian host temperature (around 37ºC) (Brummer, Castaneda et al. 1993). 

The pathogenic yeast phase is characterized by its polymorphic nature, highly heterogeneous in 

and among the different clades (Brummer, Castaneda et al. 1993). This morphological 

heterogeneity can be an important aspect for determining the virulence profile of P. brasiliensis 

species, a question that was never addressed. On the other hand, the existing data on the 

processes governing the fungus dimorphism result mainly from transcriptome studies, whereas a 

functional approach targeting genes that could control dimorphic transitions in P. brasiliensis was 

never performed. This fact is mainly due to the absence of molecular tools to create knock-out 

mutants in P. brasiliensis, the most commonly used approach to study gene function in fungi. 

This has been a crucial limiting factor for a better understanding of the fungus biology, and for 

the uncovering of new virulence factors. Such data on P. brasiliensis genetics and biology is 

essential for the development of prophylactic or therapeutic strategies. In line with these 

observations, it is also imperative to further clarify how host immune-responses are triggered 

upon recognition of P. brasiliensis, an essential aspect for determining the outcome of infection. 

  

Throughout the years, phylogenetic analyses have been used in order to discriminate 

Paracoccidioides clinical and environmental isolates, according to their genetic background, 

morphological and biochemical characteristics (Matute, McEwen et al. 2006; Teixeira, Theodoro 
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et al. 2009; Desjardins, Champion et al. 2011). However, despite the fact that the P. brasiliensis 

gene CDC42 (a Rho-like GTPase encoding gene) is known to control the morphological behavior 

of the fungus (Almeida, Cunha et al. 2009), a systematic analysis of the morphological traits 

exhibited by Paracoccidioides isolates and their correlation with genetic determinants was never 

performed. In order to shed light on this matter, we carried out a detailed morphogenetic 

evaluation of the yeast-forms of different clinical and environmental Paracoccidioides isolates 

comprising all the phylogenetic lineages from the different species (S1, PS2, PS3 and P. lutzii) 

(Chapter 2). We show that there is a lack of a clear characteristic morphologic profile for any of 

the phylogenetic groups. Moreover, data is presented revealing that the bud size and shape in all 

isolates is highly dependent on the mother cell morphology. Importantly, a strong correlation 

between expression of PbCDC42 and both the shape of mother and bud cells and the size of the 

buds was demonstrated for all isolates, suggesting that PbCDC42 expression can explain 

approximately 80% of mother and bud cell shape and 19% of bud cell size. The morphogenetic 

correlations herein presented can be of utmost importance, as previous studies reveal that 

induced-reduction of PbCDC42 expression levels weakens the pathogenicity of the fungus 

(Almeida, Cunha et al. 2009). As a future approach, a more broader and detailed analysis on 

PbCDC42 expression profiles of all the isolates, belonging to the different clades, can be 

interesting, on a perspective of stratification of Paracoccidioides strains according to their 

virulence and levels of PbCDC42 expression. 

 

In dimorphic fungi such as H. capsulatum, temperature and nutritional factors are accountable 

for triggering dimorphic transitions. However, in P. brasiliensis, temperature shift is the only 

known requirement for the dimorphic transition to the yeast pathogenic phase from the 

conidia/mycelial phase (Brummer, Castaneda et al. 1993). Studies on the genetic profiles 

exhibited by each of these morphological forms during the transition process indicate that several 

genes are differentially expressed (Felipe, Andrade et al. 2005; Nunes, Costa de Oliveira et al. 

2005; Andrade, Paes et al. 2006). Moreover, the differential sulfur requirement between 

conidia/mycelium and yeast cells determines growth rate followed by each of this forms and the 

possibility to undergo transition. In order to unravel mechanisms other than temperature 

governing conidia/mycelium-to-yeast transition in P. brasiliensis, we addressed the role of 

PbSCONC, the negative regulator of the inorganic sulfur assimilation pathway (Marzluf 1997), in 

the dimorphism and virulence of this pathogen (Chapter 3). Our data further support that P. 
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brasiliensis auxotrophy for organic sulfur compounds in the yeast form is due to SCONC, a 

phenomenon that can be overcome by modulating its genetic expression. Furthermore, we 

provide evidences that by down-regulating SCONC, P. brasiliensis is able to metabolize inorganic 

sulfur compounds in the yeast phase. Taking advantage of the Agrobacterium tumefaciens-

Mediated Transformation (ATMT) system, we successfully down-regulated SCONC by antisense-

RNA in unrelated clinical isolates from P. brasiliensis species and in one isolate from P. lutzii 

species. We were able to promote mycelium-to-yeast transition in the absence of organic sulfur 

compounds in the SCONC down-regulated clones, whereas the wild-type counterparts were not 

able to accomplish transition in such conditions. As a consequence of down-regulating SCONC 

expression, the ATP and NADPH cellular pools decreased, probably due to their usage in the 

inorganic sulfur assimilatory pathway. These alterations led to a decreased availability of energy 

for cellular metabolic processes, and increased cellular oxidative stress levels. These imbalances 

impacted on the down-regulated clones’ growth, since they significantly decreased their biomass 

yield in cultures with both organic and inorganic sulfur. As a consequence of these metabolic 

alterations, the virulence of the down-regulated clones decreased. The data herein presented 

associates sulfur metabolism with the dimorphic transition, and implicates SconC as a virulence 

factor, since that by modulating SCONC expression the fungus virulence was abrogated. 

The understanding of the fungal nutritional requirements could further clarify how metabolic 

processes are triggered/blocked during the transition process. This would allow the identification 

of new genetic targets, to test using the available ATMT-based aRNA methodology. Further 

clarifications on the sulfur requirements of P. brasiliensis should be presented. The usage of 

radioactive-labeled sulfur isotopes can represent an interesting approach to evaluate the routes 

that inorganic sulfur follows either in the mycelial and yeast phases. 

 

Besides characterizing P. brasiliensis morphology, and the impact of sulfur metabolism in the 

fungus dimorphism and virulence, we were also interested in further elucidating the host immune 

responses to P. brasiliensis. Considering the multinucleated nature of P. brasiliensis, and since 

upon cell death significant amounts of DNA are expected to be released, we addressed the role of 

TLR9, a pattern recognition receptor (PRR) known to recognize CpG motifs in DNA (Rutz, Metzger 

et al. 2004) (Chapter 4). Our results show that TLR9 is able to recognize DNA and the 

pathogenic yeast form of P. brasiliensis, leading to expression/production of pro-inflammatory 

cytokines, as demonstrated by an in vitro model of infection with bone marrow derived 
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macrophages. We further show that TLR9 signaling is involved in regulating phagocytosis, since 

lack of this receptor leads to a four-fold decrease in the phagocytic capacity of macrophages. 

Additionally, the role of TLR9 as an immuno-protective player in early stages of infection with P. 

brasiliensis was revealed, since TLR9-/- mice intravenously infected with P. brasiliensis yeast cells 

died at higher rates during the first 48 hours post-infection, when compared to wild-type mice. 

We were able to demonstrate that this impaired survival is accompanied by tissue damage and 

increased expression of several cytokines, such as TNF-α and IL-6. This same trend was 

observed upon intraperitoneal infection, where a high recruitment of neutrophils and 

mononuclear cells to the site of infection was detected. Our data support the hypothesis that the 

death profile presented by TLR9-/- mice in early-times of infection is mainly due to the host 

detrimental high recruitment of neutrophils to the site of infection, since neutrophil depletion 

previous to infection results in increased resistance of mice to P. brasiliensis infection. 

It is of major importance to further dissect how the host develops an efficient immune response 

against P. brasiliensis, specifically by clarifying the role played by other TLRs during infection. A 

possible synergistic cooperation between TLR9 and other TLRs is an important subject to be 

addressed, in order to understand the mechanistic processes underlying exacerbated 

inflammatory responses, which can be detrimental to the host.  

The development of case-control studies would also be interesting, in the perspective of looking 

for associations between host genetic factors and the disease, ultimately allowing the risk 

stratification of individuals to paracoccidioidomycosis. 

  

In summary, the work herein presented improves our knowledge on the genetic and physiological 

determinants that govern morphological traits and dimorphic transition in P. brasiliensis. Yeast 

cell morphology is revealed to be correlated to expression of PbCDC42, while novel data is 

presented on how cellular sulfur metabolism can affect P. brasiliensis dimorphism, via what can 

be considered a novel virulence determinant, SconCp. Furthermore, data is presented unraveling 

the role of TLR9 during P. brasiliensis infection as part of the protective immune mechanisms, at 

least early after infection, developed by the host against infection with the fungus.  

 

 

The work presented here adds knowledge on: 

(i) the morphological trends presented by P. brasiliensis species; 
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(ii) the genetics underlying P. brasiliensis heterogeneity;  

(iii) P. brasiliensis requirements to undergo dimorphic transitions; 

(iv) the differential sulfur requirements of P. brasiliensis; 

(v) the unraveling of new virulence determinants;  

(vi) host responses to P. brasiliensis. 

Taken together, this data further clarifies the physiology and genetics of P. brasiliensis, also 

elucidating host responses upon infection. This can be relevant for the uncovering of new putative 

genetic determinants accountable for P. brasiliensis pathogenicity, which could ultimately lead to 

the development of novel therapeutic strategies. 
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