
Universidade do Minho

Escola de Engenharia

Miguel Esteves

CazDataProvider: A solution to the

object-relational mismatch

Outubro de 2012

Universidade do Minho

Dissertação de Mestrado

Escola de Engenharia

Departamento de Informática

Miguel Esteves

CazDataProvider: A solution to the

object-relational mismatch

Mestrado em Engenharia Informática

Trabalho realizado sob orientação de

Professor José Creissac Campos

Outubro de 2012

To my parents...

“Each pattern describes a problem which occurs over and over again in our

environment, and then describes the core of the solution to that problem, in

such a way that you can use this solution a million times over, without ever

doing it the same way twice.”

Christopher Alexander

Abstract

Today, most software applications require mechanisms to store information persistently.

For decades, Relational Database Management Systems (RDBMSs) have been the most

common technology to provide efficient and reliable persistence. Due to the

object-relational paradigm mismatch, object oriented applications that store data in

relational databases have to deal with Object Relational Mapping (ORM) problems.

Since the emerging of new ORM frameworks, there has been an attempt to lure

developers for a radical paradigm shift. However, they still often have troubles finding

the best persistence mechanism for their applications, especially when they have to bear

with legacy database systems.

The aim of this dissertation is to discuss the persistence problem on object oriented

applications and find the best solutions. The main focus lies on the ORM limitations,

patterns, technologies and alternatives.

The project supporting this dissertation was implemented at Cachapuz under the Project

Global Weighting Solutions (GWS). Essentially, the objectives of GWS were centred on

finding the optimal persistence layer for CazFramework, mostly providing database

interoperability with close-to-Structured Query Language (SQL) querying.

Therefore, this work provides analyses on ORM patterns, frameworks, alternatives to

ORM like Object-Oriented Database Management Systems (OODBMSs). It also

describes the implementation of CazDataProvider, a .NET library tool providing

database interoperability and dynamic query features. In the end, there is a performance

comparison of all the technologies debated in this dissertation.

The result of this dissertation provides guidance for adopting the best persistence

technology or implement the most suitable ORM architectures.

Key Words: ORM, SQL, RDBMS, Domain Model, ADO.NET, NHibernate, Entity

Framework (EF).

ii

Resumo

Hoje, a maioria dos aplicações requerem mecanismos para armazenar informação

persistentemente. Durante décadas, as RDBMSs têm sido a tecnologia mais comum para

fornecer persistência eficiente e confiável. Devido à incompatibilidade dos paradigmas

objetos-relacional, as aplicações orientadas a objetos que armazenam dados em bases de

dados relacionais têm de lidar com os problemas do ORM.

Desde o surgimento de novas frameworks ORM, houve uma tentativa de atrair

programadores para uma mudança radical de paradigmas. No entanto, eles ainda têm

muitas vezes dificuldade em encontrar o melhor mecanismo de persistência para as suas

aplicações, especialmente quando eles têm de lidar com bases de dados legadss.

O objetivo deste trabalho é discutir o problema de persistência em aplicações orientadas

a objetos e encontrar as melhores soluções. O foco principal está nas limitações, padrões

e tecnologias do ORM bem como suas alternativas.

O projeto de apoio a esta dissertação foi implementado na Cachapuz no âmbito do

Projeto GWS. Essencialmente, os objetivos do GWS foram centrados em encontrar a

camada de persistência ideal para a CazFramework, principalmente fornecendo

interoperabilidade de base de dados e consultas em SQL.

Portanto, este trabalho fornece análises sobre padrões, frameworks e alternativas ao

ORM como OODBMS. Além disso descreve a implementação do CazDataProvider, uma

biblioteca .NET que fornece interoperabilidade de bases de dados e consultas dinâmicas.

No final, há uma comparação de desempenho de todas as tecnologias discutidas nesta

dissertação.

O resultado deste trabalho fornece orientação para adotar a melhor tecnologia de

persistência ou implementar as arquiteturas ORM mais adequadas.

Key Words: ORM, SQL, RDBMS, Domain Model, ADO.NET, NHibernate, EF.

iv

Acknowledgements

It is with immense gratitude that I acknowledge the support and help of Prof Dr. José

Creissac Campos who managed to carefully review my dissertation even on a tight sched-

ule. I also thank Prof Dr. António Nestor Ribeiro for some solid and experienced advice.

To my parents and girlfriend who have been very patient with me.

I would like to thank Cachapuz for the scholarship and especially Eduardo Pereira for

considering and helping the development of my work.

Finally, I thank my friends particularly my colleague Ricardo Santos for all the dis-

cussions and ideas we debated together at Cachapuz.

v

Acknowledgements Acknowledgements

vi

Contents

1 Introduction 1

1.1 Context of Work . 2

1.2 Persistence Problem . 4

1.3 Objectives . 5

1.4 Structure of Dissertation . 6

2 Object Relational Mapping Theory 7

2.1 Object Paradigm . 9

2.2 Relational Paradigm . 11

2.3 ORM as a Paradigm . 13

2.4 The ORM Commitment . 17

2.4.1 Inheritance . 18

2.4.1.1 Table-per-class . 18

2.4.1.2 Table-per-concrete-class 21

2.4.1.3 Table-per-class-family . 22

2.4.2 Associations . 23

2.4.3 Schema complications . 27

2.4.4 OID (object identity) . 28

2.4.5 Data retrieval . 30

2.4.6 Partial-Object dilemma and Load Time trap 31

2.4.7 Transparent Persistence . 33

2.5 Alternatives to ORM . 34

2.6 Conclusions . 40

3 Design Patterns for ORM 43

3.1 Domain Logic Patterns . 44

3.1.1 Transaction Script . 44

3.1.2 Table Module . 47

vii

CONTENTS CONTENTS

3.1.3 Domain Model . 54

3.1.4 Making a Decision . 58

3.2 Data Source Architectural Patterns . 61

3.2.1 Table Data Gateway . 61

3.2.2 Active Record . 62

3.2.3 Data Mapper . 64

3.3 Object-Relational Behavioural Patterns . 68

3.3.1 Unit of Work . 69

3.3.2 Identity Map . 75

3.3.3 Lazy Load . 76

3.4 Object-Relational Metadata Mapping Patterns 82

3.4.1 Metadata Mapping . 82

3.4.2 Query Object . 84

3.4.3 Repository . 86

3.5 Conclusions . 87

4 Object Relational Mapping Frameworks 89

4.1 Entity Framework . 90

4.1.1 Unit of Work . 91

4.1.2 Optimistic Locking . 93

4.1.3 Code Customization . 94

4.1.4 POCOs . 94

4.1.5 Testing EF . 96

4.1.5.1 Configuration and model testing 96

4.1.5.2 Basic querying . 99

4.1.5.3 Eager and deferred load 100

4.1.6 Dynamism in EF . 102

4.2 NHibernate . 104

4.2.1 Unit of Work . 106

4.2.2 Optimistic Locking . 108

4.2.3 Lazy Load . 108

4.2.4 Code Customization: Audit Logging 111

4.2.5 Testing NHibernate . 115

4.2.5.1 Simple Load and Identity Map 118

4.2.5.2 Linq-to-NHibernate join query examples 119

4.2.5.3 Lazy Collections examples 121

viii

CONTENTS CONTENTS

4.2.5.4 Cascading Delete operations 125

4.2.5.5 HQL examples . 126

4.2.5.6 Dynamic LINQ . 129

4.2.5.7 Database Synchronization 130

4.2.6 Dynamism in NHibernate . 132

4.3 Conclusions . 132

5 Implementation of CazDataProvider 135

5.1 Analysis of ClassBuilder . 136

5.1.1 Relational Domain Model . 137

5.1.2 Data Mapper . 139

5.1.3 Unit of Work and Optimistic Locking 140

5.1.4 Audit Logging . 143

5.1.5 Conclusions . 144

5.2 .NET Data Providers . 146

5.3 Designing an Architecture . 151

5.3.1 Solution 1: Data Context Facade and Factory 152

5.3.2 Solution 2: Provider Factory . 154

5.3.3 Solution 3: Abstract Provider Factory 155

5.3.4 Solution 4: Provider Factory with Subclassing 156

5.3.5 Solution 5: Provider Factory with Template Method 159

5.3.6 Solution 6: Query Object . 163

5.4 Implementation . 165

5.5 LinqToCaz . 173

5.6 Conclusions . 176

6 Benchmark Tests: Comparing CazDAL, ORM Frameworks and OOS-

BMSs 179

6.1 Creating . 180

6.2 Loading All . 182

6.3 Fetching One . 183

6.4 Updates and Deletes . 184

6.5 Joins . 186

6.6 Conclusions . 187

7 Conclusion 189

7.1 Developed work . 189

ix

CONTENTS CONTENTS

7.2 Discussion . 190

Appendix 192

A Relational Database Mechanics 193

A.1 Full table-scans . 194

A.2 Indexes . 194

A.3 Indexed access Vs Table-scan . 196

A.4 Joins . 197

A.4.1 Nested-loop join . 197

A.4.2 Hash join . 198

A.4.3 Sort-merge join . 200

A.4.4 Index-based join . 201

B Testing EF querying: Examples of code and SQL generated 203

B.1 Basic querying . 203

B.2 Eager and Deferred Loading . 207

Bibliography 211

Glossary 213

Acronyms 219

x

List of Figures

2.1 Hierarchy class diagram example . 18

2.2 Relational model of table-per-class strategy example 19

2.3 Relational model of table-per-concrete-class strategy example 22

2.4 Relational model of table-per-class-family strategy example 23

2.5 Class diagram of the object model for the music store with three kinds os

associations . 24

2.6 Relational model for the music store with three kinds of associations 26

2.7 Diagram of the different architectural combinations of databases 36

3.1 Class diagram of the Transaction Script pattern 45

3.2 Class diagram of a Transaction Script example 45

3.3 Class diagram of a typical Table Module with Table Data Gateway 48

3.4 Sequence diagram of a typical Table Module with Table Data Gateway . . 49

3.5 Class diagram of a Table Module example 49

3.6 Class and sequence diagram of an example of a tuned Table Module 51

3.7 Class diagram of an example using ADO.NET DataSet code generation . . 53

3.8 Class diagram example of a rich Domain Model 55

3.9 Sense of the effort changing rate as a domain logic complexity evolves for

all three domain logic patterns (graphic replica from [Fow02]) 59

3.10 Sense of the learning curve taken among the three domain logic patterns . 59

3.11 Three ways of implementing the Table Data Gateway pattern 62

3.12 Example of an Active Record (class diagram) 63

3.13 Code example in an Active Record . 64

3.14 Data Mapper example (class diagram) . 65

3.15 Data Mapper example (sequence diagram) 66

3.16 Data Mapper generic diagram . 68

3.17 Unit of Work pattern . 69

3.18 Unit of Work caller registration example 71

xi

LIST OF FIGURES LIST OF FIGURES

3.19 Unit of Work object registration example 72

3.20 Unit of Work controller example . 74

3.21 Lazy Load example . 77

3.22 Lazy Load Virtual Proxy example . 79

3.23 Lazy Load lazy collections example (Virtual Proxy) 80

3.24 Metadata Mapping example using the reflective approach 83

3.25 Query able Repository example using with Lazy Initialization 87

4.1 Diagram of the various components and files managed in the configuration

of EF 1.0 . 97

4.2 MySQL Test database for EF 1.0 . 98

4.3 Entity Data Model generated in EF 1.0 from MySQL Test database schema 98

4.4 Implementation of AuditInterceptor in NHibernate 114

4.5 Testing NHibernate: MySQL database schema 115

4.6 Testing NHibernate: generated object schema 116

4.7 Testing NHibernate: Repository classes generated by Sculpture 116

4.8 Testing NHibernate: Plain Old CLR Object (POCO) Person classes gen-

erated by Sculpture . 117

5.1 Sense of the effort changing rate as a domain logic complexity evolves in

Relational Domain Model confronted with the other domain logic patterns

(adapted from [Fow02]) . 139

5.2 ClassBuilder screenshot before generating Person code 140

5.3 Example of generated code with ClassBuilder 141

5.4 ClassBuilder screenshot for generating audit logging and control fields . . . 142

5.5 ClassBuilder database table for log keeping 143

5.6 .NET data providers for a group of databases 148

5.7 IDb* and IData* interfaces, the associations and creational dependencies

they hold together . 152

5.8 Solution 1: Data Context Facade and factory 153

5.9 Solution 2: Provider Factory . 154

5.10 Solution 3: Abstract Provider Factory . 156

5.11 Solution 4: Provider Factory with Subclassing 157

5.12 Ideal SqlCommand refactoring with Template Method 160

5.13 SqlCommand refactoring with Decorator . 160

5.14 Solution 5: Provider Factory with Template Method 162

5.15 Solution 6: Example of a Query Object implementation 163

xii

LIST OF FIGURES LIST OF FIGURES

5.16 Solution 6: Example of an SQL-based Interpreter implementation 164

5.17 A priori test case for CazDataProvider . 166

5.18 CazDataProvider: Implemented core classes 167

5.19 LinqToCaz: Class diagram . 174

5.20 LinqToCaz: Sequence diagram . 175

6.1 Benchmark Tests: Managed Person class 180

6.2 Benchmark Tests: Creating objects . 181

6.3 Benchmark Tests: Creating objects with NHibernate optimized algorithms 181

6.4 Benchmark Tests: Loading objects . 182

6.5 Benchmark Tests: Fetching one object with a variable database size 183

6.6 Benchmark Tests: Optimized fetching of one object with a variable database

size . 184

6.7 Benchmark Tests: Fetching and updating multiple objects with a variable

database size . 185

6.8 Benchmark Tests: Fetching and deleting multiple objects with a variable

database size . 186

6.9 Benchmark Tests: Fetching an object graph with variable join operations . 187

xiii

LIST OF FIGURES LIST OF FIGURES

xiv

List of Tables

4.1 EF query examples benchmark . 100

4.2 EF eager and deferred load query examples benchmark 102

xv

LIST OF TABLES LIST OF TABLES

xvi

Chapter 1

Introduction

Today, most software applications require mechanisms to store information persistently.

A good example of that lies on enterprise applications, in which, email services store mail,

banks keep records of the transaction operations on every account and hospitals hold the

medical files of its patients. Persistence is the method used by a program to create non

volatile data capable of outlasting software or even hardware systems of which it depends

on.

For decades, Relational Database Management Systems (RDBMSs) have been the

most common technology to provide efficient and reliable persistence in enterprise soft-

ware. Therefore, the also successful object oriented languages pushed forward the devel-

opment of new methods and technologies, for communicating with such databases, like

Java Database Connectivity (JDBC), Open Database Connectivity (ODBC), ADO.NET,

object serialization.

However, due to the object-relational paradigm mismatch, most of the object oriented

applications that store data in relational databases have to deal with Object Relational

Mapping (ORM) problems. In seeking to resolve these problems, ORM patterns were

documented and frameworks have been developed, such as Enterprise JavaBeans (EJB)

Entity Beans, Hibernate, NHibernate and Entity Framework (EF). All these methods

and technologies share the same goal: to efficiently persist objects independently from

the underlying database system. Although these technologies improved considerably the

development of applications with complex domain models, ORM problems remain, espe-

cially in database centric applications.

In fact, it is common for software developers to have trouble finding the best persis-

tence mechanism for their applications. Also the Object-Oriented Database Management

System (OODBMS) brought about curiosity for being able to bypass these ORM prob-

lems.

1

1.1. Context of Work

This dissertation is about identifying the ORM problems, patterns and solutions in

ORM frameworks as well as seeking alternatives to the object-relational mismatch.

The following sections of this chapter define the context of work for this dissertation,

the problem of persistence, the objectives, some relevant concepts and the structure of

this document.

1.1 Context of Work

This dissertation was developed in Cachapuz, within the Global Weighting Solutions

(GWS) Project. Cachapuz Weighting Solutions is based in Braga, Portugal, and be-

longs to the Bilanciai Group, the major manufacturer of industrial weighting solutions

in Europe, with eight production units and presence in thirty countries. In recognition

of Cachapuz technological know-how, Bilanciai Group decided to gather in Portugal its

Technological Competences Centre, with the goal of designing and implementing software

automated solutions that complement and raise value to the equipments, manufactured

and commercialized in the remaining members. The mission held by this Technological

Competences Centre drives the development of high level software for the next generation

of weighting readers of the Bilanciai Group.

The GWS Project focuses on various improvements on practices of software develop-

ment in order to make several enhancements to the CazFramework, which is currently

the most crucial software artefact in use at Cachapuz, acting both as a framework for

developers and a solution for customers. The core of this framework consists on a fat

client application, developed with the platform .NET, and implements all the required

business logic and Graphical User Interfaces (GUIs). There is also a core database that

provides critical data to the framework. When submitted to a process of configuration

and development of external modules or add-ins, this core becomes a solution for a par-

ticular customer and able to interact with other data sources. This development process

occurs in an agile feature oriented process in order to give rapid responses after a few

customer interactions. The deployment is done at the customer through the installation

of a pre-configured CazFramework with extensions, and a supporting core database (in

SQL Server) together with other data sources as needed. Thus CazFramework is delivered

to the customers as a bundle product composed by a fat client, databases and technical

support.

The functions of the core CazFramework can be divided into management features,

mainly for administrators or developers, and data query features for common users. The

business model contains entities that support location or session context (Area) and secu-

2

1.1. Context of Work

rity control (Functionality) over a single User. A Functionality represents permissions

for actions or behaviours that Users are allowed to perform. The principal features of

the framework provide query and management of Lists, Forms and Menus. These three

primary business entities support a generic and dynamic mechanism for the creation of

data query and management GUI components. List is the nuclear entity of the frame-

work and consists on a rich view over a database in the form of a data grid or table,

and further it can be enhanced with filters or custom styles. A List can be specified

dynamically in runtime with a query in Structured Query Language (SQL). Menus can

be summoned from a selected row of a List data grid to transfer its context either to a

new List or Form, thus enabling new query and editing capabilities with fresh business

operations. Hence, the most valuable characteristic of CazFramework is the dynamism

with which one is able to create new listings.

In terms of practices of software development, CazFramework is supported by a

bottom-up process, i.e. from a relational model or database schema, the Data Access

Layer (DAL) code is generated via ClassBuilder, which is an ORM tool for generating

DAL code in VB.NET, built and maintained by Cachapuz developers. The generated

code is object oriented and carries both an entity class and a Create, Read, Update,

Delete (CRUD) class per table of the database schema. The CRUD code uses a generic

Object Linking and Embedding, Database (OLEDB) API to connect the database, striv-

ing for a level of abstraction that allows compatibility with multiple OLEDB providers

and various RDBMSs. The DAL generated code is further assembled together with GUIs

and business logic operations via a Visual Studio library project. The compiled Dynam-

ically Linked Library (DLL) of this assemble, or simply add-in, is thereafter, pluggable

to the CazFramework itself, thus providing control of new resources such as Lists, Forms,

Functionalities, etc.

With the increasing size and complexity of CazFramework, together with a pursuit

for expanding and exporting itself to other Cachapuz partners, so do the technological

and methodological commitments strengthen. Therefore, GWS Project arises to endorse

the best decisions on conceiving this framework through a process of evaluating the most

modern technologies and methods possible, so it can avoid critical problems in the future.

The result is expected to capitalize the investment in short term, with major increments

on efficiency and speed of development of solutions at Cachapuz.

Due to the fact that customers often need to operate with different brands and versions

of RDBMSs, GWS Project plans for CazFramework, the pursuit for database interoper-

ability. Therefore the framework needs an abstraction layer to the data sources so it can

connect a wide range of RDBMSs through an underlying system that can unify SQL di-

3

1.2. Persistence Problem

alects, particularities of different providers and synchronize the business model with the

data model to solve database incompatibilities and updates. Since these are conventional

requirements in the software development, they have been formerly discussed within the

ORM subject. Thus, it is essential to perform an analysis of the viability to embark on

ORM technologies.

1.2 Persistence Problem

RDBMS have been around since the 1970s and established a basis for most software

applications existing today. Over the years, relational databases have become a solid

solution for data keeping.

Meanwhile, it was in the 1990s that the object-oriented paradigm gained wide accep-

tance as the solution for modelling and programming complex business logic. As a result,

the merging of both object and relational paradigms into the same application forced

the need to use abstraction layers between business logic and data. The result could not

avoid the so called impedance mismatch, which is a term borrowed from the electronics

to emphasise the gain of resistance both paradigms have to each other, thus diminishing

their true capabilities.

It was not long before a new paradigm was born by the name of Object Relational

Mapping (ORM)1 to attempt a resolution of object-relational impedance problems. As

a result, the ORM paradigm gained valuable contributions, especially on patterns doc-

umentation, such as Fussel’s [Fus97], Beck’s [Bec97], Alur’s [AMC01], Fowler’s [Fow02]

and even from Gang of Four (GoF) book [GHJV95], which clarified and found ways to

minimize most of the ORM limitations.

The stage was set so the technological advances would take place bringing upfront the

establishment of ORM frameworks such as Hibernate, which is currently the earliest and

most mature. Additionally, the ORM put some effort into minimizing other problems like

the continuous loss of an SQL standard due to the isolated progress of the various RDBMS.

As a result, the database interoperability support was implemented, thus taking better

advantage of the extra abstraction layer and liberating the users from the idiosyncrasies

of RDBMS.

The persistence problem is achieving an increasingly wide range of solutions and

RDBMSs are no longer the answer for all the businesses. While the vast and rigid legacy

world of current RDBMSs is attempting to match the object world, major organizations

1Refer to section 2.3 in chapter 2 for details on ORM as a paradigm.

4

1.3. Objectives

are abandoning SQL. The Not only SQL (NoSQL) movement has strengthened in the last

few years mostly due to the appearance of Facebook’s Cassandra, Google’s BigTable and

Amazon’s Dynamo which are scalable and flexible, unlike RDBMS. Also the increasing

popularity of OODBMS, is enabling a wide variety of alternatives to bypass the impedance

mismatch.

Still, the motivation for this dissertation lies on the demand for ideal technologies

and methodologies to build a DAL that fits into CazFramework and can improve the

production of new code that can run, through less effort.

1.3 Objectives

This dissertation centres itself upon the persistence problem and attempts to demonstrate

the best approaches to solve it, under an enterprise environment. Most objectives of this

dissertation are shared within the goals of GWS Project, which include:

• The identification of the ORM problem;

• Alternatives to the ORM problem;

• A research and discussion on the paradigms, architectures and patterns, to set a

ground for ORM technology;

• A confrontation of ORM theory at the current .NET ORM frameworks: NHibernate

and EF;

• An analysis of ClassBuilder, to find the system design constraints and thus build a

consistent DAL;

• The study of SQL dialects and database connectivity idiosyncrasies in order to

implement database interoperability for the DAL;

• The design and implementation of a database agnostic DAL by the name of Caz-

DataProvider;

• Confrontation and performance measurement of the discussed technologies alto-

gether.

In the end, the final objective is to reach a conclusion on what methods and technologies

to use for data storage and access under different circumstances so it can provide guidance

for software developers in the future.

5

1.4. Structure of Dissertation

1.4 Structure of Dissertation

This chapter ends with the structure of this dissertation. The chapter 2 defines the

in-depth theory behind the ORM, delineated by both the explanation of relational and

object paradigms, the ORM problems and limitations and the alternatives to ORM (e.g.

OODBMSs). The chapter 3 provides an analysis and description of the most relevant de-

sign patterns used in ORM solutions mostly from the Fowler’s “Patterns of Enterprise Ap-

plication Architecture” [Fow02] with the support of Beck’s [Bec97] and GoF’s [GHJV95].

In finding solutions for the persistence problem, the chapter 4 matches the theory and

the patterns explained before against two popular ORM frameworks: NHibernate and

EF. The chapter 5 describes the various steps of research (analysis to ClassBuilder ORM

tool and ADO.NET data providers), design and implementation of CazDataProvider and

presents an alternative to the typical ORM frameworks and the object-relational mis-

match. The chapter 6 draws an overall performance benchmark to compare all the ap-

proaches discussed in this dissertation, including the ORM frameworks NHibernate and

EF, ClassBuilder with CazDataProvider an two OODBMSs. The chapter 7 enclosures

this dissertation with a summary of the results and achievements of this dissertation.

6

Chapter 2

Object Relational Mapping Theory

Object Relational Mapping (ORM) frameworks are emerging in the software engineering

of today and gaining more and more followers. From very early on did software enterprises

realise the importance of using these frameworks. ORM frameworks generate repetitive

and critical code to better encapsulate Data Access Layer (DAL) implementations. The

management of this code requires less effort from the development teams, thus resulting

in increased productivity.

Platforms like System, Applications and Products in Data Processing (SAP), Oracle,

Java Platform, Enterprise Edition (J2EE) and .NET have been pursuing this goal with a

fair amount o success.

However, the currently available frameworks tend to be generic and, therefore, do

not always meet the specific needs of every project. Hence, many development teams

decide to invest on producing internal frameworks to accelerate specific development pro-

cesses. Building such frameworks can an ambitious task for they often raise problems of

complexity and maintenance.

In the case of Cachapuz a DAL code generator (ClassBuilder) was developed that

handles a mapping between database tables and records into collections and objects. Ac-

cordingly, an API is provided to easily manage these objects, so called entities, throughout

the business logic.

Relational Database Management System (RDBMS) are established today at most

enterprises and so the relational paradigm became prevalent among software developers.

That being the case in Cachapuz, the Global Weighting Solutions (GWS) project was

driven into a research that found, at some point, the following options:

• Adopt one of the ORM frameworks analysed in chapter 4 and thus strive for a radical

change of paradigms from relational to object oriented. This presents a number of

7

CHAPTER 2. OBJECT RELATIONAL MAPPING THEORY

challenges. The uncertainty of the learning curve and dealing with human and

technological resistance alone are tough barriers. This change would also imply the

disposal of the ClassBuilder code generator, followed by a possible chain reaction

among all the dependent components of the prior established DAL mechanism.

Although, this scenario could be less tragic with an additional effort to enforce a

migration process for DAL replacement;

• Improve the current ClassBuilder. This is done by not fully engaging or committing

to the object paradigm at first. Postponing this decision makes it easier to revert

to the relational paradigm if needed. The improvements can either be superficial

and easier to implement or profound but evoking a similar chain reaction to the

adoption of an ORM framework. The paradigm and technological change is less

obvious in this approach because the process is a progressive evolution of the current

development environment. However, successive and profound improvements may, in

the long term, approximate ClassBuilder to the level of any of the ORM frameworks

available.

• Establish a commitment with the current methods and paradigms surrounding the

relational model. This can either be done discarding changes to the framework

completely or adapt the ORM patterns and practices to the established paradigms

and technologies. The latter may increase productivity in CazFramework in the

short term and with less change effort.

All three options have their own pitfalls. Therefore, before making a decision whether

to embark or not into the ORM paradigm, many variables should be taken into ac-

count, such as the technical know-how of the developers, the legacy constraints regarding

RDBMSs or Structured Query Language (SQL), the progress of the domain model com-

plexity and the frameworks used.

It is not new that object oriented technology is the right technology to encapsulate

business logic and relational technology has long been used to store and query large

amounts of data effectively [Nur05].

Often enterprise applications reach complexity levels that affect directly the business

logic. Object oriented is the paradigm that stands out to deal with that kind of problems,

mostly because of its high flexibility for modelling business. Java and C# have been

the most popular object oriented languages in the last decade and are known to have

greatly increased productivity among software developers. However, it is only natural for

most applications that persistence will be required eventually and especially in enterprise

applications.

8

2.1. Object Paradigm

Once again the RDBMSs stand out among the other databases as the most efficient and

widely used storage or persistence mechanisms. That is essentially due to the following

factors:

• Relational algebra, a solid mathematical foundation;

• Decades of improvements, optimizations and increments;

• SQL a widely accepted standard for all RDBMSs;

• Legacy database systems, as a consequence of widespread use and the fixed schema

defined in the early specifications;

• Wide application integration with relational databases, such as reporting tools.

Oracle and SQL Server are very successful RDBMSs in enterprise software develop-

ment.

In the end, the problems raised by the need to couple the object oriented and the

relational technologies, originated the need of creating a middleware layer, commonly

designated as the ORM layer today.

This chapter is further divided into 6 sections. First it introduces the object oriented

paradigm and the relational paradigm separately. Then it introduces to the concept of

ORM paradigm. The largest and most important is the section 2.4 which introduces

to the commitment of ORM, together with the limitations and awarenesses to be taken

into account before embarking onto this paradigm, or in other words the object-relational

impedance mismatch. The following section presents alternative database paradigms to

the common RDBMSs in order to overcome its disadvantages towards ORM. At the end,

a conclusion is taken upon possible solutions to the ORM commitment.

2.1 Object Paradigm

Programming languages like Java became popular in the late 90s which propelled the

promotion of the object oriented paradigm. Ever since, many new methodologies, patterns

and even paradigms where found to support it. Thence even the RDBMSs, along with its

standards, attempted and at some point found a way to adopt the object paradigm.

At this stage, it is relevant to explain the concepts that surround the object paradigm.

It is acknowledged today that the object paradigm stands for the concepts of [Fus97]:

9

2.1. Object Paradigm

• Identity distinguishes every object from each other even the ones with an equal

state or value. In object oriented languages such as C++, C# and Java it is common

to raise discussions about equivalence and strict equality where there is a difference

between a==b (a and b are the same object) and a.equals(b) (a and b are equal).

Also the existence of an identity allows the use of pointers and object references in

object oriented systems;

• Behaviour. As opposed to passive data structures in procedural programming lan-

guages like C, objects do provide an abstraction or interface of communication so

the object caller can access the object itself. This is given by a collection of opera-

tions within the object itself. All these operations are part of the object’s behaviour

as are the responses it gives to the caller and the changes made to the object’s state

through its operations;

• State or the so called current object value associated with his unique identity. Any

changes to the state of an object are caused by its behaviour. Also, because objects

are encapsulated (see below), the result of a state change and the actual value of an

object are only visible through its behaviour as well;

• Encapsulation or the abstraction that hides object’s behaviour implementation and

state in a black box preventing the client to know what is inside. Thus, everything

from an object’s behaviour implementation to a static structure it may have inside,

can easily be extended or changed without affecting its clients.

From the above, more familiar concepts to the object world were derived [Fus97]:

• Type is a specification of an interface. An object implements one or more types

when it provides implementations to the relevant interfaces;

• Association of types through navigable links, which enables the object graph;

• Class is a kind of object that defines its implemented types, the behaviour and the

state variables required. Every object of the same class shares the same implemented

types and behaviour but they all contain a different state and identity;

• Inheritance can be applied to both types and classes. If type A inherits from type

B, any object that implements type A will be of type B as well, because all the

specifications in type B were inherited by type A in the first place. A class that

inherits from another class, inherits all its behaviour implementations and is of the

same type as the parent.

10

2.2. Relational Paradigm

Also, through encapsulation the object world has synthesised and sold polymorphism

as a trademark feature that too often caused trouble to the developers of strongly typed

languages such as C. Although parametric polymorphism can be used in dynamic pro-

gramming languages like Perl, the subtype polymorphism is characteristic of object ori-

ented languages. Thus, different objects can be identified by the same common superclass

and handled in common interfaces. In the end, type casting can bring back the original

type from the abstract super-type.

2.2 Relational Paradigm

The relational paradigm was introduced in the early 70s by Edgar F. Codd. Since then, it

has grown and given rise to the most popular databases of today, the RDBMSs. Examples

of such are Oracle and SQL Server.

The relational model is supported by relational algebra and stands for knowledge and

not for any of the object’s concepts. A relational system allows the storage of facts

through predicates or statements. The principal concepts of the relational terminology

are described by [Fus97] and based on [Dat04] as the following:

• Relation is a truth predicate defining its meaning, often implicitly, through its at-

tributes. For instance if a relation Person has the attributes of Name and Age it

means that there is a person called Name and is Age years of old. In a RDBMS, a rela-

tion is usually described as a table definition except that tables are two-dimensional

and relations are n-dimensional. Also the columns of a table are ordered and the

rows as well, while the attributes and tuples of a relation are not.

• Attribute identifies the name of each meaningful aspect of the relation. An attribute

also defines the domain of values it must contain. For instance, in the above relation,

the attribute Name is limited to values of type string and the attribute Age must

be a positive integer commonly identified of type integer. In RDBMS an attribute

is defined by a table column.

• Domain is the data type specified to constrain the values of an attribute, limiting

as well, the operations available to handle those values. In certain types such as

string it also identifies the maximum size or length the value can have.

• Tuple is a truth statement based on a relation, sharing all its meaningful attributes,

including the respective domains and attribute values. There is no order in the

components of a tuple. In RDBMS it is identified as a table row with the exception

11

2.2. Relational Paradigm

that a table allows duplicate rows while a relation does not with tuples. Relation

value is composed by the set of all tuples that satisfy a relation. In RDBMS it is

a table representation with headers, columns and rows of data. Relation variable

is represented by a name and contains the relation definition with its values at

a given time. It is common to name such variables in plural, e.g. the relation

variable People is named after its relation Person. In RDBMS a relation variable

corresponds to the table structure and data. A database is the collection of relation

variables. Derived relation values are calculated from other relation values known

to a database. They are often the result of relational expressions and queries using

a set of operators: selection, projection, Cartesian product, join, difference, union,

intersection and division. In RDBMS the SQL is the universally accepted language

to enable these operators.

Normalization has become a popular design technique for optimizing relational databases.

It consists of removing redundant data to keep simple the data manipulation and con-

sistency, free from abnormalities and saving disk space. On the other hand, the object

paradigm does not allow redundancy due to the unique identity of each object. Still,

the underlying persistence layer of an Object-Oriented Database Management System

(OODBMS), may as well have to deal with flat files and tabular structures for disk in-

put/output (I/O) operations, thus facing similar issues of the relational technology.

According to the relational model theory in [Cod70], a nullable attribute would be a

violation of the first normal form. Also these columns have a typical problem of indexing.

Null values are described as “missing information” by [Cod70] and thus, often RDBMS

choose to ignore them on indexes.

The notion of Transaction is a fundamental concept in all persistence technology.

When multiple users access a database, its data can easily become inconsistent. A trans-

action prevents this by allowing isolation, concurrency control, recovery from failures

and restore of data consistency. The RDBMSs are known to implement the most reliable

requirements known as the Atomicity, Consistency, Isolation and Durability (ACID) prop-

erties within a database transaction. Date [Dat04] classifies a transaction as a “logical

unit of work” obeying the following principles:

• A transaction is an atomic operation which means its execution either fails entirely

or succeeds completely. If anything fails during the process, the system must restore

the previous state of consistency;

• Even in case of failure, a transaction always carries the database from one consistent

state into another. Date [Dat07] changes his view from correctness to consistency for

12

2.3. ORM as a Paradigm

the “C” property in ACID . Integrity is responsibility of the Database Administrator

(DBA). He ensures that the correct constraints, triggers and cascades are activated

in order to permit only true propositions in the database. This is correctness and

therefore cannot be enforced by the system. A correct state implies consistent and

incorrect does not necessarily imply inconsistent but inconsistent implies incorrect.

Therefore a transaction is only granted to be consistent in this principle.

• Transactions are isolated from each other so that the changes made by one transac-

tion are made visible to the other concurrent transactions, only and when this first

transaction commits successfully. Moreover, if it fails, no data is affected and thus

nothing made visible to the other transactions since the first one rolled-back;

• A transaction is durable because if it commits successfully all the updates are ensured

to be persistent. Even if the system fails, for instance when the changes are still in a

buffer, the new data must be committed to the database. This can be implemented

with transaction logs, backups and snapshots.

2.3 ORM as a Paradigm

Throughout this dissertation, the ORM is often referred to as a paradigm, despite this

term being rarely used by other authors. A term that authors commonly use, however, is

object/relational paradigm mismatch which views the ORM as a crisis rather than a role

model to be followed. In the context of this dissertation, the ORM is often addressed as

a paradigm. Therefore it is important to clarify the definition of scientific paradigm and

confront it with the events that triggered the ORM.

The concept of paradigm by Thomas Kuhn in the The Structure of Scientific Revolu-

tions [Kuh96], can be concisely defined as the practices that define a scientific discipline

at a certain historical period, greatly influenced by socio-cultural factors. The follow-

ing characteristics and exerts of the same book present some relevant factors of Kuhn’s

definition of the term paradigm:

1. There is no paradigm change without a crisis. Kuhn states that “they do not

renounce the paradigm that has led them into crisis” [Kuh96];

2. Replacing an old paradigm for a new requires that both are compared together.

Kuhn states that “the decision to reject one paradigm is always simultaneously the

decision to accept another, and the judgement leading to that decision involves the

comparison of both paradigms with nature and with each other” [Kuh96];

13

2.3. ORM as a Paradigm

3. Paradigms change in a cumulative way and are built on top of older paradigms

and knowledge. Sudden changes make incompatible paradigms. Accordingly, Kuhn

asserts that “non-cumulative developmental episodes in which an older paradigm is

replaced in whole or in part by an incompatible new one” [Kuh96];

4. The success of a paradigm is dictated by how well it is accepted by the community.

Likewise, Kuhn foresees “the success of a paradigm is dictated by how well it is

accepted by the community” [Kuh96];

5. “Research under a paradigm must be a particularly effective way of inducing paradigm

change” [Kuh96];

6. “Incommensurability” of a paradigm makes the new and the old paradigms incom-

patible and not measurable against each other for old problems may become less

trivial or other limitations rise [Kuh96]. Despite apparently the item 2 suggests

the opposite, in here Kuhn affirms that paradigms should not be compared as the

results can be misinterpreting when the end is to rate one as better than the other.

That is because it is likely that they are measured against incompatible problems

from different times, areas or even disciplines;

7. Paradigms transform a scientist’s view of the world for they produce expectations

that can and often obscure perception. Kuhn states that “literally as well as

metaphorically, the man accustomed to inverting lenses has undergone a revolu-

tionary transformation of vision” [Kuh96], so it is valid to say a paradigm may skew

observation;

8. Paradigms change the scientists’ workbench, for as Kuhn recalls “until that (Galileu

pendulum) scholastic paradigm was invented, there were no pendulums, but only

swinging stones, for the scientists to see. Pendulums were brought into existence by

something very like a paradigm-induced gestalt switch” [Kuh96];

9. Past data can predict future data and thus different paradigms become compara-

ble as working them against the same data. This is because data can generate

ambiguous impressions and thus the paradigms change while the data persists;

10. Tests or verifications are often the tools for competing paradigms to win or loose

the acceptance of the scientific community. As Kuhn states, “testing occurs as part

of the competition between two rival paradigms for the allegiance of the scientific

community” and “verification is like natural selection: it picks out the most viable

among the actual alternatives in a particular historical situation” [Kuh96];

14

2.3. ORM as a Paradigm

11. According to Kuhn, to make a successful communication of the conversion to a new

paradigm is to: claim to “solve the problems that have led the old one to a crisis”;

claim to entirely new predictions and claim to be “’neater’, ’more suitable’ and

’simpler”’ with better aesthetics than the old paradigm [Kuh96];

12. It is important for the success of a paradigm to make feel the “new proposal is

on the right track” for a bright future. This can be sought through “personal and

inarticulate aesthetic considerations” [Kuh96].

The factors that lead to the rise of ORM, can also easily fit Kuhn’s definition of

paradigm. The ORM paradigm emerged in a time of crisis, caused by the problematic

practice of using both the object and the relational paradigms together in the same appli-

cation (analogous to item 1). Rather than renouncing to either the relational paradigm

or the object paradigm, the ORM focuses on coupling the two. Thus, the ORM paradigm

attempts to please the most communities (analogous to item 4).

The ORM arose as a paradigm middleware, rather than a replacement of old paradigms.

A different course was travelled by the object paradigm which replaced, at some point,

the procedural programming. However, the object paradigm and the relational paradigm

had to be compared with each other in order to give birth to the ORM, and so that all

three paradigms can coexist. That is analogous to item 2 but not necessarily with a full

replacement of paradigms. That is, the old practices use relational paradigm to develop

most of the application whilst the new ORM provide a way of building more complex

domain models and applications but still use the relational paradigm at the bottom layer

with a certain abstraction level. So, it is valid to say that ORM is a cumulative paradigm

change (analogous to item 3).

On the other hand, other approaches such as the OODBMSs do allow the applications

to reject the relational paradigm and only use the object oriented paradigm. However, the

lack of mathematical foundation and robust standards for object persistence from both

OODBMSs and the object paradigm itself, constitute a strong argument that yet there

is no replacement for the relational paradigm to provide efficient data persistence.

Also, to define an object persistence paradigm without borrowing ideas and experience

from the relational paradigm would most likely be a huge mistake (analogous to item 3).

In the end, such sudden change would pose a major expensive restructuring process of

many applications built on top of relational tools and paradigms.

Intensive research on the relational paradigm (SQL standards, Oracle keep up with new

features, etc.) and the object paradigm (Gang of Four (GoF) design patterns, Patterns

of Enterprise Application Architecture (PoEAA) patterns, etc.) influenced many changes

15

2.3. ORM as a Paradigm

throughout the last couple of decades including the ORM (analogous to item 5).

Despite the object and the relational paradigms are not measurable against each other,

it is possible to compare the two practices of:

• Predominantly using the relational paradigm for designing data and application

code;

• Using the relational paradigm for the persistence, the object paradigm for applica-

tion code and the ORM paradigm for mapping both.

Both methods may be comparable as more or less efficient against different problems

which depends on a number of variables (e.g. the technologies, the software infrastruc-

tures, know-how, etc.). For instance, a data intensive application that uses mostly reads

and writes to the database, as it implements a simple model with few business logic, will

likely perform better with a relational paradigm. On the other hand, the object model is

more efficient for business modelling of complex domain models, especially as they grow,

which can make the second method a better choice for such cases. Time is also an im-

portant variable, because before Hibernate ORM framework, the second method was not

very popular. Thus, as the two methods deal with different limitations, they cannot be

measured in a single variable (analogous to item 6).

For some time, the two methods above, have been competing with each other by

running various tests capable of measuring speed, complexity, flexibility among other

variables. The winner often achieves the most acceptance from the scientific community

(analogous to item 10).

Throughout decades of evolution, the relational paradigm became expert in solving

persistence problems. Thus, possible future paradigms that deal with persistence will

have much to learn from the past researches of the relational paradigm (analogous to

item 3).

When the relational paradigm was chosen on the 70s among other paradigms (network

and hierarchical) it was mostly because its simplicity was enough to solve the problems

of that time. Today, most problems are complex enough to consider other paradigms like

the object oriented and the ORM (analogous to item 9).

The popularization of the relational paradigm brought a new view of the world. There-

fore, today many developers use a relational approach for every problems even those that

are not well suitable for such paradigm (analogous to item 7). The same happens in the

ORM paradigm: there are problems not complex enough to require an object oriented

approach but most developers still decide to adopt an elaborate ORM framework as their

one and only solution for all the situations (analogous to item 7).

16

2.4. The ORM Commitment

On the other hand, such paradigms offer a new set of concepts, patterns and tools to

orient and enhance developers work, that did not exist earlier. For instance, before the

object oriented paradigm was invented, the ORM was not even a problem (analogous to

item 8).

The items 11 and 12 are marketing strategies that much resemble Steve Jobs Apple

presentations. The ORM researchers also claimed to solve the crisis of matching two very

different paradigms. Thus they provided practices and tools to generate new code that

could be simpler, better structured and easier to maintain than the old one. From very

early, successful ORM frameworks such as Hibernate or Entity Framework (EF) made the

developers believe of its future success.

Additionally, this dissertation describes a set of patterns and practices to strengthen

the ORM theory and by all means, it suggests that ORM can be called a paradigm.

2.4 The ORM Commitment

In Software Engineering it is common for projects to reach a point where all the investment

made by then can and often must be discarded. This can happen mainly due to the restless

advances in frameworks and other tools or new patterns and methodologies that support

software developers today. At the same time, also when the course of things tends to

not provide the expected outcome. With all the effort and the work already paid off,

a dilemma emerges: if it is worth to discard all the investment made so far and adopt

new methods thus sacrificing short term gains for long term whose success is not yet

ensured. This step is of major importance for it can be critical to the rest of the project

and is often handled by high ranked developers. Therefore, it needs to be guided through

wisdom, experience and sense of responsibility. At this point and as the long term gains

are never obvious, the working teams tend to manifest resistance to both technological

and methodological changes.

Ted Neward’s “Object/relational mapping is the Vietnam of Computer Science” anal-

ogy [New06] is known to have risen perplexity, dispute and lack of confidence among the

developers community. His article circles around the ORM commitment, often comparing

it to the Vietnam War. Its subject-matter strives for the recognition that the decision to

step onto the ORM path leads to a risky path where compromises will have to be made.

A path that will always require investments of some degree and yet does not provide a

“clear exit strategy” [New06].

This section describes a group of major ORM problems, or limitations, as Ted Neward

commonly refers to. Some solutions to those problems are also introduced in here.

17

2.4. The ORM Commitment

2.4.1 Inheritance

Despite Relational Databases (RDBs) not supporting inheritance, at first this mapping

problem may seem of simple solution. Apparently every object maps to a table and its

fields to columns, type string to varchar and so on. Yet complexity raises when the

developer seeks for polymorphism in the object model. Thus, mapping inheritance into

the relational world does not present one clear solution but three strategies for different

situations: table-per-class, table-per-concrete-class and table-per-class-family.

strings

Guitar

holes

Ocarina

serialNumber

scales

Musical Instrument

pickups

Electric Guitar

Figure 2.1: Hierarchy class diagram example

The class diagram of Figure 2.1 expresses the domain of a music store. Below the

three different strategies are applied to map this object oriented model into a relational

model of tables.

2.4.1.1 Table-per-class

The table-per-class (refer to class table inheritance in [Fow02]) strategy explores the

proximity between objects and relations by mapping each table to a different class with all

the columns mapped directly to fields. It is the less efficient inheritance mapping strategy

for most cases and thus it is often avoided by the developers due to the following reasons

[Fow02]:

• To retrieve a full object instance, it is required at least as many join operations as

levels of the hierarchy and throughout as many tables;

• Refactoring of fields up or down the hierarchy results in costly database schema

18

2.4. The ORM Commitment

changes (create X column in table A, transfer all data from column X of table B to

table A and then delete column X of table B);

• It generates a bottleneck for the superclass table due to frequent accesses;

• More complex ad hoc queries.

On the other hand, this strategy provides a clearer table schema and a highly nor-

malized form of data. Hence it wastes less disk memory and allows the DBA to better

understand the domain model. Also it may be a more suitable solution if there is a high

variability of object fields in the hierarchy.

Musical Instruments

PK serialNumber

 scales

Guitars

PK,FK1 serialNumber

 strings

Ocarinas

PK,FK1 serialNumber

 holes

Electric Guitars

PK,FK1 serialNumber

 pickups

Figure 2.2: Relational model of table-per-class strategy example

The solution given by Figure 2.2 for the test case presented early, delivers a table per

class mapping for the music store domain model. As expected, this relational model looks

very alike the object model. It is common to name tables in plural and objects in singular

forms as explained in the section 2.2. The arrows in Figure 2.2 do not represent inheritance

like in the object model but rather the one and only kind of association possible among

tables: the foreign key constraint (see the section 2.4.2 for mapping associations).

This strategy comes with two challenges: how to link the tables and how to query in

the most efficient way possible. Figure 2.2 suggests all the tables share the same primary

19

2.4. The ORM Commitment

key serialNumber, so that the rows of different tables that belong to the same object

can be identified. Thus, the Musical Instrument table contains a row for each row of

the tables directly below.

For instance, a Guitar table row of serialNumber 100 has a foreign key constraint

to the Musical Instrument table row of the same key. In the same way, the Electric

Guitar table row has a constraint on the serialNumber to the Guitar table row. Hence,

the same key lives in three different tables at the same time. Plus, to prevent inconsis-

tencies, there is often the need for two foreign key constraints which slows down inserts

and deletes. Therefore, to retrieve a full object instance of an Electric Guitar, at least

two join operations are needed.

Making a call for each table is not efficient mostly due to the impact on start up and

tear down of the SQL processing and network overheads. On the other hand, multiple

joins can heavily slowdown the database, mostly restrained by the limited memory size

and slow disk I/Os. The database optimizer often opts for multi-pass algorithms, in such

cases, with high disk I/O cost (see appendix A for details).

For example, if a customer of the music store wants to browse the electric guitars, it is

known which subtable to query. However, if he wants to browse all the musical instruments

in the store that have a specific number of scales, the query must perform multiple outer

joins (slower than inner joins) among all the subtables in the hierarchy, which can be very

inefficient. An alternative is to only query the Musical Instrument table first and then,

join the filtered rows with the relevant subtables, although that requires multiple queries.

However, the model in Figure 2.2 does not permit one row of Musical Instrument

to know which is its relevant subtable. Thus, a solution to avoid performing outer joins

with all the subtables is to add a discriminator column to the root table for identifying

which subtable that row should join in the next step. While this increases the speed when

loading a single object, if many rows are managed, the required multiple queries may

prove slower than a single query with various outer joins as in the initial approach.

Loading objects in the mapping layer code, using this strategy, is not straightforward.

In case the query loads objects at the bottom of the tree (e.g. Electric Guitar), it knows

which class to instantiate as well as the relevant tables to join until the root (provided by

the static mapping information). However, in the multi outer join scenario (e.g. loading

all the musical instruments) with no discriminator, it is impossible to know which object

to instantiate (either instantiate an electric guitar, a guitar or an ocarina) unless some

logic is added to the SQL code providing such information.

20

2.4. The ORM Commitment

2.4.1.2 Table-per-concrete-class

The table-per-concrete-class (refer to concrete table inheritance in [Fow02]) strategy is

similar to the first, except that all superclasses in the hierarchy are not mapped into

tables, only leafs of the tree are. Thus the number of query join operations required

is reduced, but on the other hand it reduces data integrity. As the superclass is not

mapped into a table, all its fields will be replicated for all the leaf tables, thus causing

denormalization. Also, from the database schema, it is impossible to know which tables

belong in the same hierarchy.

One issue about this strategy is that the keys among all the tables of the hierarchy must

be unique. If two rows of different tables share the same primary key, there is a conflict

of data integrity. This cannot be solved by the primary key uniqueness. Eventually, it

gets worst when different systems use the same database. This can be solved either using

triggers to compliment consistency rules (a slow option of last resort) or composite keys

that contain an identification of the table.

Therefore this strategy presents the following advantages and disadvantages [Fow02]:

• Each table has no irrelevant fields;

• No joins are needed to retrieve a full object instance;

• A table is only accessed when the concrete class is accessed, thus preventing bottle-

necks;

• The primary key uniqueness is difficult to implement;

• The implementation of a relationship in an abstract class must be mapped to all its

leaf tables, which is not straightforward;

• To refactor fields up and down the hierarchy still poses a schema change even though

with less modifications than the table-per-class strategy;

• Field updates on a superclass requires schema updates on all the relative leaf tables

unlike in the table-per-class strategy;

• To query the superclass forces outer joins throughout all the tables which is expen-

sive. The same occurs in the table-per-class strategy.

In table-per-concrete-class strategy, the music store object model would have the Mu-

sical Instrument and Guitar as abstract classes. This model is mapped in three leaf

tables as presented in Figure 2.3. Any new implementation on the abstract classes would

21

2.4. The ORM Commitment

Guitars

PK serialNumber

 scales

 strings

Ocarinas

PK serialNumber

 scales

 holes

Electric Guitars

PK serialNumber

 scales

 strings

 pickups

Figure 2.3: Relational model of table-per-concrete-class strategy example

have to be mapped to these three leaf tables. For instance a relationship on Musical

Instrument would probably require for all three leaf tables to acquire a foreign key con-

straint. For such cases, the table-per-class strategy would provide easier manageability.

2.4.1.3 Table-per-class-family

The easier strategy is table-per-class-family (refer to single table inheritance in [Fow02])

for it maps all classes in the hierarchy into a single table. There is a discriminator column

per hierarchy level to identify which class maps that table row. This approach presents

the following advantages and disadvantages [Fow02]:

• No joins are required to retrieve data, so, it is faster to load an object instance;

• The refactoring of fields up and down the hierarchy does not require database schema

changes;

• Irrelevant columns are left empty which can be confusing to use ad hoc SQL queries,

if there are frequent null values in the table;

• It can involve a large number of null values in the tables resulting in denormalization

and constraint problems. Also indexes and order by clauses can get inefficient in

columns filled by null values;

• The waste of space lead by unused columns can be a problem depending on the

efficient compression features of RDBMSs;

22

2.4. The ORM Commitment

• Greater table growth rate than the linear of the other strategies. Eventually the

table size is too large to manage many indexes and frequent locking, thus recurring

to other strategies for data partitioning and caching;

• The namespace is the same so the fields must be all have different names.

Musical Instruments

PK serialNumber

 discriminator_level1

 discriminator_level2

 scales

 strings

 pickups

 holes

Figure 2.4: Relational model of table-per-class-family strategy example

Figure 2.4 presents the single table structure that maps to the music store object

model using the table-per-class-family strategy. There are two discriminators, one for

each level of the hierarchy. Thus, if an electric guitar is loaded, both the discriminators

are verified so that the correct class is instantiated. If the class name is embedded into the

discriminator value, it can be used to instantiate the class. On the other hand it wastes

more disk space and memory to load than using small codes.

Application developers often decide for the table-per-concrete-class or table-per-class-

family strategies mainly due to performance considerations. Although, in some cases, the

best solution may be to combine different strategies. On the other hand the table-per-

class is what keeps the cleaner relational model and does not aggravate much the job of

the DBA.

2.4.2 Associations

Mapping associations represents a further challenge even though both the object and the

relational models support it at some level. However, business requirements tend to be

more complex than that. Thus, domain models and Unified Modeling Language (UML)

class diagrams describe the most detailed form of association with the three following

variables:

• Direction of the association. It can be from A to B, B to A or bidirectional;

• Cardinality or multiplicity in both ends of an association;

23

2.4. The ORM Commitment

• Strength, which defines simple associations, aggregations and compositions between

objects from the weakest to the strongest.

To implement such variables and grant data integrity of the specified domain model,

the object model requires code at business logic level. While objects are navigable through

its associations, relations are not. They use SQL joins to associate with other relations.

Also data integrity is granted at the level of foreign key constraints or with triggers that

require additional programming code.

Objects only understand unidirectional associations in which the class that performs

the association is the only one whom has knowledge or is aware of the association itself.

One bidirectional association can only be achieved through two unidirectional associations.

For instance, the object A has a reference to B and B has a reference to A. This is an

example of two unidirectional associations with cardinality one-to-one or one bidirectional

association.

In the relational model the notion of directional associations does not exist. That is

because associations are established at the level of foreign key constraints over singular

columns and not the relations as a whole.

Typically, in the object model, associations are categorized with three different kinds

of cardinality: one-to-one, one-to-many and many-to-many.

Employee

Music Store

1

*

Owner

1 1

Customer **

Figure 2.5: Class diagram of the object model for the music store with three kinds os
associations

Figure 2.5 is the class diagram representation of an object model for the music store

containing three kinds of bidirectional associations with different strengths. This diagram

provides the following three associations:

• One-to-one. One Owner can only own one Music Store and one Music Store can

only have one Owner. Also the owner is free to own different kinds of stores or other

24

2.4. The ORM Commitment

things outside the model. This association is of medium strength and is called an

aggregation;

• One-to-many or many-to-one. One Music Store is composed of many Employees.

This means that if the music store ceases to exist, the elements are no longer

considered Employees as they become unemployed. Also one Employee can only be

working in a single Music Store at once;

• Many-to-many. One Music Store can have many Customers. These Customers

are shared throughout all the Music Stores which means one Customer can attend

various Music Stores and as the association is weak, other things outside the model

as well.

To implement the bidirectional one-to-one association (aggregation) between the Mu-

sic Store and the Owner in an object oriented programming language, two unidirectional

associations are required between both the classes. Thus, the Music Store class has a

reference to a single Owner in the class attributes. The opposite had to be implemented as

well. To instantiate such an association, both references have to be filled with the respec-

tive object addresses or pointers. Because every object has its own identity (address or

pointer) independently from its fields, two objects with the same fields can coexist hence

there is no exclusive data constraint in the association. Thus, the object model can easily

fall within inconsistent data.

Due to a certain ambiguity on the strength of associations and the lack of object

oriented mechanisms to enable data integrity, this has to be manually implemented in

business logic code. For instance, when associating an Owner to a Music Store, the logic

code has to check if the Music Store is already owned by some Owner and if that owner

does not already exist in the data store. When deleting an Owner, the reference to its

Music Store has to be eliminated as well.

The bidirectional one-to-many association between a Music Store and its Employees

requires two unidirectional associations as well:

• One-to-many unidirectional association between Music Store and the Employee.

This means the Music Store has a collection of Employees inside;

• One-to-one unidirectional association between the Employee and Music Store. Each

Employee has a reference to its Music Store.

Data integrity ought to be here again checked with business logic code. If a Music

Store is deleted, all its Employees should also be deleted.

25

2.4. The ORM Commitment

The bidirectional many-to-many association between Music Stores and Customers

is implemented with two unidirectional one-to-many associations. Thus, the Customer

class has a collection of Music Stores and a Music Store has a collection of Customers.

If one Customer is deleted, all its references should also be deleted.

The relational model works differently though. Data integrity can be ensured at some

level. As the identity of a tuple is its primary key, which is unique, repeated tuples

are not allowed. Also, the foreign key constraint associates two relations together and

thus already prevents data inconsistency. The associations of the example above can be

mapped to the relational model as demonstrated in Figure 2.6.

Customers

PK customer_id

Employees

PK employee_id

FK1 store_id

Owners

PK owner_id

Music Stores

PK store_id

FK1 owner_id

Customers & Music Stores

PK,FK1 store_id

PK,FK2 customer_id

Figure 2.6: Relational model for the music store with three kinds of associations

The one-to-one association between Music Store and Owner can be mapped with a

foreign key constraint as in Figure 2.6. Here, the relation Music Stores references the

owner id. This approach does not prevent one Music Store to have multiple Owners.

Two crossed foreign key constraints could prevent such cases. Although that would require

a drop of those constraints every time an Owner or a Music Store was created which

could effect the performance of the RDBMS. Another alternative would be to have all

the columns of the relation Owners in the Music Stores and thus abandon the relation

Owners. This is the most correct approach if the association was a composition. Although

it would hinder flexibility and extensibility to the model and thus, if one Owner was to

own other things than Music Stores, that would be a problem. The one-to-one and

many-to-one associations have the same implementation in Figure 2.6.

The one-to-many association is also implemented with a foreign key constraint as in

the case above. Many tuples in relation Employees can reference to the same tuple in

26

2.4. The ORM Commitment

Music Stores through the store id primary key.

The many-to-many association is represented in the relational model with a new in-

termediary relation. In Figure 2.6, this new relation is Customers & Music Stores with

a compound key containing two references, via foreign key constraints, to both the re-

lations Customers and Music Stores. Thus a Customer can be associated with many

Music Stores and vice versa.

Note that the multiplicity of the first edge of a unidirectional association in an UML

class diagram is useless at the object implementation level.

Mapping object associations to and from the database can be implemented with the

Fowler’s patterns of Foreign Key Mapping (one-to-one or one-to-many), the Association

Table Mapping (many-to-many) and the Dependent Mapping (composition) [Fow02]. The

Lazy Load pattern is also common here to improve efficiency.

2.4.3 Schema complications

Another problem lies on the data schema itself. A primary goal that empowers an ORM

tool to allure so many developers is persistence ignorance. These tools step on to database

ground and soon take control of both the database schema and the application persistent

object schema. This conflict is ascribed by Ted Neward in [New06] as the Dual-Schema,

which raises a schema ownership problem.

Actual software development is deeply settled to work among relational databases

and brought with it new roles such as DBA. The DBA takes responsibility for database

performance and stability and for that he requires freedom to work the database schema

whenever needed, e.g. do some refactoring and denormalization.

On the other hand it is frequent that developers step onto legacy applications and

frameworks dependent on the same database schema that they want to deliver to an

ORM tool. That can be either a very ambitious project or a disastrous one.

This is indeed a fact that tends to be neglected, for these tools are so keen to allure

developers into model driven software, abstracting too far from the real world at times.

Problems often happen when an application is built from scratch with an ORM tool and

as the system grows, other applications can slip into using the same database but without

the same abstraction.

It is important to acknowledge that any changes on one schema will reflect changes

on the other. Here, the role of DBA must be reconsidered to progress on to ORM admin-

istration as well mostly because an ORM tool is not constrained to a one way mapping.

It rather generates database updates at every variance it finds on schemas. If this work

27

2.4. The ORM Commitment

is neglected, it can compromise the whole application it supports.

However, it is no easy job to stand between two schemas and apply optimizations to

both while enduring the impedance mismatch. Although, it is long gone for most software

developers the time when designing data was a simple exercise of designing relations.

As ORM tools like Hibernate preserve a good separation of concerns between what

is data domain and logic domain, it becomes easy for the DBA to work with the data

domain and the business developer to work on the logic domain together. Thus, the DBA

should be responsible for managing the mapping between objects and relations, write or

optimize some more complex queries and perform his old job as well. This way, he can

change the relational schema and the ORM layer to map the same object schema while

not compromising the work of business developers.

In the end, ORM tools can be applied to legacy databases, which is frequently called

reverse engineering. Although that is often a bad augury to architectural liability.

Regardless of these schema complications, it is all a matter of policies, planning deci-

sions and impedances of settlements and paradigms.

2.4.4 OID (object identity)

Identity is another mismatch between relations and objects. It brings the issues of data

exclusivity and integrity, already described above in regard of the associations debate.

Identity in objects is represented by a pointer or an object address, two different

objects containing the same values are still different. Thus in Java or C# the operator

== and the function equals coexist to solve that problem. The first compares object

addresses and the latter the object attribute values.

In the relational model, the identity is represented by a primary key, which is a unique

and immutable identifier for a table row. Also, it is important to acknowledge the following

three characteristics [Fow02]:

• A key may be meaningful when it specifies something like a Social Security number

or meaningless which is often a random number not intended for human use;

• A key may be simple or composite. The latter is represented by multiple fields and

is commonly meaningful but requires special code handling such as an extra key

class;

• There are database-unique keys and table-unique keys. The latter is the most used,

however the first allows every row of the database to have a unique identifier. This

can ease caching of different objects in the application.

28

2.4. The ORM Commitment

The table-per-class-family poses some limitations with keys as it was explained in

2.4.1.1. Also, when multiple databases are used in the same application and object schema,

it is likely to encounter key collisions if some preventive measures are not taken.

Common solutions for using meaningless keys lies on using auto-generated fields or

database counters (sequences) that auto-increment the column value. Then have that

column mapped to an identity attribute in the object itself.

However, one problem with auto-generated keys in the database, is that the primary

key is only generated when the data is committed. That does not allow the application

to know which key was generated in the first place. In most cases, the application runs a

single transaction where it inserts a person in a table and its profile or bank account in

other tables that have foreign keys pointing to the first one and only commit all changes in

the end. Because there is no key before committing data to the database, it is impossible

to code some logic with it before persisting and loading the persisted object.

Another solution consists of having separate key tables that contain the next keys

available for each relevant table. Thus, the application has to read that separate key

table before inserting a row in the relevant table. Concurrency problems may arise when

two clients read the same next-key before using it to insert a row in the relevant table.

This can be prevented by using a procedure that increments the next key value whenever

it is read.

Keys can be generated within the application as well. For that it is common to use

the Globally Unique Identifier (GUID) provided by the platform API which grants its

uniqueness in all machines. Although, they are big, eventually they become hard to read

or debug and slow in performance.

As the object paradigm does not provide data constraints like the relational paradigm,

the developer has to implement some additional measures in the Domain Model. One of

them is to make the object identity field immutable or read-only. This can be solved

omitting the setter in Java or having a read-only property in .NET. Then, implement a

constructor with the object identity as parameter and omit or make the empty constructor

private.

These problems and solutions only take place in a Domain Model (see 3.1.3). More

details on these can be found in Fowler’s Identity Field pattern [Fow02].

One important feature provided by relational databases is the isolation levels and

transactions. Once the entity is retrieved from a database row into an object, it no longer

takes advantage of the ACID control. At this stage the same entity can be retrieved again

and coexist in the same application as another object instance in different persistence

context or session (e.g. Session or EntityManager). Whenever the entity object wants to

29

2.4. The ORM Commitment

return to the table row for an update, the same row could already have been updated.

Thus, with an optimistic locking strategy, only the last update will take effect.

This commonly brings headaches form transaction control and locking policies, al-

though it is not so much a particular ORM problem. Nevertheless, these ORM tools

often provide plenty caching support to amplify this problem especially in clustered en-

vironments.

2.4.5 Data retrieval

Querying data from a database without using SQL may seem unreasonable for many

developers, today. That is because many infrastructures are built on pillars of SQL, with

SQL oriented business, reporting and frameworks. Also, throughout decades of SQL,

many developers have been assimilating the relational paradigm for as long as they begun

to use it for all purposes.

One problem of the ORM is make the object schema queryable, so that it can provide

powerful queries enough to compete with the SQL features and still be mappable to SQL.

Frequently, ORM tools have more than one query mechanism, which provides different

levels of flexibility, speed and simplicity. There are three known methods for querying

objects in the ORM paradigm: Query-By-Example (QBE), Query-By-API (QBA) and

Query-By-Language (QBL).

QBE consists on using an object as a template to retrieve other objects like that one.

It is the simplest and most high level strategy for it adopts the philosophy of giving an

example to demonstrate what the query result should look like. However it fails for more

complex operations which require a larger number of QBE operation calls or queries to

the database at once and thus sacrificing performance. This strategy can also pose a

problem for the domain objects since, at some degree, there will be domain objects with

null fields that, according to business logic, cannot be nullable.

The QBA consists on applying sub-queries to the raw result in an object API, thus

filtering conditions in a criteria like way. Therefore this is the most verbose strategy and

is easily better supported by any Integrated Development Environment (IDE) due to an

object oriented standard API. Even though it can have some features similar to SQL, it

still lies within the scope of object paradigm, granting a higher flexibility than the QBE

strategy. However, join operations are difficult or in many cases impossible to achieve with

QBA. Although, it is common to encounter some lack of compile validation support for

this strategy. Hibernate Criteria API and Language Integrated Query (LINQ)-to-Entities

(EF) are two examples of QBA.

30

2.4. The ORM Commitment

QBL is the most flexible and lower level strategy to query the object schema. It is

also known as SQL for objects. Two examples of such languages are Hibernate Query

Language (HQL) (supported by Hibernate and NHibernate) and Entity Query Language

(EQL) (provided by EF). QBL is an entirely new language with specific commands, in

a way very similar to SQL, featuring only a subset of SQL itself. For that matter it is

often questioned if all the trouble to change for a query language so close to SQL but with

fewer features is worth the trouble. One advantage of QBL is that it provides smaller

and simpler queries, allowing to navigate throughout the object schema without worrying

about projections or join keys, unlike the SQL, which on the other hand, may originate

two or three times larger and more complex queries.

SQL functions or stored procedures are not well embraced by ORM tools neither its

community mostly due to separation of concerns. Furthermore, QBL is not commonly

integrated with IDEs, and is used by developers without any syntax highlighting, compile

validation or debug support, hence being more susceptible to bugs. Nevertheless even

though joins are available in most QBL engines, they are a relational feature which is

often not recommended to use. When join operations become a common necessity for

querying an object schema, either the object model lacks relevant associations or those

scenarios are better suited to a relational model.

2.4.6 Partial-Object dilemma and Load Time trap

It is common, especially in distributed environments (e.g. client-server web applications)

to optimize bandwidth. Therefore the transferred data must be reduced to the minimum

amount needed by the end point (e.g. client application that requests data often) and

still be aware of the overhead each round-trip provokes.

Therefore, it is important to predict the average amount of data to be required from

the end point. That can be calculated through statistical analysis and probabilities, in

the same way Online Analytical Processing (OLAP) calculates data trends for databases.

Note that there is no automatic analysis and optimization of object schemas and business

logic code yet, which has to be a manual process of business modelling.

The real load time problem lies on the fact that, for instance, when retrieving an

object from database that has various fields and associations with other objects and so

on, the loading time of that object can be very inefficient, especially if the intention was

to only use a small subset of the fetched data.

Thus, optimizations can be made so that objects are instantiated with only the basic

field types (integers, strings or booleans) loaded eagerly and the associations (collections

31

2.4. The ORM Commitment

or single references to other objects) loaded lazily or on demand. That it, at first the

object comes with only the relevant fields assigned and the others are filled as the user

accesses them via a Proxy. This is commonly called the Lazy Load pattern (by Fowler

[Fow02]) which can be implemented using other known patterns such as Lazy Initialization

(by [BW99]) or Virtual Proxy (by GoF [GHJV95]).

The Partial-Object has lured many developers to falling into a trap. One way of

slipping into the trap is to fall for the N+1 query problem. For instance, consider the

example of Figure 2.5 and focus on the one-to-many association between a Music Store

and its Employees. When a Music Store is partially loaded, each has a lazy collection

of Employees that is not loaded at first. If all the Employees are accessed eventually,

they will have to be loaded one by one. Thus 1 trip to the database for loading the Music

Store and N trips for its Employees.

Hence if the intention was to use all the data in the first place, it is more efficient to

spare round-trip overhead time and sacrifice bandwidth at the beginning of the operation

or even use the mean of both through a batch size in some situations.

For basic type fields, there is the Ghost object [Fow02] which loads only the object

id at first and when any of the other fields is accessed, all the fields are fetched (1+1

database calls).

ORM tools face this problem in two different policies: convention over configuration,

configuration over convention and the various tools mostly decline for one side or the

other. Whether to use one or another strategy and the appropriate ORM is up to the

developer, even though he may encounter unsuitable use-cases for the chosen approach.

The other way of slipping into the Partial-Object trap is to fall for the detached ob-

jects problem. While an object is attached to a session of the ORM, it lazily accesses

to data via a proxy which is managed by the same session. However in N-Tier architec-

tures, these objects are often sent to remote tiers such as client Graphical User Interfaces

(GUIs). Thus, they become detached objects in a foreign environment where the session

is unreachable. Hence there is no proxy to perform lazy fetch operations. This problem

is often solved by forcing the object to load every field before being sent, or using Data

Transfer Objects (DTOs) for data transfer between application tiers, which takes a more

serious separation of concerns but with annoying extra code to manage.

Another problem is handling cyclic references when loading objects. Assuming that

the object Parent has a a set of references to its children and each Child has a reference

back to its Parent. Loading this object graph can reach to the point where one Parent

loads its children and each Child loads its Parent again and so on. In order to prevent

this problem, loading a Parent can be performed with the following methods:

32

2.4. The ORM Commitment

• Eager loading runs an SQL query with a join between the corresponding two tables.

This query can either be manually defined or constructed via a graph algorithm

that navigates through all the accessible objects to that Parent. In here, the object

graph is loaded from the query results, in which the same Parent joins with many

Child rows. Thus, that Parent has to be verified in order to prevent many object

instances of it to coexist in the a single client session. This can be achieved with

an Identity Map, caching the Parent’s id and have them checked on every Parent

load call;

• Lazy loading fetches a Parent and only when one of its Child references is accessed

it fetches all the children. Loading this Child implies checking its foreign key to

verify if its Parent is already an object instance. This can as well be done with an

Identity Map.

2.4.7 Transparent Persistence

ORM tools and any other systems that manage persistent objects (e.g. OODBMSs),

strive for transparent persistence. This basically consists of managing persistent objects

and transient objects in the same way. Thus, using object persistence becomes easier and

closer to Platform Independent Model (PIM), so the technological details are kept invisible

from the developers [VZ10]. However in ORM, objects behave differently depending on

its state. Typically an ORM framework provides three object states [BK06]:

• Transient, when the object is instantiated with the constructor and does not exist in

the database. It also does not have any persistence aspects or is out of persistence

context. Its behaviour is like of any other objects as if there was no persistence

mechanism at all;

• Persistent, if it has a representation in the database. It is within the persistence

context and any changes made to it during this time, can be synchronized to the

database. With Lazy Load it fetches data as the associations are navigated;

• Detached, when an object has been persistent before but lost the persistent context,

for instance if it was serialized to be sent to a different application tier. It is not

navigable when it has Lazy Load implemented on its associations and also there are

no incremental changes.

Detached and transient objects often need to be made persistent in order to prevent

unexpected behaviour. That is, an object behaves differently depending upon its state.

33

2.5. Alternatives to ORM

This hinders, to some extent, the support for full transparent persistence. Because of

that, a business logic developer cannot entirely abstract from the ORM details.

2.5 Alternatives to ORM

In the last few decades, RDBMSs adopted the strategy of “One size fits all”, thus designing

a generic solution to support all kinds of data-centric applications [Sto05]. For that reason,

RDBMSs have been the conventional database applications elected for a wide variety of

purposes. Recently though, as demonstrated in [Sto05], RDBMSs are a poor fit for many

situations.

Scalability has grown an increasingly essential requirement for the Web industry, which

forced companies like Amazon or Google to abandon the traditional RDBMSs for the Not

only SQL (NoSQL) databases. Other solutions consist of distributing caching layers on

top of RDBMSs or scalable Online Transaction Processing (OLTP) RDBMSs.

In fact there are two kinds of scalability: the vertical and the horizontal. The for-

mer means to add capacity to a single machine, often done by adding CPU cores and

increasing memory. The latter means to add more machines. Every database product is

vertically scalable. However, hardware upgrades on a single machine are limiting. So, to

horizontally scale a RDBMS is something that can only be implemented on the client side

and can be accomplished through sharding (dividing data into horizontal partitions) or

data replication. Despite the many challenges, Facebook and Twitter have managed to

do this by distributing MySQL database servers.

Moreover, to distribute a system in the network, it is likely that an asynchronous

model will be required, where there are no clocks available. This allows the existence of

stale data and thus, according to the article [GL02], it is not possible to simultaneously

provide a system that ensures consistency, availability and partition-tolerance.

The NoSQL term can be deceiving for it categorizes databases that do not follow the

relational model rather than having direct effect on the SQL itself. Moreover this kind of

databases is usually known for the following characteristics [Cat11]:

• Horizontal scalability, data replication and distribution over many servers or nodes;

• Simple call API or protocol in exchange for SQL;

• Efficient use of indexes with scalability, via distributing and replicating the caching

of objects over multiple nodes;

34

2.5. Alternatives to ORM

• Weaker concurrency model through eventual consistency and the abandonment of

ACID transactions;

• Dynamic or no-predefined schema with no downtime for schema updates, thus im-

proving extensibility;

• High availability through transparent failover and recovery.

NoSQL products like Cassandra and Voldemort enable the automatic partition of data

by adding more machines, thus taking care of rebalancing the cluster. Also, Google’s

BigTable and Amazon’s Dynamo have been scaling to thousands of nodes efficiently.

On the other hand, there has been great effort to make RDBMSs scalable. Some

examples include MySQL Cluster and Oracle RAC. The latter is officially stated to scale

up to 100 nodes. These are categorized as the new RDBMSs and consist of an extra

layer that provides the clustering and high availability environments to the traditional

RDBMSs. Nevertheless, this approach is not new. For a decade, systems like TerraCotta

or GemStone have been already providing a distributed caching layer replacing some or

all RDBMS operations [Cat11]. These systems still support ACID properties, unlike the

NoSQL. Therefore they are not expected to scale well if both the SQL operations and the

transactions span many nodes [Cat11].

Despite the extent of capabilities provided by the many different kinds of systems

above, very few present any support to rival the popular ORM frameworks:

• Some RDBMSs such as Oracle have extended themselves to incorporate ORM fea-

tures so that data can be provided via language specific object APIs;

• Application frameworks like GemStone do provide an object oriented front-end,

although it still manages an ORM layer for keeping object schemas and relational

databases synchronized;

• The main focus for most NoSQL databases (key-value, document and extensible

record stores) is to provide high performance, availability and scalability through

simple, often dynamic data structures. Therefore, complex object models always

require a mapping layer similar to the ORM;

• The NoSQL graph database systems such as OrientDB, save objects in XML like

structures, provide referencing of nodes throughout the graph and perform a simple

mapping to plain objects (e.g Plain Old Java Objects (POJOs) in Java). This

presents a poor alternative to ORM and proves inefficient for complex object models;

35

2.5. Alternatives to ORM

• OODBMS like DB4O are sometimes excluded from the NoSQL category due to

some contrasting characteristics. Although, they truly represent an alternative to

the popular ORM frameworks in some cases. More details are presented below.

These systems can and often are pluggable to each other which enables the design of

confusing architectures. Therefore, at this stage it is important to understand where each

system fits into the whole.

Object-oriented business application

Java or C#

Persistence mechanism

e.g. file systems and formats

Object schema and object instances

Language specific

Object-relational mapping system

Language and database specific

Relational-oriented API
Language specific

e.g. JDBC

Object-oriented API

Language specific

Object-oriented

database server
Language specific

e.g. db4o

Simple API

Language specific
 Relational database server

 e.g. MySQL

Relational schema and tables

NoSQL

key-value

database server

e.g. Voldemort

1

2

3

4

5

6

7

A B C D

NoSQL graph

database server

e.g. OrientDB

E

Figure 2.7: Diagram of the different architectural combinations of databases

Figure 2.7 focuses on N-Tier applications that use object oriented programming lan-

36

2.5. Alternatives to ORM

guages to implement business logic and especially demonstrates where the ORM and the

OODBMSs fit among the other databases. To avoid confusion the distributed features

are ignored in this example where the NoSQL databases are single instance components.

The diagram of Figure 2.7 delineates five parallel architectures in different columns:

• Column A defines an object oriented application that connects to a RDBMS directly

(e.g.Java Database Connectivity (JDBC)). This approach leads to great program-

ming effort when complex object models are required;

• Column B uses the same components as A plus an ORM framework which is still the

most popular and mature approach of ORM paradigm;

• Column C demonstrates that NoSQL graph databases such as OrientDB can be

highly flexible in the sense that they can provide ORM at some level and can use

any other database as a data store;

• Column D proves the simplicity of using OODBMSs which enables a simpler archi-

tecture without change of paradigms along the way. It provides the easiest to use

object API and proves flexible for being able to use other databases as data stores;

• Column E displays a NoSQL key-value database system and a very simple API. It

is likely the faster solution and the most scalable.

Figure 2.7 displays different levels on the left, which means the components of different

columns can be combined or exchanged if they do not overlap levels. For instance, a

RDBMS such as MySQL can have custom pluggable storage engines other than MyISAM

or InnoDB. Interfaces can and have been implemented to support schemaless databases

like NoSQL key-value stores. This approach was used to implement MySQL Cluster so

that it could accomplish scalability. In the same line of thought, the following rather

inefficient example consists of having E6 (Voldemort) plugged into A5 (MySQL) which

then can be used as a data store for C4 (OrientDB) and again serves data to an OODBMS

(D3).

Ultimately, the OODBMSs can be a good alternative to ORM frameworks and RDBMSs

usually when applications must perform extensive reference-following as its data does not

overcome memory size [Cat11]. Some OODBMSs support ACID transactions unlike the

other NoSQL databases although not yet as efficient as the RDBMSs. Horizontal scaling

is also common in these systems which enables distributed reference-following and query

decomposition [Cat11]. Withal, the OODBMSs present the following advantages towards

the RDBMSs:

37

2.5. Alternatives to ORM

• OODBMSs can store highly complex object models including whole collections in

different structures;

• Code and data can be stored and managed together as most object models and

design patterns require the behaviour and state to stay in the same object;

• Object oriented programming languages such as Java or C# can be used to manip-

ulate and query data. Thus there is no need to learn a new language like SQL;

• The data model in OODBMSs often specifies a dynamic schema which eases the

extensibility and management of new features;

• There is only one data model,it can be defined in object oriented programming

languages and there is no mapping between different paradigms like in ORM. This

results in more productivity and avoids the impedance mismatch.

• Objects and the references to other objects are stored together through pointer

swizzling techniques (see below for details about pointer swizzling). This improves

search or traversal time as no join operations are required unlike in the relational

model.

In turn, the OODBMSs present the following disadvantages:

• They still have performance drawbacks and consistency issues towards RDBMSs

which, at the time, makes the OODBMSs a poor choice for data intensive and multi

user applications;

• SQL is widely used for generating reports of relational databases. Learning Object

Query Language (OQL) would be required for object databases. Plus there are very

few graphical reporting applications for OODBMSs;

• Lack of solid mathematical foundation unlike relational databases which are set by

relational algebra;

• Lack of standards. Despite the Object Data Management Group (ODMG) and Java

Data Objects (JDO) standards, they were not adopted by many vendors. Also, the

Java Persistence API (JPA) standard does not mention object databases.

In the end OODBMSs can perform well in mobile applications, prototypes and aca-

demic works or even serving as a caching layer to optimize speed of other databases.

The concepts behind an OODBMS are not any different from those of the object

oriented paradigm. In the early 90s, Kim [Kim90] stated that an object oriented database

38

2.5. Alternatives to ORM

is a collection of objects whose behaviour, state and relationships are defined accordingly

to an object oriented data model. Soon did the OODBMS gain a standard, the ODMG

[CB00], now disbanded. Even though that did not affect OODBMSs progress. The

functionality provided by the various OODBMSs is commonly given by the following

items [VZ10]:

• Persistence. Objects can be made persistent in a number of ways: post-processing

(the bytecode of the class is modified), pre-processing (the source code is modified

before compilation), via a modified virtual machine or by reachability (when a root

object is made persistent, all the objects referenced by it must be made persistent).

Also an object can be in the persistent state, if its data is already stored in the

database or transient state if otherwise. Finally, the concept of transparent persis-

tence consists of hiding persistent code from the application, thus providing a better

separation of concerns for the developers, as it is given by post-processing ;

• Transaction management. The same ACID properties used in the relational theory

are once again an important feature for granting data integrity;

• Recovery and backup management ;

• Concurrency control ;

• Version control and schema management. A schema manager allows the object

database to load specific versions of the object schema as any schema change makes

it evolve or increment its version;

• Indexing. It increases the speed of queries when filtering is applied to iterate over an

indexed field. Thus, a search key is generated for that field and stored in an auxiliary

structure such as B-tree or hashing table because they are faster to iterate;

• Query processing, optimization and OQLs. The query processing has two steps:

compilation and execution. The ODMG standard defines Object Definition Lan-

guage (ODL) (a Data Definition Language (DDL) to define the object schema and

thus increase portability among OODBMSs), OQL (similar to SQL except object

oriented) and Object Manipulation Language (OML) (the API for data manipula-

tion);

• Pointer swizzling, lazy and eager loading. There is a mapping between the in-

memory object and the disk format object. Thus, swizzling is a technique that

converts the references among the objects from the in-memory absolute address

39

2.6. Conclusions

(also known as pointers) to the disk relative address. Among the various methods

for pointer swizzling, the most popular are eager and lazy loading. With eager

loading, the object is loaded as well as all the objects referenced by it. The lazy

loading loads only the object itself, leaving its referenced objects to be loaded only

when actually needed;

• Clustering of objects groups the objects physically (in-memory or disk) so that they

can be loaded faster;

• Optimization features, performance management and monitoring ;

• Cache management. Providing a buffer to cache frequently accessed objects in-

creases their access speed due to avoiding disk access;

• Visual interfaces ;

• Security, authorization and authentication.

Although some of these features are already in use for a long time in RDBMSs, there

are some new patterns and techniques that do not only prove effective for OODBMSs but

also for ORM tools and frameworks.

2.6 Conclusions

ORM is not just a fancy strategy but indeed a real necessity in the enterprise world.

Most applications that follow the object paradigm and do not use any ORM technology

to access relational databases, will still have their custom ORM mechanisms prepared for

specific needs. Even though adopting an ORM tool seems the right approach, the fact is

that there is a risk it might fail.

Furthermore, these tools are not limited by just the basic mapping strategies. They

also strive to enhance performance, scalability, portability and separation of concerns by

providing features such as lazy proxy initialization, Unit of Work, database interoperabil-

ity, version control, caching and N-Tier support.

At this point, it is clear the impedance mismatch and the ORM technologies learnt

to live together, which may incite into a fair amount of doubt when the time comes to

find the most suitable option for persisting objects. Among the various paths to take,

the developer is often recommended to decide for one and only one of the following seven

alternatives in order to better suit his own situation [New06]:

40

2.6. Conclusions

1. Abandon objects totally and avoid the impedance mismatch mainly because ORMs

in some cases may raise more overhead than they save. Use the relational model

both in the client and the server in which the client’s GUI is organized around rows

and tables. Current GUI frameworks fairly ease this practice;

2. Give a 360 degree turn, abandoning RDBMSs completely and instead use OODBMSs.

Thus again avoiding the impedance mismatch, Dual-Schema problem and accept

implications like the disappearance of DBAs and logic in database;

3. Accept the ORM paradigm and manually or by code generation create the mappings

while considering that all the ORM limitations do not pose a problem;

4. Accept ORM for some cases and complement its limitations through direct access

to the Database Management System (DBMS) via JDBC or ADO.NET and still be

aware of the Partial-Object, schema ownership, Dual-Schema and other problems

of ORM;

5. Integrating relational concepts the object oriented programming language, typically

with scripting languages rather than strongly typed. SQLJ for Java and LINQ for

.NET are two examples of this strategy;

6. Integrating relational concepts into objects changing at some level the perspective

of the object oriented paradigm using more relational friendly models with low

impedance mismatch. This may seem a radical approach still it is currently the

most used.

Each of these techniques impacts differently on performance, scalability, cost, appli-

cations behaviour, development time and maintenance and none is best for all criteria.

While some applications work well solely with the relational model, others will grow in

size and complexity becoming easier to manage with the object model.

41

2.6. Conclusions

42

Chapter 3

Design Patterns for ORM

In the context of Software Engineering, the use of Design Patterns was initially proposed

by Gamma et al. [GHJV95], and has become a common practice in modelling software

architectures. The authors proposed a pattern collection which came to be commonly

known as the Gang of Four (GoF) Patterns. Each GoF pattern is a granular design

solution, described in a generic way so it alone, can serve as a guide to implement many

various solutions to fit different problems within the scope of object oriented design.

It is common for those who have not heard about the GoF patterns, to already have

experienced situations when they had to use some of them.

Despite the fact that the GoF patterns are today considered good practices by the

community, each problem is unique and thus may find its best solution outside the scope of

any documented patterns. Sometimes a good solution can even go against a documented

pattern, although it is not very common.

Since the disclosure of the GoF design patterns, other publications arose describing

new design patterns, mostly object oriented. Examples of such are pattern collections by

Beck [Bec97], Alur et al. [AMC01] and Fowler [Fow02] (the PoEAA patterns from the

title of Fowler’s book Patterns of Enterprise Application Architecture (PoEAA)).

The patterns presented in PoEAA are less granular than the GoF patterns in the

sense that they are more specific for N-Tier architectures and higher level design. Also

PoEAA patterns such as Lazy Load, Unit of Work, Query Object and Active Record do

address the Object Relational Mapping (ORM) problems. Thus, this book is an important

reference among the ORM community developers that use and implement ORM tools and

frameworks. Therefore, the PoEAA book is mentioned many times within this section.

After a brief analysis of the PoEAA patterns it is evident that Fowler was influenced by

the early GoF design patterns. He created a contextualization with some low level patterns

called the base patterns which in turn do not differ much from the GoF patterns. For

43

3.1. Domain Logic Patterns

instance the Plugin (PoEAA base pattern) is a customized Factory Method (GoF pattern).

Also the Gateway (PoEAA base pattern) resembles the Facade and the Adapter (GoF

patterns). The Gateway provides an API that commonly wraps code for accessing external

resources. Thus, in a client-server scenario it has to be written by the client of the service.

On the other hand, the Facade, encapsulates an internal API and thus it is usually part of

the service itself. Adapter often implies the existence of a previous API that faced some

incompatibilities with its clients unlike the Gateway. Adapter can still be used to map

some implementation to the Gateway interface [Fow02].

This section presents an analysis of the most relevant ORM patterns of the PoEAA

book from chapter 9 to 13.

3.1 Domain Logic Patterns

The three patterns described here provide different ways of organizing the domain logic

and the data access layer (Data Access Layer (DAL)) thus better supporting both the

business logic and the presentation layers. The most relevant PoEAA patterns intro-

duced here are: Transaction Script, Table Module, Domain Model, Table Data Gateway,

Gateway, Data Transfer Object (DTO), Money, Value Object and Record Set.

3.1.1 Transaction Script

Transaction Script is a very efficient method to build domain logic and DAL for it requires

very little overhead, therefore providing high performance. Also, its simplicity allows

the code to be easily perceivable, which makes it natural to organize the logic code in

applications that require it in less quantity and complexity.

This pattern organizes logic as a set of single procedures making direct calls to a

database or through a thin DAL usually using the Table Data Gateway pattern. In the

first case, the class that implements the Transaction Scripts has its domain logic methods

to deal directly with Structured Query Language (SQL) scripts and database connections.

The second case can be described in a generic way by Figure 3.1.

A Table Data Gateway much resembles the Data Access Object (DAO) pattern [AMC01]

except it focuses on a simple Create, Read, Update, Delete (CRUD) API that is exclu-

sively relational oriented. Also, usually its methods return row sets although it can use

other structures like DTOs. On the other, the DAO pattern is a Facade CRUD for any

data source and is more common to manage DTOs.

The Table Data Gateway in Figure 3.1 demonstrates its proximity to SQL API. Sim-

44

3.1. Domain Logic Patterns

+find(criteria : String) : ResultSet

+insert(data : Data) : void

+delete(data : Data) : void

+findAllStatement : String

-conn : DBConnection

TableDataGateway

+transactionScriptA()

+transactionScriptB()

DomainLogic Contains domain logic scripts

Manages result sets (e.g. resultSet.getRow['column1'])

Manages SQL + Connections

Returns a ResultSet

Figure 3.1: Class diagram of the Transaction Script pattern

ilarly to the DAO object, it also defines that it ought to exist one table per class as

demonstrated in Figure 3.2.

+Insert(ID : Integer, name : String, accountID : Integer)

+Remove(ID : Integer)

+GetAllPersons() : ResultSet

+GetPersonByID(ID : Integer) : ResultSet

PersonGateway

+Insert(ID : Integer, amount : Double)

+Remove(ID : Integer)

+GetAllAccounts() : ResultSet

+GetAccountByID(ID : Integer) : ResultSet

AccountGateway

+DrawMoney(personID : Integer, amount : Money) : Money

+DepositMoney(accountID : Integer, amount : Money)

+RemovePerson(personID : Integer)

BankService

Figure 3.2: Class diagram of a Transaction Script example

Figure 3.2 presents an implementation example of the model in Figure 3.1. The

thin database access layer is given by the classes PersonGateway and AccountGateway

which, using the Table Data Gateway pattern, define the methods for direct access to the

database providers (e.g. ADO.NET). These classes encapsulate the data providers as well

as the SQL statements.

The Transaction Script itself is implemented by the BankService methods which

contain all the business logic, including information of the relationships between tables.

45

3.1. Domain Logic Patterns

For instance, in the example of Figure 3.2 consider there is a relation between the table

People and Accounts. This information has to be implemented in the RemovePerson

method so that once a person is removed, all his accounts are removed as well.

It is common in business logic development to encounter situations that require data

encapsulation like money or dates for they are very susceptible variables that can be

relative to the client’s location and system configurations. For instance, in Figure 3.2,

the object Money encapsulates a Double and implements Money pattern (see PoEAA for

more details on this pattern).

In a Transaction Script especially using a Table Data Gateway, when a query is sent to

the database, it returns a single or multiple rows in a generic structure like an object array

containing all the rows of a query result and the column definitions. These structures keep

a connection alive and do some caching as they fetch data from a database. Examples

of such APIs are the ResultSet for Java (the one used in Figure 3.1 and Figure 3.2) and

DataReader for .NET. Hence, the business logic method has to know, a priori what to

expect from that dynamic structure (ResultSet). This forces painful logic maintenance

whenever changes occur in the database schema.

Fowler [Fow02] gave the name Transaction Script to this pattern because most of

the time there will be one Transaction Script (business procedure) per transaction of the

database. For that reason the use of a Table Data Gateway may raise some doubt on where

to draw the frontier between the database provider API and the business logic code. That

is, in the case of Figure 3.2, the method RemovePerson must use a database transaction

through the provider API to run various operations to the database at once. If it fails

it can rollback and thus take advantage of the isolation levels and locking mechanisms

provided by the database to prevent concurrency failures and thus grant the Atomicity,

Consistency, Isolation and Durability (ACID) properties. Therefore, in order so solve this

problem it is appropriate to:

• Encapsulate all the relevant services of the provider API in the Gateway class,

including transactions;

• Have direct access to the provider API in the Transaction Script methods without

a Gateway;

• Allow direct access to the provider API and encapsulate some of its methods in the

Gateway as well.

46

3.1. Domain Logic Patterns

3.1.2 Table Module

This pattern organizes domain logic in a database table (or view) per Table Module class

containing an in-memory table structure and the domain logic operations that manage

this structure. For instance, the People object instance that manages every Person row

is a Table Module. Typically, there are as many Table Modules as tables of the database.

The Table Module does not profit from the object paradigm features like associations,

polymorphism, generalization, etc. On the other hand, it better suits applications that

follow a table oriented structure. Also, this pattern is much simpler than the Domain

Model as it does not require the complex mapping of two paradigms. Thus, implementa-

tion speed rises, especially if database interoperability features are involved.

The key component of Table Module is an in-memory table structure representing the

resulting row set of an SQL query run to the database. This structure follows the pattern

of Record Set (a base pattern defined by Fowler in PoEAA [Fow02]) which contains

all the rows and column definitions of a query result, typically a whole table. It is

common for a Record Set to provide locking mechanisms (multi-user environments) and

allow incremental updates so that the same structure can be committed to the database

efficiently (similar to the Unit of Work pattern applied to the Domain Model).

Record Sets are often supplied by the software platform and a good example is the

DataSet API of ADO.NET. The following examples and figures use the term DataSet

rather than Record Set so they can be more practical.

One way of implementing a Table Module is have it manage domain logic, Record

Sets as well as connections and SQL statements in the same class. Here, a set of Factory

Methods will suffice to instantiate the Record Set within the Table Module. Another

way is having an extra class, a Table Data Gateway that manages SQL and database

connections as demonstrated in Figure 3.3. As the data source or the SQL changes, this

model becomes easier to maintain. Note that this implies one Table Module and one

Table Data Gateway per table or view of the database.

Figure 3.3 represents this second strategy. Here, there is no direct access from the

Table Module to the database. The Table Module provides all the CRUD methods for

managing the DataSet and implements more complex domain logic methods as well. The

Table Data Gateway contains the simple SQL statements and the connection settings

to the database as well as the methods for retrieving and committing a DataSet to the

database. In the committing process it implements the logic that converts the changes

made to the DataSet into SQL statements for requesting updates to the database.

The DataSet in Figure 3.3 is requested first by the presentation to the Table Data

47

3.1. Domain Logic Patterns

+new(ds : DataSet)

+getOne(key : Object) : DataRow

+getMany(criteria : String) : DataRow[]

+update(dr : DataRow)

+add(dr : DataRow)

+calculateDomainLogic()

-tableName : String

-table : DataTable

Table Module

Presentation

Implements the domain logic operations

Contains an in-memory table structure

Manages CRUD operations to a table structure

+find(criteria : String) : DataSet

+commit(ds : DataSet)

+findAllStatement : String

-conn : DBConnection

Table Data Gateway

Manages SQL + Connections

Fills and updates the DataSet from and to the database

Returns a DataSet

Figure 3.3: Class diagram of a typical Table Module with Table Data Gateway

Gateway and then used to instantiate the Table Module. Because a DataSet contains a

set of results for cases that allow multiple querying at once, it is composed of a set of

DataTables. Each DataTable represents the actual in-memory table and thus can better

suit Fowler’s definition of Record Set than DataSet.

The typical sequence of interactions among the above classes, for this strategy, is given

by Figure 3.4. It is important to have the DataSet changes validated before committing

to the database. That is to ensure data consistency and integrity when:

• The DataSet is shared through many users (dataset locking);

• The database is shared with other applications (database locking);

• There are constraints in the DataSet (mapped by the database schema) to be met.

In PoEAA [Fow02], Fowler gives an example of a useful modelling strategy for Table

Modules that uses DataSets. That is demonstrated by Figure 3.5 and consists of using a

generic class for instantiating any specific Table Module and its corresponding DataTable.

Figure 3.5 demonstrates a typical case study where people have bank accounts. If,

in the database schema, there is a relation between both the correspondent tables, the

48

3.1. Domain Logic Patterns

a presentation a table modulea table data gateway a database

find

dataset

a dataset

table module

calculate domain logic

update rows

create and fill

select

create table module (dataset)

request data

dataset bind

save changes

update modified dataset

validate changes

commit dataset

calculate domain logic

dataset

Figure 3.4: Sequence diagram of a typical Table Module with Table Data Gateway

+New(ds : DataSet) : super(ds,”TablePersons”)

+Get(ID : Integer) : DataRow

+DrawMoney(personID : Integer, amount : Double)

PersonTM

+New(ds : DataSet, tableName : String)

-DataTable : table

TableModule

+New(ds : DataSet) : super(ds,”TableAccounts”)

+Get(ID : Integer) : DataRow

+DepositMoney(accountID : Integer, amount : Double)

AccountTM

Figure 3.5: Class diagram of a Table Module example

loaded DataSet will map this constraint as well. Thus, when both the Table Modules

are loaded into memory, the dataset contains two related DataTables. Although, this

relationship has to be manually coded in PeopleTM and AccountsTM logic. If a person

is removed, for instance, the cascade delete constraint will imply that its accounts are

deleted as well. This behaviour occurs during the DataSet validation.

In .NET, it is easy and common to implement the Table Module pattern via the

49

3.1. Domain Logic Patterns

DataSet API, providing the following features:

• A DataSet manages all its modifications whilst building a changeset that further

sends these changes to the database, rather than the whole thing. Thus, it manages

the row states of modified, added, removed and unchanged;

• It manages the relations and constraints among tables and validates the integrity

of data when the method AcceptChanges (available in DataSet or DataTable) is

called;

• It provides optimistic locking concurrency control (as Fowler suggests for the Record

Set pattern) for multi-user environments. Each row contains a version code to

validate the updates;

• It performs in-memory ordering and filtering without database calls;

• As the DataSet is a dynamic structure, updates to the database schema may re-

quire less code changes, such as in the SQL statements in Table Data Gateway.

Also, its relaxed type strategy delivers dynamic field accesses to the DataRows of

a DataTable, in the Table Module (e.g. personDataRow.item("Name")), and thus

the CRUD methods and the domain logic may need to be modified as well. This

dynamism makes it easier for applications to use SQL statements in the domain

logic or presentation layers;

• Presentation layer two-way data bindings, which is frequently used for grid Graphi-

cal User Interface (GUI) components, for instance in Windows Forms or ASP.NET;

• A dataset can be used as a DTO, which is good for distributed architectures as it

has very few database calls, thus minimizing network overhead.

Nevertheless, the DataSet as the Table Module, can not connect to the database on

their own. For that, a DataAdapter is required to manage the connections, fill and commit

DataSet changes to the database. That is a similar behaviour to the Table Data Gateway.

On the other hand there are some drawbacks to using the DataSet API as the Table

Module pattern:

• As databases tend to grow, it becomes infeasible to have the whole database struc-

ture or even a single table in-memory, thus resulting in great loss of performance;

• If other applications change de database when the dataset is still being modified,

then it can fail to commit this data as concurrency issues may rise;

50

3.1. Domain Logic Patterns

• Serializing DataSets is not straightforward and in the common distributed architec-

tures of today (e.g. in Windows Communication Foundation (WCF)), it has lost

some support for the ORM frameworks and object oriented schemas.

Of all the problems, the one about performance can be very restraining. Even so,

the use of a DataSet can be tuned to handle less quantity of data while being more

selective. One way of doing this is by SQL field projection, although that it may imply

less flexibility for managing more complex or transversal domain logic. Another way to

enhance performance is by applying pattern Lazy Initialization and handling SQL filters.

This can be exemplified by Figure 3.6 which presents a particular implementation of the

Table Module pattern. Here, the DBContext is more than a simple table data gateway

for it keeps the whole dataset and the PeopleTM has knowledge of DBContext unlike in

the other examples.

DBContextPresentation PeopleTM

peopleTM = new PeopleTM(ctx)

load DataTable from database and

merge it into DataSet of CtxData

+New(connString : String)

+CreateTM(tableName : String) : DataTable

+CreateTMQuery(query : String) : DataTable

+ValidateCurrentDataSet()

+CommitChanges()

-CtxData : DataSet

DBContext

+New(ctx : Context)

+InitAll()

+InitAllWithName(name : String)

+Get(ID : Integer) : DataRow

+DrawMoney(personID : Integer, amount : Double)

-table : DataTable

-ctx : Context

PeopleTM

Sets ctx reference

peopleTM.InitAllWithName("john")

table = ctx.CreateTMQuery("Select *

From Persons Where Name = 'john'")

DataGrid1.DataSource = personTM.GetAll()

ctx.CommitChanges()

commits the whole DataSet

via DataAdapter

ctx =new DBContext(connectionString)

Figure 3.6: Class and sequence diagram of an example of a tuned Table Module

51

3.1. Domain Logic Patterns

Additionally, the Virtual Proxy [GHJV95] pattern could be applied to this example so

that when the PeopleTM DataTable was first accessed, it would implicitly load the data

from the database.

Contrasting with the DataSet, ADO.NET provides the DataReader API which is

similar to Java’s ResultSet whilst using a more simplistic approach for data access. A

DataReader iterates throughout the table rows of the database as it caches pages of results.

Any change to the in-memory data is made via SQL updates directly to the database. As

this does not provide the DataSet features, it allocates less memory. Therefore it can be

regarded as a lower level API than the DataSet. The DataReader is often more efficient

and less resourceful and thus may be a better solution than DataSet when queries return

a lot of data.

In ADO.NET there is a DAL framework that uses DataSet API to manage the whole

table schema and generate strongly typed DAL code accordingly. This is provided by

the Typed DataSets. Figure 3.7 represents a diagram with the most relevant classes of

a generated code by this Typed DataSet feature. It was generated from the database

schema containing the tables People and Accounts of the examples above. Additionally,

it presents a Table Module implementation.

The PeopleTableAdapter is a Table Data Gateway as it manages transactions, con-

nections, internal SQL and also implements the basic CRUD methods for database direct

access, like filling and committing a DataSet or a DataTable.

The DataSet1 is a specific DataSet for this example as it contains all the tables and

relations of the schema. Also, it manages serialization methods and contains event change

handlers for the objects it is composed of. Note that PeopleTableAdapter is aware of

both DataSet1 and PeopleDataTable unlike in the example of Figure 3.3.

Both PeopleDataTable and AccountsDataTable are part of the DataSet1 and they

represent the Table Module classes. PeopleDataTable is a typed DataTable and it con-

tains some generated CRUD logic for accessing the in-memory structure. Plus, it handles

events for capturing changes on PeopleRows.

A PeopleDataTable is composed of PeopleRows. Each PeopleRow is a typed DataRow

and follows a DTO like structure with getters and setters. Also it has a method for

retrieving a person’s accounts (using Lazy Initialization) as if it was a class association,

which can be useful while coding complex domain logic. Another interesting feature is

that a PeopleRow has encapsulated methods to check if database fields are null. That

is, DBNulls are a common problem in the ORM, because database engines manage null

values differently.

The typed dataset tools also provide a mechanism for updating this model from the

52

3.1. Domain Logic Patterns

...

+Relations : DataRelationCollection

+Accounts : AccountsDataTable

+People : PeopleDataTable

...

DataSet1

DataSet

1

1

+New()

#New(table : DataTable)

+NewPeopleRow() : PeopleRow

+Clone() : DataTable

+FindBySSN(SSN : Integer) : PeopleRow

+AddPeopleRow(row : PeopleRow)

+AddPeopleRow(SSN : Integer, Name : String, Occupation : String) : PeopleRow

+RemovePeopleRow(row : PeopleRow)

...

+Count : Integer

+Item(index : Integer) : PeopleRow

+NameColumn : DataColumn

+OccupationColumn : DataColumn

+SSNColumn : DataColumn

PeopleDataTable

TypedTableBase(Of PeopleRow)

+GetAccountsRows() : AccountsRow()

+IsNameNull() : Boolean

+IsOccupationNull() : Boolean

+SetNameNull()

+SetOccupationNull()

+Name : String

+Occupation : String

+SSN : Integer

PeopleRow

1

*

+New()

-InitConnection()

-InitCommandCollection()

-InitAdapter()

+GetData() : PeopleDataTable

+Fill(dataTable : PeopleDataTable) : Integer

+Delete(Old_SSN : Integer, Old_Name : String, Old_Occupation : String) : Integer

+Insert(SSN : Integer, Name : String, Occupation : String) : Integer

+Update(SSN : Integer, Name : String, Occupation : String, Old_SSN : Integer, Old_Name : String, Old_Occupation : String) : Integer

+Update(Name : String, Occupation : String, Old_SSN : Integer, Old_Name : String, Old_Occupation : String) : Integer

+Update(dataRows() : DataRow) : Integer

+Update(dataRow : DataRow) : Integer

+Update(dataSet : DataSet1) : Integer

+Update(dataTable : PeopleDataTable) : Integer

#Adapter : SqlDataAdapter

+ClearBeforeFill : Boolean

#CommandCollection : SqlCommand()

<<friend>> Connection : SqlConnection

<<friend>> Transaction : SqlTransaction

PeopleTableAdapter

DataRow

Figure 3.7: Class diagram of an example using ADO.NET DataSet code generation

database. Due to these useful features ADO.NET DataSet tools are frequently used by

developers today.

53

3.1. Domain Logic Patterns

3.1.3 Domain Model

The most adopted domain logic pattern in ORM frameworks today is the Domain Model.

It takes advantage of the flexibility provided by the object paradigm and supports more

complex mapping than the above domain logic patterns. A Domain Model can be adopted

at different levels of complexity and so Fowler defines two kinds of Domain Models [Fow02]:

• The Simple Domain Models define one class or entity per database table. The

pattern Active Record is often enough to encapsulate the simpler mapping to the

relational schema. At most, it implements unidirectional one-to-one and one-to-

many associations. Other object oriented features like inheritance and the design

patterns are avoided;

• The Rich Domain Models, on the other hand, diverge most from the relational

model. They provide a flexible model that takes advantage of inheritance, associa-

tions, interfaces and more elaborate patterns like the GoF [GHJV95]. This model

is more complex to match the database tables and thus, the Data Mapper pattern

is usually required to encapsulate such mapping.

This pattern is often used in multilayer or N-Tier architectures. Since the Domain

Model carries both data and business behaviour, it is subject to numerous changes of

the logic domain, as it may provide DTOs to the upper tiers as well. Therefore, it

is recommended that the Domain Model is isolated from the other layers. That also

achieves better support for distributed objects and serialization, more independent builds

and test development. Additionally, the Domain Model ought to be independent from the

schema mappings to the database, otherwise any change of these mappings would affect

the whole domain logic code.

Implementing a Domain Model incurs into an object loading problem, consisting of

knowing which objects should and which should not be loaded to the in-memory graph.

This incurs into the Partial-Object problem introduced by Neward [New06] as well. The

Table Module sets a similar obstacle, although it has a relational structure which causes

less trouble than the object graph structure.

For instance, a simple application of the Domain Model is to have a single-user appli-

cation load the whole object graph into memory. Although this practice can be used in

some desktop applications, it proves infeasible for data intensive multilayer applications

with large schemas, because loading every object can take a lot of time and memory

resources.

54

3.1. Domain Logic Patterns

Object-Oriented Database Management Systems (OODBMSs) solve this problem im-

plicitly as giving the impression that the schema is all in memory whilst, internally, disk to

memory operations are performed. Some ORM frameworks allow implicit object schema

navigation as well (via Lazy Load pattern).

Typically, a Domain Model requires a data context (like the Hibernate Session provid-

ing a Facade API encapsulation and some PoEAA patterns presented below) to commu-

nicate with the database efficiently. A data context is essentially a bundle of other ORM

patterns. In general, it takes responsibility for: loading a specific object sub-graph query-

ing object schema via Object Query Language (OQL) (Query Object pattern); caching

results (using the Identity Map pattern); managing changes (Unit of Work pattern) and

updating the database (Data Mapper).

ORM frameworks such as Hibernate and Entity Framework (EF), use a data context

class for the same purposes.

Figure 3.8 displays an example of a Domain Model that takes advantage of object

features like inheritance, unidirectional and bidirectional associations. The object schema

is a navigable graph and, because it is a Rich Domain Model, each entity class does not

implement behaviour.

-ID : Integer

-Name : String

-SecNumber : Integer

Person

-ID : Integer

-Amount : Double

Account

-Accounts

1

-Owner*
-PrimaryAccount

1

PrimaryAccount

Figure 3.8: Class diagram example of a rich Domain Model

From the entity Person it is possible to access 5 fields of data, 2 of them through

navigable associations in the graph. The business requirements state that one person has

exactly one PrimaryAccount and can have zero or more Accounts. Thus, from a Person

instance there is access to its PrimaryAccount as well as its AccountsList. Also, from

any Account it is possible to access its Owner.

55

3.1. Domain Logic Patterns

The data context will eventually be used to load the whole object graph or only a

small portion of it, all according to the business requirements. If there is a trend for using

the whole graph in the business logic or presentation calls within the same data context

session, then it is more efficient to load it fully.

On the other hand, in Figure 3.8, if the business logic is operating only on people,

then it is more efficient to only load Person data. Thus, each loaded Person instance

has empty responsibilities or relationships with other entities which makes it a partial

object. Graph navigation becomes impossible as well, unless there is some mechanism of

Lazy Load that initializes the association on-demand. The Lazy Load pattern solves this

for entity objects that are attached to a data context session. Although, for distributed

environments, this implies that a data context session is continuous for remote calls, and

thus has to provide stateful services, i.e. it needs to save the session state for each client.

An alternative is to have the entire data context session transferred between the remote

client and the server. These tend to be overcomplicated and inefficient solutions.

Thus, the data context is a server side component and is not designed to be transferred

between tiers. Although, for instance, the Session is serializable, it triggers much overhead

when transferred through the network. Also it loses some capabilities like the Lazy Load

which requires an online connection to the database. In the same way, even if a DataSet

is serializable and designed to work offline, there is still much overhead for transferring it

through different tiers. Eventually, it has been discouraged by the community, to serialize

and provide such structures remotely.

Withal, that limitation gives greater emphasis to the coupling between the 3-Tier

architecture approach and the Domain Model pattern. That is, because a data context is

exclusive to the business tier, it forces the developers to write all the relevant behaviour

in there, hence having a duller presentation tier.

In Java Platform, Enterprise Edition (J2EE), Domain Models are typically imple-

mented using the Enterprise JavaBeans (EJB) technology. EJBs provide a set of server

side components for distributed architectures that help create modular enterprise appli-

cations. Most importantly, there are two kinds of EJBs: Session Beans and Entity Beans.

The Session Beans are more suitable for implementing workflow, which normally is part

of the business logic code. They also manage logic operations on the business entities,

keep stateful or stateless conversations with its clients but do not survive container crashes

[AMC01].

Although Entity Beans were replaced by the Java Persistence API (JPA) entities in

EJB 3.0, they consist of the first form of ORM framework provided by J2EE technologies.

An Entity Bean defines a persistent domain object and were often used with Container

56

3.1. Domain Logic Patterns

Managed Persistence (CMP). The CMP is an ORM framework that does not require the

developer to code persistence mechanisms. Only the mapping definitions are required

to set a domain model persistent to a database. Thus, an Entity Bean is a distributed,

shared and transactional persistent object and it survives container crashes [AMC01].

A complex business layer, sometimes requires as much flexibility as the object paradigm

can give. Entity Beans constrain this because they are Platform Specific Model (PSM) and

so are bound to this technology. Plain Old Java Objects (POJOs), on the other hand, are

considered Platform Independent Model (PIM) for they allow a clean separation between

the Data Mappers and other ORM mechanisms from the business entities.

For that reason, EJB 3.0 developed a specification for abstracting the various ORM

frameworks, whilst using entities as lightweight POJO classes. A common solution is

to use the entity POJO classes and the XML mappings of an ORM framework such as

Hibernate.

Opinions diverge towards the use of business logic inside the entities, which breaks

the single responsibility principle [Mar03]. Complex domain models introduce entity to

entity relationships which often makes it impossible to manage entity self-contained logic

code and prevent dependencies to other entities [AMC01]. Also, entity serialization (e.g.

via web service and XML or Remote Method Invocation (RMI)) often maps only the

data contracts and not the behaviour of such entities. This compels to the use of DTOs,

translation from business entities to DTOs and vice versa. DTOs allow the specification

of safer security measures as well. However, with the DTO approach there is much more

code to manage and it is likely that changes at the Domain Model will inflict changes on

the DTOs and the presentation tier as well.

On the other hand, without additional DTOs, the domain objects have to be trans-

ferred to the presentation tier. Although some precautions must be acknowledged:

• Domain objects should not contain behaviour;

• A domain object typically contains more data, which may be in a rawer state than

the one actually needed by the presentation;

• Lazy Load associations should be forced to load before the domain objects are

transferred to a remote client or presentation tier, without a data context session;

• Editing a field value of a domain object in a remote client or presentation tier does

not manage the changeset (no Unit of Work). The server rather thinks the whole

object was changed.

57

3.1. Domain Logic Patterns

Conceptually, the Domain Model pattern adopts a Domain Driven Design (DDD)

approach that forces the development teams to set design practices and principles as

tools for building core domain logic. This tends to work with Model-Driven Architectires

(MDAs) as well, which focuses on modelling the domain before coding it. Thus, a Domain

Model pattern is more suitable when applications begin being built from its domain rather

than from the database.

However, many applications today, do operate on top of legacy databases or contain

logic in the database. Typically, these applications do not respond well to the Domain

Model approach as it tends to take the database schema from the Database Administrator

(DBA) and give it away to the ORM framework. This incurs into the Dual-Schema

problem [New06]. Hence, in a model where a legacy database is shared through various

applications, the Domain Model approach may not be the fittest approach.

In the end, the Domain Model is useful because it focuses the developer to implement

business logic code whilst, abstracted entirely (ideally) from the persistence mechanisms.

That empowers the developer to use the best desired practices for modelling objects.

Although ORM frameworks have given the misleading idea that this apparently flawless

Domain Model is the answer for every problem. In fact, it triggers a number of problems

that raise the complexity of applications and forces the development environment to fall

within the ORM commitment (referred by Neward in [New06] as it is described in the

section 2.4).

3.1.4 Making a Decision

In most cases, it is not obvious which domain logic pattern is best for fulfilling their own

specific requirements and supporting the development teams. Some architectures may

even adopt more than one single Fowler’s domain logic pattern or none of the three.

There are a number of variables that limit the choice, such as the complexity of the

domain logic involved, the tools and frameworks used and the know-how of the develop-

ment team. As the complexity of the domain logic evolves, it becomes harder to maintain

or change, as displayed in Figure 3.9. This figure does not provide a quantified axis as

it is not based on any concrete data. It rather results from Fowler’s perception of past

experiences. Nevertheless it helps to visualize how the three patterns compare with each

other.

Ideally one would find the best pattern by placing its application somewhere in the

x-axis. Although, in practice there is no measure for this, which makes the best option

to still rely on the advice of experienced people.

58

3.1. Domain Logic Patterns

Ef
fo

rt
 t

o
 C

h
an

ge

Complexity of Domain Logic

Figure 3.9: Sense of the effort changing rate as a domain logic complexity evolves for all
three domain logic patterns (graphic replica from [Fow02])

Figure 3.9 emphasises the higher effort to start up a Domain Model that only begins

to pay off the initial investment if the domain logic complexity increases substantially,

whereas the other patterns start low but tend to raise exponentially.

The graphic in Figure 3.10 follows a similar concept to the above except it describes

the learning curve involved with the three domain logic patterns.

Ex
p

er
ti

se

Time

Figure 3.10: Sense of the learning curve taken among the three domain logic patterns

The Domain Model is more complicated to learn than the other patterns for it usually

provides a number of mechanisms such as the Unit of Work, Lazy Load, caching, Query

Object, Metadata Mapping, database interoperability and also allows the development

of flexible and complex domain logic through the use of design patterns like the renown

GoF patterns.

59

3.1. Domain Logic Patterns

Moreover, the high initial cost of building or changing a Domain Model can be reduced

or increased depending on the team experience and the helping tools. If a new ORM

framework is being used, its learning curve will affect the starting efficiency of the team.

An experienced team will lower the cost here. Without such tools, in a less automatic

process, the initial cost raises substantially.

For instance, comparing NHibernate with EF it is likely that the initial cost will

increase with the former but will evolve more rapidly with the latter. That is due to the

higher complexity and versatility of NHibernate 2.1 towards EF 4.0 and also because the

latter has better integration with Visual Studio. The learning curve will be slower with

NHibernate as well.

Eventually, with a Domain Model, the domain logic grows easier to maintain mostly

because it provides persistence ignorance whilst following a DDD approach.

The progress of the Table Module pattern depends on the tools provided by the de-

velopment environment in the same way as the Domain Model. In Visual Studio .NET

environment, the Table Module is supported by the DataSet API providing a set of useful

features to communicate with the database. This increases productivity of the team, es-

pecially when the Domain Model is not an option (legacy databases) or the domain logic

is not too complex for a relational model. The start up effort is small and the learning

curve grows fast due to the simple DataSet API and the use of SQL. As SQL is common

knowledge, it is assumed the developers feel comfortable from the start. Without such a

mechanism the development team can either build it from scratch and face a very high

start up time but with future gains or use a more manual process and still face a high

start up time with increasingly more exponential effort as the complexity evolves. Whilst

the former option is recommended when the domain model can not be used, the latter is

not recommended at all.

The Transaction Script uses a simpler API than the other patterns, requires a more

manual process and more SQL code as well. Thus it is easier to learn. On the other hand,

with no automatic mechanisms, as the code grows, it becomes harder to manage or change.

This pattern is the most used, typically in smaller applications, especially because it

provides a fast start up time and every platform supports it. Also, the Transaction Script

can be faster and lighter than the other patterns as it does not require any mechanism to

work on top of the database provider API.

All in all, small applications typically use Transaction Script. In .NET, with an

evolving domain logic and legacy databases, the Table Module is a good solution. When

DDD is an option and the domain logic evolves to require complex modelling, the Domain

Model is the right choice.

60

3.2. Data Source Architectural Patterns

Changing from one domain logic pattern onto another often involves very few code

reuse. Some applications adopt the Domain Model or Table Module for some business

operations and the Transaction Script for critical functions that do not tend to change or

must run faster.

3.2 Data Source Architectural Patterns

The patterns below constitute three different strategies for encapsulating the data source

access. Thus, they provide a Facade API so that the domain logic can communicate with

the database without having to write SQL or other data source specific code. Often,

the domain logic pattern decided for an application, dictates which architectural pattern

should be used.

3.2.1 Table Data Gateway

The Table Data Gateway is a specialization of the Gateway pattern that uses a table of

the database. Thus, a Table Data Gateway instance represents the table itself as a data

source which provides the methods: insert, delete, find and update.

Combining SQL with domain logic can cause some problems. That is, although many

developers do not feel comfortable with SQL, others do, but may not write it in the most

correct or efficient way. Also the DBAs needs to find the SQL quickly and easy within

the application code as the database schema evolves or suffers some adjustments [Fow02].

Therefore, each method in the Table Data Gateway hides or encapsulates what is

database specific like the provider APIs and the SQL code. A typical Table Data Gateway,

for instance, a PersonGateway (2) or (3) (see Figure 3.11) returns to the domain logic,

a dynamic structure (ResultSet or DataSet) that can represent any table.

Figure 3.11 provides three different applications of this pattern. The first two (PersonGateway

(1) and PersonGateway (2)) are often used with Transaction Script. The third (PersonGateway

(3)) is what connects the Table Module to the database itself.

With the Transaction Script often the Table Data Gateway manages simple row iter-

ators (e.g. Java ResultSets or ADO.NET DataReader) for finder methods and primitive

types for inserts, updates and deletes (PersonGateway (2)). Some cases opt for using

DTOs as row data containers to call in the Table Data Gateway methods and thus in-

crease portability whilst relieving the effort of refactoring the code when changes are

needed (PersonGateway (1)). Table Data Gateway API is, this case, used directly in

domain logic.

61

3.2. Data Source Architectural Patterns

+find(id : Integer) : PersonRow

+find(criteria : String) : ResultSet

+insert(pr : PersonRow) : void

+update(pr : PersonRow) : void

+delete(pr : PersonRow) : void

+findAllStatement : String

-conn : DBConnection

PersonGateway (1)

getters and setters

-id : Integer

-name : String

-bdate : Date

PersonRow

ResultSet

+find(id : Integer) : ResultSet

+find(criteria : String) : ResultSet

+insert(id : Integer, name : String, bdate : Date) : void

+update(id : Integer, name : String, bdate : Date) : void

+delete(id : Integer) : void

+findAllStatement : String

-conn : DBConnection

PersonGateway (2)

DataSet

Record Set pattern

e.g. Java ResultSet

ADO.NET DataReader

+find(criteria : String) : DataSet

+commit(ds : DataSet)

+findAllStatement : String

-conn : DBConnection

PersonGateway (3)

Figure 3.11: Three ways of implementing the Table Data Gateway pattern

In the Table Module scenario, a Table Data Gateway manages Record Sets (e.g. .NET

DataSets), and encapsulates all the behaviour for accessing the database. Nevertheless,

it is the Record Set that actually provides a DAL API to be used in the domain logic,

implementing the CRUD methods for managing row data.

For applications of Table Data Gateway in Transaction Script refer to 3.1.1. For Table

Module and details on the DataSet structure or Record Set pattern, refer to 3.1.2. Note

that ResultSet Java class is not the same as Record Set pattern, despite its similar naming.

In the end, the Table Data Gateway suits better the legacy database systems than a

more refined approach like the Data Mapper because it allows the logic of querying data

to be coded in plain SQL which is simpler and faster for most development teams to code.

3.2.2 Active Record

An Active Record is a domain object that carries both data and behaviour, i.e. it en-

capsulates one table row of a database, the data access code and domain logic applied to

that data as well.

Normally, this pattern is used with a simple Domain Model, mapping one domain

62

3.2. Data Source Architectural Patterns

object per database table. There is a one-to-one mapping between the object fields and

the table columns, with no data conversions. Typically it is necessary to apply the Identity

Field pattern so that the unique object identifier (OID) matches with a primary key in

the table. This key affects essentially the find and insert methods. For implementing

associations and object graph navigation, the pattern Foreign Key Mapping can be used.

Although, here, the complexity raises substantially, which deviates from the scope of the

Active Record.

According to Fowler, the active record implements an API that provides the following

operations [Fow02]:

• Build an instance of the Active Record from a record or row of a ResultSet;

• Build a new instance of the Active Record to insert into the database table;

• Static finder methods that encapsulate SQL queries and return Active Record ob-

jects;

• Update the database from the modifications made to the active record;

• Getters and setters;

• Implementation of some domain logic.

Figure 3.12 displays an example of an Active Record given by the class Person. It

contains the person’s fields, getters and setters, CRUD functions, static finders and some

domain logic. It can also contain constants defining generic SQL statements so that they

can be used in prepared statements.

Getters and setters

+Find(id : Integer) : Person

+FindFirst(name : String) : Person

+FindAll() : List(Of Person)

+Insert(p : Person)

+Update(p : Person)

+Delete(p : Person)

+LoginEmailAccount()

-ID : Integer

-Name : String

-Email : String

-Password : String

-findStatementString = "SELECT id, name, email, pwd FROM people WHERE id = ?"

-updateStatementString = "UPDATE people SET name = ?, email = ?, pwd =?"

-insertStatementString = "INSERT INTO people VALUES (?, ?, ?, ?)"

Person

Figure 3.12: Example of an Active Record (class diagram)

63

3.2. Data Source Architectural Patterns

Simple ORM database interoperability can also be achieved with Active Record and

Figure 3.13 presents some code that features it.

private static Load(rs : ResultSet) : Person

static FindFirst(name : Strting) : Person
 If AppConfig.DataBase = "MySQL" OR "PostGreSQL"
 rs = database.ExecuteQuery("SELECT * FROM persons WHERE name = ? LIMIT 1",name)
 return load(rs)
 If AppConfig.DataBase = "Oracle"
 rs = database.ExecuteQuery("SELECT * FROM persons WHERE name = ? AND rownum < 2",name)
 return load(rs)
 If AppConfig.DataBase = "MSSQLServer"
 rs = database.ExecuteQuery("SELECT TOP 1 * FROM persons WHERE name = ?",name)
 return load(rs)

LoginEmailAccount()
 EmailServer.Login(This.Email,This.Password)

Figure 3.13: Code example in an Active Record

Active Record is useful in a Domain Model for its simplicity and speed of development

towards Data Mapper. Also, the API it provides to higher levelled layers is more focused.

However, it only responds well when objects match tables in a one-to-one simple mapping:

isomorphic schema [Fow02]. In N-Tier applications, serializing an Active Record implies

breaking its behaviour which makes it act as a DTO when working in a remote tier.

3.2.3 Data Mapper

Data Mapper is the most refined of the Fowler’s data source architectural patterns and the

most appropriate to work with complex domain logic. It is a specific form of Mapper which

sets a communication between two systems that remain isolated from each other. The two

systems are the object oriented domain logic and the database. The main responsibility

of a Data Mapper is to transfer and convert data between these two systems.

A Domain Model that uses a high quantity and complexity of business logic has

to be modelled with the flexibility provided in the object paradigm. Thus, supporting

collections, inheritance, associations and a wide set of design patterns can be essential to

achieve a well organized and more efficient business logic code. With the Data Mapper,

since the two systems become isolated, there is no direct dependencies between them.

That leads, however, to the Dual-Schema problem, because there are two schemas to

manage: the Domain Model schema and the database schema. Generally, changes inflicted

to one schema, lead to changes on the other as well.

Figure 3.14 presents a simple example using a Data Mapper that maps the domain

64

3.2. Data Source Architectural Patterns

object Person and the database. At first sight it appears to have some similarities with

the Active Record. Although, the domain logic operations and CRUD methods suffer

a slight organizational change towards better isolation, in the Data Mapper approach.

It is often a good practice to support persistence ignorance among all the classes in the

Domain Model. Thus, the domain objects are isolated from the Data Mappers in this

approach.

+LoginEmailAccount()

-ID : Integer

-Name : String

-Email : String

-Password : String

Person

+Find(id : Integer) : Person

+FindAll() : List(Of Person)

+Insert(p : Person)

+Update(p : Person)

+Delete(p : Person)

PersonDataMapper

Client

Figure 3.14: Data Mapper example (class diagram)

Figure 3.15 displays the sequence of operations carried out by the previous example

when a client calls the find method of PersonDataMapper. Additionally, this example

implements an Identity Map, useful for preventing bottlenecks, which caches loaded ob-

jects in-memory as they are fetched from the database. Here, the behaviour of converting

a ResultSet into a Person instance is implemented in a similar way as in the Active Record.

The case of Figure 3.15 is a simple Data Mapper example and therefore does not

manifest the real advantage of using the object’s flexibility nor the negative effect of

Dual-Schema.

One of the primary functions of a Data Mapper is to handle associations and inher-

itance between objects. The pattern Foreign Key Mapping is a sufficient solution for

managing one-to-many associations. For many-to-many it requires the Association Ta-

ble Mapping and a new table for the mappings. For composition where, for instance, a

Document is composed of a Collection of Lines, it makes sense that one single Data

Mapper manages the mapping for the Document and its lines as well. This can be

done with Dependent Mapping pattern. More information on object relational associa-

tion mapping can be found in 2.4.2. Inheritance can be mapped via the table-per-class,

table-per-concrete-class, table-per-class-family. Details on object relational inheritance

65

3.2. Data Source Architectural Patterns

a PersonDataMapper a map the Database

a Result Set

martin : Person

Find(1)

Get(1)

null

select * from people where id = 1

a result set

get data

new

martin

Insert(1,martin)

 Figure 3.15: Data Mapper example (sequence diagram)

mapping are explained in 2.4.1.

It is a good practice to store static mapping information separately from the Data

Mapper. This information mostly consists of the table and columns names and the cor-

responding class and fields names with the type of association and inheritance mapping

toward other classes. One approach is to have these definitions on string constants in a

specialized class (per domain object). Another strategy is to implement the Metadata

Mapping pattern which stores all this information in a metadata file such as XML. This

allows mapping details to be changed without recompiling the application as long as they

do not force changes in the domain objects.

The more the Domain Model grows and evolves the more the need for transactional

frameworks to manage changes in the objects and map them to the database. The Unit

of Work pattern is a common solution for this problem.

Typically, a Domain Model is a graph of relations among objects. To load a Person

instance may imply loading, for example, its Accounts as well. In such cases, the Data

Mapper has to decide which SQL queries are faster and better suited to provide that kind

of information. In the example, the SQL query shall involve a join between the People

and Accounts tables.

With the increasing number of relations among objects of the graph, the eager loading

proves inefficient because it tends to load the whole database in a single request, via the

Data Mapper. Also it is likely that most fetched data will not be needed by the client. The

Lazy Load pattern solves this, however making the domain objects not entirely persistence

66

3.2. Data Source Architectural Patterns

ignorant. This leads to the Partial-Object problem.

Another obstacle to the persistence ignorance is the typical need for a rich constructor,

in a domain object, to set it to default values. For instance, assuming an entity has its id

field mapped to an auto-generated key in the database. When creating a new transient

object, it will not have an id until the object is made persistent, i.e. it is inserted in

the database its key is generated. This may require the constructor to fetch the next

generated key value and then instantiate the object with that id. An alternative to have

this behaviour in the domain object itself is to put it in the Data Mapper. Thus, the Data

Mapper becomes responsible for creating new domain objects via a Factory Method. Also

it is important to make the constructor of the domain object invisible (protected) so that

it is only accessible in the Data Mappers namespace.

In the various examples Fowler provides in [Fow02], he often implements Layer Su-

pertypes for sharing behaviour of one class through all its subclasses. In this case he

creates an AbstractMapper that generalizes all that can be shared among the different

Data Mappers. SQL is often not generalizable though. Another example is to have all

entities that have the same type of id to share the same supertype. In here, it makes sense

to share the code that manages the id field in a supertype abstract Data Mapper.

In this pattern, there is no dependency from the Domain Model classes to the Data

Mapper itself. Although, domain logic needs to find objects and change data. That kind

of logic has to be dependent on the Data Mapper API. A common solution to isolate

the domain logic from the Data Mappers is to build interfaces, implemented by the Data

Mappers and use them in the domain logic classes instead. Note that, Factory Methods

have to be implemented in order to create the specific Data Mapper.

Figure 3.16 shows how the Data Mapper relates to the other components and patterns

in an ORM implementation. Generally a Data Mapper is implemented with the following

guidelines:

• Without a Unit of Work, each Data Mapper contains its own Identity Map for a

single domain object. Although, is some cases, the Identity Map can be shared

among all the Data Mappers;

• There is typically one Data Mapper for each domain object, although it can com-

prehend more than one, normally in the case of hierarchies and compositions;

• In simple scenarios, one Data Mapper manages one table. When one domain ob-

ject has data from two or more tables, the data mapper manages multiple tables.

Hierarchies and compositions in the Domain Model can drive the Data Mapper to

operate on multiple tables.

67

3.3. Object-Relational Behavioural Patterns

+Find()

+Update()

+Remove()

+Create()

Data Mapper

Domain Logic

-ID

-Field1

-Field2

-Collection1

Domain Object

+Get(id)

+Add(id,object)

+Remove(id)

+Update(object)

Identity Map

*1

-PK

-FK

-Column1

-Column2

<<Database>>

Table

*

1

*

1

Database

(Relational

Schema)

*

1

Domain Model

(Object Schema)

*

1

Client

Figure 3.16: Data Mapper generic diagram

Additionally, one Data Mapper can be used per application or per domain object. If

the same Data Mapper manages many domain objects, it tends to use reflection to make

the code as generic as possible. This means it lacks compile-time checking, and therefore

it becomes slower and harder to debug.

3.3 Object-Relational Behavioural Patterns

The following three patterns are common in ORM tools that use the Domain Model,

providing strategies for managing the loading, in-memory keeping and updating domain

objects. The implementation of these patterns enables a robust persistence layer and

tends to enhance its performance substantially, which proves essential for rich Domain

Models.

68

3.3. Object-Relational Behavioural Patterns

3.3.1 Unit of Work

The Unit of Work keeps a set of objects (usually in an Identity Map) affected by a business

transaction, coordinates the updates or changesets of the objects towards the database

and deals with concurrency issues.

Avoiding this pattern implies not having transactional support in the business layer.

One of the implications of that is having to send the managed domain objects back to

the database without verifying if they were even changed in the first place. The frequent

but smaller calls to the database and the overhead provoked by the transfer of the whole

objects rather than the changesets, can cause a substantial performance loss. Additionally,

the database transaction has to be kept open during the entire interaction, including the

user think time. In multi-user scenarios, this approach is exposed to concurrency problems

such as the increased lock contention in the database. Thus, long database transactions

prevent support for scalability and concurrent load [KBA+12].

Nested database transactions can constitute an attempt to manage subtransactions

and solve these locking problems, however they lack Database Management Systems

(DBMSs) support as they are not standard SQL. On the other, savepoints (an SQL stan-

dard) are a more encouraged mechanism, for the same purpose, to implement checkpoints

during a transaction, although not solving the locking issues as well.

+RegisterNew(object : DomainObject)

+RegisterDirty(object : DomainObject)

+RegisterClean(object : DomainObject)

+RegisterDeleted(object : DomainObject)

+Commit() or SaveChanges()

+Rollback() or RevertChanges()

-cleanObjects : List

-dirtyObjects : List

-deletedObjects : List

Unit of Work

Figure 3.17: Unit of Work pattern

Figure 3.17 presents a simple API of a Unit of Work, to be used in the Domain Model

for keeping track of changes during a business transaction and submitting updates to

the database. The caller is responsible for manually registering the created new domain

objects (RegisterNew), the changed objects (RegisterDirty), the loaded unchanged ob-

jects (RegisterClean) and the deleted objects (RegisterDeleted). Internally, the Unit

of Work keeps the domain objects in the according lists (cleanObjects, dirtyObjects

and deletedObjects) in order to be able to commit or revert changes, and caching ob-

69

3.3. Object-Relational Behavioural Patterns

jects as well. When the Unit of Work commits, it opens a database transaction, manages

concurrency control using isolation levels and finally sends the changeset to the database.

This changeset is often sent as a batch update, consisting of multiple SQL commands

(updates or deletes), in a single call to the database, thus avoiding network overhead.

Preventing referential integrity conflicts in the database, is also a concern of the Unit

of Work. It either writes the SQL updates in the correct order or has the database check

referential integrity on commit only.

Typically, there is one Unit of Work for all the domain objects in the schema. For

that, an abstract domain object or interface is needed to provide access to its object

id. An abstract domain object can be implemented using Layer Supertype (see Data

Mapper pattern in section 3.2.3 for a similar example). SQL and mapping definitions

are often delegated to the Data Mapper and Metadata Mapping containers. Although

simpler applications can build the SQL updates in the Unit of Work as well.

It is possible to have a single Unit of Work instance per application, per client or

per request, although the third is the most common and encouraged in client-server ap-

plications. The first requires too much concurrency control code, thus being an overly

complicated approach. Additionally there is the unit of work per operation often called

an anti-pattern, as it causes too much overhead. See [KBA+12] for details.

There are three different strategies to implement a Unit of Work: caller registration,

object registration and unit of work controller.

Caller registration has the client to manually register the object in the Unit of Work

using the API in Figure 3.17. Figure 3.18 demonstrates the behaviour of this strategy

when the client calls the method RegisterDirty in the Unit of Work, which may raise

confusion and more concern for the developer. Nevertheless, this approach provides the

advantage of leaving the domain objects free from any behaviour.

Furthermore in Figure 3.18, when the domain object is loaded, from the Data Mapper,

it is registered in the cleanObjects list, but a clone of that object is returned to the client.

Only when the client calls the RegisterDirty does the Unit of Work register this clone in

the dirtyObjects list. If the property changes are passed in the method RegisterDirty,

as it happens in Figure 3.19, the Unit of Work can start keeping track of changes in an

additional list leaving less work for the committing process. Otherwise, on committing, it

iterates the dirtyObjects list and for each dirty object, it grabs the corresponding clean

object (in cleanObjects) and verifies, field by field, which has changed (like in the unit

of work controller strategy). Note that it is more efficient to manage Identity Maps

than lists, due to the frequent lookups performed.

On the other hand, the object registration has the object responsible for registering

70

3.3. Object-Relational Behavioural Patterns

a PersonDataMapper the Database

martin : Person

Find(1)

Select..

Result Set

new

martin

martin.Email = "martin@mail.zz"

a Unit of Work

RegisterDirty(martin)

update changeset

save(martinOld,martinDirty)

Client

RegisterClean(martin)

Commit()

get old and dirty

Martin from the

cleanObjects

and dirtyObjects

Lists

Figure 3.18: Unit of Work caller registration example

itself in the Unit of Work when it changes. Figure 3.19 sets an example of this behaviour.

Here, the reference of the Unit of Work has to be passed on to the Data Mapper and

to the domain object (martin) itself. The Unit of Work can have a Factory Method to

create Data Mappers for that effect. Once the method find is called by the client, the

Data Mapper loads the data and factories a domain object with a Unit of Work reference.

Then, the object has its constructor call RegisterClean.

Typically the Unit of Work registers the whole object in the Identity Map as dirty

when any property changes. Although, if the domain object has a lot of properties, it is

convenient that each setter registers the property dirty as well. This can be done either

using flags in the domain object for every property or implementing the setters to send

the property name to the Unit of Work so it can keep track of any property change. Thus,

the committing process is faster as opposed to the unit of work controller.

If both the setters and constructor, in the domain object, have Unit of Work behaviour,

the Data Mapper will have to fill the objects using the constructor rather than the setters

to avoid registering the object dirty. Other solutions consist on making the fields in the

domain objects accessible (e.g. protected) to the Data Mappers only, or each object can

71

3.3. Object-Relational Behavioural Patterns

a PersonDataMapper the Database

Martin : Person

Find(1)

Select..

Result Set

new

martin

martin.Email = "martin@mail.zz"

a Unit of Work

RegisterDirty(martin,"Email")

update changeset

save(martin,{"Email"})

Client

RegisterClean(martin) and set a reference of UoW

For Each object in DirtyMap {

 changeset = ChangesMap.Get(object.id)

 abstractDataMapper = FactoryDataMapper(object)

 abstractDataMapper.save(object, changeset)

}

Commit()

CleanMap.Put(martin.id,martin)

DirtyMap.Put(martin.id,martin)

ChangesMap.Put(martin.id,”Email”)

DirtyMap.Get(martin.id)

Figure 3.19: Unit of Work object registration example

have a protected flag to set on/off the Unit of Work context.

The disadvantage of object registration is that the domain object is filled with

behaviour thus losing persistence ignorance. In turn it becomes easier for the client to

make persistence.

In order to achieve better separation of concern and easier serialization, for instance,

there can be a Person class without behaviour and a PersonUoW that inherits from Person,

overriding its constructor and setters to register the object in the Unit of Work. Then

the data mapper provides a Factory Method to return a PersonUoW encapsulated under

Person.

One alternative to passing the Unit of Work as an argument from one object to the

other is associate it to the current thread (Thread Local Storage (see specification in

[SSRB00]) (TLS)). This is possible because each business transaction executes within a

single thread [Fow02] (using java.lang.ThreadLocal in Java or System.Threading.-

ThreadLocal in .NET).

72

3.3. Object-Relational Behavioural Patterns

The object registration fits the Aspect Oriented Programming (AOP) which can

intercept the domain object setters or properties and inject code to send changes to the

Unit of Work. This is useful because it keeps the domain objects persistence ignorant,

i.e. unaware of Unit of Work behaviour and therefore PIM. This is a common practice

in ORM frameworks like NHibernate (see more in section 4.2.1). Another approach is to

implement the Observer pattern with one observer (Unit of Work) and a lot of subjects

(domain objects). Any change in the properties of the subjects, notifies the observer.

A typical problem of object registration is that the Unit of Work is often not seri-

alizable. Hence, a domain object that is transferred to a different tier, becomes detached

from the Unit of Work. From that point, the object loses its behaviour and becomes

persistence ignorant, which makes the Unit of Work unable to track changes on it. Some

ORM frameworks such as Hibernate allow the detached object to be merged back to the

Unit of Work later, though that forces an additional verification process.

The unit of work controller acts as a mediator to the Data Mapper. Figure 3.20

presents the typical behaviour of this approach. Here, the Unit of Work plays the role of

a Facade, encapsulating the Data Mapper methods (e.g. finders). In the same way as

in object registration, there is no need to worry the client about registering the objects

manually. Also, as everything is managed in the Unit of Work, the domain object does

not need to implement behaviour, thus it can be persistence ignorant. When on commit,

this strategy takes more time to iterate over the dirty objects and the clean objects in

the Identity Maps, while checking the differences between them and then building the

changeset. This approach is used in TopLink [Fow02].

Another concern of the Unit of Work is to handle concurrency. There are three ways

of doing that:

• Pessimistic locking, which implies a lock on the database or entire tables. The

multi-user sequential access to the database is likely to cause deadlocks, incurring

into a loss of performance (see Pessimistic Offline Lock pattern in [Fow02] for more

details);

• Use a level of caching that stores the retrieved objects from the database in a Unit

of Work per application scenario. This requires the Unit of Work to implement

concurrency control measures for multi-user environments, which is a lot of work.

In the end it performs similarly to an OODBMS;

• Optimistic locking, which consists of using database fields like timestamps to control

the different versions of the objects (see Optimistic Offline Lock in [Fow02] for more

details).

73

3.3. Object-Relational Behavioural Patterns

a PersonDataMapper the Database

Martin : Person

Select..

Result Set

new

martin

martin.Email = "martin@mail.zz"

a Unit of Work

Commit()

update changeset

If changeset not empty:

Update(martin,changeset)

Client

Find(1)

RegisterClean(martin.Clone())

RegisterCurrent(martin)

Find(1)

martin

Check differences(martinClean,martin)

get clean and current martin from the IdentityMaps

Figure 3.20: Unit of Work controller example

Some popular classes that implement Unit of Work in known ORM frameworks are:

• Session in NHibernate, which implements a unit of work controller in the sense

it provides the finder and CRUD methods from a Data Mapper. It also performs

object registration as, via Inversion of Control (IoC), it injects the Session in the

domain objects for keeping track of property changes;

• ObjectContext in EF, working in a similar way as the Session;

• DataSet in .NET, implements a disconnected table structure that keeps itself track

of changes on every row (using the row states of modified, added, removed and

unchanged), which slightly differs from the three strategies presented in this section.

See section 3.1.2 for details on DataSet implementation.

All in all a unit of work controller is an implementation of the data context in-

troduced in section 3.1.3 (referent to Domain Model). This approach is used in EF and

74

3.3. Object-Relational Behavioural Patterns

Hibernate to encapsulate Data Mappers, Metadata Mappings, Query Object APIs, Iden-

tity Maps, Lazy Load and even Repositories.

3.3.2 Identity Map

An Identity Map caches each object loaded from the database in a map. Future finders

check this in-memory map for the requested objects before accessing the database. This

prevents bottlenecks to the database, thus enhancing performance.

The structure of an Identity Map consists of a map with key equal to the object id

(table primary key) and value equal to the object reference [Fow02]. Every time a Data

Mapper returns an object to the client, it ought to verify if that same object exists in the

Identity Map already. Typically, any update or delete to that object should synchronize

changes to the Identity Map as well.

One common problem of ORM occurs when the same database table row is loaded

to two different object instances and conflicts arise when updates of both objects are

submitted to the database. The identity map pattern ensures the same object is not

fetched twice to the database. It solves cyclic references as well (see section 2.4.6 on the

load time trap problem).

Typically, one Identity Map exists for each domain object and for each Data Mapper

as well, with some exceptions like [Fow02]:

• In cases of Dependent Mapping, only the composite object requires an Identity

Map as, for instance, it normally makes sense to fetch the whole Car with all its

components rather than a single Wheel that belongs to a Car and is never fetched

alone;

• In cases of inheritance only the table-per-concrete-class strategy may raise doubts.

Any lookup to the abstract class will imply checking each Identity Map of every

concrete class in the hierarchy. Therefore it can be simpler and faster to have a

single Identity Map in the table-per-concrete-class hierarchy. The table-per-class-

family, as it involves one table and one key, it only requires one Identity Map.

Normally table-per-class has one identity map for each class.

Generally, one Identity Map exists for each domain object and for each Data Mapper

as well. Although, it can be generic so the finder methods in different Data Mappers

access the same Identity Map. The disadvantage of having a generic Identity Map is that

the ids in all the domain objects have to be different but of the same type (database-

75

3.3. Object-Relational Behavioural Patterns

unique keys). Also, less compiler-time checking makes the application slower and harder

to debug.

The best place to have an Identity Map is in Unit of Work for it’s responsibility is to

keep track of domain objects [Fow02]. Otherwise it can be placed in a Data Mapper.

Most ORM tools provide a level one cache consisting of one Identity Map (generic

or a set of maps for all data mappers) per Unit of Work session, which is often used

per client request. This avoids multi-user concurrency and therefore the map can avoid

locking mechanisms.

Queries that do not specify the requested object id, cannot cache objects in a normal

Identity Map. That is because objects are stored in an identity map and accessed via its

id (map key). Typically, ORM frameworks offer other levels of caching to store results

of frequent queries. Some applications opt for using OODBMSs to build caching layers

(shared among clients and providing transactional protection) to work side by side with

ORM tools [Fow02].

Finally, one business transaction uses one Unit of Work session to cache loaded objects

in an Identity Map. It is simpler to have one Identity Map per Data Mapper to avoid

conflicts with ids. As one single generic Unit of Work is required in the Unit of Work

session, it is recommended to put the Identity Map or maps inside it. Data Mapper

methods implement caching in Identity Maps.

3.3.3 Lazy Load

Lazy Load is a mechanism for loading objects partially, i.e. some fields and associations,

in the Domain Model or object graph are fetched from the database only when they are

actually required. Without this pattern, fetching an object, in a complex Domain Model

that has all its objects interlinked, may induce loading the entire database at once into

memory. That is a waste of resources if most of the loaded objects are irrelevant for the

operation.

Typically, Lazy Load implementations are transparent to the client. which makes

the domain objects lose persistence ignorance, like in Unit of Work. As a result, the

Partial-Object problem (see 2.4.6) emerges, i.e. when an object is partially loaded and

then transferred (often serialized and sent remotely) out of the data context (here, data

context is responsible for dealing with Lazy Load behaviour) to a client that will not be

able to load the full object neither navigate through its associations. Thus, once out of

the context, the Lazy Load is lost, in the same way as out of a business transaction the

objects lose track of their changeset. For that reason, the Unit of Work is often a good

76

3.3. Object-Relational Behavioural Patterns

place to keep track of the Lazy Load behaviour as well.

Figure 3.21 demonstrates the typical behaviour of Lazy Load applied to the one-to-

many association Accounts(). At first, martin is filled with its properties or primitive

type fields. Only when the Accounts getter is called it will actually load martin’s ac-

counts from the database.

a PersonDataMapper the Database

martin : Person

Select..

Result Set

new

fill properties only

Client

Find(1)

partial martin

martin.GetAccounts()

FindAccounts(martin)

Select...

Result Set

fill accounts

full martin

Figure 3.21: Lazy Load example

The Lazy Load strategies presented further in this section are: Explicit Initialize, Lazy

Initialization, Virtual Proxy, Value Holder and Ghost.

Loading objects on demand has been a way of optimizing performance in data inten-

sive applications since before the Lazy Load was documented. As a starting point to Lazy

Load, the pattern Explicit Initialize, by Beck [Bec97], was early identified to implement

on demand object load. It is controlled by the client via the method initialize, respon-

sible for filling the partial object. Thus, this pattern incurs in a better code readability,

although losing flexibility and transparency in the business logic.

The example of Figure 3.21 suggests that the data context or PersonDataMapper is

passed in the constructor of Person and is used in the Accounts getter method, like in a

typical implementation of the Lazy Initialization pattern.

Lazy Initialization, by [Bec97], is the simplest way of implementing implicit Lazy Load.

It basically consists of defining behaviour for loading data in the properties or getters of

77

3.3. Object-Relational Behavioural Patterns

the domain object fields, that were not loaded at first. Also, it is convenient to use a special

character or code for verifying if the variable is filled or not, other than the NULL value.

That is, a variable may already have bean loaded and its actual value be NULL. Although,

Lazy Initialization is simple to implement, as it is based on a dependency between the

domain object and the data access behaviour, it is more Active Record oriented. Data

Mappers are based upon persistence ignorant domain objects, which is not the case here.

In some cases that require the domain objects to be shared throughout multiple users,

Lazy Initialization has also been optimized to behave as thread-safe. This often consists

on implementing locking strategies like the double-check locking1 pattern. Only in rare

scenarios that require a Unit of Work per application approach, is the thread-safe Lazy

Initialization a relevant matter of debate, and therefore is not further discussed here.

Virtual Proxy, by [GHJV95], is the most popular pattern for Lazy Load which is

basically a Proxy implementation for loading expensive objects on demand. Thus, it

provides an indirection layer between the domain objects and the data access logic, which

responds well to the Data Mapper approach, unlike the Lazy Initialization. A Virtual

Proxy is an object that looks like the real object although it does not contain any data

when initialized. Only during a getter invocation does the Proxy initialize the real object

and then calls the respective getter property.

Figure 3.22 presents an example of this implementation using a lazy property. Thus,

the ProxyPerson is hidden from the client behind the persistence ignorant Person domain

object. The Data Mapper implements a Factory Method to create a ProxyPerson to

carry out the data context and become encapsulated by Person. The getter property, in

ProxyPerson, overrides the same getter in Person and has the same implementation that

is expected in Lazy Initialization.

However, using Virtual Proxy poses a number of weaknesses. In some cases it involves

using a Proxy for each domain class, which accentuates identity and inheritance problems.

For instance, there can be more than one Proxy encapsulating the same domain object

and all of the Proxies have their own identity. Thus, it is convenient to implement and use

the proper equality methods. As for the inheritance problems, for instance lets assume

the Worker class inherits from Person and the hierarchy is mapped as a table-per-class-

family. When a Person is loaded with lazy properties, a ProxyPerson is instantiated

and delivered to the client with no data on it and without any trip to the database (the

discriminator column in the database table was not read at this point). From here, the

1Double-check locking pattern (see specification in [SSRB00]) consists on verifying if the field was not
loaded, begin locked code section, verify again if the field was not loaded and then load it. Although,
in theory double-check locking works, due to specificities of Java Virtual Machine (JVM), it may not be
enough to prevent concurrency problems in practice.

78

3.3. Object-Relational Behavioural Patterns

Properties:

+ID()

+Name()

+Email()

+Password()

+Accounts()

-id : Integer

-name : String

-email : String

-password : String

-accounts : List(Of Account)

Person

+Find(id : Integer) : Person

+FindAll() : List(Of Person)

+FindAccounts(p : Person) : List(Of Account)

+Insert(p : Person)

+Update(p : Person)

+Delete(p : Person)

PersonDataMapper

Client

+New(ctx : PersonDataMapper)

Properties:

+overrides Accounts()

-ctx : PersonDataMapper

ProxyPerson

Accounts() : List(Of Account) {

 If (accoutns is null)

 accounts = ctx.FindAccounts(this)

 return accounts

}

Figure 3.22: Lazy Load Virtual Proxy example

client will not be able to cast his Person to Worker. These problems break at some point,

the object paradigm flexibility and therefore Virtual Proxies have to be used with caution.

Nevertheless, for one-to-many associations it is convenient to use a lazy collection

instead of a proxy domain object. That consists of having, for instance, a Proxy lazy list

that implements all the methods a list does plus the Lazy Load. This avoids identity and

inheritance problems without having to write a Proxy class for each domain object in the

list.

Figure 3.23 presents the upper example but with a lazy collection implementation via

Virtual Proxy. Here, a ProxyList implements the Decorator pattern for decorating lazy

features in a List, during runtime without the client knowing. Thus, the PersonDataMap-

per factories a persistence ignorant Person but containing an encapsulated persistence

aware lazy List of accounts.

The lazy behaviour to be expected by a lazy collection much depends on which concep-

tual data structure it is implementing. For instance if the client wants to add an Account

to a Person’s accounts, it is not clear if it is to be expected of a ProxyList to load all its

accounts before adding a new one. That would be the case if the ProxyList managed an

ordered list or a set of distinct objects. Although, conceptually, with a map or a bag,

the client would execute accounts.add(someAccount) without having to fetch the other

accounts from the database. Such nuances, when neglected, can be enough for causing

unnecessary bottlenecks.

Value Holder poses an alternative to Virtual Proxy pattern for implementing lazy

79

3.3. Object-Relational Behavioural Patterns

Properties:

+ID()

+Name()

+Email()

+Password()

+Accounts()

-id : Integer

-name : String

-email : String

-password : String

-accounts : List(Of Account)

Person

+Find(id : Integer) : Person

+FindAll() : List(Of Person)

+FindAccounts(p : Person) : List(Of Account)

+Insert(p : Person)

+Update(p : Person)

+Delete(p : Person)

-SelectAccountsOrdered(limit : Integer,offset : Integer)

PersonDataMapper

Client

Get(idx : Integer) : Account {

 If (realList.Count <= idx)

 limit = (idx / count) * batchSize

 offset = realList.Count

 realList.Add(ctx.SelectAccountsOrdered(limit, offset))

 }

 return realList.Get(idx)

}

+New(ctx : PersonDataMapper)

+Get(idx : Integer) :Account

-ctx : PersonDataMapper

-realList : List(Of Account)

ProxyList(Of Account)

«interface»

List

Find(id : Integer) : Person {

 …

 person.Accounts = new ProxyList(Of Account)(this)

 return person

}

Figure 3.23: Lazy Load lazy collections example (Virtual Proxy)

properties. A Value Holder is an object that encapsulates the real object. Usually, the

real object is made accessible through methods like GetValue. Only when this method is

called, is the real object effectively loaded. It is also common for a Value Holder to manage

a value loader, which implements behaviour for loading data of a specific domain object.

Value loader is a typical implementation of the Strategy pattern. Thus, the Value Holder

can be generic and be used to encapsulate all the domain objects, although a value loader

is still needed for each, as well as the according Factory Method in the Data Mapper.

This strategy keeps better persistence ignorance in domain objects, avoids the troubles of

inheritance (the real object is only instantiated when it is loaded entirely which avoids the

casting issues) but keeps the same identity issues of Virtual Proxy as well as the remote

out of the data context problem. A great disadvantage of Value Holder, though, is the

loss of explicitness and strong typing [Fow02].

A Ghost, also known as light object, is a real object but with partial data. When

returned by the Data Mapper, it normally contains only its id field with the rest of the

80

3.3. Object-Relational Behavioural Patterns

fields being loaded as the other properties are accessed, recurring to the Lazy Initializa-

tion pattern. A Ghost can be kept in an Identity Map, which solves identity problems.

Inheritance, on the other hand, has the same issues of the Virtual Proxy. As the ghost

object uses Lazy Initialization, it loses persistence ignorance and thus better suits the

Active Record approach.

Hence, in ORM, the Lazy Load can be employed in three different ways:

• Lazy collections, managing a persistent aware iterator in one-to-many associations,

for avoiding expensive database calls. It is a popular form of Lazy Load, can greatly

affect performance and is often implemented in ORM frameworks;

• Lazy properties, normally for primitive type fields, overriding or intercepting the

getters, in the domain object. It often uses Virtual Proxy and can be useful in some

cases where the object has a lot of columns, which can be a sign of poor Domain

Model and ORM implementation or legacy;

• Lazy objects, for one-to-one and many-to-one associations, typically implemented

using Virtual Proxy to encapsulate a Ghost object.

The Partial-Object problem is common in all the Lazy Load strategies. When, out of

the persistence context, the domain object may be serialized but its underlying behaviour

is lost, which causes the access to properties, not loaded, to fail. For that reason, the

business layer should avoid sending Partial-Objects to other tiers. A common solution is

to use DTOs for that matter.

Another problem of Lazy Load is its misuse, commonly result of a bad prediction from

scenarios or use cases, leading to an excessive number of database calls and provoking

unnecessary overhead. This problem is documented as Ripple Loading, in [AMC01]. This

occurs, for instance, when a collection of partial objects is instantiated and the operation

will iterate over all its elements, causing each object in the collection to load its data from

the database for each iteration. The same happens with a lazy collection, except it does

not instantiate the objects before its data is fetched from the database. Not using Lazy

Load, in this scenario, turns out to be faster, with only one database call and less overhead.

In some cases, loading the whole collection at once may be too expensive and cause out

of memory failures. For that it is convenient to retrieve the collection by chunks. For

example, in Figure 3.23, ProxyList has a batch size for both preventing Ripple Loading.

Out of memory failures can also be avoided if the ProxyList is implemented as a linked

list that only iterates forward. It specifies a buffer size, normally the same as batch size

and has to make sure the past objects are destroyed by the Garbage Collector (GC). Such

81

3.4. Object-Relational Metadata Mapping Patterns

algorithms are similar to the two-pass algorithms implemented in the database (see the

join algorithms in appendix A.4).

In the end, in order to keep persistence ignorant domain objects, the implementation

of implicit Lazy Load, requires the use of IoC (also discussed in section 3.3.1 referent to

Unit of Work, which provides an abstraction from the Lazy Load behaviour to the domain

developers (PIM).

Lazy Load increases the complexity of a Domain Model and should be avoided unless

it brings performance enhancements. In a great number of cases, lazy collections is the

best and most effective approach to increase performance, avoiding some ORM problems

as well.

3.4 Object-Relational Metadata Mapping Patterns

The three patterns described here, support mechanisms that manage the repetitive code

in ORM and favour the legibility and flexibility of data querying.

3.4.1 Metadata Mapping

Metadata Mapping is the code that defines the mappings between database tables and in-

memory objects. It is often written in a repetitive and dull metadata description language,

for instance using XML.

This code can be managed as an input for source code generation of mapping classes,

i.e. Data Mappers, domain objects and any other classes that depend on both the mapped

relational or the object schema. The generated code provides strong type checking, runs

fast and is easy to debug. Although, when the Metadata Mapping code changes, this

approach requires source code regeneration, recompiling and redeployment.

Another way to manage this Metadata Mapping code is keeping it in a file (e.g. XML)

or even in the database. Then, use reflection to implement a generic Data Mapper, like

in Figure 3.24. This approach is more dynamic than code generation, however, reflective

code is slower and harder to debug.

With code generation, if the database changes, Metadata Mapping definitions require

changing, which results in a regeneration of domain objects and Data Mappers code.

If, for example a domain object requires a new field, table changes must be enforced

(manually or via some synchronization mechanism), Metadata Mapping definitions have

to be rewritten and mapping code has to be regenerated.

82

3.4. Object-Relational Metadata Mapping Patterns

+Find(className : String, key : Integer) : Class

-FindAll(className : String, sqlCriteria : String) : Collection

GenericDataMapper

Properties:

+Id()

+Name()

+Accounts()

-id : Integer

-name : String

-acounts : Set(Of Account)

Person

1

*

Database

(Relational

Schema)

Domain Model

(Object Schema)

Metadata mappings

<<XML File>>

<class name=’Person’ table=’db.People’>

 <field-id name=’Id’ type=’Long’>

 <column name=’ID’ type=’INT’/>

 </field-id>

 <field name=’Name’ type=’String’>

 <column name=’NAME’ type=’VARCHAR’/>

 </field>

 <field-association kind=’one-to-many’ name=’accounts’ type=’set’

 class=’Account’ table=’db.Accounts’>

 <column-fk name=’PERSON_ID’ primaryKeyColumn=’ID’/>

 <field-association>

</class>

...

Find(className : String, key : Integer) : Class {

 classMapping : ClassMapping = CurrentSchemaMapping.GetClassMapping(className)

 resultSet = ExecuteQuery(‘SELECT ’ + classMapping.GetColumnNames()

 + ‘ FROM ’ + classMapping.TableName()

 + ‘ WHERE ’ + classMapping.GetPK() + ‘ = ’ + key)

 newClass : Class = CreateNewInstanceOf(className)

 For each field in classMapping.GetFields()

 newClass.SetFieldValue(field.Name, resultSet.getObject(field.ColumnName))

 For each association in classMapping.GetAssociations(‘one-to-many’) {

 newCollection : Class = CreateNewInstanceOf(association.type)

 newCollection.CallMethod(‘AddAll’, GenericDataMapper.FindAll(association.ClassName,

 association.GetFK() + ' = ' + key)

 newClass.SetFieldValue(association.name, newCollection)

 }

 return newClass

}

People

PK ID

 NAME

+GetColumnNames() : String

+GetPK() : Integer

Properties:

+ClassName()

+TableName()

-className : String

-tableName : String

ClassMapping

Properties:

+Name()

+ColumnName()

-name : String

-type : String

-columnName : String

-columnType : String

FieldMapping

Client

martin : Person =

 GenericDataMapper.Find(“Person”,1)

1*

-id : Long

Account

1 *
-name : String

-kind : String

-type : String

-class : String

-table : String

-columnFK : String

-columnPK : String

AssociationMapping

1

*

Figure 3.24: Metadata Mapping example using the reflective approach

Using reflection, if the database changes, Metadata Mapping definitions have to be

changed and possibly the domain objects as well, which ends in source code recompilation,

unless the domain objects are created in runtime with bytecode instrumentation. In a

83

3.4. Object-Relational Metadata Mapping Patterns

domain driven approach, if the object schema changes, Metadata Mapping definitions

have to be changed as well, which implies altering the database schema too.

With bottom-up or database centric architectures, code generators are normally the

best solution. That is, typically these scenarios do not allow the application to alter the

database schema. They rather have the Metadata Mapping generated from the database

which results in source code changes and recompilation.

Top-down or DDD methodologies tend to undervalue the database schema, whose

changes are often dictated by domain model updates. Thus, and depending on the re-

quirements, it may be convenient to have a more dynamic application. Therefore using a

reflective Metadata Mapping can save development time and accelerate the build of new

features.

Metadata Mapping is also responsible for synchronizing Data Definition Language

(DDL) with Object Definition Language (ODL). For that, it manages SQL create, up-

date and alter commands to reflect domain model changes to the database at runtime.

Some ORM frameworks provide tools to synchronize changes at development time and

others can be configured to enforce changes to the database when the application starts.

Figure 3.24 presents an example of the reflective approach and an example of an

XML file holding mapping definitions. At application startup, this XML file is parsed,

validated (e.g. checking if mapped types are compatible or if both the domain model

and the database schema are valid to the mapping definitions) and loaded into memory

for an object structure like the one given by ClassMapping, AssociationMapping and

FieldMapping. Then, the GenericDataMapper handles all the SQL, and reflective code

to build the objects according to the mapping definitions.

Some strong typing can also be enforced to this reflective approach using generic

programming, which is currently supported by both Java and .NET platforms.

Regarding to ORM frameworks, Metadata Mappings is used by both Hibernate and

EF via XML files. The former uses Hibernate Mapping (HBM) and the latter Entity

Data Model XML (EDMX) XML schemas.

3.4.2 Query Object

The goal of Query Object is to encapsulate SQL in a language that provides querying

features on top of the object graph or Domain Model. Thus, Query Object abstracts from

the SQL dialects and database schema specificities, which is often used to implement some

degree of database interoperability if it is to support more than one Relational Database

Management Systems (RDBMSs). Thus, changes on the relational model and mappings

84

3.4. Object-Relational Metadata Mapping Patterns

may not provoke changes on the domain model. If it does change, however, the object

based queries will likely require modifications as well.

It is common to define query able interfaces as Repositories or Data Mapper methods.

For example, have a lazy like collection structure implement a group of methods to build

a query expression in an object oriented API. Only when the collection is iterated the

actual query expression is converted to SQL and sent to the database, thus retrieving

the actual results. This is known as Query-By-API (QBA) which provides strong type

checking, is easier to debug but lacks flexibility for complex querying, especially when it

involves join conditions. An example of QBA is the .NET Language Integrated Query

(LINQ).

One of the first implementations in .NET, of Query Object QBA approach to SQL was

the now obsolete Linq-to-SQL, followed by EF which supports such features as well. For

that, it implements the LINQ interfaces using some reflection and generic programming

to infer specific rules as parsing expressions and converting them into SQL.

A more flexible way of querying objects is using Query-By-Language (QBL), which is

very similar to SQL except it supports the object paradigm rather than the relational.

OQL standard, by Object Data Management Group (ODMG), was initially intended for

OODBMSs, although works for ORM implementations as well, except some features might

be more complicated to implement due to the object-relational impedance mismatch.

Once again, LINQ implements QBL as well, for it adds native querying to .NET languages.

However, it lacks much flexibility of other QBL implementations.

The concepts of QBL and QBA have been already introduced in section 2.4.5 to discuss

the problem of data retrieval in ORM. Some practical applications of Query Object QBA

and QBL, are provided by Hibernate and EF. See sections 4.1 and 4.2 for details.

For implementing query expressions using an object oriented API (QBA), the Inter-

preter pattern and .NET LINQ interfaces can be a good starting point (see section 5.3.6

for an example of an SQL Interpreter). Also, see in section 3.4.3 a simple application of

QBA to provide a query able Repository.

However, for more complex querying it is convenient to use the QBL approach. Im-

plementing a QBL normally uses parser generators for building the OQL grammar and

infer the rules for translating it into SQL. One example of such tool is ANother Tool for

Language Recognition (ANTLR) which supports a large set of languages including Java

and C#. In such cases, because compiling a lot of language expressions in runtime can sac-

rifice performance, it is important to make a few optimizations. For instance, Hibernate

pre-compiles, at application startup, Hibernate Query Language (HQL) queries that are

specified in Metadata Mapping files, i.e. it translates them into SQL often with parame-

85

3.4. Object-Relational Metadata Mapping Patterns

ters. When the OQL query is called and the parameters are set, Hibernate only maps the

parameters to SQL and adds them in the SQL pre-compiled statement. Hibernate can

also be configured to cache the most used queries.

All in all, implementing a Query Object is essential for complex Domain Models,

for they will likely require complex querying. This tends to work well when querying

objects is expected to return objects. However, some cases may require unpredictable

field projection or joins among entities that do not have any association in the Domain

Model. Even though QBL implementations may solve this and return dynamic structures

or anonymous types, having a dynamic data model is often a bad requirement for using

Domain Model. For that, SQL and database providers or DataSets do the job more

efficiently.

3.4.3 Repository

Repository is a mediator between the domain logic and the Data Mappers for it raises

the abstraction to the data access by providing a collection like API. Thus, this strategy

offers a more object oriented approach to the data source access.

Complex and extensive Domain Models with intensive querying can find it useful

having an abstraction layer that encapsulates all these queries, avoiding code duplication

as well.

A Repository manages a collection of objects as if they were all in memory. As objects

are added or removed from the collection, internally these operations follow to the Data

Mappers and further to the database.

A Repository makes the ORM framework look like an OODBMS with a simple API,

hiding any persistence details. Commonly, for simple querying, a Repository also imple-

ments an Query Object QBA. Thus, the collection can be iterated according to a given

criteria, which is first translated to SQL and then fetches the filtered results from the

database.

Figure 3.25 presents the behaviour of Lazy Initialization using a Repository and Query

Object criteria for iterating over a Person’s Profiles.

The QueryableList acts as a Repository implementing a simple Query Object QBA

by build a Query. Only when this QueryableList is iterated, i.e. the methods Get or

ToList in Figure 3.25 are accessed, does the Query translate its instructions into an SQL

criteria using Metadata Mapping definitions. Then the Data Mapper takes this SQL,

sends it to the database and fills the objects with the according data using Metadata

Mappings definition as well.

86

3.5. Conclusions

Properties:

+Id()

+Name()

+Accounts()

-id : Integer

-name : String

-acounts : QueryableList(Of Account)

Person

+New(Of T)()

+Get(index : Integer) : T

+ToList() : T()

+Add(T t)

+Update(T t)

+Remove(T t)

+Where(criteria : String) : QueryableList(Of T)

+OrderBy(property : String) : QueryableList(Of T)

+GetAssociated(class : Class, property : String) : QueryableList(Of T)

-query : Query

-list : List(Of T)

QueryableList(Of T)

New(Of T)() {

 this.query.Add(“select”, { ClassName(T) })

}

ToList() : T() {

 if (!this.loaded) {

 sqlCriteria : String = this.query.CompileToSQL()

 this.list = GenericDataMapper(Of T).FindAll(sqlCriteria)

 }

 return this.list

}

Get(index : Integer) : T {

 return this.ToList().Get(index)

}

Where(criteria : String) : QueryableList(Of T) {

 this.query.Add(“condition”, { criteria })

}

GetAssociated(class : Class, property : String) : QueryableList(Of T) {

 this.query.Add(“join”, { class.GetName, property })

}

Accounts() : QueryableList(Of Account) {

 return accounts.GetAssociated(this, “Accounts”)

}

«interface»

List

+Add(op : String, parameter : String())

+CompileToSQL() : String

-instructions : List(Of Instruction)

Query

Metadata

Mapping

Figure 3.25: Query able Repository example using with Lazy Initialization

The Accounts property in Person class returns a QueryableList which is a lazy

Repository. Also it provides specific queries like getting the associated Profiles to that

Person via the property in question. For that, accessing Metadata Mapping definitions

is required.

Note that, from the example of Metadata Mapping with reflection in section 3.4.1, the

same approach is used here but with generic programming. Other less generic approaches

can be used as well in Repository pattern.

3.5 Conclusions

This chapter demonstrated the most important design patterns in PoEAA [Fow02], rel-

evant to the ORM. Section 3.1 presented three different strategies for modelling domain

logic, with Transaction Script being the most simple, Table Module (containing an analysis

87

3.5. Conclusions

on DataSet API) the one in the middle and Domain Model the most complex. Section 3.2

provided three architectural patterns used to support different domain logic approaches

from the previous section, with focus on Data Mapper. Section 3.3 described three be-

havioural patterns (Unit of Work, Identity Map and Lazy Load) very common on ORM

frameworks for managing transactions, caching, performing efficient loading and updating

of objects. Three metadata mapping patterns were explained in section 3.4, very com-

mon on ORM frameworks as well, for managing static mapping definitions and complex

querying of object model efficiently.

The patterns presented here set a basis for ORM and further proved essential for

analysing ORM frameworks in chapter 4 and finding the best architectural approaches

for ClassBuilder enhancements, including CazDataProvider implementation, in chapter

5.

88

Chapter 4

Object Relational Mapping

Frameworks

Based on the ORM theory described in chapter 3, it was not obvious for Cachapuz which

domain logic approach was best for their development environment. With the emergence

of ORM frameworks for .NET and the possibility of discarding the custom built Class-

Builder ORM tool, doubts arose on deciding which path to take.

Therefore, Cachapuz requested an analysis of the most relevant ORM frameworks

available in .NET. For that, a set of specific requirements were defined to be fulfilled by

such tools:

• Small learning curve;

• Simplicity of configuration;

• Efficient loading and persistence of data;

• Good integration with Visual Studio 2008 or 2010;

• Customizable code generation for logging, auditing and optimistic locking. The

ORM framework has to integrate with a legacy database in which the tables contain

the following columns for logging and concurrency control: DataEdicao, DataCri-

acao, UserEdicao and UserCriacao. Additionally, to generate logs, it must be

possible to edit events such as oninsert, onupdate and ondelete;

• Able to deal well with legacy databases that use composite primary keys and no

foreign key constraints;

• Able to work with different databases;

89

4.1. Entity Framework

• Support for dynamic querying with projection features, allowing a loose coupling to

the relational schema, so that written queries can endure certain changes made to

the tables and columns of the database. For that, the ORM framework must provide

a query language similar to SQL, avoid Metadata Mapping and the Dual-Schema

problem by returning a dynamic structure similar to a DataSet to the presentation

layer;

• Support for web and N-Tier architectures with efficient and portable serialization

of domain objects between the client and the server. For that, domain objects have

to be provided as persistence ignorant Plain Old CLR Objects (POCOs).

The ORM frameworks analysed in this chapter are EF and NHibernate, which are

currently the most popular in .NET as in the enterprise software field.

Hence, this chapter consolidates the ORM theory (from chapter 3) by identifying

some common patterns in the frameworks presented here. Also it confronts each ORM

framework with the needs of Cachapuz, which in turn leads to a more clear decision

whether to adopt a new ORM framework (with some degree of paradigm change) or keep

enhancing the ClassBuilder tool to generate DAL code for their applications.

4.1 Entity Framework

EF is an ORM tool developed by Microsoft first released in Visual Studio 2008 with .NET

3.5, and came to expand the Linq-to-SQL features.

Due to early system specific requirements of Cachapuz, the analysed ORM tools were

constrained to Visual Studio 2008 and .NET 3.5. Therefore, most of the examples in

this section are of EF 1.0. The following version jumps directly to EF 4.0 and some of

its new features are analysed in this section as well, because eventually Cachapuz begun

migrating to .NET 4.0.

Essentially, EF supports the following features:

• Domain Model pattern;

• Database-first development with code generation and one-way schema updates;

• Model first development supporting two-way schema updates (from EF 4.0);

• Persistence ignorance and POCOs (from EF 4.0);

• Unit of Work, Identity Map and optimistic locking (control fields);

90

4.1. Entity Framework

• Lazy Load (from EF 4.0);

• Reflective Metadata Mapping with generic Data Mappers;

• The Query Object and Repository patterns with Entity Query Language (EQL)

and Linq-to-Entities;

• Composite keys;

• One-to-one, one-to-many and many-to-many associations;

• Table-per-class-family, table-per-class and table-per-concrete-class hierarchy strate-

gies;

• Database interoperability via dotConnect data providers. Thus, ADO.NET specifies

a data provider API to be implemented by third parties so a specific database can

be accessed using EF;

• Visual Studio integration with GUI widgets and entity designer;

• Text Template Transformation Toolkit (T4) templating and event handling for code

customization and audit logging;

• N-Tier support with WCF data services (from EF 4.0), thus remotely exposing a

Linq-to-Entities queryable API which makes the query itself serializable.

The reminder of this section explores some of the more relevant features of EF 1.0

according to the Cachapuz requirements presented at the beginning of this chapter.

4.1.1 Unit of Work

In EF, the ObjectContext class is the implementation of the Unit of Work pattern, and

constitutes the central object for accessing and persisting domain objects. It not only

supports transaction management, Identity Map and optimistic locking but also provides

Data Mapper and Repository APIs.

In ObjectContext, the method SaveChanges is most important for it commits the

current business transaction, i.e. once it is called, all the changes made to the in-memory

domain objects within a single transaction scope, are persisted to the database. In this

last step, the ObjectContext accesses its ObjectStateManager (L1 cache or Identity Map)

while checking for any ObjectStateEntry (encapsulates the value, key and state of an

entity or domain object) whose State is not Unchanged. After checking changed objects

91

4.1. Entity Framework

in the Identity Map, it will generate the SQL batch inserts, updates and deletes [Ler09].

In the end, only the changed domain objects and its changed properties are sent to the

database.

Essentially, the ObjectStateEntry is a Layer Supertype for all the domain objects,

except it uses aggregation and interface implementation rather than inheritance as sug-

gested by Fowler in [Fow02]. That is, the ObjectStateEntry is like an adaptor (Adapter

pattern) which makes the domain object POCOs implement the IEntityChangeTracker

interface so that different domain objects can be used in a single generic Identity Map.

Thus, according to the Unit of Work strategies presented by Fowler, the ObjectContext

implements the object registration approach for keeping track of changes. It also uses

the unit of work controller strategy in the sense that the ObjectContext itself provides

the Data Mapper and Repository APIs.

As for object registration, the generated code in EF 1.0 avoids Proxies and code

injection by implementing persistence aware entities (rather than POCOs). Thus, the

setter properties of a given entity use events and onchange methods to keep track of

property changes. These onchange methods are partial and private, which means

the generated code can be extended as long as it defines another segment of the same

generated entity class. It cannot be extended with inheritance though.

On the other hand, EF 4.0 uses AOP to avoid persistence aware entities, better sup-

porting N-Tier architectures and data serialization. Hence, the EF uses dynamic Proxies

to extend functionality of the POCO entities, at runtime, which enables both Lazy Load

by Virtual Proxy (not available in EF 1.0) and dynamic change tracking (Unit of Work

object registration). If dynamic change tracking is disabled, the ObjectContext must

take a snapshot of the loaded entities, and once SaveChanges is called, it will check for

variations between the dirty entities and the clean entities (in the snapshot) and then

produce an efficient changeset. Fowler calls this the unit of work controller and can

be significantly less efficient than object registration. See section 3.3.1 for more details

on the Unit of Work pattern definition and section 4.1.4 to better understand how POCO

entities work in EF.

Additionally, the EF ObjectContext acts as a Repository of entity collections, provid-

ing methods for adding and deleting objects from those collections. Also, these collections

implement the IQueryable interface, which means Linq-to-Entities can be written on top

of them (see the Query Object pattern in section 3.4.2 for more details).

Unlike relational databases, the ObjectContext cannot rollback to a previous state,

thus keeping all the changes made to the entities during that transaction. That is due

to the fact that the ObjectContext is itself considered to be used as a single transaction.

92

4.1. Entity Framework

That follows the Unit of Work per request approach, which is the best approach for

most cases (see section 3.3.1 for details). For instance, in web architectures, it is widely

encouraged to have a single ObjectContext per request. Nevertheless, special cases may

require more complex transactional features in the business layer:

• Using ObjectConext.Refresh to reset an entity to its original value (might have to

iterate throughout all the entities loaded) or have the ObjectContext disposed and

again reload data from database [Ler09];

• Using a TransactionScope to wrap and then rollback one or multiple transactions

(ObjectContexts). This can optimize performance in requests that implement multi-

database scenarios, e.g. it may only open the connection to a second database after

the connection to the first database is opened and its commands are executed, hence

reducing the uptime of the second connection and saving resources. In the end, the

TransactionScope.Complete method has to be called in order to prevent a rollback

of the whole TransactionScope.

Additionally, the ObjectContext class provides a transaction API for manually com-

mitting or making rollback to a database transaction similar to ADO.NET API which is

further discussed in section 5.2. For details on ef transaction APIs see chapter 16.2 of

[Ler09].

4.1.2 Optimistic Locking

Multi-user environments pose new challenges to EF. EF implements Optimistic Offline

Lock by default. Again, ObjectContext is designed to exist in a single request and for

one client only, also because it is not thread-safe. Hence additional measures have to be

implemented to prevent such concurrency problems. The most used method is optimistic

locking or concurrency and is supported in EF with the following strategies [Ler09]:

• By setting all the entity properties with attribute concurrency mode as "fixed"

(configurable in Visual Studio designer), except the read-only properties such as

object IDs. This assures that any SQL update command, calculated in the future

with SaveChanges, will have all those properties filtered by their old values in the

WHERE clause;

• Having an additional property or control field like LastChanged (timestamp) for

each entity and then have it set to "fixed" in the concurrency mode as well. This

requires additional code to set updates of this field whenever any entity field changes,

93

4.1. Entity Framework

which can be implemented by overriding object properties on a Virtual Proxy or

using T4 templates to inject code at compile time.

4.1.3 Code Customization

Although frameworks such as EF tend to be generic for all businesses, often enterprise

software requires specific code customization. That includes handling certain events, code

refactoring or custom code generation.

In EF, because generated classes are set to partial, they can be extended with addi-

tional functionality in separate files, e.g. creating custom properties or overriding meth-

ods for each entity or the ObjectContext itself (which applies to all the attached entities)

[Ler09].

Additionally, the generated code in EF declares partial methods such as onCon-

textCreated for the ObjectContext, onNameChanged and onNameChanging for each prop-

erty of each entity. These methods are used as in the Template Method pattern and can

be implemented in the partial class [Ler09].

Another way to inject code in the DAL EF generated classes is to handle the following

events: ObjectContext.SavingChanges, EntityObject.PropertyChanging, EntityOb-

ject.PropertyChanged and RelatedEnd.AssociationChanged. Injected code is then

implemented in the partial classes in a new method that handles the above events. Note

that whilst VB.NET allows event bindings to the methods, in C# additional code has to

be managed in order to set up the event handlers. For instance, the SavingChanges event

can be set up in the onContextCreated method [Ler09].

For some cases, however, the above solutions may not provide the expected flexibility.

For that, there are two options: using T4 templates to change the generated classes before

compile time or customize the EF code generation. Because T4 features and enhancements

were not very appealing before EF 4.0, T4 templates are not discussed here. Customizing

code generation can be implemented by using the SampleEdmxCodegenerator provided

by EF team to generate the code-behind of EDMX in Visual Studio (see [Ler09] and

[dpb08] for details), although this is an overly complex approach.

4.1.4 POCOs

In some cases like in N-Tier architectures, applications often require that the business

entities are entirely decoupled from the persistence mechanisms such as the ObjectContext

in EF.

94

4.1. Entity Framework

Even though a client-server application may use WCF to create data contracts, it is

important that, in the server, business logic and entities are as independent from the

underlying frameworks with its evolving APIs as possible. That is achieved by using

POCO entity classes, which if isolated in a portable library, can be imported by other

tiers or different applications without additional framework libraries. That brings a better

separation of tiers and a more abstract API.

In EF 1.0 there are the following options to achieve POCO entities:

• Create DTOs, requiring translation between EF entities to DTOs. It helps packaging

entities and collections into a single result response to a client request. This prevents

network overhead when the presentation tier runs on the client (e.g. Silverlight)

and via web services (e.g. WCF) communicates with a server using data contracts.

Note that DTOs will not use Object Services from EF. Automapper is a library

that helps automating the translation process between DTOs and EF entities. An

alternative for the DTOs to keep track of changes in the client is by implementing

a local EntityState as presented in [Ler09]. For that, DTOs have to contain some

behaviour and must be made isolated and portable so they can be used in both the

client and the server tiers, thus hindering the isolation of tiers;

• Use Persistence Ignorance (POCO) Adapter for Entity Framework V1 (see

chapter 23.2 of [Ler09] for details). It generates POCOs via command line, provides

little documentation and does not process schema updates. This adapter, generates

POCOs as DTOs, manages translation between DTOs and EF entities, supports

Unit of Work and Lazy Load features for the POCO entities;

• Create entity classes and have them inherit from EntityObject, be decorated with

mapping attributes and import additional EF API. It can trigger some conflicts with

designer generated classes. Also, this approach does not provide entirely persistence

ignorant entities [Ler09];

• Implementing IPOCO interfaces which is less compromising than inheriting Enti-

tyObject but still requires mapping attributes and importing additional EF API.

This approach consists of implementing certain interfaces so the change tracking

and relationship management capabilities can be used. See chapter 19.2 of [Ler09]

for details.

To use POCO entities in EF 4.0 the following options are available:

95

4.1. Entity Framework

• Disable code generation by removing the Custom Tool in the Visual Studio EDMX

properties. Then write the code for each entity as well as the object context for

handling the Repositories.

• Use T4 templates for code generation. There are two T4 templates that come with

EF 4.0. One for generating entities that inherit from EntityObject and another for

self-tracking entities implementing a couple interfaces for keeping track of changes

in the entity properties. However there is little persistence ignorance with these two

templates. For that, a third template has to be installed: the ADO.NET VB.NET

(C#) POCO Entity Generator. Withal, these POCO entities take advantage of

Unit of Work and Lazy Load capabilities. At runtime, because of virtual prop-

erties, the EF factories (via Factory Method) DynamicProxies (Virtual Proxy)

for encapsulating each POCO entity with its Unit of Work object registration

and Lazy Load behaviour. Note that this behaviour only works for entities that are

attached to the ObjectContext;

4.1.5 Testing EF

This section describes a practical analysis of the EF 1.0 beginning with a basic notion of

configuration settings followed by an example of model generation from the database and

then querying test, analysis and benchmark.

4.1.5.1 Configuration and model testing

Both SQL Server and MySQL were tested with EF 1.0. Comparatively, the setting up

process is similar except MySQL requires the installation of an additional dotConnect

driver.

The same database schema was replicated in both the RDBMSs. The generated

EDMX files for the two databases contain minimal differences only on the first lines:

<!--MySQL-->

<Schema Namespace="cazModel.Store" Alias="Self"

Provider="MySql.Data.MySqlClient" ProviderManifestToken="5.1"

xmlns:store="http://schemas.microsoft.com/ado/2007/12/edm/EntityStore

SchemaGenerator" xmlns="http://schemas.microsoft.com/ado/2006/04/edm/ssdl">

<!--SQLServer-->

<Schema Namespace="cazModel.Store" Alias="Self"

Provider="System.Data.SqlClient" ProviderManifestToken="2008"

xmlns:store="http://schemas.microsoft.com/ado/2007/12/edm/EntityStore

96

4.1. Entity Framework

SchemaGenerator" xmlns="http://schemas.microsoft.com/ado/2006/04/edm/ssdl">

There is no difference in the code-behind (VB.NET or C# file containing the Object-

Context and the entity classes mapped by the EDMX file definitions) that is generated

by EF for both databases. Figure 4.1 presents a diagram with the components managed

in the configuration of EF 1.0. One AppConfig file can contain various connection-

Strings which can only link to one database provider and each EDMX file generates one

ObjectContext with a set of entities.

EDMX
DatabaseProvider Generated VB

(Entities+Object

Context)

1

1 1

1..*

ConnString

1..*

1

AppConfig 1

1..*

Figure 4.1: Diagram of the various components and files managed in the configuration of
EF 1.0

After having an idea of how the EF is configured, a database schema was created in

MySQL 5.1 using the InnoDB storage engine. Rather than MyISAM, InnoDB uses

foreign key constraints which helps the EF generate one-to-many and many-to-many as-

sociations automatically from the database. In order to have a many-to-many association

generated by EF, an intermediary table has to be created and contain only the foreign

keys (combined as a compound primary key) for both the associated entities (see section

2.4.2 for details).

In EF 1.0, only database-first is supported, i.e. generation and update of the entity

model from database schema [Ler09]. On the other hand, EF 4.0 supports model first

features, which are not covered in here.

Figure 4.2 presents a test database schema (in MySQL 5.1 InnoDB) used to by EF

to generate the entity data model in Figure 4.3. As expected, only three classes were

generated and with right association mapping.

From that model and testing the Query Object implementation of EF, it was possible

to find three different ways of fetching a User:

• Using Linq-to-Entities:

97

4.1. Entity Framework

User

PK Id

 Name

Profile

PK Id

FK1 UserId

 Field1

 Field2

 Desc

User_Type

PK,FK1 UserId

PK,FK2 TypeId

Type

PK Id

 Desc

Figure 4.2: MySQL Test database for EF 1.0

-Id : Integer

-Name : String

User

-Id : Integer

-Desc : String

Type

-Id : Integer

-Field1 : String

-Field2 : String

-Desc : String

Profile

0..1

*

* *

Figure 4.3: Entity Data Model generated in EF 1.0 from MySQL Test database schema

Dim u As User = cazEntitiesContext.User.Where(Function(c) c.Id = 1)

• Using EF API:

Dim u As user = cazEntitiesContext.GetObjectByKey(New

EntityKey("cazEntities.User", "Id", 1))

• Using EQL:

Dim u As User = cazEntitiesContext.CreateQuery(Of User)("SELECT VALUE

u FROM cazEntities.User AS u WHERE u.Id = 1").First()

Linq-to-Entities is the EF implementation of LINQ and the successor of Linq-to-SQL.

It can be used as both QBL or QBA. EQL, is a close to SQL language, following a QBL

approach. It does not use type checking which can cause trouble debugging, although is

more versatile and flexible than Linq-to-Entities (QBA).

98

4.1. Entity Framework

Saving objects in EF requires adding the new detached object to a Repository of that

type (provided by ObjectContext), which attaches it to the Unit of Work. Updates do

not need this. Another important test is to verify if updates involving associated objects

work as expected. For that, EF was tested regarding cascading updates on bidirectional

associations. For instance, when a new Profile is added to an existing User, EF implicitly

adds the Profile reference to the User as well.

In EF 1.0, composite keys are identified automatically from the database which already

generates the appropriate code for managing them. It is possible to define composite keys

manually in the EDMX file.

In order to fetch an object using the composite key as a parameter, EQL or Linq-

to-Entities queries treat the various identity fields as normal fields. EF API, on the

other hand, requires that a Dictionary(Of String, Object) is defined for a building

the composite key parameter to be used in ObjectContext.GetObjectByKey method.

4.1.5.2 Basic querying

From the designed model in p. 96, some basic query tests were implemented with the

goal of analysing their performance. The is section confronts the results of EF API, Linq-

to-Entities, EQL and SQL examples. The code of each example is in appendix B.1. For

details on how queries are processed in EF see chapter 9.2 in [Ler09].

Each query example is presented with the VB.NET code, followed by the SQL code

that EF generates. The SQL was retrieved via MySQL logging. All the examples were

submitted to performance tests, running some or all sections of code 10n times and ac-

cording to Table 4.1. Note that the comments describing how many times a block of code

is run comes under that same code with a different colour.

The performance tests displayed in Table 4.1 were conducted using EF 1.0 and MySQL

5.1 with logging enabled. Also the table User only contains one row so that the time vari-

able is less subject to MySQL query planning and execution. The goal of this benchmark

is to find the faster and most optimized EF querying mechanism and then compare it with

the native SQL examples which access database directly through the database provider

API.

It is visible in Table 4.1 that, Linq-to-Entities is slightly slower than EQL (example 1

in p. 203 and 3 in p. 204) and that by default, the EF API applies caching automatically.

If the same EQL query is used several times it is convenient to have it created only once

(example 2 in p. 203).

As for example 5 (in p. 204), it was verified that the time cost would be the same

99

4.1. Entity Framework

Table 4.1: EF query examples benchmark

Examples
SQL
queries
executed

103 operations
in seconds

(n=3)

104 operations
in seconds

(n=4)

105 operations
in seconds

(n=5)

1. EQL 1 10n 2.39063 19.98438 198.78125
2. EQL 2 10n 1.15625 8.03125 77.75000
3. Linq-to-Entities 1 10n 2.40625 19.29688 193.75000
4. EF API 1 1 0.48438 0.57813 1.25000
5. EF API 2 10n 1.35938 9.32813 89.48438
6. Linq-to-Entities 2 10n 2.54688 20.90625 204.84375
7. Native-SQL 1 10n 0.90625 7.60938 73.81250
8. Native-SQL 2 10n 0.45313 3.04688 29.48438
9. Native-SQL 3 10n 0.46875 3.06250 28.59375

for reading the same row 10n times (no caching) or only reading the one row 1 time and

produce 10n − 1 more selects with no result.

Regarding native SQL, prepared statements do not cause time cost changes for this

scenario. In fact, both the examples 8 and 9 (in p. 205 and p. 206), in Table 4.1, were

tested by adding to the WHERE clause, about 300 new conditions (1=1) concatenated by

AND, so that the SQL query held more than 2000 characters. The result was a variation of

about 0.5 seconds more cost for the example 8 with 104 operations. From the example 7

(in p. 205) to 8, although, it is evident that optimizing the use of connections can greatly

enhance performance.

In the end, it is possible to conclude that the EF API is the fastest loading mechanism,

especially when providing caching. Although it is the least flexible, therefore not suitable

for filtering or complex querying. Also, it is obvious that native SQL outperforms any of

the EF examples.

4.1.5.3 Eager and deferred load

Because EF 1.0 does not support the implicit Lazy Load strategies, the querying strategies

tested here include eager loading and deferred loading. This analysis uses the 5 examples

in appendix B.2 which consist of loading a specific User and its corresponding Profile

rows. The different examples use EQL, Linq-to-Entities or EF API.

Eager loading consists of having the association explicitly asked in the query itself,

e.g. executing a query that loads a User and its Profile rows at once. Deferred loading

is the same as the Explicit Initialize pattern, which is a primordial form of Lazy Load.

It consists of loading the User object, leaving its collection of Profiles empty, and only

100

4.1. Entity Framework

when the business code is explicitly called to fill that association, are the Profile rows

effectively fetched and the collection filled.

See the chapter 4.8 in [Ler09] for details on this matter. Note that EF 4.0 and NHiber-

nate use implicit Lazy Load that, by creating a Virtual Proxy at runtime, do load the

object properties as needed, while at the same time preserving some degree of persistence

ignorance.

With eager loading (in p. 207), the EF produces a query that results in an outer join

of all the fields of a User row with all its corresponding Profile rows. Analysing its

generated SQL, the outermost select is only for sorting the tuples by the User primary

key column (Id) and by the Profile Id. In this case, as there is only one User Id, it is

irrelevant to sort by User Id. In fact it adds unnecessary query plan for sorting a relation.

If the relation is small enough to fit in memory, either an index scan or a table scan with

an in-memory sorting algorithm will perform well [UGMW01]. If the relation is too large,

multi-pass algorithms like sort-merge join a better solution (see appendix A for details).

With the SQL produced by EF in eager loading (in p. 207), using a left outer join

(rather than a left inner join) is unnecessary, because there is only one User row in the

driving table. Additionally, it is not clear what importance have the two CASE clauses

and the corresponding fields, although they seem irrelevant as well.

The actual MySQL 5.1 query plan is given by the following events: first it performs

an operation for reading one row only (of table User); second it runs a full table scan

fetching all the rows (1000) in Profile table that have the condition Profile.UserId =

User.Id and while performing an in-memory sort algorithm (filesort). Depending on

the clustering factor MySQL would either use full table scan or index search. For this

case, in which all the 1000 rows in Profile are relevant to the result, having an index on

Profile.UserId column is irrelevant, i.e. MySQL uses full table scan anyway.

On the other hand, the generated SQL with deferred loading (in p. 208) is much

cleaner and simpler to understand.

Table 4.2 displays the results of a performance test running a query that loads a User

with its 1000 Profiles.

Comparing the eager loading with the deferred loading examples, the latter performs

slightly faster, which is likely due to the slow SQL query join with sorting and nested

selects. Also note that Person is only fetched once in deferred loading.

All three eager loading queries (example 1, 2 and 3 in p. 207) have similar cost times.

The only variable is the LINQ compilation time, which is not significant in here.

Regarding the deferred loading examples, using Linq-to-Entities and then the Load

method (in p. 208), results on fetching the User once and then all its 1000 Profiles

101

4.1. Entity Framework

Table 4.2: EF eager and deferred load query examples benchmark

Examples
SQL
executed
queries

100 operations
in seconds

(n=2)

1000 operations
in seconds

(n=3)

1. EQL 1 10n 7.843750 74.015625
2. Linq-to-Entities 1 10n 7.843750 73.890625
3. Linq-to-Entities 2 10n 7.968750 75.156250
4. EF API with deferred load 1 + 10n 6.984375 64.562500
5. Linq-to-Entities 1 with
deferred load

1 + 10n 7.359375 66.953125

when the Load method is called. Using EF API, generates the same SQL queries, but

runs slightly faster because it avoids the LINQ compilation time.

In the end, even though eager loading is slower in the examples above, the overhead

of communicating with the database throughout the network and the bottlenecks can be

higher in real cases. That typically makes the deferred loading approach less efficient for

more complex queries and multi-user scenarios.

4.1.6 Dynamism in EF

The most important requirement of Cachapuz’s CazFramework is the ability to define

dynamic lists at runtime based on SQL and on top of database schema changes at runtime,

rather than relying on a code generation of new entities and rebuild of the application

whenever changes are needed. Also, at times, it is important to be able to project some

of the fields in an entity without the trouble of specifying a new entity, thus optimizing

speed.

Dynamism can be implemented at various levels in EF 4.0. Loading dynamic objects

from the database can be implemented at various levels with the following strategies:

• Projections with Linq-to-Entities, returning anonymous types (EF 1.0). See p.

103;

• Projections in EQL using Named Type Constructors (EF 1.0). See p. 104;

• Use the native provider database API and waive the EF features. EF 4.0 provides

API (ExecuteStoreQuery(Of T)) to run SQL directly to the RDBMS and then

automatically populating an entity or DTO;

• Create entities and graphs dynamically. This consists of defining entities and associ-

ations in runtime using reflection and a more dynamic EF API. It can use dynamic

102

4.1. Entity Framework

structures like strings or KeyValuePair collections as input. See the example in

chapter 17.8 of [Ler09]. Note that the same example is supported by an additional

assembly that defines the POCO objects to be transformed into EF entities. To

create actual object types in runtime, in .NET, requires code instrumentation.

Note that the examples bellow use a slightly different database and object schema

than that of the other examples in 4.1.5.1. Also, here, the DBMS used is SQL Server

2008. The object User is mapped with table Users, containing more fields. Also the

Repository of users in the ObjectContext is called Users rather than User of the other

examples. Hence, these naming conventions are more readable than those in 4.1.5.1.

Projections with Linq-to-Entities

In the example below, the Linq-to-Entities query only fetches two fields of the object

User. The LINQ Select command returns an IQueryable(Of <anonymous type >).

This is available since EF 1.

Code:

Dim query = ctx.Users.Select(Function (c) New With {.Name = c.Name,

.Email = c.Email})

Dim users = x.Take(10).ToList()

Dim name = users.First().Name

SQL generated:

SELECT

[Limit1].[C1] AS [C1],

[Limit1].[Name] AS [Name],

[Limit1].[Email] AS [Email]

FROM (

SELECT TOP (10)

[Extent1].[Name] AS [Name],

[Extent1].[Email] AS [Email],

1 AS [C1]

FROM [dbo].[User] AS [Extent1]

) AS [Limit1]

If it is previously implemented a DTO class, e.g. a UserShort containing its name

and email only, that result can be casted to a UserShort. Otherwise it is still possible to

manage this anonymous type like a DTO but without being able to serialize it.

The anonymous type is a compile trick, i.e. it is strongly typed and made available

in compile time automatically, which alleviates the burden of writing each and every

103

4.2. NHibernate

managed object. However, this does not operate at runtime and therefore it lacks some

dynamism. Also, the Unit of Work is unavailable with anonymous types

More on this subject can be found in chapter 4.2 of [Ler09].

Projections with EQL

Since EF 1.0 it is possible to project fields using EQL as well. This is done using a

Named Type Constructor as in the following example:

Code:

Dim query As IEnumerable(Of User) = ctx.CreateQuery(Of User)(_

"SELECT VALUE CazApplication.Entities.User (u.userID, null, u.Password, & _

"u.Email, u.UserProfileID, u.IsAdmin, u.IsActive)" & _

"FROM Users as u")

Dim users = query.Take(100).ToList()

users.First().Name = "John"

ctx.SaveChanges()

SQL generated:

SELECT

CAST(NULL AS int) AS [C1],

[Extent1].[UserID] AS [UserID],

CAST(NULL AS varchar(1)) AS [C2],

[Extent1].[Password] AS [Password],

[Extent1].[Email] AS [Email],

[Extent1].[UserProfileID] AS [UserProfileID],

[Extent1].[IsAdmin] AS [IsAdmin],

[Extent1].[IsActive] AS [IsActive],

FROM [dbo].[User] AS [Extent1]

Thus, inside the EQL, the named type constructor must contain all the fields of the

entity in the correct order. The not required fields must be specified with null. Here, the

Unit of Work does not operate as with the anonymous types. Note that the constructor

has to be written with its full name, including the namespace where the entity resides.

4.2 NHibernate

NHibernate is an ORM framework for .NET and a port from the well known Hibernate

for Java, which has been widely used for a long time in enterprise software. One of the

key points of this tool is its determined DDD orientation, supporting the management of

104

4.2. NHibernate

a dominant Domain Model over a submissive database that can easily change its schema

to match the Domain Model. The essential features of NHibernate are the following:

• Domain Model pattern;

• Interoperability among different database providers and SQL dialects;

• Query Object (HQL, Linq-to-NHibernate, Criteria API);

• Unit of Work (Session), Identity Map and optimistic locking (control fields);

• Code customization for audit logging, via IoC;

• Lazy Load via Virtual Proxies created at runtime;

• Persistence ignorance POCO entities;

• Reflective Metadata Mapping with generic Data Mappers;

• Composite keys;

• Unidirectional and bidirectional associations of one-to-one, one-to-many and many-

to-many;

• Object-relational hierarchy patterns of table-per-class-family, table-per-class and

table-per-concrete-class;

• Generation and management of updates to the database, i.e. NHibernate takes

care of the database schema and the developer only has to worry about the object

schema.

However, the lack of support in Visual Studio designer and GUI widgets makes NHiber-

nate rather unappealing for .NET developers. Even though there are paid frameworks

and Visual Studio add-ins to generate NHibernate Metadata Mapping definitions and

POCO entities code from the database, by default it requires the developer to code them

manually.

This section analyses the NHibernate (version 2.1 and 3) with some theory and prac-

tical tests as well. Most of the supporting documentation used here is of Hibernate and

NHibernate 3.

105

4.2. NHibernate

4.2.1 Unit of Work

Similar to the EF ObjectContext, in NHibernate, the Session is the core and most impor-

tant class. That is, it implements a full featured Unit of Work that handles transactions,

caching (Identity Map), optimistic locking, Virtual Proxy domain objects with Lazy Load,

Data Mapper and Repository via an external LINQ implementation (Linq-to-NHibernate)

as well as other Query Object implementations (HQL and Criteria API).

The SessionFactory class manages the whole Domain Model schema, at runtime

and generically, using reflection from the Metadata Mapping definitions. It is thread-safe,

unlike Session class and as the name suggests, it creates Session instances.

When updating an object to the database, Session checks the changeset and only

updates what changed. Note that within the same Session, if the transaction is not

committed to database the changes made to the persistent objects are saved in the Unit

of Work (Session) itself. All users that operate within the same Session will see these

objects changed, even if not committed.

Moreover, NHibernate is able to manage POCO entities but at the same time traceable

by a Session. For that, the instance of ISession (Session) is injected via constructor

injection into the Virtual Proxies, generated at runtime, that inherit from the actual

POCO domain entities. This provides flexibility on control over the life-cycle of every

domain object that is attached to a Unit of Work.

Additionally, each of these runtime subclasses contain some flag to determine if changes

ought to be propagated to the Unit of Work. Also any subclass must override all the

setters from the corresponding POCO entity and implement the Unit of Work object

registration strategy, which implies accessing the Session it is attached to (i.e. contains

reference of ISession) and mark that object and property dirty. Note that to enable

this kind of behaviour, all the properties of that POCO entity must be overridable or

virtual.

Thus, whenever the Session loads an entity, it instantiates a Virtual Proxy subclass of

that same entity and sets the flag to not mark the object dirty before its data is loaded

from the database through its setters.

An important consideration is that, by default, NHibernate only updates the dirty

objects but as a whole, i.e. the SQL updates contain all the columns in a table even if

only one entity field has changed. However, it can be configured to generate dynamic

updates in the Metadata Mapping file (e.g. Person.hbm.xml) via the class attribute

dynamic-update. Hence, NHibernate will update only the fields that changed, and for

that it uses dynamic proxies. Note that this strategy does not always enhance performance

106

4.2. NHibernate

[KBA+12].

For creating dynamic proxies, NHibernate uses an IoC container. It relies on .NET re-

flection and runtime class enhancement (via Castle.DynamicProxy library), also known

as bytecode instrumentation [Sta11].

A Session is a non thread-safe lightweight object that provides a level of abstract-

ing from the database transaction management. The simplest way of coding a transac-

tion is opening a session, reading and updating objects and then flush it (using ses-

sion.Flush()), so the changes are persisted to the database at once. Similar to EF,

nonetheless, it is possible to acquire more control over a transaction by using ITrans-

action API including Commit and Rollback methods. For more information and code

examples see [KBA+12].

Note that using multiple NHibernate transactions does not grant that in DBMS multi-

ple transactions will be used. Also, there is no guarantee that some method in Session will

always perform the SQL call to the database because NHibernate always tries to delay that

call as long as possible. That is except for ISession.Flush and ITransaction.Commit

methods which force database synchronization (Unit of Work commit).

Often the Session object instance is misinterpreted as being a data store because it

behaves like an OODBMS, which can hinder performance if misused. One example of a

bad practice is using session-per-operation anti-pattern (consists of opening a session for

each query or update to the database) for it generates too many calls to the database and

excessive overhead.

The most common and encouraged pattern in hibernate documentation ([KBA+12])

is the session-per-request, suitable for most applications. That leads to a one-to-one

relationship between Session and database transaction.

Sometimes, however, a request may seem too brief when, for instance a user interacts

with the system by sending multiple requests in a short time period. For that there are

two options: session-per-request-with-detached-objects or session-per-conversation (recon-

nects and disconnects the session rather than closing it and without the need to reattach

objects). See [KBA+12] for details.

Another common mistake is having a session-per-application, which is a shared Session

instance working as an in-memory data store (Repository). This approach presents a

number of challenges:

• In-memory changes over objects that are loaded from the Session will apply to all

users of that application instance;

• Multi-threaded Session requires additional complex code for locking management;

107

4.2. NHibernate

• Session will have stale data if other applications update the same database often;

• Clear Session once in a while is required, including empty changeset, Identity Map

and other in-memory caches so that it does not reach out of memory exceptions;

Having a shared Session is renouncing the already implemented RDBMSs ACID properties

and therefore it is rarely required for N-Tier applications. Although, for single user

applications with single user databases it may perform well, it still needs to clear the

Session from time to time.

4.2.2 Optimistic Locking

NHibernate implements Optimistic Offline Lock by default. Optimistic locking is con-

figurable using control fields in the Metadata Mapping files (e.g. Person.hbm.xml) with

class and property attribute optimistic-lock ([Sta11] and [KBA+12]:

• In the class, optimistic-lock can be set to: version (checks a version column on

SQL updates), all (all the fields are compared in the SQL update), dirty (only

the dirty fields are compared in the SQL update) and none. With optimistic-

lock="version" a new column (often a Long type) has to be created and mapped

to a field, in the Metadata Mapping file via version or timestamp element. Both

the elements allow the version column to be managed by the database rather than

the NHibernate, which implies using the attribute generated="always";

• In the property, optimistic-lock can be either true or false (default is true), which

specifies if the class version should increment when that property changes. It only

applies if the class itself is set to use optimistic lock with version or timestamp.

For pessimistic locking, NHibernate Session provides additional locking mechanisms

for reads, writes, upgrades, etc.

4.2.3 Lazy Load

Lazy Load is one of the most discussed patterns of Hibernate and NHibernate for its high

variety of implementations and complexity of configuration as well as the performance

enhancements and problems it brings about. The Lazy Load strategies implemented in

this framework match some similarities to the ones presented in 3.3.3. Hence, NHibernate

defines the different fetching methods ([Sta11], [KBA+12]):

108

4.2. NHibernate

• Immediate fetching, i.e. when an entity is loaded, its one-to-one and one-to-many

(collection) associations or class attributes are fetched immediately. For instance,

if a Person has a one-to-many association with Profile, when a Person object is

loaded, it fetches all its profiles as well. This option can be defined within the ele-

ments of the associations (in Metadata Mapping file) with fetch="join" (generates

one SQL query with a join) or fetch="select" (default option that generates one

SQL query for Person plus N SQL queries for the profiles unless the batch size is

set to more than 1 for that collection). Also, note that collections are set to lazy by

default, which require lazy=false definition to enable immediate fetching;

• Lazy collection fetching, i.e. a collection is only loaded from the database when the

application invokes an operation upon that collection. It does not require dynamic

proxies, rather the lazy collection type has its iterator implement some data loader.

See 3.3.3 for details on how a ProxyList is implemented;

• Batch fetching, i.e. a collection is fetched by chunks of a fixed batch size while

keeping track of a limit and an offset. For instance, if a collection of profiles is

defined with a batch size of 10, as that collection is iterated, at most, it performs

N/10 queries with N being the length of the collection. In one-to-many associations,

if the collection is intended to be fully iterated, it is more efficient to eagerly load it

(with a fetch="join") in the first place. Batch fetching is used together with lazy

collection fetching;

• Proxy fetching, i.e. a single-valued association (one-to-one or many-to-one) is

fetched only when any of the properties of the associated object are invoked, except

its id. For instance, if a Person has a many-to-one association with Profile and it

is set to use proxy fetching, when a Person is loaded, it will not fetch the associated

Profile immediately. That association is instantiated with a Ghost object that

only contains its id with all the other properties to null. The Profile will actually

be loaded (entirely) only when its properties other than the id are called.

Note that a many-to-one association is mapped to the database with a foreign key

constraint in the PersonTable that points to the primary key of the ProfileTable

and thus it is possible to instantiate the Profile object with the id before accessing

the ProfileTable. A one-to-one association can be either mapped in the same way

or having the same primary key in both tables.

Proxy fetching is implemented in NHibernate as in EF through subclassing at run-

time, which replaces Profile class with a subclass ProfileProxy that overrides its

109

4.2. NHibernate

getter properties. For that, in the Metadata Mapping file, the Person many-to-one

association must be defined with lazy="proxy" (only implemented since NHiber-

nate 3 and new default) and, in the class, the getter property has to be set virtual

so it can be overridable. For a better understanding see the following example of

pseudo-code:

class Person

virtual property Profile() : Profile

returns _profile

’at runtime

class ProfileProxy inherits Profile

override property Name() : String

if _name is null

_session.Load(Of Profile)(this) ’db call

return _name

With the above example, when a Person is loaded, its Profile getter property

returns a ProfileProxy (encapsulated with Profile type) which is a Ghost object

containing only the Profile id from the foreign key in PersonTable. Casting

problems arise when using inheritance with proxies (unless using table-per-class-

family). More details can be found in section 3.3.3. Proxy fetching requires bytecode

instrumentation;

• Lazy attribute fetching, i.e. a class attribute (single-valued other than collections

and associations) is fetched when the instance variable is first accessed (implemented

since NHibernate 3). This approach is similar to proxy fetching, except it is applied

to the basic typed properties which can be set to lazy="true" in the Metadata Map-

ping. This requires bytecode instrumentation and is rarely an efficient optimization,

also if entities contain too many fields, that is often a sign of poor Domain Model

design. An alternative to avoid lazy attribute fetching is using queries with field

projection;

• No-proxy, i.e. single-valued association (one-to-one or many-to-one) is fetched when

the instance variable is first accessed. This does not use a proxy for the associated

object, which avoids some casting problems explained in section 3.3.3 (implemented

since NHibernate 3.2). For instance, if a Person has a many-to-one association

with Profile, when the Profile getter property is accessed, it will instantiate the

Profile object (POCO instead of a proxy) with all its properties eagerly fetched.

Note that the Person object must have lazy initialization behaviour injected on its

property getter Profile as the following example of pseudo-code demonstrates:

110

4.2. NHibernate

[commandchars=\\\{\}]

class Person

virtual property Profile() : Profile

return _profile

\verbHighlight{’at runtime:}

class PersonProxy inherits Person

override property Profile() : Profile

_profile =_session.GetNamedQuery("ProfileByPerson")

.SetParameter("id",this.id)

.FirstOrDefault() \verbHighlight{’db call}

return _profile

This feature is enabled, in the Metadata Mapping file, setting the association el-

ement with lazy="no-proxy". Requires bytecode instrumentation and is rarely

needed.

By default, NHibernate uses lazy collections for one-to-many or many-to-many asso-

ciations and proxy fetching for single-valued associations (one-to-one and many-to-one).

Proxy fetching for single-valued is not implemented in NHibernate 2. Note that other

than lazy collection fetching, lazy single-valued attributes always require proxies.

Proxied single-valued attributes always require some getter property be decorated via

code injection with code to specifically load something. NHibernate accomplishes this

with Castle.DynamicProxy library that generates dynamic proxies at runtime with

bytecode instrumentation.

Thus by default, NHibernate 3 generates proxies for all persistent classes and uses

them to enable lazy fetching of single-valued associations and attributes. The proxies

are subclasses of the POCO entities and require that a default constructor and virtual

properties are implemented in the POCO objects [KBA+12].

4.2.4 Code Customization: Audit Logging

Enterprise layered applications and frameworks often rely on the combination and inte-

gration of different services together. Customizing code generation, event handling or

intercepting method calls are important features that allow the default behaviour of an

application to be changed especially when the requirements are variable.

Typically, audit logging and accessibility or security control are some of those services,

for they exist in most applications. Although more specific business components are

111

4.2. NHibernate

also very common, e.g. automatic translation, message censorship or very specific GUI

customizations for special customers.

This kind of services is commonly related to non-functional requirements, not coupled

to the core business logic of the application. For that, they ought to be disabled without

affecting the rest of the application.

Audit logging is one of those services, which consists of tracking data changes often

keeping some log record containing the user responsible for the changes, the date and

time of the event, the type of event and the data affected.

Although auditing can be done manually (continuous effort of coding tedious code

and more code is susceptible to more bugs) or using database triggers (slow, can cause

bottlenecks, compromises business logic to the database and may become slower as logic

complexity escalates), NHibernate provides built-in mechanisms for intercepting persis-

tence events, without affecting the core business logic of the application.

For that, NHibernate uses an implicit IoC container approach via IInterceptor im-

plementation which intercepts some specific behaviour or persistence events that occur

on certain entities.

The example in Figure 4.4 is based on the one in chapter 8.4 of the book [KBHK09].

That same example demonstrates the implementation of IInterceptor approach, which

is built upon the following steps:

• Define information to be logged: user id, date and time, type of log, entity affected,

etc;

• Create an AuditRecord entity, with all the fields to be logged and define it in the

NHibernateMetadata Mapping as an immutable entity, which means once a record

is inserted it cannot be updated;

• Have the audit-able entities implement an IAuditable interface;

• Implement the interface IInterceptor (all methods) or create an AuditIntercep-

tor class that inherits from EmptyInterceptor and overrides only the methods

intended to use. EmptyInterceptor is a class that implements all the methods in

IInterceptor with no behaviour (empty).

There are some particular aspects of NHibernate.IInterceptor. Because it inter-

cepts some methods called in a Session, it defines a SetSession method to configure a

session to be intercepted by some interceptor class (implementing IInterceptor). The

most relevant methods in IInterceptor are:

112

4.2. NHibernate

• OnSave - called when an object is set to be saved with SQL INSERT but not neces-

sarily immediately;

• OnFlushDirty - called when an object is detected to be dirty during a flush;

• OnPostFulsh - called after the database commit.

Figure 4.4 defines a multi-layered approach for auditing a Bank web service. All the

numbered classes from 1 to 5 correspond to the various layers of code (IoC container code

not included) that are used within the server, when a Bank service is requested.

Note that AuditInterceptor contains an additional userID field for keeping track on

who is responsible for committing the changes.

Another feature in Figure 4.4 is implicit authentication. .NET N-Tier applications of-

ten use WCF services that already support authentication features and allow interceptors

for calls on service methods. Other options are using TLS to manage the current caller

id (the id of the user that performed that service request) and avoid passing this id to

the business logic on every method as a parameter. This requires, at the beginning of

the service call, that the user id is fetched from a http session or cookie and then set the

current thread to be aware of this user id.

Thus, the example (Figure 4.4) implements Decorator to decorate the sessionFac-

tory.openSession method in order to factory a Session with both the AuditInterceptor

configured and the id fetched from the current thread (Abstract Factory). It is not pointed

in the example but MySessionFactory would replace SessionFactory, which then would

require the former to implement a lot more methods.

Instead of using NHibernate to persist logs, libraries like log4net can be used. Al-

though it is recommended to encapsulate the persistence mechanism as in N-Tier archi-

tectures so it becomes easier to change that same mechanism.

Other methods for implementing more specific IoC, would require the use of libraries

such as Castle Windsor or Spring.NET.

113

4.2. NHibernate

-id : Integer

-name : String

-acounts : Set(Of Account)

Person

-number : Long

-amount : Double

Account

1
*

GetId() : Long

«interface»

IAuditable
-userID : String

-entityID : Long

-entityName : String

-CreationDateTime : Datetime

-type : Integer

-message : String

AuditRecord

+static LogEvent()

AuditUtil

BankService

…

session : ISession = MySessionFactory.openSession()

session.BeginTransaction()

account = session.Load(Of Account)(number)

account.Amount = account.Amount + 500.00

session.Update(account); // Triggers OnFlushDirty() of the interceptor

session.Transaction.Commit(); // Triggers PostFlush()
...

+SetUserID(userID : String)

+override SetSession(session : ISession):

+override OnFlushDirty(…) : boolean

+override PostFlush(ICollection c)

-session : ISession

-updates : List

-userID : String

AuditInterceptor

«interface»

Nhibernate.IInterceptor

+OnFlushDirty(...) : boolean

+OnSave(…) : boolean

NHibernate.EmptyInterceptor

+override OnFlushDirty(entity : object,

id : object,

currentState : object[],

previousState : object[],

propertyNames : string[],

types : IType[]) : boolean {

 if (entity is IAuditable)

 updates.Add(entity)

 return base.OnFlushDirty(entity, id, currentState,

 previousState,

 propertyNames, types)

}

+override PostFlush(ICollection c) {

 try {

 foreach(object entity in updates)

 AuditUtil.LogEvent(LogType.Update,

 entity,

 userId,

 session.Connection)

 } catch (Exception e) {

 throw e

 } finally { updates.Clear() }

}

+static LogEvent(logType : LogType,

 entity : IAuditable,

 userID : Long,

 conn : IDbConnection) {

 tempSession : ISession =

 sessionFactory.OpenSession(conn)

 record : AuditRecord =

 new AuditRecord(logType.ToInteger(),

entity.GetId(),

entity.GetType(),

userId)

 record.GenerateMessage()

 record.GenerateDateTime()

 tempSession.Save(record)

 tempSession.Flush()

 tempSession.Close()

}

MySessionFactory

+openSession() : ISession {

 userID = CurrentThread.GetUserID() //using TLS

 interceptor : AuditInterceptor = new AuditInterceptor(userID)

 session : ISession = sessionFactory.OpenSession(interceptor)

 interceptor.SetSession(session)

 return session

}

//On any client webservice request do

//authorization verification and save userID

CurrentThread.SetUserID(userID)

1

2

3

4

5

Figure 4.4: Implementation of AuditInterceptor in NHibernate

114

4.2. NHibernate

4.2.5 Testing NHibernate

This section describes a practical analysis of the features in NHibernate 2.1. Unlike EF,

NHibernate does not feature Visual Studio designer, GUI widgets or code generators.

Coding the NHibernate Metadata Mapping definitions, the persistent objects and other

configuration settings by hand can be a tedious job that any developer expects to avoid

when using an ORM framework. For that reason, this NHibernate analysis used Sculpture

2.1 to help such process. Sculpture is a model driven code generation framework that

integrates with other technologies in an N-Tier architecture. The data tier can either be

configured to use EF or NHibernate ORM frameworks. Note that this analysis is not

intended to test Sculpture but NHibernate.

This analysis begins with Sculpture generating a Domain Model (POCOs) and the

NHibernate Metadata Mapping definitions from the database schema (in Figure 4.5)

using MySQL 5.1. Figure 4.6 presents the Visual Studio designer (Sculpture feature)

with the domain classes (POCOs) generated by Sculpture. In order to generate the class

associations, the MySQL database schema had to be configured with InnoDB.

profile

PK Profile_Id

iban

PK Iban_Id

person

PK Person_Id

PK Person_Id2

 Name

FK1 Iban_Id

person_profile

PK,FK1 Person_Id2

PK,FK1 Person_Id

PK,FK2 Profile_Id

Figure 4.5: Testing NHibernate: MySQL database schema

115

4.2. NHibernate

Figure 4.6: Testing NHibernate: generated object schema

Thus, Sculpture generates two Visual Studio projects:

• DataAccess project: contains the NHibernate configurations (Metadata Mapping,

Session configuration helpers) and Repository definitions as demonstrated in Figure

4.7;

• Entities project: contains the generated entities. One example is demonstrated in

Figure 4.8.

Note that Sculpture has personRepositoryBase and personBase as the classes with

generated code and then it provides personRepository and person empty classes that

inherit from the Base classes and can be manually coded with additional features.

Figure 4.7: Testing NHibernate: Repository classes generated by Sculpture

Each generated Repository class (Figure 4.7) encapsulate a Session, which is a single-

ton Session variable instantiated once per application start-up in a helper. Here, Sculp-

ture implements the session-per-application pattern which is not recommended because

116

4.2. NHibernate

the Session object is not thread safe and is designed to be very shot-lived (see section

4.2.1). The other methods in the repository implement the basic CRUD NHibernate API.

Figure 4.8: Testing NHibernate: POCO Person classes generated by Sculpture

In NHibernate, composite keys have to be mapped to a new type. Thus, Sculpture

generated the personId class (see its superclass personIdBase in Figure 4.8) to embed

both the ids corresponding to the composite key of the table. The Metadata Mapping

definitions, specified in file person.hbm.xml for configuring the composite key as well as

its many-to-many association with profile, are given by the following code:

<!--person.hbm.xml-->

<composite-id name="personId" class="personId">

<key-property name="Id" column="Id" type="Int32"/>

<key-property name="Id2" column="Id2" type="Int32"/>

</composite-id>

<set name="profiles" table="person_profile" lazy="true" cascade="save-update">

<key>

<column name="Person_Id"/>

<column name="person_Id2"/>

</key>

<many-to-many class="profile">

<column name="Profile_Id"/>

</many-to-many>

</set>

Note that the profile set (many-to-many association) is set to use the lazy collec-

tions strategy and cascading save (insert new) or update. The same definitions of this

association are set in profile.hbm.xml file which are similar to the above example but

with inverted keys. With cascading, in this bidirectional association, if a new profile is

added to the profiles set of a person and then only the person is saved, the changes

117

4.2. NHibernate

will propagate through the association and call the SQL insert for the profile before

inserting a new row in the Association Table Mapping person profile.

The MySql.Data.dll and NHibernate.ByteCode.Castle.dll files have to be added

to the Build folder in order to compile the Visual Studio projects generated by Sculpture.

That is because both the Dynamically Linked Library (DLL) assemblies are loaded with

reflection in runtime to provide database provider driver and bytecode instrumentation

(proxies).

The following examples provide a test to the NHibernate API using the test database,

domain model and generated code above.

4.2.5.1 Simple Load and Identity Map

Many-to-one load association on person

Code:

session.Load(Of person)(new personId(2,1))

SQL generated, using mapping settings on the many-to-one association (iban) of

person with default settings: fetch="join" or outer-join="true":

SELECT this_.Id as Id2_1_, this_.Id2 as Id2_2_1_,

this_.Name as Name2_1_, this_.ibanId as ibanId2_1_,

iban2_.id as id3_0_

FROM person this_

left outer join iban iban2_ on this_.ibanId=iban2_.id

WHERE this_.Id = 2 and this_.Id2 = 1 limit 2

SQL generated, using mapping settings on the many-to-one association (iban) of

person with default settings: fetch="select" or outer-join="false":

SELECT this_.Id as Id2_0_, this_.Id2 as Id2_2_0_,

this_.Name as Name2_0_, this_.ibanId as ibanId2_0_

FROM person this_

WHERE this_.Id = 2 and this_.Id2 = 1 limit 2

SELECT iban0_.id as id3_0_ FROM iban iban0_

WHERE iban0_.id=111

Many-to-one associations are eager by default and cannot be set lazy in NHibernate

2.1 (proxy fetching was implemented since NHibernate 3, see section 4.2.3). Here, the

fetching strategy can either be set to join (default) or select. The former executes

118

4.2. NHibernate

a single SQL select joining both tables (person and iban) and the latter executes 2

separate SQL select (one for each table).

In this case, because any loaded person only gets one iban, it is convenient to use

the join fetch strategy because it produces less calls to the database. Note that due to

NHibernate default lazy collections, profiles are not eagerly loaded.

Identity Map on profile

Code:

session.Load(Of profile)(1) ’loads from db

session.Load(Of profile)(2) ’loads from db

session.Load(Of profile)(1) ’loads from cache

session.Load(Of profile)(2) ’loads from cache

SQL generated:

SELECT profile0_.Id as Id0_0_

FROM profile profile0_ WHERE profile0_.Id=1

SELECT profile0_.Id as Id0_0_

FROM profile profile0_ WHERE profile0_.Id=2

This demonstrates the behaviour of NHibernate level 1 cache, also known as Identity

Map. This map is stored in a Session which is intended to be short-lived or be flushed

and cleaned regularly. Note that this behaviour is not expected when other queries like

Linq-to-NHibernate or HQL are executed, although there are other manageable levels of

caching, not covered here.

4.2.5.2 Linq-to-NHibernate join query examples

Because NHibernate 2.1 does not implement LINQ, a contribute library was built to

provide Linq-to-NHibernate rather than using criteria API or session.QueryOver(Of

T). For that it is required to import the NHibernate.Linq namespace and then use

session.Linq(Of T)(). NHibernate 3 already provides a built-in LINQ provider by

using session.Query(Of T)(). Note that the following examples use the NHibernate

2.1 LINQ provider.

Fetching a person filtered through its iban id

119

4.2. NHibernate

Code:

query = From per As person In session.Linq(Of person)

Where per.iban.id = 333 Select per

person = query.First

SQL generated:

SELECT this_.Id as Id2_1_, this_.Id2 as Id2_2_1_,

this_.Name as Name2_1_, this_.ibanId as ibanId2_1_,

iban1_.id as id3_0_

FROM person this_

left outer join iban iban1_ on this_.ibanId=iban1_.id

WHERE iban1_.id = 333 limit 1

Although in the relational paradigm, the inner join is more advertised, runs faster

and is adequate to a number of use cases than the outer join, the fact is that in ORM

frameworks, it makes more sense for simple data listing, to fetch all the persons, even

those that do not contain an iban.

Fetching all profiles that have any persons associated

Code:

profiles = session.Linq(Of profile)

.Where(Function(u) u.persons.Any).ToList()

’OR

query = From p In session.Linq(Of profile)

Where p.persons.Any

profiles = query.ToList()

SQL generated:

SELECT this_.Id as Id0_0_ FROM profile this_

WHERE this_.Id in (

SELECT this_0_.Id as y0_ FROM profile this_0_

WHERE exists(

select 1 from person_profile

where this_0_.Id=Profile_Id))

Fetching all the profiles that contain any persons associated falls within the typical

nested-loop join (see appendix section A.4.1 for details on nested-loop joins). Because the

actual person data was not requested, NHibernate opted for a different solution than the

inner join. Although it seams the outer most select is irrelevant for such query.

120

4.2. NHibernate

Fetching all persons that have a profile with id=1

Code:

query = From per In session.Linq(Of person),

pro In p.profiles Where pro.Id = 1 Select per

persons = query.ToList()

SQL generated:

SELECT this_.Id AS Id3_2_, this_.Id2 AS Id2_3_2_,

this_.Name AS Name3_2_, this_.ibanId AS ibanId3_2_,

iban3_.id AS id2_0_, profiles4_.Person_Id AS Person2_4_,

profiles4_.person_Id2 AS person3_4_,

p2x1_.Id AS Profile1_4_, p2x1_.Id AS Id0_1_

FROM person this_

LEFT OUTER JOIN iban iban3_ ON this_.ibanId=iban3_.id

LEFT OUTER JOIN person_profile profiles4_ ON

this_.Id=profiles4_.Person_Id AND

this_.Id2=profiles4_.person_Id2

LEFT OUTER JOIN profile p2x1_

ON profiles4_.Profile_Id=p2x1_.Id

WHERE p2x1_.Id = 1

Despite the many left outer joins and the size difference between the Query Object

and the SQL command, the above example is very simple and straightforward. All it does

is perform an eager fetch for the persons while filtering.

4.2.5.3 Lazy Collections examples

Default one-to-many association navigation

Code:

profile = person.profiles(0)

SQL generated:

SELECT profiles0_.Person_Id as Person2_1_,

profiles0_.person_Id2 as person3_1_,

profiles0_.Profile_Id as Profile1_1_,

profile1_.Id as Id0_0_

FROM person_profile profiles0_

left outer join profile profile1_

on profiles0_.Profile_Id=profile1_.Id

WHERE profiles0_.Person_Id=2 and profiles0_.person_Id2=1

121

4.2. NHibernate

Although collections are lazy by default, once even the first element is accessed, all

the collection is loaded at once.

Default one-to-many association navigation (inverted)

Code:

count = profile.persons.Count

’OR

person = profile.persons.First

SQL generated:

SELECT persons0_.Profile_Id as Profile1_2_,

persons0_.Person_Id as Person2_2_,

persons0_.person_Id2 as person3_2_,

person1_.Id as Id2_0_, person1_.Id2 as Id2_2_0_,

person1_.Name as Name2_0_, person1_.ibanId as ibanId2_0_,

iban2_.id as id3_1_

FROM person_profile persons0_

left outer join person person1_

on persons0_.Person_Id=person1_.Id and

persons0_.person_Id2=person1_.Id2

left outer join iban iban2_ on person1_.ibanId=iban2_.id

WHERE persons0_.Profile_Id=1

The above example presents the inverted association of the prior example and it gen-

erates a similar SQL statement.

One-to-many association with eager load

The following example demonstrates the behaviour of an eager collection. For that, in the

profile mappings, the persons set (one-to-many association) is set to lazy="false".

Code:

profiles = session.Linq(Of profile)().ToList()

SQL generated:

SELECT this_.Id as Id0_0_ FROM profile this

SELECT persons0_.Profile_Id as Profile1_2_,

persons0_.Person_Id as Person2_2_,

122

4.2. NHibernate

persons0_.person_Id2 as person3_2_,

person1_.Id as Id3_0_, person1_.Id2 as Id2_3_0_,

person1_.Name as Name3_0_, person1_.ibanId as ibanId3_0_,

iban2_.id as id2_1_

FROM person_profile persons0_

left outer join person person1_ on

persons0_.Person_Id=person1_.Id and persons0_.person_Id2=person1_.Id2

left outer join iban iban2_ on person1_.ibanId=iban2_.id

WHERE persons0_.Profile_Id=3

SELECT persons0_.Profile_Id (...) WHERE persons0_.Profile_Id=2

SELECT persons0_.Profile_Id (...) WHERE persons0_.Profile_Id=1

In the above example, first NHibernate fetches all the profiles and then, for each

profile it loads the according persons eagerly. In here, NHibernate decided to perform

N+1 different selects rather than running a single select. While the N+1 approach

retrieves Rows(profile)+Rows(profile)∗Rows(person) rows, the single select approach

only retrieves Rows(profile) ∗ Rows(person) rows. However, the latter is a cross join

which returns a Cartesian product between the profiles and the persons. In turn, that

returns a lot of repeated data which ends up being slower than the N+1 approach.

Note that eager load may incur in fetching the whole database at once into memory.

The advantage of this is that all data can be passed to upper layers and become detached

from the Session without facing lazy exceptions.

One-to-many association with lazy load (default)

The following example demonstrates the behaviour of a lazy collection. For that, in the

profile mappings, the persons set (one-to-many association) is set to lazy="true",

which is the default.

Code:

profiles = session.Linq(Of profile)().ToList()

For Each pro In profiles

pro.persons(0).Id

Next

This approach generates the same N+1 SQL selects as the last example (4.2.5.3),

except each select is executed at different stages. The ToList() generates the first

select which fetches all the profiles with no associations filled. Then, on each iteration

123

4.2. NHibernate

of the for cycle, NHibernate executes one SQL for fetching the persons set of each

profile

One-to-many association with lazy load and batch-size The following example

adds to the above, the batch-size feature applied to the persons collection in the profile

mappings with batch-size="2". Note that the code is the same as the prior example

and only the SQL generated is different.

SQL generated:

SELECT this_.Id as Id0_0_ FROM profile this

SELECT persons0_.Profile_Id as Profile1_2_,

persons0_.Person_Id as Person2_2_,

persons0_.person_Id2 as person3_2_,

person1_.Id as Id3_0_, person1_.Id2 as Id2_3_0_,

person1_.Name as Name3_0_, person1_.ibanId as ibanId3_0_,

iban2_.id as id2_1_

FROM person_profile persons0_

left outer join person person1_ on

persons0_.Person_Id=person1_.Id and persons0_.person_Id2=person1_.Id2

left outer join iban iban2_ on person1_.ibanId=iban2_.id

WHERE persons0_.Profile_Id in (1, 2)

SELECT persons0_.Profile_Id (...) WHERE persons0_.Profile_Id=3

In here, NHibernate fetches the lazy collection (one-to-many association) persons but

in groups of 2 elements rather than one by one, during the cycle. Thus it performs the

following number of selects (div returns the integer division, mod returns the remainder

of integer division, N is the number of persons and B is the batch-size):div(N,B) + 1, if mod(N,B) = 0

div(N,B) + 2, if mod(N,B) > 0

For this example, NHibernate executes 3 selects.

Another way to enable this batch-size behaviour is to set the person class mapping

to batch-size="2". However, this approach will take effect on all the associations that

involve a collection of persons.

Note that HQL and Linq-to-NHibernate always fetch a collection eagerly when the

ToList(), or other method that calls GetEnumeratior(), is invoked on that IQuery or

124

4.2. NHibernate

IQueryable interface which is returned by session.CreateQuery() or extension methods

session.Linq(Of T) and session.Query(Of T).

Another important note about collections is that NHibernate does not only support

the collection set. Using a set, on running person.profiles.add(...), NHibernate

fetches all the profiles from database before inserting the new one. That is because a

set does not allow duplicated elements and that kind of validation is only possible if the

whole collection is loaded to memory first. Other collection types such as map or bag do

not require this kind of validation and thus are able to insert a new element to a lazy

collection without entirely loading it.

4.2.5.4 Cascading Delete operations

Simple delete without cascading on delete

The following example can either use no cascade or cascade="save-update" in persons

association of profile class mappings.

Code:

session.Delete(session.Load(Of profile)(3))

SQL generated:

SELECT this_.Id as Id0_0_ FROM profile this_

WHERE this_.Id = 3 limit 2

DELETE FROM person_profile WHERE Profile_Id = 3

DELETE FROM profile WHERE Id = 3

Sometimes it can be a good idea to wrap this whole operation in a single database

transaction to prevent other users from updating that profile right before being deleted.

Simple delete with cascading on delete

The following example configures the iban class mappings to use a cascade="all" on

the persons set (one-to-many association).

Code:

session.Delete(session.Load(Of iban)(333))

125

4.2. NHibernate

SQL generated:

SELECT this_.id as id3_0_ FROM iban this_

WHERE this_.id = 333 limit 2

SELECT persons0_.ibanId as ibanId1_, persons0_.Id as Id1_,

persons0_.Id2 as Id2_1_, persons0_.Id as Id2_0_,

persons0_.Id2 as Id2_2_0_, persons0_.Name as Name2_0_,

persons0_.ibanId as ibanId2_0_

FROM person persons0_ WHERE persons0_.ibanId=333

DELETE FROM person_profile

WHERE Person_Id = 4 AND person_Id2 = 1

DELETE FROM person WHERE Id = 4 AND Id2 = 1

DELETE FROM iban WHERE id = 333

The second select fetches all the persons using that iban so that they can all be

deleted with the iban. Because in the person association of profiles there is no cascade on

delete, the profiles have been spared. This approach can be dangerous when the Domain

Model is interlinked with many associations, for the whole database can be deleted at

once.

4.2.5.5 HQL examples

The most flexible way of querying with NHibernate is using HQL which has a very sim-

ilar syntax with the SQL except it queries the object model rather than the relational

model. Its learning curve is slower than Linq-to-NHibernate but it provides a wider set

of commands. HQL is compiled at runtime using ANTLR (the Antlr3.Runtime.dll has

to be included in the build folder) unlike Linq-to-NHibernate which is built at compile

time.

An HQL query is treated as a string so it does not provide strong type checking. The

method session.CreateQuery(HQLQueryString) is used to return a NHibernate.IQuery

that is only executed when a method like IQuery.List() is invoked.

HQL simple load (1)

Note that HQL queries are lazy by default, meaning that all the persons were fetched

but with lazy one-to-many associations all according to the Metadata Mapping definitions.

126

4.2. NHibernate

Although it is possible to eagerly fetch the associations even though they are defined as

lazy.

Code:

query = session.CreateQuery("from person as p")

ilist = query.List()

SQL generated:

select person0_.Id as Id3_, person0_.Id2 as Id2_3_,

person0_.Name as Name3_, person0_.ibanId as ibanId3_

from person person0_

SELECT iban0_.id as id2_0_ FROM iban iban0_ WHERE iban0_.id=222

SELECT iban0_.id as id2_0_ FROM iban iban0_ WHERE iban0_.id=111

SELECT iban0_.id as id2_0_ FROM iban iban0_ WHERE iban0_.id=333

All the 4 SQL statements above were generated when executing the HQL query (run-

ning the IQuery.List() method). The query returns a System.Collections.IList

filled with person objects.

HQL simple load (2)

Code:

ilist.Item(0).profiles(0)

SQL generated:

SELECT profiles0_.Person_Id as Person2_1_,

profiles0_.person_Id2 as person3_1_,

profiles0_.Profile_Id as Profile1_1_,

profile1_.Id as Id0_0_

FROM person_profile profiles0_

left outer join profile profile1_ on

profiles0_.Profile_Id=profile1_.Id

WHERE profiles0_.Person_Id=1 and profiles0_.person_Id2=2

Only when that person.profiles association is iterated are the profiles actually

loaded.

127

4.2. NHibernate

HQL join example (1)

The following example returns all the persons that have at least one profile.

Code:

session.CreateQuery("from person as p join p.profiles as prof")

.List()

SQL generated:

select person0_.Id as Id3_0_, person0_.Id2 as Id2_3_0_,

profile2_.Id as Id0_1_, person0_.Name as Name3_0_,

person0_.ibanId as ibanId3_0_

from person person0_

inner join person_profile profiles1_ on

person0_.Id=profiles1_.Person_Id and

person0_.Id2=profiles1_.person_Id2

inner join profile profile2_ on

profiles1_.Profile_Id=profile2_.Id

SELECT iban0_.id as id2_0_ FROM iban iban0_ WHERE iban0_.id=222

SELECT iban0_.id as id2_0_ FROM iban iban0_ WHERE iban0_.id=111

SELECT iban0_.id as id2_0_ FROM iban iban0_ WHERE iban0_.id=333

Because it was not specified what to collect from that join (select or project) NHiber-

nate returns an IList of pairs in the form of array objects with length 2 and containing

both the person and the profile as a tuple.

Essentially, HQL supports inner join (join), left outer join and right outer

join. Because in this example, there is no left or right join, the query only fetches the

persons that contain at least one profile. Thus, NHibernate uses an SQL inner join. An

HQL left outer join, on the other hand, would imply an SQL outer join to fetch all

the persons even those with no profiles.

Note that an HQL join does not fill the lazy associations within an object unless the

command fetch is used. For instance to set the query above to return persons and filling

the lazy association profiles it would require the following HQL code:

from person as p join fetch p.profiles as prof

Note that the above example uses generates an SQL inner join. For an outer join it would

have to be rewritten as the following:

from person as p left join fetch p.profiles as prof

128

4.2. NHibernate

HQL join example (2)

The following example demonstrates the behaviour of an inner join with field projection.

Code:

session.CreateQuery("select p.Name, prof.Id from person as p" & _

"join p.profiles as prof").List()

SQL generated:

select person0_.Name as col_0_0_, profile2_.Id as col_1_0_

from person person0_

inner join person_profile profiles1_ on

person0_.Id=profiles1_.Person_Id and

person0_.Id2=profiles1_.person_Id2

inner join profile profile2_ on

profiles1_.Profile_Id=profile2_.Id

This query returns an IList of array objects with length 2 containing a tuple of

string and int.

4.2.5.6 Dynamic LINQ

Dynamic LINQ is LINQ without strong type checking, i.e. using strings in the clauses

Where, Select, OrderBy, etc. Thus, LINQ becomes serializable and writeable at runtime.

Dynamic LINQ is a sample code provided in Visual Studio 2008 in the folder:

...\ProgramFiles\Microsoft Visual Studio 9.0\Samples\1033\CSharpSamples

\LinqSamples\DynamicQuerys

. The Dynamic.cs, when imported in some project, it extends the IQueryable interface

with extension methods providing new LINQ methods that take strings as arguments.

Note that EF already provides Dynamic LINQ without requiring this.

Dynamic LINQ sample 1

Code:

session.Linq(Of person).Where("personId.Id = 1 &&" & _

"personId.Id2=1").FirstOrDefault()").List()

129

4.2. NHibernate

SQL generated:

SELECT this_.Id as Id3_1_, this_.Id2 as Id2_3_1_,

this_.Name as Name3_1_, this_.ibanId as ibanId3_1_,

iban2_.id as id2_0_

FROM person this_

left outer join iban iban2_ on this_.ibanId=iban2_.id

WHERE (this_.Id = 1 and this_.Id2 = 1) limit 1

Note that the composite key is accessed by the personId class created by Sculpture.

Dynamic LINQ sample 2

Code:

Dim ienum As IEnumerator = session.Linq<person>

.Where("it.personId.Id = 1")

.OrderBy("iban.Id desc")

.Select("New (Name,iban.Id)")

.GetEnumerator()

Dim array = GetArrayList(ienum)

SQL generated:

SELECT this_.Name as y0_, iban1_.id as y1_

FROM person this_

left outer join iban iban1_ on this_.ibanId=iban1_.id

WHERE this_.Id = 1

ORDER BY iban1_.id desc

The above example demonstrates the projection features of Dynamic LINQ. IEnu-

merator is dynamic and through reflection it is able to convert the result into an Ar-

rayList of Dictionaries(propertyName,value).

Note that joins are not implemented in Dynamic LINQ.

4.2.5.7 Database Synchronization

NHibernate provides database schema updates from domain objects and Metadata Map-

pings in runtime. The following code uses reflection to load the NHibernate configurations

(database provider, SQL dialect, connectionString, etc) and load the assembly contain-

ing the entity POCO classes with the Metadata Mapping files:

130

4.2. NHibernate

Configuration configuration = new Configuration();

configuration.Configure(Assembly.GetExecutingAssembly(),

"SculptureSolution.DataAccess.GeneratedCode.hibernate.cfg.xml");

configuration.AddAssembly("SculptureSolution.Entities");

Update schema

Code:

var update = new NHibernate.Tool.hbm2ddl.SchemaUpdate(configuration);

update.Execute(true, true);

SQL generated:

create table iban (id INTEGER not null, primary key (id))

alter table person add column ibanId INTEGER

This example updates the database schema consulting the information schema tables

and columns of MySQL. If the iban table and the reference in person to iban was previous

deleted in the database, this update will create the table iban and the column ibanId in

person table.

Create and Drop schema

The following code demonstrates how to manage schema exports for Create and Drop

operations with NHibernate API:

Dim export = New NHibernate.Tool.hbm2ddl.SchemaExport(configuration);

’’only drops all tables

export.Execute(true, true, true); ’’justDrop = true

’’or

export.Drop(true, true);

’’first drops and then creates

export.Execute(true, true, false); ’’justDrop = false

’’or

export.Create(true, true);

Note that the second option does not update, it drops and then creates the database

schema. All registers are lost.

131

4.3. Conclusions

4.2.6 Dynamism in NHibernate

Dynamic LINQ (see 4.2.5.6 for examples) consists of querying objects in a criteria like

way. It is simple, well structured and serializable, but fails for more complex queries

especially because there is no support for joins. Joins could be implemented but this still

would not make it a good solution for complex queries.

HQL (see 4.2.5.5 for examples) is ORM specific, which would tie the business logic

to the ORM specific API. It is very similar to SQL and very feature-rich which is good

for complex queries. HQL is portable or serializable as a single string object and has a

similar syntax to LINQ but with other more database specific features within the object

paradigm.

The disadvantages of HQL are especially the typical problems of using an ORM,

like the dual-schema problem. That is, it needs the object schema updated whenever

something changes in the database, otherwise it will not be able to perform the correct

mappings.

If a new connectionString is dynamically added to the application, in order to run

a remote query, it is impossible to set up the model so it can be immediately queried with

HQL. That is unless the object schema (entity classes) is generated again and the Ses-

sionFactory is created with the updated schema definitions (Metadata Mapping). This

can be done programmatically because the SessionFactory receives this schema in XML

as a parameter during its creation. Thus, the same application can instantiate multiple

SessionFactory instances with different Metadata Mapping definitions and loading new

DLL assembles containing new or updated entities via reflection if needed.

However, NHibernate is designed to work well with DDD and not with legacy database

centric systems.

4.3 Conclusions

This chapter analysed and described some relevant features of both ORM frameworks EF

and NHibernate. Various ORM patterns (presented in chapter 3) were identified in these

frameworks, such as Unit of Work, Lazy Load, Optimistic Offline Lock, Query Object,

etc.

EF and NHibernate were analysed according to the requirements of Cachapuz (pre-

sented at the beginning of this chapter). Both ORM frameworks support database inter-

operability among various providers and RDBMSs and composite keys are managed in

a similar way. Optimistic locking can be easily configured by both ORM frameworks by

132

4.3. Conclusions

setting any field to a version (timestamp) column in the database or use the control fields

defined by Cachapuz legacy database.

EF 1.0 manages non POCO entities implementing Unit of Work behaviour on setter

properties, which is not a very portable solution. On the other hand, EF 4.0 already

uses dynamic proxies for overriding the POCO entity setters like NHibernate. However,

NHibernate does not enable proxies by default, which disables dynamic updates if not

specified otherwise. This is due to the fact that proxies do not always bring performance

enhancements and sometimes generate some issues. In here, it is clear that NHibernate

attempts to keep a closer to PIM model with entirely serializable and portable POCO

entities. On the other, EF 4.0 does not manage POCO entities by default.

Lazy Load is only supported by EF 4.0 and NHibernate, although the latter is more

versatile. Both EF and NHibernate drive Partial-Object problems, especially on client-

server applications.

Regarding the learning curve of both frameworks, the lack of Visual Studio support

on NHibernate is determinant. Also, NHibernate adopts a configuration over convention

philosophy with more extensive and complex API, e.g. Session.Update does not update

the object until Session.Flush is called. EF only uses SaveChanges for committing all

changes inflicted to the in-memory attached domain objects, which is simpler.

Code customization in EF 1.0 is easy to implement due to (defensive) extension points

in the ObjectContext class (generated in Visual Studio). NHibernate does not provide

code generation, it rather uses IoC interceptors for code injection, which is a cleaner

approach but also more complicated.

Both EF and NHibernate implement LINQ and OQL with very similar query features.

HQL is equivalent to EQL and both are versatile methods for writing simpler object

queries that generate complex and bigger SQL queries. In fact they are very similar

to SQL. Those not familiar with SQL can use the LINQ implementations for simpler

querying and better abstraction. Linq-to-Entities with eager load (using implicit joins)

apparently generates overly complicated SQL in some cases (see example in p. 207).

Additional performance tests will be conducted in chapter 6, although it is obvious

that these frameworks add some overhead on applications.

Regarding the dynamism requested by Cachapuz, both ORM frameworks provide field

projections and joins among non related objects, which returns dynamic structures similar

to DataReaders and without any Unit of Work, caching or Lazy Load features.

However, these dynamic features by the two ORM solutions were not entirely satisfying

to Cachapuz. Both EF and NHibernate take too much control of the database, especially

because they do not solve the Dual-Schema problem. The dynamism required for adding

133

4.3. Conclusions

new tables, domain objects and querying complex SQL is not fulfilled with these ORM

frameworks. Even though these ORM frameworks provide some level of database-first

code generation, legacy databases and bottom-up development is not a good practice

with such tools for they tend to hinder substantially the flexibility of the object model.

Hence, the solution falls within ClassBuilder enhancements.

134

Chapter 5

Implementation of CazDataProvider

Cachapuz development environment is set around large legacy databases and CazFrame-

work. Fundamentally, CazFramework is a very generic and dynamic framework for man-

aging data lists (results of SQL queries). Almost all of its DAL classes are generated by

ClassBuilder ORM tool, which is developed by Cachapuz as well.

The rise of new .NET ORM frameworks like EF, lead to the possibility of migrating

Cachapuz DAL mechanism to one of those frameworks and thus discarding ClassBuilder.

However, because the ORM frameworks analysed in chapter 4 did not meet the needs of

Cachapuz, it was decided to keep using the same paradigm and technology with Class-

Builder.

Meanwhile, it became a usual requirement of Cachapuz customers to use CazFrame-

work with different RDBMSs other than SQL Server (e.g. MySQL, SQLite). Thus,

database interoperability became a priority feature to be implemented in ClassBuilder.

To meet this requirement, the CazFramework DAL needed to replace the specific data

provider API (Object Linking and Embedding, Database (OLEDB)) with an abstract one.

For that, the ClassBuilder DAL generated classes had to replace the OLEDB provider

API dependency with an abstract provider API that encapsulates the different database

providers and SQL dialects. For details on how ClassBuilder (before implementing Caz-

DataProvider) works see 5.1.

Therefore, CazDataProvider, a custom data provider, was developed in .NET to meet

the needs of Cachapuz and encapsulate a group of .NET data providers. Overall, this

chapter describes the implementation of CazDataProvider. Its API was further adopted

by ClassBuilder to replace the OLEDB API.

Apart from the research carried out in this dissertation until this chapter, the im-

plementation of CazDataProvider demanded for some more analysis. First, this chapter

presents an analysis on ClassBuilder and a research on ADO.NET data providers. The

135

5.1. Analysis of ClassBuilder

following sections present various possible architectures of CazDataProvider and its im-

plementation.

5.1 Analysis of ClassBuilder

ClassBuilder is a light ORM tool built by Cachapuz to support a continuous development

of DAL components working on top of legacy databases. Thus, ClassBuilder generates

entities, Metadata Mapping definitions and implements a CRUD API all in VB.NET

code, pluggable to the CazFramework DAL.

The key advantage of ClassBuilder over other ORMs is its simplicity for it only depends

on one schema (the relational). Providing a Relational Domain Model (see section 5.1.1

for details) to the business logic, it manages one POCO entity class per table of the

database. Also, because Cachapuz legacy databases do not use foreign key constraints,

due to conventions of performance and other problems, associations and hierarchy can

not be generated automatically by any tool. Therefore, in ClassBuilder these features can

only be implemented manually.

Overall, ClassBuilder supports the following features:

• Relational Domain Model;

• Database-first development with one-way code generation;

• Persistence ignorance with POCO entities;

• Simple Unit of Work implementation with optimistic locking, transactional support

via data provider API (IDbTransaction) and controlled updates (only dirty objects

are updated to the database)

• Audit logging;

• Composite keys;

• CRUD API with SQL query filtering;

• SQL Server 2005 and 2008 support (data provider and SQL dialect).

Unlike other ORMs like NHibernate or EF, ClassBuilder does not implement a full

featured Unit of Work, Identity Map, Lazy Load, Query Object or database interoper-

ability.

136

5.1. Analysis of ClassBuilder

An alternative to deal with a fixed relational schema (e.g. on legacy databases) could

consist of using the Table Module pattern and the DataSet .NET API. Although, DataSet

is particularly resource-consuming, it lacks customization features, flexibility and N-Tier

(POCO) support.

The following subsections provide insight on what is the Relational Domain Model,

how ClassBuilder implements Data Mapper, Unit of Work and audit logging.

5.1.1 Relational Domain Model

This section describes a domain logic pattern discovered in ClassBuilder to characterize

the DAL strategy used in CazFramework. Also, it helps understand how ClassBuilder

avoids certain ORM problems.

The Relational Domain Model is no more than a simple Domain Model(see section

3.1.3 for details) whose model does not take advantage of inheritance or associations.

Therefore, it avoids certain ORM problems, meaning a significant reduction in complexity.

Legacy systems of database centric applications and bottom-up development strategies

find here a more attractive and simple solution than with Domain Model pattern.

Relational Domain Model is characterized by having a one-to-one mapping between

classes and tables, similar to the Table Module but without using Record Set. Addition-

ally, it defines a Data Mapper to enable this mapping and provide basic CRUD API.

A Relational Domain Model can be identified and designed with the following charac-

teristics:

• Each entity is modelled as if it were a table row representation, which includes

mapping all the columns, including the primary and foreign keys to object fields;

• Typically the entities work as DTOs;

• The domain objects remain isolated from each other without defining any associa-

tions or inheritance relationships;

• Data constraints, integrity and relationships between tables are managed manually

in domain logic;

• Each domain object requires a Data Mapper that manages a close-to-SQL API;

• The domain objects and Data Mappers must be easily regenerated when the database

schema changes.

Some advantages of Relational Domain Model are:

137

5.1. Analysis of ClassBuilder

• Because domain objects are POCOs without behaviour, their use in presentation

layer is less problematic;

• Data Mappers and domain objects can be generated easily form the database schema

using custom tools like ClassBuilder;

• It is a good solution for legacy database centric systems;

• Changing from relational paradigm to object paradigm, abandon SQL, engaging

into migration processes and learning of new frameworks is no longer necessary;

• As there is no navigable object graph, Lazy Load is not applicable and thus the

avoidance of Partial-Object problems;

• The absence of a persistence context (Unit of Work) allows the domain objects to

be easily serializable as DTOs.

However, this pattern also encounters some disadvantages such as the following:

• Modelling complex domain logic can become confusing and overly complex without

object oriented features like associations and inheritance;

• The Data Mapper CRUD API may be too simplistic for complex querying. More

data is likely to be fetched into memory than the actually needed, which breaks

performance. A solution can be to define additional methods, in the Data Mapper,

containing complex domain logic aware SQL queries.

• Due to the simplicity of Relational Domain Model, there may be no implementation

of Unit of Work, Lazy Load, caching, abstraction to SQL, concurrency control,

schema synchronizations and other features provided by ORMs like NHibernate or

EF, which optimize performance substantially;

• Typically, there is no database interoperability as opposed to ORM frameworks;

• There is no persistence ignorance and therefore, the data integrity is responsibility

of the domain logic developer.

Figure 5.1 confronts Relational Domain Model with other domain logic patterns from

the section 3.1). This figure is equivalent to the one in the discussion of the section 3.1.4.

Although Relational Domain Model requires some effort from the start, with a proper

code generator like ClassBuilder, the development of new domain objects can be simple

and fast as long as the domain logic complexity does not increase too much.

138

5.1. Analysis of ClassBuilder

Ef
fo

rt
 t

o
 C

h
an

ge

Complexity of Domain Logic

Figure 5.1: Sense of the effort changing rate as a domain logic complexity evolves in
Relational Domain Model confronted with the other domain logic patterns (adapted from
[Fow02])

5.1.2 Data Mapper

Essentially, ClassBuilder is a GUI windows application (developed in VB.NET) that con-

nects to a database and then displays a set of tables in the schema to be selected for

code generation (Figure 5.2). For instance, with a Person table selected, it generates the

following classes (see Figure 5.3 for details):

• Person: POCO entity with one field per column and an additional flag to check if

that entity was loaded from the database or is a new Person;

• PersonCol: a typed collection of Person. It inherits from List(Of Person) and

implements additional methods to handle the entity id;

• PersonConn: object that encapsulates SQL queries, CRUD methods, database

provider API with connection and transaction management. It implements a Data

Mapper, in code Metadata Mapping definitions (which is slightly faster than us-

ing reflection), controlled updates (only dirty objects are submitted to database)

optimistic locking (optional and implemented via control fields) and audit logging

(optional);

The Person entity object (in Figure 5.2) can have its fields mapped to some or all of

the columns in the according table as if it was a database view. In fact, it is convenient

for tables that have a large number of columns (often occurs in legacy databases that

139

5.1. Analysis of ClassBuilder

Figure 5.2: ClassBuilder screenshot before generating Person code

have incremental updates to its schema) to manage multiple views of that same table.

ClassBuilder can generate different classes for the same table as long as they have different

names, e.g PersonFullView, PersonShortView.

Figure 5.3 demonstrates that PersonConn isolates both the relational and the object

schemas from each other (Data Mapper). Even though it maps two schemas together,

the relational is still mandatory, however any changes to the database schema are not

expected to compromise the previously generated code. That is possible by avoiding

updates or deletes on the table structure (columns).

The PersonConn API (in Figure 5.3) implements basic CRUD with SQL filtering and

Explicit Initialize methods to load a Person object without big fields or only with key

fields. Also, it manages the OLEDB data provider API as an abstraction to more specific

APIs.

5.1.3 Unit of Work and Optimistic Locking

Although ClassBuilder does not keep track of changes within the relational domain objects

like many ORMs, it still provides controlled updates (only dirty objects are updated to

the database) and an Optimistic Offline Lock mechanism to manage concurrency control.

140

5.1. Analysis of ClassBuilder

-pPersonID : String

-pName : String

-pState : String

-pUserCriacao : String

-pDataCriacao : Date

-pUserEdicao : String

-pDataEdicaoOld : Date

-pDataEdicaoNew : Date

-pIsFromDB : Boolean

Person

+Exists(oCnn : OleDbConnection, oTrans : IDbTransaction, personID : String) : Boolean

+Exists(personID : String) : Boolean

+Exists(oItem : Person) : Boolean

+GetItemFromReader(oReader : OleDbDataReader) : Person

+GetItemFromReader(oReader : OleDbDataReader, campos : String) : Person

+GetItemFromReader(oReader : OleDbDataReader, includeBigFields : Boolean,

 onlyKeyFields : Boolean) : Person

+GetItemFromReader(oReader : OleDbDataReader, campos : String,

 includeBigFields : Boolean, onlyKeyFields : Boolean) : Person

+SelectItem(personID : String) : Person

+SelectItem(personID : String, selectType : DALUtils.enListSelectType,

 fillType : DALUtils.enItemFillType) : Person

+SelectItem(oCnn : OleDbConnection, oTrans : OleDbTransaction, personID : String,

 selectType : DALUtils.enListSelectType, fillType : DALUtils.enItemFillType) : Person

+SelectItemCol(selectCriteria : String) : PersonCol

+SelectItemCol(selectCriteria : String, selectType : DALUtils.enListSelectType,

 fillType : DALUtils.enItemFillType) : PersonCol

+SelectItemCol(oCnn : OleDbConnection, oTrans : OleDbTransaction, selectCriteria : String,

 selectType : DALUtils.enListSelectType, fillType : DALUtils.enItemFillType) : PersonCol

+Insert(oCnn : OleDbConnection, oTrans : OleDbTransaction, oItem : Person)

+Insert(oItem : Person)

+Update(oCnn : OleDbConnection, oTrans : OleDbTransaction, oItem : Person)

+Update(oItem : Person)

+Remove(personID : String)

+Remove(oCnn : OleDbConnection, oTrans : OleDbTransaction, personID : String)

+Remove(oItem : Person)

+Remove(oCnn : OleDbConnection, oTrans : OleDbTransaction, oItem : Person)

+Remove(oItemCol : PersonCol)

+Remove(oCnn : OleDbConnection, oTrans : OleDbTransaction,

 oItemCol : PersonCol)

PersonConn

List(Of Person)

+AddNew() : Person

+AddNew(index : Integer) : Person

+AddNew(index : Integer, pessoaID : String) : Person

+ItemByKey(pessoaID : String) : Person

+ContainsIndex(index : Integer) : Boolean

+ContainsKey(pessoaID : String) : Boolean

+RemoveByKey(pessoaID : String)

+Clone() : clsPessoaCol

+GetIndexByKey(pessoaID : String) : Integer

PersonCol

Person

PK PersonID

 Name

 State

 UserCriacao

 DataCriacao

 UserEdicao

 DataCriacao

Figure 5.3: Example of generated code with ClassBuilder

Optimistic locking is optional and can be enabled by activating the control fields before

generating the code, as demonstrated in Figure 5.4. For that, the table must contain the

following columns: UserCriacao (logged user responsible for inserting that entity into

the database), DataCriacao (date and time of the creation), UserEdicao (logged user

responsible for updating that entity into the database) and DataEdicao (date and time

of the update).

Apart from the DataEdicao column, the others are only relevant for logging. As it

is visible in Figure 5.3, all the columns are mapped to the according object fields except

DataEdicao column which origins two fields: DataEdicaoNew and DataEdicaoOld.

The Unit of Work in ClassBuilder does not keep an Identity Map nor does register

141

5.1. Analysis of ClassBuilder

Figure 5.4: ClassBuilder screenshot for generating audit logging and control fields

the objects clean or dirty. When control fields are enabled, the generated entities cease

to be persistence ignorant (POCO) for they contain behaviour on all the property setters

except for DataEdicaoNew and DataEdicaoOld. This behaviour sets DataEdicaoNew to

the current time whenever the property setter is invoked, similar to setting the object

dirty. This is part of the implementation for both controlled updates and optimistic

locking.

The controlled updates work because when updating an object, ClassBuilder checks if

its DataEdicaoNew is different from DataEdicaoOld. If so it forwards it to the updating

process. Otherwise it assumes the object has not been modified and therefore ignores the

update.

Further on the updating behaviour, the SQL update statement is set to update all

the object fields and the Where clause to check for the object key fields as well as if

the DataEdicaoOld is still the same in the according database row. This last condition is

what enables the optimistic locking with only one trip to the database. If the SQL update

fails, it is likely due to some other user having updated that same object in the meantime

142

5.1. Analysis of ClassBuilder

and for that it must have changed its DataEdicao value. In that case, this function will

throw an exception alerting the user that the register had been touched and the operation

revoked.

Note that private method PersonConn.GetItemFromReader takes an IDataReader

and translates it into a Person instance. During that method call, all the Person prop-

erty setters are invoked which runs the behaviour that verifies if the object was changed

(enables the Optimistic Offline Lock). For that it changes the DataEdicaoNew to the

current time (pdatDataEdicaoNew = System.DateTime.Now) on every setter. However,

all this behaviour is supposed to be deactivated at the time of instantiating the object in

order to not mark it dirty before providing it to the user. Although this is solved at the

end of the PersonConn.GetItemFromReader call, for it sets DataEdicaoNew back to the

old (original) value. Ideally, only at the business logic level should the object keep track

of changes within itself. This problem is discussed in detail in section 3.3.1.

Unlike what happens with updates (optimistic locking), deletes are not validated con-

currently, i.e. if a user loads a Person and before updating it, some other user deletes it,

the update will fail.

Transactional support is provided in ClassBuilder by allowing the user to access the

data provider API and IDbTransaction objects directly. The CRUD methods of the Data

Mapper (PersonConn) accept an optional IDbTransaction as argument, and if omitted,

no database transaction is executed.

5.1.4 Audit Logging

Audit logging can be enabled by activating the option Include Logs in Figure 5.4. Thus,

ClassBuilder creates private methods InsereLog (for inserting log) and PreencheCam-

posRegistoLog (to fill the fields of a log register) within the Data Mapper (PersonConn).

TbPlatLogsDO

PK ID

 NomeTabela

 IDCampos

 IDValores

 DataHora

 Utilizador

 Accao

 Detalhe

Figure 5.5: ClassBuilder database table for log keeping

Additionally, the database must contain the table TbPlatLogsDO as demonstrated in

Figure 5.5. The fields of a clsPlatLogDO class (mapped to table TbPlatLogsDO) consist

143

5.1. Analysis of ClassBuilder

of:

• IDCampos: the field name, e.g. "PersonID";

• IDValores: value of the id, e.g. per.PersonID;

• DataHora: current time;

• Utilizador: the user id;

• Accao: type of log "Insert|Update|Delete";

• Detalhe: XML with serialized log object (Log.Registo) containing the object field

names and values.

If logs are activated, every time an entity is updated, the Data Mapper loads that

same entity again from the database before updating it. Then it inserts a log register

from the information of both the old and the new (dirty) entity object and finally the

new (dirty) entity is updated to the database. On insert or delete, the Data Mapper only

inserts the log after inserting the entity to the database and that log record only contains

information of one version of the entity object, new or old (instead of having both versions

like in update).

UserCriacao, UserEdicao, DataCriacao, DataEdicao are used here as logging infor-

mation. Another relevant logged information is the userId. This field is passed to the

Data Mapper (PersonConn) when the Data Mapper is instantiated. Then, when data is

changed by that user and methods like insert or update are invoked, the entity properties

UserCriacao or UserEdicao are set to the current userId. Note that if TLS was used

here to store the user id, it would be accessible implicitly on every layer. It would not

have to be passed as an argument at the instantiation of the Data Mapper neither on a

bunch of other business logic methods.

5.1.5 Conclusions

This section discusses the advantages and disadvantages between continuing to use the

ClassBuilder in Cachapuz or migrate to another ORM framework like EF or NHibernate.

Additionally, further ClassBuilder enhancements are addressed in here.

The advantages of keeping ClassBuilder are:

• The developer team is accustomed to ClassBuilder and the relational model;

• ClassBuilder works well with legacy databases with mandatory relational schemas;

144

5.1. Analysis of ClassBuilder

• The time and effort spent to build ClassBuilder will not have been in vain if it is

not discarded;

• ClassBuilder is customizable and enhanceable;

The disadvantages of continuing to use ClassBuilder are:

• ClassBuilder does not respond to the dynamic querying of CazFramework lists fea-

ture;

• ClassBuilder is dependent on the database provider. It uses OLEDB provider API

for SQL Server. Even though it only implements basic SQL, if other databases are

to be experimented but still with the according OLEDB driver, it can have trouble

with dates and auto-increments;

• It does not support associations and therefore makes navigation much difficult;

• ClassBuilder is another tool to be supported by Cachapuz;

• ClassBuilder is not N-Tier friendly especially because POCO entities are not en-

tirely persistence ignorant for they implement audit logging and optimistic locking

behaviour;

• ClassBuilder does not provide caching, cascading.

ClassBuilder future possible enhancements:

• Implement one-to-one, one-to-many and many-to-many (uni or bidirectional) associ-

ations. This implies migrating to the object model, which involves the management

of two more dissimilar schemas than before: the relational schema and the ob-

ject schema rather that the relational oriented object schema (Relational Domain

Model);

• As a consequence of having navigable associations, Lazy Load (see 3.3.3) or Ex-

plicit Initialize can be implemented as well. Explicit Initialize can be defined by a

level or depth of the association navigation within the graph, e.g. if the function

PersonConn.Select(PersonID = 1, NavigationDepth = 1) is invoked, the Per-

son object is loaded and all its associations are fetched eagerly at the same time,

but any of the associated objects will not load any of its associations. Another

approach is to have the method specify the name of the association to be eagerly

fetched. These fetching strategies can be defined in separate metadata files and may

provide more than one fetching profile;

145

5.2. .NET Data Providers

• Database interoperability: provide to ClassBuilder the ability to use both SQL

Server and MySQL at the same time. This can be implemented using an Abstract

Factory. The impediment here is that ClassBuilder uses the following OLEDB

classes: OleDbConnection, OleDbCommand, OleDbParameter and OleDbDataReader.

ClassBuilder would have to replace this API with a custom made data provider;

• Have a query API that executes SQL and returns a queryable interface (e.g. im-

plementing LINQ) that encapsulates a dynamic structure result. This helps on

database interoperability and enables features like filtering, ordering and pagina-

tion, which are useful when the tables are not mapped to the domain model and

also fits well in other components that operate with LINQ interfaces, like GUI data

grids.

• Implement cascading on update and on delete. This can either be part of the

associations feature or needs to have a manual configuration for defining the object

dependency graph, (note that foreign key constraints are not used in Cachapuz

databases);

• Have a Unit of Work with Identity Map and keeping track of property changes

within an object so the update would not send all the fields back to the database.

The most relevant feature to implement is database interoperability due to the require-

ment of many CazFramework customers. The fourth possible enhancement item comes

as a consequence of this. Implementing associations and other object oriented features

would, in time, enhance ClassBuilder to behave more like EF or NHibernate. This implies

a change of paradigm and with it the rise of a Dual-Schema problem which does not work

well with legacy databases and dynamic lists defined in runtime.

5.2 .NET Data Providers

This section is an intro on ADO.NET data providers and gives some insight on strategies

to build an abstract ADO.NET data provider with database interoperability.

While most applications use RDBMSs like SQL Server, MySQL or Oracle, others may

use simpler solutions such as SQLite, Excel or text files and even other sorts of storage

systems like Not only SQL (NoSQL) or OODBMSs. However, each kind of data source has

to implement a set of interfaces specified by a technology or environment (like ADO.NET)

in order to provide data to that same environment. In other words, a data provider is a

146

5.2. .NET Data Providers

middle-ware that links a technology (programming language or environment) to a data

source. Also, each data source can be supported by multiple data providers.

ADO.NET comes with .NET framework as a set of tools to access file or server based

data sources. ADO.NET libraries appear in System.Data namespace which contains

classes providing communication with the data source.

One of the new features of ADO.NET is the support of the DataSet API, a discon-

nected database-agnostic tabular data container. DataSet and DataTable classes were

covered in 3.1.2.

The other part of ADO.NET API consists of connected classes, which require an open

connection available in order to work. The only relevant ADO.NET connected classes to

CazFramework and ClassBuilder are (chapter 1 of [Mal05]):

• Connection: it opens a connection with the data source. Here, ADO.NET may

recycle physical connections to create new instances of the Connection class;

• Transaction: it runs multiple commands as an atomic operation, managing isola-

tion levels in the relational database;

• Command: represents an executable SQL statement for queries, inserts, updates,

schema manipulation or any other command supported by the RDBMS in use;

• Parameter: multiple parameters can be used in a single command. This is useful for

SQL statements that take different arguments (usually specified with ‘?’), including

stored procedures, named queries or SQL queries;

• DataReader: light read-only iterator which keeps a cursor to the fetchable data,

result of the SQL statement in the database.

Unlike the other ADO.NET classes, these connected classes have to be implemented

differently per RDBMS. That implementation ships inside a .NET data provider.

Figure 5.6 (based on chapter 2 of [MH03]) presents a relationship between a group of

.NET data providers, the data sources and the ADO.NET classes and interfaces. Note

that the namespace is only displayed on those providers that directly implement the

ADO.NET interfaces. Most of the providers in the figure are further analysed in section

5.4 so they can be effectively supported by CazDataProvider.

Thus, SQL Server specific classes appear under System.Data.SqlClient namespace

in the same way as OLEDB classes do in System.Data.OleDb and Oracle classes in Sys-

tem.Data.OracleClient. Although there are other naming conventions like in MySQL

which has specific implementation classes in MySql.Data.MySqlClient namespace.

147

5.2. .NET Data Providers

ADO.NET classes & interfaces

MySQL

SQL Server

ODBC provider

OLE DB provider

MS Access

SQLite

M
y
O

L
E

D
B

 P
ro

v
id

e
r

v
3
.0

S
y
s
te

m
.D

a
ta

.S
Q

L
it
e

S
y
s
te

m
.D

a
ta

.S
q

lC
lie

n
t

M
ic

ro
s
o

ft
 J

e
t
O

L
E

 D
B

 4
.0

M
ic

ro
s
o

ft
.A

C
E

.O
L

E
D

B
.1

2
.0

S
Q

L
 S

e
rv

e
r

N
a

ti
v
e

 C
lie

n
t

1
0
.1

 O
L

E
 D

B
 P

ro
v
id

e
r

MS Excel

S
Q

L
 S

e
rv

e
r

O
D

B
C

 D
ri
v
e

r

M
S

 A
c
c
e

s
s
 D

ri
v
e

r
(*

.m
d

b
)

M
y
S

Q
L

 C
o

n
n

e
c
to

r/
N

e
t

M
y
S

q
l.
D

a
ta

.M
y
S

q
lC

lie
n

t

M
y
S

Q
L

 C
o

n
n

e
c
to

r/
O

D
B

C

OLE DB .NET

data provider

System.Data.OleDb

ODBC .NET

data provider

System.Data.Odbc

Figure 5.6: .NET data providers for a group of databases

Each .NET data provider contains implementations of the ADO.NET connected classes

and interfaces. For example SqlConnection1, OleDbConnection2 and MySqlConnection3

148

5.2. .NET Data Providers

they all implement IDbConnection4 interface.

Even though OLEDB .NET data provider is a generic provider, i.e. not database

specific, and thus can be used for a wide variety of databases, it still requires a different

OLEDB implementation for each database. In fact, OLEDB is just another abstraction

layer similar to ADO.NET.

There are some advantages of using database specific providers like SqlClient or

MySql Connector/Net5 over generic data providers like OLEDB or Open Database

Connectivity (ODBC). Specific providers are better equipped with database specific func-

tionality and they provide better performance and support for specific data types. For

example, SqlClient provider uses Tabular Data Stream (TDS) protocol to communicate

directly with SQL Server, which delivers higher performance than using an OLEDB layer

with COM Interop (.NET middleware to enable communication between Component

Object Model (COM) objects and .NET objects) [MH03].

However, there are cases like CazFramework, that require database interoperability

features. For that, in ADO.NET it is possible to have provider agnostic code with either

of the following solutions:

• Use generic data providers like OLEDB or ODBC which implies sacrificing perfor-

mance and specific database functionality. Additional problems may arise when

using different SQL dialects, data types and OLEDB provider specific implementa-

tion idiosyncrasies (see the Implementation section in 5.4 for details);

• Develop a custom data provider can be a more flexible solution with improved

performance and maintainability. This is possible by implementing the ADO.NET

interfaces IDbConnection4, IDbTransaction6, IDbCommand7, IDbDataParameter8

and IDataReader9 [MH03]. Although, database interoperability typically requires

an abstraction layer to work on top of other data providers rather than have a

custom data provider implemented from scratch. Later on this chapter, more insight

is given on how to build such abstraction layer in order to support the core of

CazDataProvider;

1http://msdn.microsoft.com/en-us/library/system.data.sqlclient.sqlconnection.aspx
2http://msdn.microsoft.com/en-us/library/system.data.oledb.oledbconnection.aspx
3http://dev.mysql.com/doc/refman/5.1/en/connector-net-ref-mysqlclient.html#

connector-net-ref-mysqlclient-mysqlconnection
4http://msdn.microsoft.com/en-us/library/system.data.idbconnection.aspx
5http://dev.mysql.com/doc/refman/5.0/en/connector-net.html
6http://msdn.microsoft.com/en-us/library/system.data.idbtransaction.aspx
7http://msdn.microsoft.com/en-us/library/system.data.idbcommand.aspx
8http://msdn.microsoft.com/en-us/library/system.data.idbdataparameter.aspx
9http://msdn.microsoft.com/en-us/library/system.data.idatareader.aspx

149

http://msdn.microsoft.com/en-us/library/system.data.sqlclient.sqlconnection.aspx
http://msdn.microsoft.com/en-us/library/system.data.oledb.oledbconnection.aspx
http://dev.mysql.com/doc/refman/5.1/en/connector-net-ref-mysqlclient.html#connector-net-ref-mysqlclient-mysqlconnection
http://dev.mysql.com/doc/refman/5.1/en/connector-net-ref-mysqlclient.html#connector-net-ref-mysqlclient-mysqlconnection
http://msdn.microsoft.com/en-us/library/system.data.idbconnection.aspx
http://dev.mysql.com/doc/refman/5.0/en/connector-net.html
http://msdn.microsoft.com/en-us/library/system.data.idbtransaction.aspx
http://msdn.microsoft.com/en-us/library/system.data.idbcommand.aspx
http://msdn.microsoft.com/en-us/library/system.data.idbdataparameter.aspx
http://msdn.microsoft.com/en-us/library/system.data.idatareader.aspx

5.2. .NET Data Providers

• Implement a provider factory by taking advantage of the Strategy pattern already

implemented in ADO.NET classes, e.g. the MySqlConnection and SqlConnection

are both concrete strategies of IDbConnection). Then choose one of the following:

– Create a static Factory Method to instantiate the appropriate connected ob-

jects (e.g. MySqlConnection or SqlConnection) from a given connection string

or other domain logic parameter. For instance, the application may have a con-

figurations database containing a variable set of database connection strings

and then, the business logic decides which user is granted the access to which

database by opening the according connection implicitly (Abstract Factory).

To implicitly manage accessibility control the user validation can use TLS;

– ADO.NET 2.0 already provides a factory class to achieve a similar goal but

having the connection strings defined in the default application XML configu-

rations file (e.g. App.Config or Web.Config) rather than in a database. This

is possible by using the System.Data.Common.DbProviderFactories class

with the static method GetFactory(providerInvariantName : String) :

DbProviderFactory. The argument providerInvariantName is the name de-

fined in the XML configurations file, for the element containing all the settings

of a provider connection (assemblies, connection string, etc). That method

returns a DbProviderFactory (abstract class) instance which encapsulates a

provider specific factory, e.g. an SqlClientFactory or a MySqlProviderFac-

tory. All the ADO.NET specific providers do implement DbProviderFactory.

This class returns methods to get Connection and Command instances, similar

to the IDbConnection API. More details on this approach can be found in

chapter 1 of [Mal05].

Although, a provider factory is simple to develop and requires very few code, it

stumbles across the same problems of database interoperability as those of generic

providers like OLEDB or ODBC;

• Another approach is using the ADO.NET Provider Model design pattern defined and

implemented by Microsoft for ADO.NET 2.0 [How04]. Essentially, it implements

Factory Method and Strategy patterns to enable the development of a DAL com-

ponent pluggable to the application in the XML configurations file in the same way

as the ADO.NET providers are typically configured in App.Config. Also, this DAL

component encapsulates all the data access logic including multiple data providers,

e.g. MySql Connector/Net or SqlClient. Primarily, the main data provider

150

5.3. Designing an Architecture

class shall inherit from System.Configuration.Provider.ProviderBase abstract

class and then implement Initialize method from its superclass as well as a group

of CRUD methods to expose to the client similar to a Table Data Gateway. Al-

though, those methods shall manage generic database interoperability rather than

implement any business logic, and for that reason they should provide similar API

to the IDbConnection and IDbCommand interfaces. Note that each database will

have a separate data provider class managing SQL dialects and ADO.NET data

provider particularities. Additionally, it is also required to have a provider manager

class with a static (thread-safe) collection of providers for the client data accesses.

Although this is a more flexible approach than the others, it only defines a Strat-

egy and Factory Method architecture of the solution. All the development effort is

under the implementation code. Also, it is convenient to keep the code as platform

independent as possible (PIM), and for that reason this approach may not be the

finest for the requirements of CazFramework. More implementation details on .NET

Provider Model can be found in the article How to write a Provider Model [Nay08].

5.3 Designing an Architecture

This section presents the designing process of CazDataProvider proposing 6 different

solutions for the same problem and in the end the chosen one to be implemented.

From sections 5.1 and 5.2 it is set that ClassBuilder needs to generate DAL code that

accesses ADO.NET data providers indirectly through CazDataProvider classes. So the

classes to replace are:

• OleDbConnection;

• OleDbCommand;

• OleDbParameter;

• OleDbDataReader;

• OleDbTransaction.

Having analysed different data providers of different RDBMSs, in 5.2, it is safe to state

that all the specific provider ADO.NET classes (e.g. OleDbConnection, MySqlConnec-

tion, etc.) implement the same interfaces (e.g. IDbConnection). Therefore, all the above

OLEDB classes set to be replaced in ClassBuilder, do implement the following interfaces

accordingly:

151

5.3. Designing an Architecture

• IDbConnection;

• IDbCommand;

• IDataParameter;

• IDataReader;

• IDbTransaction.

It is also important to analyse how the above interfaces work and, for that, Figure 5.7

provides an overall view on the associations and creational dependencies (in the methods

that return an instance of the other interface) they hold together.

«interface»

IDbConnection «interface»

IDbCommand

«interface»

IDbTransaction

«interface»

IDataReader

«interface»

IDataParameter

CreateCommand()

CreateParameter()

ExecuteReader()BeginTransaction()

1

1

*

1

Figure 5.7: IDb* and IData* interfaces, the associations and creational dependencies they
hold together

As it was already stated in section 5.2, these ADO.NET classes implement the Strategy

pattern in which, for instance, the IDbConnection is a strategy and the MySqlConnection

is the concrete strategy. This and other GoF patterns prove to be essential in all the 6

different solutions of this section.

5.3.1 Solution 1: Data Context Facade and Factory

This solution was designed to encapsulate the IDb* interfaces similarly to the approach

defined by Joydip Kanjilal1. The diagram representation of this solution is given by Figure

5.8 which implements Facade, factory and delegation patterns.

One particular feature of this approach is that CazDSContext encapsulates all the

methods of ADO.NET, which in turn, also enables it to encapsulate other APIs that have

nothing to do with relational databases. For instance, if the customer wants the applica-

tion to support plain text file persistence via file stream rather than ODBC API, it would

1http://aspalliance.com/837_Implementing_a_Data_Access_Layer_in_C

152

http://aspalliance.com/837_Implementing_a_Data_Access_Layer_in_C

5.3. Designing an Architecture

ConnectionInit() : void

 if ProviderType = 1

 Connection = new OleDbConnection(ConnectionString)

 if ProviderType = 2

 Connection = new MySqlConnection(ConnectionString)

ConnOpen() : void

 Connection.open()

ConnClose() : void

 Connection.close()

BeginTransaction() : void

 Connection.BeginTransaction()

CommandInit(sqlCmd : string) : void

 Command = Connection.GetCommand()

 Command.CommandText = sqlCmd

CmdExecuteNonQuery() : void

 Command.ExecuteNonQuery()

CmdPrepare() : void

 Command.Prepare()

CmdSetParameter(Integer i, Object value) : void

 Command.Parameters(i).Value = value

TxRollback() : void

 Transaction.rollback()

TxCommit() : void

 Transaction.commit()

+ProviderType : Integer

+ConnectionString : String

-Connection : IDbConnection

-Command : IDbCommand

-Transaction : IDbTransaction

CazDSContext

MySqlConnectionOleDbConnectionMySqlCommandOleDbCommand

«interface»

IDbCommand

«interface»

IDbConnection

OleDbTransaction MySqlTransaction

«interface»

IDbTransaction

Creates but

does not provide

to the client

Figure 5.8: Solution 1: Data Context Facade and factory

require CazDSContext.ConnOpen() to instantiate a StreamReader and a StreamWriter

(or an encapsulation of both with Lazy Initialization or Virtual Proxy). It is likely that

a new TextFileProvider class would have to be implemented and would not support

transaction management. Also, because this solution is relational-based, SQL queries

could have to be parsed and translated in order to fetch tabular data on text files.

Note that in Figure 5.8, CazDSContext only implements a Factory Method for ID-

bConnection. The instantiation of IDbCommand and IDbTransaction is done via the

IDbConnection calls (see more details in Figure 5.7). Thus, it is impossible to have

one IDbCommand to work with different IDbConnections as it is impossible to have an

OleDbCommand being executed through an SqlConnection.

In here, because CazDSContext encapsulates IDb* interfaces, the application layers

above, are protected from changes that can occur on those interfaces. Nevertheless, ex-

cessive unreasonable use of encapsulation can bring a rather tedious code. In the context

of Cachapuz, it is desired that CazFramework works with multiple RDBMSs and do not

ponder on changing that technology any time soon, especially due to legacy databases.

153

5.3. Designing an Architecture

Also, it is not a burden to rely on a subset of ADO.NET interfaces.

One advantage of this approach is its density, for it concentrates all the data providers

encapsulation and data access API in one single class. Any RDBMS SQL dialect or

specific provider differences can all be managed within CazDSContext. However, as the

number of supported providers increase, the code becomes harder to maintain.

5.3.2 Solution 2: Provider Factory

Like Solution 1, this solution was designed to encapsulate the IDb* interfaces as well.

Although, in here there is a closer similarly to the provider factory approach supported

by ADO.NET 2.0 and presented at the end of section 5.2.

This solution implements a Factory Method and enables ADO.NET provider encap-

sulation using a very simple architecture. Figure 5.9 presents a provider factory imple-

mentation.

OleDbConnection

OleDbCommand

MySqlConnection

MySqlCommand

«interface»

IDbCommand

«interface»

IDbConnection

static CreateConnection(type : CazDBProviderType,

 connectionString : String) : IDbConnection

 if type = CazDBProviderType.OleDb

 return new OleDbConnection(connectionString)

 if type = CazDBProviderType.MySql

 return new MySqlConnection(connectionString)

static CreateCommand(type : CazDBProviderType) : IDbCommand

 if type = CazDBProviderType.OleDb

 return new OleDbCommand()

 if type = CazDBProviderType.MySql

 return new MySqlCommand()

Creates and

provides these

interfaces to the

client

CazDBFactory

-MySQL

-SQLite

-Oledb

-Odbc

-SQLServer

-Oracle

Enum: CazDBProviderType

Figure 5.9: Solution 2: Provider Factory

Note that the class CazDBFactory provides static Factory Methods and therefore,

the Factory Method CazDBFactory.CreateConnection() is accessible in any part of the

application code with no need for argument propagation. Although, from Figure 5.7, the

154

5.3. Designing an Architecture

implementation of CazDBFactory.CreateCommand() may seem irrelevant, it provides an

alternative for instantiating an IDbCommand before passing an IDbConnection to it. Note

that both must encapsulate the same specific provider.

The key to this provider factory is its simplicity of implementation for it only requires

the OleDb* classes to be refactored into IDb* and IData* interfaces in the ClassBuilder

generated code.

Even though very simple SQL queries may be transversal to different RDBMSs, two

different ADO.NET data providers may not even work in the same way with the same

RDBMS. For example, whereas the OLEDB providers use ‘?’ parameters in the SQL state-

ments, the SqlClient provider only supports named parameters such as ‘@name’. The

current MySql Connector/Net only supports named parameters (specified as ‘?name’),

although the new version 6.6.3 is planned to feature unnamed parameters as well. Prior

MySQL versions used the ‘@name’ form, however that changed due to conflicts with user

variables.

Therefore, the provider factory in this solution, is unable to provide database interop-

erability.

5.3.3 Solution 3: Abstract Provider Factory

This solution is similar to the Solution 2 (in 5.3.2) except here it implements an Abstract

Factory with TLS to make the current user and its connection settings accessible anywhere

and whenever a new connection has to be opened. See Figure 5.10.

That is due to the fact that there are requirements such as those of CazFramework,

in which each user might have to manage a different database, depending on its role or

relying on the location and business of that application solution.

Therefore, whilst the Solution 2 had the connectionString propagated as arguments

in the method calls, in here, the Abstract Factory avoids that a user specific connection-

String is passed from the business logic calls to the DAL and CazDataProvider. This

brings a more implicit connection management.

However, such solution breaks the N-Tier model as the data tier becomes dependent on

very specific logic within the business tier. That same logic is responsible for defining how

the users are associated with the connection settings and how they access the databases.

Another problem with this strategy is the impossibility to provide and extend database

interoperability, like the Solution 2.

155

5.3. Designing an Architecture

OleDbConnection MySqlConnection

«interface»

IDbConnection

static CreateConnection() : IDbConnection

 cnnstr = ThreadLocal.UserSession.DB.connectionString

 type = ThreadLocal.UserSession.DB.providerType

 if type = CazDBProviderType.OleDb

 return new OleDbConnection(connStr)

 if type = CazDBProviderType.MySql

 return new MySqlConnection(connStr)

Creates and

provides this

interface to the

client

CazDBFactory

-MySQL

-SQLite

-Oledb

-Odbc

-SQLServer

-Oracle

Enum: CazDBProviderType

Figure 5.10: Solution 3: Abstract Provider Factory

5.3.4 Solution 4: Provider Factory with Subclassing

From the last approaches, only the Solution 1 is able to deal with SQL dialects and

provider differences and even so it does not support a very extensible model for database

interoperability.

Therefore, this solution presents a code refactoring approach, taking advantage of the

ADO.NET Strategy organization (already discussed at the beginning of this section) and

implementing a Factory Method to instantiate subclasses of the specific providers.

Thus, subclassing is needed to reimplement API, or simply making some conversions

(types and parameters) and translations (SQL). The problem of parameters has been dis-

cussed in 5.3.2 to involve at least the OLEDB, MySql Connector/Net and SqlClient

data providers.

It has been a common practice, in CazFramework, to use unnamed parameters in

legacy code especially that which is generated by ClassBuilder, due to the use of OLEDB

providers. Although named parameters may provide better readability of code. Therefore,

CazDataProvider may support: unnamed parameters, named parameters or both.

Figure 5.11 presents the classes involved in the implementation of a provider factory.

The Factory Method is similar to the Solution 2. All the specific provider Commands

that need refactoring, are extended. For instance, because SqlCommand only supports

named parameters, its parameters and the SQL statement must replace the symbol ‘?’

with something like ‘@name’, before executing a query and after having defined all the

parameters. A good place to inject that code is overriding ExecuteReader and in the

end, call the superclass ExecuteReader. Note that ExecuteNonQuery would need this

156

5.3. Designing an Architecture

behaviour as well.

OleDbCommand MySqlCommand

«interface»

IDbCommand

SqlCazCommand

SqlCommand

override ExectuteReader() : SqlDataReader

 If NamedParameters == false

 //Replace ‘?’ for ‘@param’

 For each param in Parameters

 pname = ’@p’+(counter++)

 ReplaceAll(CommandText,”?”,pname)

 param.ParameterName=pname

 return super.ExecuteReader()

static CreateCommand(type : CazDBProviderType) : IDbCommand

 if type = CazDBProviderType.OleDb

 return new OleDbCazCommand()

 if type = CazDBProviderType.MySql

 return new MySqlCazCommand()

 if type = CazDBProviderType.SqlServer

 return new SqlCazCommand()

CazDBFactory

Creates

override ExectuteReader() : OleDbDataReader

 If NamedParameters == true

 //Replace ‘@param’ for ‘?’

 For each param in Parameters

 idx = ReplaceAll(CommandText,param.Name,”?')

 auxDict.Put(idx.param)

 Parameters.clear()

 For each item in auxDict.OrderBy(i => i.Key)

 param = item.Value

 param.ParameterName = “?”

 Parameters.Add(param)

 return super.ExecuteReader()

OleDbCazCommand

MySqlCazCommand override ExectuteReader() : MySqlDataReader

 If NamedParameters == true

 //Replace ‘@param’ for ‘?param’

 ReplaceAll(CommandText,”@”,”?”)

 return super.ExecuteReader()

Figure 5.11: Solution 4: Provider Factory with Subclassing

157

5.3. Designing an Architecture

In order to solve the parameters issue, refactoring SqlCommand (via subclassing) would

be enough for CazDataProvider along with the establishment of unnamed parameter

policy (using ‘?’). However, the model in Figure 5.11 goes further. It defines a flag

NamedParameters to manage the support of named parameters. This flag can either be

set manually in the factory instantiation or controlled automatically by parsing the SQL

statement looking for the appropriate symbols.

Thus, only OleDbCommand has to implement named parameters from scratch (see OleD-

bCazCommand in 5.11). Also, considering the default policy of named parameters is set to

use ‘@name’ (SqlCommand form) rather than ‘?name’ (MySqlCommand form), MySqlCaz-

Command has to make a character translation, but at the same time prevent conflicts with

MySQL user variables.

One important fact omitted by Figure 5.11 is the absence of a Factory Method for

instantiating an IDbConnection. If CazDBFactory were to factory an IDbConnection,

it would provide the untouched specific provider API implementation entirely, which

includes the method IDbConnection.GetCommand. Because GetCommand does not factory

*CazCommands, this would leave a trap for other developers to fall upon.

Therefore, the following suitable solutions can be:

• Using the delegation of Solution 1 for encapsulating IDbConnection and possibly

IDbTransaction as well. The API is more controllable here;

• Adopting subclassing for IDbConnections in the same way as with IDbCommands

and then reimplement GetConnection to factory *CazCommands. Here, subclassing

would imply an increasing number of useless classes with very little implementation.

Although using subclassing seems a good solution at first, it brings some disadvantages

as well. Code refactoring is not easy to implement and although sometimes it makes sense

to use generalization for inheriting functionality like that of SqlCommand, this typically

falls within the Call Super or BaseBean anti-patterns, hence a sign of bad application

design.

BaseBean defines a solution in which some class is extended purely for its function-

ality and as a consequence of that, Call Super occurs when the subclass overrides some

superclass method and must mandatorily call the overridden method inside the new im-

plementation.

Because SqlCommand was not designed to be extended, the responsibility falls entirely

onto CazDataProvider to keep its refactored *CazCommands working without conflicts.

Also, because SqlCommand is out of control, it may become sealed or change its internal

API without warning, although it is likely to keep stable for the next couple of years.

158

5.3. Designing an Architecture

Conceptually, SqlCazCommand is not really part of an ADO.NET data provider but

rather of an abstraction for unified relational database access. For that, it ought to avoid

inheriting from any IDbCommand implementation, including SqlCommand.

Delegation, on the other hand, provides a better control over the SqlCommand. It allows

disabling some unnecessary or unmanaged API and provides a more flexible model, allow-

ing the *CazCommand classes to share some implementation, for instance through Template

Method. In other words, supposing that the model in Figure 5.11, was to add support for

Oracle ADO.NET data provider and because like SqlCommand, OracleCommand does not

implement unnamed parameters as well, both SqlCazCommand and OracleCazCommand

would be able to share the same implementation.

One advantage of this solution, though, is its simplicity and small amount of code

required in the short-term. Solution 5 (in 5.3.5) describes an alternative to this inheritance

tight coupling problem with the Template Method suggested by Fowler.

5.3.5 Solution 5: Provider Factory with Template Method

The need to improve Solution 4, due to its design problems, led to an analysis on both

the Decorator and the Template Method design patterns

Ideally, Solution 4 could work by simply injecting some extension points in SqlCom-

mand. For that, SqlCommand would have to provide extension points as demonstrated in

Figure 5.12 which is an implementation of Template Method pattern.

Note that with Template Method, the inheritance relationship inverts its responsibil-

ities, i.e. it is the superclass that is dependent on the subclass through the Template

Methods.

In Figure 5.12, SqlCommand could be abstract so the client would be forced to work

with SqlCazCommand. Although this way, the client can either instantiate an SqlCommand

or a SqlCazCommand from the according Factory Method.

There are a few advantages in this model towards the Call Super. For instance, if the

SqlCommand writer wants to add new behaviour to the ExecuteReader function (or even

change its name), he is free to do so, without influencing the SqlCazCommand as long as

the extension points are not erased.

However, whoever wrote SqlCommand did not want to take responsibility for any de-

riving classes, which makes this Template Method approach hypothetical.

Therefore a new approach had to be thought of and so the Decorator pattern was

modelled according to Figure 5.13. Here, the Component interface is IDbCommand, the

ConcreteComponent is SqlCommand, the Decorator is CazCommand and the ConcreteDec-

159

5.3. Designing an Architecture

«interface»

IDbCommand

SqlCazCommand

SqlCommand

overrides OnBeforeExecuteReader() : SqlDataReader

 // some additional behaviour for SqlCommand

ExecuteReader() : SqlDataReader

 OnBeforeExecuteReader()

 // normal behavior

OnBeforeExecuteReader()

Figure 5.12: Ideal SqlCommand refactoring with Template Method

orator is SqlCazCommand.

+ExecuteReader() : IDataReader

 ...

«interface»

IDbCommand

+ExecuteReader() : IDataReader

 ...

-Command : IDbCommand

CazCommand

+ExecuteReader() : SqlDataReader

 ...

SqlCommand

overrides ExectuteReader() : IDataReader

 //some behaviour for SqlCommand

 return super.ExecuteReader()

+ExecuteReader() : IDataReader

SqlCazCommand

ExectuteReader() : IDataReader

 return Command.ExecuteReader()

Figure 5.13: SqlCommand refactoring with Decorator

Note that once again, the SqlCazCommand (ConcreteDecorator) implements Call Super.

Meanwhile this time , the superclass is more controllable, plus it may be further refactored

to contain common behaviour among the different ConcreteDecorators.

If, however, this Decorator implementation uses Template Method rather than Call

Super (see Figure 5.14), this becomes cleaner and better modelled. That is, the Caz-

Command becomes abstract, which is safer for preventing unexpected instantiation, and

the SqlCazCommand avoids tight coupling to its superclass API. Also, there is slightly less

160

5.3. Designing an Architecture

code and responsibility but less control as well for the ConcreteDecorator to manage.

Another aspect of Decorator (of Figure 5.14) that can be improved for the case study of

CazDataProvider is prevent the CazCommand of implementing all the IDbCommand methods,

including unnecessary and unmanaged behaviour. Also, with this, a CazCommand will be

able to strictly encapsulate IDbCommands such as SqlCommand or MySqlCommand rather

than freely encapsulate CazCommands and any of its subclasses as well.

The above aspects lead to the actual Solution 5 demonstrated in Figure 5.14. It

provides a defensive model expecting more data provider interoperability problems and

therefore is set for refactoring in long-term. These problems are likely to occur especially

because the IDb* specific classes are encapsulated and managed according to the black

box principle1 and often with a closed implementation.

Hence, Solution 5 borrows some Decorator aspects, uses Template Method and re-

quires Factory Methods as well.

Figure 5.14 provides two additional aspects. First, the abstract CazCommand imple-

ments not only some of the IDbCommand API and extension points (Template Methods)

but also contains additional methods. For instance, AddParameter simplifies the call and

also may standardize the way of doing it, e.g. set the parameter name to ‘?’ if unnamed

parameters is the policy to be used;

The other aspect is part of the problem on how to manage SQL dialect differences.

In Figure 5.14, the considered default policy for writing queries is SQL Server dialect.

The tested example consists on how to manage the Top N SQL Server specific SQL com-

mand when using other RDBMSs and data providers. Regarding this problem, the three

*CazCommands use the following implementation:

• SqlCazCommand - because SQL Server uses the default syntax Top N and that policy

is not changeable, there is no implementation in here;

• MySqlCazCommand - MySQL uses Limit N syntax and therefore must replace all

occurrences of Top N in the CommandText with the former;

• OracleCazCommand - the equivalent to Top N in oracle is rownum < N and for that

it must replace the latter in the CommandText.

The solution for this SQL dialect problem is once again to have an extension point in

the abstract class so each subclass can inject different conversions right before the SQL

query is executed.

1http://it.toolbox.com/blogs/enterprise-solutions/design-principles-black-boxes-

16028

161

http://it.toolbox.com/blogs/enterprise-solutions/design-principles-black-boxes-16028
http://it.toolbox.com/blogs/enterprise-solutions/design-principles-black-boxes-16028

5.3. Designing an Architecture

OracleCommand

«interface»

IDbCommand

SqlCazCommand

SqlCommand

OnBeforeExectuteReader() : void

 ConvertNamedParameters()

OnBeforeExectuteNonQuery() : void

 ConvertNamedParameters()

private ConvertNamedParameters() : void

 // replace "?" with "@params" in sql query

MySqlCommand

+IDbCommand : idbCommand

CazCommand ExecuteReader() : IDbDataReader

 OnBeforeExecuteReader()

 return Command.ExecuteReader()

abstract OnBeforeExecuteReader() : void

ExecuteNonQuery() : void

 OnBeforeExectuteNonQuery()

 idbCommand.ExecuteNonQuery()

abstract BeforeExectuteNonQuery() : void

AddParameter(name : String, value : Object) : void

 Command.Parameters.Add(

 new Parameter(name, value))

MySqlCazCommand

OracleCazCommand
OnBeforeExectuteReader() : void

 ConvertRowLimit()

OnBeforeExectuteNonQuery() : void

 ConvertRowLimit()

private ConvertRowLimit()

 // convert "Top N" into "Limit N"

OnBeforeExectuteReader() : void

 ConvertRowLimit()

OnBeforeExectuteNonQuery() : void

 ConvertRowLimit()

private ConvertRowLimit()

 // convert "Top N" into "rownum < N"

Figure 5.14: Solution 5: Provider Factory with Template Method

However, this approach adds to the responsibility of abstracting the data provider, the

responsibility of managing abstract unified SQL in the *CazCommand which again breaks

the single responsibility principle. Also, for instance the MySQL OLEDB provider will

require the same implementation methods of MySqlCazCommand that manage the SQL

dialect conversions.

A good approach to solve query parsing and conversion is using Query Object pattern.

This is debated in the in Solution 6 (5.3.6).

162

5.3. Designing an Architecture

+addCriteria(criteria : Criteria)

-citeriaList : List(Of Criteria)

QueryObject

-sqlOperator : String

-field : String

-value : Object

Criteria 1
*

private Criteria(sql : String, field : String, value : Object)

 // instantiate values to class attributes

abstract OnBeforeGreaterThan(value: Object)

greaterThan(field : String, value : Object) : Criteria

 refactoredValue = OnBeforeGreaterThan(value)

 return new Criteria(" > ", field, refactoredValue)

matches(field : String, value : Object) : Criteria

 return new Criteria(MATCHES_OP(), field, value)

startsWith(field : String, value : Object) : Criteria

 return new Criteria.matches(field, value+”%”)

notEqualsTo(field : String, value : Object) : Criteria

 return new Criteria(NOTEQUALS_OP(), field, value)

equalsToNull(field : String) : Criteria

 return new Criteria(EQUALSTONULL_OP(), field, NULL_OP())

MATCHES_OP() : String

 return “LIKE”

NOTEQUALS_OP() : String

 return “<>”

EQUALSTONULL_OP() : String

 return “=”

NULL : String

 return “NULL”

SqlServerCriteria

MSAccessCriteria

OnBeforeGreaterThan(value: Object)

 If value instanceOf Date

 return “#”+value.toString+”#”

 Else return value

OnBeforeGreaterThan(value : Object) : Object

 If value instanceOf Date

 return “ ' “+value.toString+” ' ”

 Else return value

Overrides EQUALSTONULL_OP() : String

 return "IS"

Figure 5.15: Solution 6: Example of a Query Object implementation

5.3.6 Solution 6: Query Object

There are some strategies often used for interpreting and parsing, supporting from simple

expressions up to complex languages. Such strategies include, for instance, parser genera-

tor tools, implementation of Interpreter or Query Object patterns. The purpose of having

an SQL Interpreter in CazDataProvider is to achieve a unified way of writing queries that

are abstracted from the RDBMSs SQL dialects.

Because Cachapuz and CazFramework has always worked with no database other than

SQL Server, it is agreed that the SQL Server dialect were to be the standard for writing

SQL queries in CazDataProvider.

As already explained in section 3.4.2, full featured ORM frameworks like NHibernate

163

5.3. Designing an Architecture

implement this SQL dialect abstraction with Query-By-Example (QBE), QBA and QBL.

Typically a complex QBL like HQL requires parsing tools and libraries such as ANTLR.

Expression-based queries like NHibernate Criteria API or LINQ, can be implemented with

the Query Object or Interpreter pattern.

A simple Query Object criteria API implementation is given by the model in Fig-

ure 5.15. With this approach, for instance, the client would create the criteria Crite-

ria.greaterThan("quantity",10) and then add it to criteriaList in the QueryOb-

ject within the current CazCommand.

+Translate() :String

«interface»

IExpression

-leftExp : IExpression

-rightExp : IExpression

BinaryExp

-value : Object

Constant
-argument : Expression

UnaryExp

«interface»

ITerminalExp

«interface»

INonTerminalExp

Translate() : String

 If value instanceOf Number

 return value

 Else

 return “ ’ ”+value.ToString+” ‘ ”

Top

MySqlVariable

Translate() : String

 return “ ` ”+name+” ` ”

SqlVariable

Translate() : String

 return ‘[’+name+’]’

SqlTop

Translate() : String

 return “TOP ”+argument.Translate()

OrderBy

AND

OR

Equal

MySqlOrderBy

MySqlTop

Translate() : String

 vars.put(“top”,“LIMIT ”+argument.Translate())

 return “”

Translate() : String

 return “ORDER BY ”+argument.Translate()+” ”+vars.get(“top”)

-name : String

Variable

Figure 5.16: Solution 6: Example of an SQL-based Interpreter implementation

Note that Figure 5.15 resolves problems with date types and other operators via the

Template Method, but keeps a default behaviour in the abstract Criteria class.

An Interpreter implementation similar to LINQ, can be demonstrated by Figure 5.16.

Expression or criteria interfaces are provided to the client like in the Query Object exam-

ple. Note that in SQL Server, the command Top comes right after SELECT and in MySQL

it comes right after ORDER BY clause. This required an additional variable to delay the

translation of Top into LIMIT for MySQL.

164

5.4. Implementation

However, because CazFramework works on top of relational data through often com-

plex and dynamic SQL queries, a criteria API would not be a good solution. Also, QBA

and LINQ implementations are not suitable for complex querying. Parsing the whole

SQL statement would require a parser and a unnecessary performance loss. Thus, a good

solution can consist of allowing the traditional SQL statement to be combined with simple

criteria API (similar to Figure 5.15) for filtering, ordering, limiting and offsetting (useful

for data pagination), essentially because most GUI grids provide interfaces for these oper-

ations. Although it is common that by default, .NET GUI data grids use LINQ interfaces

and for that, implementing a LINQ for CazDataProvider can be an good solution as well.

5.4 Implementation

This section presents the details of CazDataProvider implementation. From the solutions

proposed in section 5.3, Solution 5: Provider Factory with Template Method (5.3.5) was

selected for building the core classes of CazDataProvider and Solution 6: Query Object

(5.3.6) for achieving SQL dialect interoperability features.

At this phase, the main requirements for CazDataProvider were to provide relational

database and data provider interoperability, i.e. it was expected to support the following

ADO.NET providers of Figure 5.6 (in section 5.2):

• MySql Connector/NET 6.2.3 (MySql.Data.MySqlClient);

• MyOLEDB Provider v3.0 (enabled by MySqlProv.3.0 in OLEDB connection

string);

• SqlClient for both for .NET 3.5 and 4.0 (uses System.Data.SqlClient names-

pace);

• SQL Server Native Client 10.1 OLE DB Provider (enabled by SQLNCLI10.1

in OLEDB connection string);

• MSAccess OLEDB Provider (enabled by Microsoft.ACE.OLEDB.12.0 in OLEDB

connection string);

• System.Data.SQLite 1.0.65.0 (uses the same namespace as its name).

All 6 providers work on top of SQL Server 2008, MySQL 5.1, MSAccess (JET

Engine 4.0) and SQLite 3.6.23 RDBMSs. Also the Integrated Development Environment

(IDE) used for developing CazDataProvider was Visual Studio 2008.

165

5.4. Implementation

The constraints were that SQL queries should be written in SQL Server dialect and

with OLEDB provider behaviour, as it always has been part of CazFramework and Class-

Builder development environment.

From the architecture of the Solution 5 (in 5.3.5), it is possible to define a simple

test case. Thus, the code in Figure 5.17 is expected to run the same way using different

providers.

//SQLServer OLEDB Provider

Dim conn As CazConnection

conn = CazFactory.CreateCazConnection(ProviderType.SqlServer,

"Data Source=MIGUEL-LAPTOP;Initial Catalog=TST;Integrated Security=True")

//SQLServer Native Provider

conn = CazFactory.CreateCazConnection(ProviderType.OleDb,

"Provider=SQLNCLI10.1;Data Source=Miguel-Laptop;Integrated Security=SSPI;

Initial Catalog=TST")

//TEST CASE

conn.Open()

cmd = conn.CreateCommand()

cmd.CommandText = "Select TOP 2 * from People where name = ? or name = ?"

cmd.AddParameterWithValues("?", "jack")

cmd.AddParameterWithValues("?", "joe")

idr = cmd.ExecuteReader()

While (idr.Read())

Console.WriteLine(idr.Item(1).ToString())

End While

conn.Close()

Figure 5.17: A priori test case for CazDataProvider

At the end of this phase, the model of Figure 5.18 was implemented containing the

main classes of CazDataProvider. Here, the essential applied patterns were Template

Method, Factory Method and Query Object.

166

5.4. Implementation

+ChangeDelimiters()

+SetLimit(limit : Integer)

+SetOrderBy(orderby : String)

+SetRange(limit : Integer, offset : Integer)

+SetWhere(where : String)

-CommandText : String

QueryObject

+BeginTransaction() : IDbTransaction

+BeginTransaction(il : IsolationLevel) : IDbTransaction

+ChangeDatabase(databaseName : String)

+Close()

+CreateCommand() : CazCommand

+Dispose()

+Open()

-IDbConnection : IDbConnection

-ProviderType : ProviderType

-State : ConnectionState

-Transaction : IDbTransaction

-Database : String

-ConnectionTimeout : Integer

-ConnectionString : String

CazConnection

+AddParameterWithValues(name : String, value : Object)

+Cancel()

+ClearParameters()

+CreateParameter() : IDbDataParameter

+ExecuteNonQuery() : Integer

+ExecuteReader() : IDataReader

+ExecuteReader(behavior : CommandBehavior) : IDataReader

+ExecuteScalar() : Object

+getDataSet(conn : CazConnection) : DataSet

+getDataTable(conn : CazConnection) : DataTable

+Prepare()

-BeforeExecuteReader()

-BeforeExecuteNonQuery()

-AfterSetCommandText()

-ReImplAddParameterWithValues(name : String, value : Object)

-Connection : IDbConnection

-IDbCommand : IDbCommand

-CommandText : String

-CommandType : CommandType

-Transaction : IDbTransaction

-Parameters : IDataParameterCollection

-QueryObject : QueryObject

-CommandTimeout : Integer

-UpdatedRowSource : UpdateRowSource

CazCommand -BeforeExecuteReader()

-BeforeExecuteNonQuery()

-AfterSetCommandText()

-ReImplAddParameterWithValues(name : String, value : Object)

MySqlCazCommand

-BeforeExecuteReader()

-BeforeExecuteNonQuery()

-AfterSetCommandText()

-ReImplAddParameterWithValues(name : String, value : Object)

OleDbCazCommand

-BeforeExecuteReader()

-BeforeExecuteNonQuery()

-AfterSetCommandText()

-ReImplAddParameterWithValues(name : String, value : Object)

SqlCazCommand

-BeforeExecuteReader()

-BeforeExecuteNonQuery()

-AfterSetCommandText()

-ReImplAddParameterWithValues(name : String, value : Object)

SQLiteCazCommand

+CreateCazCommand(cazConnection : CazConnection) : CazCommand

+CreateCazCommand(providerType : ProviderType, sqlStatement : String, oCnn : CazConnection) : CazCommand

+CreateCazCommand(sqlStatement : String, oCnn : CazConnection) : CazCommand

+CreateCazConnection(providerType : ProviderType) : CazConnection

+CreateCazConnection(providerType : ProviderType, connectionString : String) : CazConnection

+CreateCazDataAdapter(conn : CazConnection, cmd : CazCommand) : IDbDataAdapter

CazFactory

+ChangeDelimiters()

+SetLimit(limit : Integer)

+SetOrderBy(orderby : String)

+SetRange(limit : Integer, offset : Integer)

+SetWhere(where : String)

SqlQueryObject

+ChangeDelimiters()

+SetLimit(limit : Integer)

+SetOrderBy(orderby : String)

+SetRange(limit : Integer, offset : Integer)

+SetWhere(where : String)

MySqlQueryObject

+ChangeDelimiters()

+SetLimit(limit : Integer)

+SetOrderBy(orderby : String)

+SetRange(limit : Integer, offset : Integer)

+SetWhere(where : String)

SQLiteQueryObject

+ChangeDelimiters()

+SetLimit(limit : Integer)

+SetOrderBy(orderby : String)

+SetRange(limit : Integer, offset : Integer)

+SetWhere(where : String)

MSAccessQueryObject

1

1

+MySql

+Odbc

+OleDb

+Oracle

+SQLite

+SqlServer

«enumeration»

ProviderType

Figure 5.18: CazDataProvider: Implemented core classes

167

5.4. Implementation

From the IDb* and IData* interfaces, initially marked for refactoring, only IDb-

Connection and IDbCommand had to be changed into CazConnection and CazCommand

accordingly. The interfaces IDbTransaction, IDataParameter, IDataParameterCol-

lection and IDataReader are still managed by CazDataProvider with provider specific

implementations. This is due to the fact that they are not expected to raise significant

interoperability problems.

From the model in Figure 5.18, the client API consists of CazConnection, CazFactory

(including the ProviderType enumerator), CazCommand and QueryObject. The Template

Method enables additional provider specific CazCommands (e.g. MySqlCazCommand) and

SQL dialect implementations of QueryObject (e.g. MySqlQueryObject)

CazConnection

Note that in order to make Template Method work, the superclass (CazCommand) has to

be set abstract to prevent wrong instantiation. Also, the refactored methods intended to

be overridden by the subclasses, must be set protected (not supposed to be seen by the

client) and virtual or overriddable in the superclass.

An early version of CazDataProvider had an abstract CazConnection extended by

provider specific Connections with Template Methods. This proved to be unneces-

sary because all the IDbConnection implementations share the same behaviour. How-

ever, the method CazConnection.GetCommand needs to create a CazCommand of the same

ProviderType (of the CazConnection), with the appropriate QueryObject and provider

specific IDbCommand.

The methods of CazConnection are similar to those of IDbConnection. Thus, with

inheritance by delegation, all CazConnection methods are implemented simply by calling

the appropriate method of IDbConnection, except for GetCommand which calls a Factory

Method in CazFactory to instantiate the right CazCommand.

The following example demonstrates how to instantiate a CazConnection and create

a CazCommand:

//MySql OLEDB Provider

Dim conn As CazConnection

conn = CazFactory.CreateCazConnection(ProviderType.MySql,

"Provider=MySqlProv.3.0;Data Source=GA_CAZWEB;User ID=root;

Location=localhost")

cmd = conn.CreateCommand()

CazFactory

CazFactory provides static Factory Methods to create a CazConnection given a Provider-

168

5.4. Implementation

Type (one of the 4 supported: MySql, OleDb, SqlServer and SQLite). Additionally, it

creates CazCommands given a CazConnection (the same method called by CazConnec-

tion.GetCommand). It is here that the external provider libs are used and loaded by

reflection to avoid further compilation issues. An example of using CazFactory to instan-

tiate a CazCommand is given by the following code:

cmd = CazFactory.CreateCazCommand("Select id,nome from Tabela where

’1’ = ? or ’2’ = ?", conn)

CazCommand

CazCommand is the most important class in the CazDataProvider model (see Figure 5.18).

It is an abstract class and inherits most IDbCommand methods via delegation. The encap-

sulated IDbCommand inside can be any provider specific ADO.NET Command (e.g. OleD-

bCommand, MySqlCommand, SQLiteCommand or SqlConnection). The more CazCommand

subclasses, more providers supported.

Unlike SqlParameterCollection or OleDbParameterCollection, the IDataParame-

terCollection API does not provide a user friendly Add method accepting the arguments

of parameter and value. Thus, Template Method pattern was used to manage multiple

implementations of methods like CazCommand.AddParameterWithValues. Also, before

sending the SQL query to the database, there is an extension point that triggers specific

provider adjustments.

The following example presents the use of unnamed parameters applied to a Query

Object criteria, also set to take a range of rows from the result before executing the

CazCommand:

cmd.AddParameterWithValues("?", "1")

cmd.QueryObject.SetRange(3, 1)

cmd.ExecuteReader()

Before running ExecuteReader, both MySqlCommand and SqlCommand replace the un-

named parameters with named parameters. For that, in these same specific Commands,

the method AddParameterWithValues replaces the ‘?’ symbol with a numbered name to

complement the named parameters conversion

Parameters problems

While examining all the 6 data providers, interoperability parameter problems were found

on IDbCommand implementations and they were further resolved in CazCommand along with

its subclasses. The three encountered problems are:

169

5.4. Implementation

• Some providers accept only named or unnamed parameters. SQLiteCommand, MySql-

Command and SqlCommand only accept named parameters, e.g. ‘@name’. MySQL

and SQL Server OleDbCommands (MySqlProv.3.0 and SQLNCLI10.1) only ac-

cept unnamed parameters with symbol ‘?’. MSAccess OleDbCommand (Microsoft

.ACE.OLEDB.12.0) accepts both the approaches.

• Therefore, it is assumed that the client of CazCommand will only use unnamed pa-

rameters (with ‘?’) in the SQL statement and not use named parameters. Also,

the parameters must be added respecting the order in the SQL statement and using

AddParameterWithValues, which ignores the parameter name.

• OLEDB providers only support string format date parameters (yyyy-MM-dd HH:mm:ss

(no GMT)). AddParameterWithValues is set to still accept System.Date values and

then, in the subclasses of CazCommand, it is converted into a string. Additionally,

for the MySQL non OLEDB provider, MySqlCommand needs the DbType of the pa-

rameter to be specified as a Datetime in order to work;

• OLEDB MySqlProvider.3.0 provider only supports string value parameters. When

adding a new parameter with integer or boolean values, it crashes. This is managed

in OleDbCazCommand with if conditions.

QueryObject

When a CazCommand is created, a QueryObject is instantiated inside it by the CazFac-

tory. This QueryObject determines which SQL dialect is configured for that CazCommand.

Typically, there are as many QueryObjects as RDBMSs supported.

This QueryObject was required because, for instance both MySql Connector/NET

6.2.3 and MyOLEDB Provider v3.0 or SqlClient and SQL Server Native Client

10.1 OLE DB Provider share the same abstraction to SQL dialect.

The CazDataProvider model (in Figure 5.18) contains MySqlQueryObject, SqlQuery-

Object, SQLiteQueryObject and MSAccessQueryObject all inheriting from QueryObject

and implementing Template Method.

QueryObject is an abstract class responsible for adding criteria to the SQL statement

in a provider and SQL dialect independent way. Its name is after the Query Object

pattern and therefore follows a similar strategy from the Solution 6 (5.3.6). Such criteria

supports the following operations:

• SetLimit - similar to the TOP N in SQL Server, it fetches the N first rows from the

result;

170

5.4. Implementation

• SetRange - fetches the rows comprehended by the specified range in the full result;

• SetWhere - filters the result given a condition, i.e. it adds an SQL Where clause to

the SQL statement;

• SetOrderBy - sorts the result in the database by adding an Order By clause at the

end of the SQL statement.

Note that whenever any QueryObject criteria is invoked, it changes the relative Caz-

Command.CommandText (SQL statement).

QueryObject contains a copy of CommandText from CazCommand. This makes the Ob-

jectQuery criteria call for query transformation to not immediately reflect on the CazCom-

mand.CommandText. This problem occurs due to CommandText being a string and thus it

does not pass as a reference to other classes or methods. The solution consisted on adding

an update or synchronization of CommandTexts before executing the SQL command and

also run the update on the getter property of CazCommand.CommandText. The setter

property is responsible for changing its value and the value in ObjectQuery.CommandText

immediately. A more simple solution would be for QueryObject to manage a reference

to the same IDbCommand.

QueryObject problems

QueryObject criteria API manages the dissimilarities of SQL syntax over 4 different

relational databases (MySQL, SQL Server, SQLite and MSAccess). One problem is the

variety of delimiters used for column, table and variable names. By default, it is assumed

that delimiters for column and table names come as [tablename] and [columname] in

SQL Server. It is not expected that types and other SQL commands come specified

by those same delimiters. For instance MySQL uses ‘xxx‘ and does not accept [xxx]

whilst with SQL Server is the exact opposite. The use of delimiters is important because

reserved words can lead to unexpected problems. See the following example to understand

the differences between MySQL and SQL Server delimiters in queries:

// SQL Server example:

Select [u].[name] From [dbo].[Users] As [u]

// MySql example:

Select ‘u‘.‘name‘ From ‘dbo‘.‘Users‘ As ‘u‘

Thus, by the above example, MySqlQueryObject has to convert from SQL Server to

MySQL delimiters if MySQL database is being used (SQL Server dialect is the default in

CazDataProvider).

Another problem occurs with the SQL command for limiting the number of results.

This is implemented in QueryObject with SetLimit criteria. MySQL and SQLite use

171

5.4. Implementation

Limit N at the end of SQL query, after Order By clause. On the other hand, SQL Server

and MSAccess use Top N and right after the Select.

However, SetLimit was relatively simple to implement when compared to SetRange

criteria. Whilst MySQL and SQLite use simple Limit N and Offset M notation, SQL

Server and MSAccess do not provide equivalent implementation to Offset M.

The further examples demonstrate the equivalent SQL (in SQL Server and MSAc-

cess) for the following SetRange in MySQL:

Select ‘u‘.* From ‘dbo‘.‘Users‘ As ‘u‘ Order By ‘u‘.‘id‘ Limit 10 Offset 100

Note that the above example takes only from user row 101 to 110. The equivalent in SQL

Server 2008 is:

SELECT *

FROM

(

SELECT

row_number()

OVER

(ORDER BY [INNERTABLE].id) AS [ROWNUM], [INNERTABLE].*

FROM

(Select [u].* From [dbo].[Users] As [u]) [INNERTABLE]

) AS [OUTERTABLE]

WHERE

[OUTERTABLE].[ROWNUM] BETWEEN 101 AND 110

This approach contains 3 nested Selects (a table scan and a sort) while without offset

feature it contains only 1 Select. Also, it needs to know the column name to use the

Order By clause. Thus, if the SetRange criteria is used, SqlCazCommand.CommandText

must define the projected column names in the outermost Select instead of using the

symbol ‘*’. The implementation in SqlQueryObject uses the first column name to set

the Order By. Note that row number() was added in SQL Server 2005.

The equivalent in MSAccess is:

Select Top 10 * From [dbo].[Users]

WHERE [id] NOT IN

(SELECT TOP 100 [id] FROM [dbo].[Users] ORDER BY [id])

ORDER BY [id];

MSAccess only supports some features of SQL Server, it does not support row number().

Therefore, the above approach was the encountered solution. This defines 2 nested Se-

lects (the original Select is defined twice), although it is slower than the SQL Server

row num algorithm because it scans the 100 first rows and then scans the other 10. Also

172

5.5. LinqToCaz

a column name has to be specified in the outermost Select the same way as with SQL

Server algorithm due to the Order By.

In OleDbCommand for MSAccess, if the number of (unnamed) parameters in the SQL

statement and in the collection of parameters does not match, it is assumed that was

because of the query transformation of SetRange criteria. Hence, OleDbCommand will

double its parameters by replication.

5.5 LinqToCaz

LinqToCaz is a custom implementation of .NET LINQ interfaces. Essentially it provides

LINQ query features to CazDataProvider, similar to the QueryObject criteria API defined

in the last section (5.4).

LinqToCaz implements Query Object (see section 3.4.2), Interpreter (see Solution 6

5.3.6) and Repository (see the example of a queryable implementation in section 3.4.3)

The implemented LINQ interfaces were Take, Skip, Where and OrderBy, although the

code is extensible for adding other LINQ operators.

The following example demonstrates how these features are used with encapsulated

CazDataProvider:

Dim provider As New LinqToCaz.DbQueryProvider(ProviderType.OleDb, _

"Provider=SQLOLEDB;Data Source=.;Initial Catalog=Northwind;" _

& "Integrated Security=SSPI")

provider.Open()

Dim sqlQuery = provider.CreateQuery(_

"Select t.TerritoryID [TID], t.* from Territories t")

Dim queryA = sqlQuery.Where(Function(c) (c.Item("RegionID") = 1 _

Or Not c.Item("RegionID") = 2) And c.Item("RegionID") = 3) _

.OrderByDescending(Function(c) c.Item("TerritoryDescription")) _

.OrderBy(Function(c) c.Item("RegionID")) _

.Take(10).Skip(5)

Dim queryB = From c In sqlQuery _

Where (c.Item("RegionID") = 1 Or Not c.Item("RegionID") = 2) _

And c.Item("RegionID") = 3 _

Order By c.Item("TerritoryDescription") Descending Order By _

c.Item("RegionID") _

Take 10 Skip 5

173

5.5. LinqToCaz

Dim resultA = queryA.ToList()

Dim resultB = queryB.ToList()

The above example contains 2 different ways of writing LINQ queries in .NET and only

fetches data from database when the query.ToList() is invoked. LinqToCaz allows the

SQL query to be defined before applying LINQ criteria on the IQueryable object returned

by CreateQuery method. The result is only computed in the end and returning a dynamic

data structure as IEnumerable(Of Dictionary(Of String, Object)), representing a

row set.

+New(connection : CazConnection)

+New(providerType : ProviderType, connectionString : String)

+Open(autoClose : Boolean = True)

+Close()

+AddParameterWithValues(name : String, value : Object)

+CreateQuery(sqlQuery : String) : Query(Of Dictionary(Of String, Object))

+Execute(expression : Expression) : Object

+GetQueryText(expression : Expression) : String

+GetSqlStatement() : String

-command : CazCommand

-connection : CazConnection

DbQueryProvider

+New(connection : CazConnection)

+New(providerType : ProviderType, connectionString : String)

+AddParameterWithValues(name : String, value : Object)

+GetEnumerator() : IEnumerator(Of T)

+GetSqlStatement() : String

-enumerator : IEnumerator

Query(Of T)

IQueryable, IEnumerable

+Translate(e : Expression) : String

-Instructions : List(Of String)

QueryTranslator

+Visit(e : Expression) : Expression

-VisitUnary(e : Expression) : Expression

-VisitBinary(e : Expression) : Expression

-VisitConstant(c : ConstantExpression) : Expression

-VisitMethodCall(m : MethodCallExpression) : Expression

ExpressionVisitor

+CreateQuery(Of TElement)(ByVal expression : Expressions.Expression) : IQueryable(Of TElement)

+Execute(ByVal expression : Expressions.Expression) : Object

+Execute(Of TResult)(ByVal expression : Expressions.Expression) : TResult

+GetQueryText(ByVal expression : Expressions.Expression) : String

«interface»

IQueryProvider

Figure 5.19: LinqToCaz: Class diagram

Figures 5.19 and 5.20 provide some insight on the LinqToCaz implementation details.

Note that the LINQ expressions can be defined by a similar approach to the model in

Figure 5.16 (Interpreter pattern).

DbQueryProvider is the class that creates the IQueryable Query and executes it. For

that it has to implement System.Linq.IQueryProvider interface with CreateQuery and

Execute methods.

When the Query is iterated, the Query.GetEnumerator is called which forwards to

the DbQueryProvider.Execute method. For executing the SQL query, DbQueryProvider

174

5.5. LinqToCaz

provider : DbQueryProvider

query : Query(Of Dictionary(Of String, Object))

translator : QueryTranslator ExpressionVisitor

Client

provider = New DbQueryProvider(prov, ConnStr)

connection = CazFactory.CreateCazConnection(prov, connStr)

provider.Open()

connection.Open()

query = provider.CreateQuery(sqlQuery)

cmd = connection.CreateCommand()

cmd.CommandText = sqlQuery

New Query(Of Dictionary(Of String, Object))(provider)

Linq.Expressions.ListInitExpression

 .Constant(query)
query

query.Where(...).Take(...)...

query.ToList()

query.GetEnumerator()provider.Translate(expression)

translator.Translate(expression) Visit(expression)

reader = command.ExecuteReader()

result = GetListForomDatareader(reader)

result

return

Figure 5.20: LinqToCaz: Sequence diagram

uses CazDataProvider core API. Thus it needs to manage a CazCommand and a CazCon-

nection instances. First it calls method Translate which takes a LINQ expression and

calls QueryTranslator to convert this expression into a list of Instructions. These

instructions are then iterated and if any of the commands Where, OrderBy, Take or Skip

is found, it calls the corresponding ObjectQuery API criteria defined in CazDataProvider

core api. Then, CazCommand executes the SQL command and the IDataReader is con-

verted into a dynamic structure List(Of Dictionary(Of String, Object)).

ExpressionVisitor implements the Interpreter pattern as it defines a recursive LINQ

expression visiting protocol. QueryTranslator overrides some methods to implement the

175

5.6. Conclusions

behaviour that translates the Where, OrderBy, Take and Skip LINQ expressions into

instructions defined as strings.

This LinqToCaz was developed using the code and guidance of Matt Warren with his

article LINQ: Building an IQueryable Provider 1.

5.6 Conclusions

This chapter discussed the various steps of research, design and implementation of Caz-

DataProvider and presents an alternative to the typical ORM frameworks like NHibernate

or EF with the avoidance of most object-relational mismatch problems.

In here, ClassBuilder, a Cachapuz custom ORM tool was analysed with the identifica-

tion of some common ORM design patterns. ClassBuilder was found to use a Relational

Domain Model pattern which is the reason why it avoids most ORM problems like inheri-

tance and association mapping, Partial-Object and Dual-Schema. Some features analysed

in ClassBuilder include the Data Mapper API, audit logging, Unit of Work and optimistic

locking.

Cachapuz demanded for a database-agnostic ClassBuilder and for that, ADO.NET

providers and provider factories were analysed in order to find a solution for the architec-

ture of CazDataProvider. Various architectural approaches were suggested, in section 5.3,

surrounding the implementation of some design patterns like Strategy, Abstract Factory,

Factory Method, Call Super or BaseBean, Template Method, Decorator, Query Object

and Interpreter. In the end, Solution 5: Provider Factory with Template Method was cho-

sen to be implemented in CazDataProvider and complemented with Solution 6: Query

Object.

Section 5.4 discussed the implemented classes as well as the data provider and SQL

dialect problems or barriers to the database interoperability realization. Additionally,

LinqToCaz was implemented in order to provide LINQ query features to CazDataProvider.

CazDataProvider was successfully tested with the mysql, SQL Server, SQLite and

MSAccess and thus, it currently supports the following ADO.NET data providers:

• MySql Connector/NET 6.2.3;

• MyOLEDB Provider v3.0;

• SqlClient;

1http://blogs.msdn.com/b/mattwar/archive/2007/07/30/linq-building-an-iqueryable-

provider-part-i.aspx

176

http://blogs.msdn.com/b/mattwar/archive/2007/07/30/linq-building-an-iqueryable-provider-part-i.aspx
http://blogs.msdn.com/b/mattwar/archive/2007/07/30/linq-building-an-iqueryable-provider-part-i.aspx

5.6. Conclusions

• SQL Server Native Client 10.1 OLE DB Provider;

• Microsoft.ACE.OLEDB.12.0;

• System.Data.SQLite 1.0.65.0.

All in all, the key aspect of CazDataProvider is that it allows database agnostic SQL

statements to return a dynamic queryable object structure. This feature enables a more

dynamic approach than using ClassBuilder for it entirely avoids the object schema and

with it, the recompilation of POCO entities when the relational schema changes). That is

due to CazDataProvider converting a generic relational query into a relational database

specific query (generic SQL to specific SQL) rather than using an object-relational trans-

lation approach (OQL to SQL) like typical ORM implementations.

In the end, ClassBuilder was modified to generate DAL code supported by CazDat-

aProvider. This DAL code was further used in CazFramework. Hereafter, CazDat-

aProvider will be enhanced to support more ADO.NET providers and RDBMSs like

Oracle or DB2. LinqToCaz is set to be improved as well, in order to support more

LINQ operators and work with GUI data grid features implicitly.

177

5.6. Conclusions

178

Chapter 6

Benchmark Tests: Comparing

CazDAL, ORM Frameworks and

OOSBMSs

This chapter presents a benchmark analysis of 5 different technologies relevant for this

dissertation:

• NHibernate 3.1.0: Analysed ORM framework in section 4.2 and tested here using

.NET 3.5 and SQL Server 2005;

• EF 4.0: Analysed ORM framework in section 4.1 with SQL Server 2005;

• CazDAL: ClassBuilder generated code using CazDataProvider on top of SQL

Server 2005;

• DB4O 8.0: it is a proprietary OODBMS currently supporting Java and .NET

platforms. It can run embedded or in server-mode and provides dynamic schema

evolution at runtime, query criteria and LINQ implementation, ACID transactions

and replication. Its lack of text-based indexing, support for many concurrent users

(it is single-threaded) and other optimization features are still important disadvan-

tages towards RDBMSs. For more details on OODBMSs see 2.5 and [VZ10];

• Eloquera 3.0: proprietary OODBMS similar to DB4O but for .NET only, multi-

threaded (support for more concurrent users) and supporting OQL serializable

queries.

All tests were developed in Visual Studio 2010. The test cases manage the object

Person (see Figure 6.1) and in most cases a table Person as well. Note that a Person

179

6.1. Creating

can have relations with other Person objects. Also, the Person id is set to identity

(auto-increment) on SQL Server 2005.

-Id : Integer

-Name : String

-Biography : String

-Child : Person

-Parent : Person

Person

Figure 6.1: Benchmark Tests: Managed Person class

Some scenarios may use slightly different algorithms depending on the technology

used. It is a priority to measure, at first, each technology’s default behaviour, i.e. in

the algorithms it is given stronger emphasis to the simpler API that requires a lesser

understanding of that tool or framework. In the end, speed performance can be confronted

with learning curve.

6.1 Creating

The algorithm behind this test consists of storing N different Person instances related

to each other in groups of 3, i.e. there are N/3 families and each has a grandfather, a

father and a son. Also, each Person is about 2KB of size due to the large Bibliography

attribute. Note that the routine saves 3 Persons per iteration (e.g. 10,000 iterations

persist 30,000 Person objects).

Figure 6.2 presents a speed performance test among all 5 technologies.

EF uses the ObjectContext.SaveChanges to commit the transaction twice on each

iteration and therefore does not overload memory, unlike the NHibernate algorithm. Note

that EF, in here, uses dynamic updates (default).

On each iteration CazDAL inserts 3 Persons, reads all 3 back from the database,

sets the id references among all 3 objects and then updates them. Note that there is

no support for dynamic updates in CazDAL. Therefore it becomes slower than most

technologies tested here.

In this example, there is less overhead when using an OODBMS such as Eloquera or

DB4O. The real Person id is persisted from its in-memory pointer, thus the attribute id

is ignored. Therefore, only one call is invoked per object to the Object Database (ODB)

API.

NHibernate uses Session.Save to persist each Person, fills the associations and then

updates each Person object. The reason why NHibernate curve grows higher in Figure 6.2

180

6.1. Creating

00:00:00,0

00:07:12,0

00:14:24,0

00:21:36,0

00:28:48,0

00:36:00,0

0 5000 10000 15000 20000 25000 30000

Ti
m

e

Nº of object instances managed

Eloquera

DB4O

NHibernate

EntityFramework4

CazDAL

53s

2m39s

Figure 6.2: Benchmark Tests: Creating objects

is because the Unit of Work keeps track of every object in memory, i.e. the Session becomes

larger and larger whilst more objects are persisted. This scenario can be avoided using

transaction API with multiple commits or calling Session.Flush and Session.Clear

once in a while, otherwise the Session will eventually run out of memory. Also, note that

in here, NHibernate is set to not use dynamic updates (dynamic-update="false" is the

default).

00:00:00,0

00:00:43,2

00:01:26,4

00:02:09,6

00:02:52,8

00:03:36,0

00:04:19,2

00:05:02,4

00:05:45,6

00:06:28,8

00:07:12,0

0 5000 10000 15000 20000 25000 30000

Ti
m

e

Nº of object instances managed

NHibernate (1)

NHibernate (2)

NHibernate (3)

NHibernate (4)

NHibernate (5)

55s

Figure 6.3: Benchmark Tests: Creating objects with NHibernate optimized algorithms

Figure 6.3 provides more tests on 5 different NHibernate algorithms:

• NHibernate (1): Calls Session.Flush once at the end of the cycle;

181

6.2. Loading All

• NHibernate (2): Invokes Session.Flush per iteration;

• NHibernate (3): Invokes Session.Flush and Session.Clear per iteration;

• NHibernate (4): Wraps each iteration in a single transaction with N/3 commits;

• NHibernate (5): Wraps all the iterations in a single transaction and only commits

once at the end.

6.2 Loading All

00:00:00,0

00:00:17,3

00:00:34,6

00:00:51,8

00:01:09,1

00:01:26,4

00:01:43,7

00:02:01,0

0 5000 10000 15000 20000 25000 30000

Ti
m

e

Nº of object instances managed

Eloquera (df)

DB4O (df)

NHibernate (df)

EntityFramework4 (df)

CazDAL (df)

NHibernate (1)

EntityFramework (1)

CazDAL (1)

Figure 6.4: Benchmark Tests: Loading objects

In this test, the following 8 algorithms load N objects (all the persisted objects in

section 6.1 are loaded) and then iterate over all of them while calling Person.Name (see

Figure 6.4):

• Eloquera (df): By default, Eloquera implicitly loads all the associations within

each object;

• DB4O (df): By default, DB4O implicitly loads all the associations within each

object at a depth level of 5;

• NHibernate (df): NHibernate is set to lazy associations and the large field Biogra-

phy is lazy as well;

• EntityFramework4 (df): The same as NHibernate;

182

6.3. Fetching One

• CazDAL (df): Does not load associations neither large fields (Biography);

• NHibernate (1): NHibernate is set to load eager associations with join fetching

strategy;

• EntityFramework4 (1): Uses explicit eager loading similar to NHibernate;

• CazDAL (1): Explicitly loads each association (no caching) and the large field

Biography.

Note that CazDAL (1) is slower because it does not cache early loaded objects and

runs a single SQL Select for each loaded object.

6.3 Fetching One

In this test, all the algorithms fetch one Person object given the criteria Name="Jack".

In here the variable is the database size on the number of Person objects/rows. The

default algorithms in Figure 6.5 follow the same configurations as in the above section

6.2. Eloquera (df), DB4O (df), NHibernate (df) and EntityFramework4 (df) use their

own LINQ implementation. CazDAL is slightly faster because it uses SQL criteria, thus

avoiding LINQ expression compile time.

00:00:00,0

00:00:08,6

00:00:17,3

00:00:25,9

00:00:34,6

00:00:43,2

00:00:51,8

00:01:00,5

00:01:09,1

00:01:17,8

0 5000 10000 15000 20000 25000 30000

Ti
m

e

Nº of objects/rows in the database

Eloquera

DB4O

NHibernate

EntityFramework4

CazDAL

Figure 6.5: Benchmark Tests: Fetching one object with a variable database size

Because in Figure 6.5, the results for both OODBMSs diverge form the others, this

test was performed again but with some optimizations.

183

6.4. Updates and Deletes

The results of the second test are displayed in Figure 6.6. Here, both algorithms

NHibernate (df) and EntityFramework4 (df) use the same default configurations of Figure

6.5 except the former runs HQL and the latter EQL rather than LINQ. In this new test,

both Eloquera (df) and Eloquera (idx) algorithms run the Eloquera object SQL language

(OQL). Also, Eloquera (idx) has a pre-created index on the Person field Name. Both DB4O

(df) and DB4O (idx) run criteria API rather than LINQ. Additionally, DB4O (idx) has

an index on the Person field Name.

00:00:00,0

00:00:04,3

00:00:08,6

00:00:13,0

00:00:17,3

00:00:21,6

00:00:25,9

00:00:30,2

0 5000 10000 15000 20000 25000 30000

Ti
m

e

Nº of objects/rows in the database

Eloquera (df)

Eloquera (idx)

DB4O (idx)

DBO (df)

NHibernate

EntityFramework4

Figure 6.6: Benchmark Tests: Optimized fetching of one object with a variable database
size

Figure 6.6 expresses a slight performance enhancement by using a different query API

on both OODBMSs. This enhancement is greater when using indexes, which makes DB4O

perform near to the ORM frameworks.

More tests were conducted with criteria Name LIKE "J%" for fetching more than one

Person. Although the results did not vary significantly from the ones in Figure 6.5.

6.4 Updates and Deletes

Updates and deletes provide slightly different results than reads. Both tests in here, were

performed by fetching a group of Persons with a criteria Person.Child.Name LIKE "J%"

and then iterate over the results (23% of all the objects/rows in the database are returned

by the query). Note that the variable here is still the database size.

The updates modify the Person field Name on each iteration. Figure 6.7 presents the

following algorithms:

184

6.4. Updates and Deletes

• Eloquera (df): LINQ query and object saved on each iteration;

• DB4O (df): Same as Eloquera (df);

• NHibernate (df): LINQ query (lazy associations and Biography field) and object

updated with Session.Update and Session.Flush on each iteration (without dy-

namic updates);

• EntityFramework4 (df): LINQ query (eager load of associations) and object saved

with ObjectContext.SaveChanges on each iteration (with dynamic updates);

• CazDAL (df): SQL query with a nested Select (load of all fields but without

associations) and update of all Person fields on each iteration.

00:00:00,0

00:01:26,4

00:02:52,8

00:04:19,2

00:05:45,6

00:07:12,0

00:08:38,4

0 5000 10000 15000 20000 25000 30000

Ti
m

e

Nº of object instances managed

Eloquera

DB4O

NHibernate

EntityFramework4

CazDAL

Figure 6.7: Benchmark Tests: Fetching and updating multiple objects with a variable
database size

Note that NHibernate (df) is slow due to the same problem discussed in section 6.1.

CazDAL (df) is fast because it does not load associations and manages SQL rather than

LINQ. DB4O is also fast because it only updates the modified field.

With deletes, all 5 algorithms execute the same LINQ query as in the updates. The

results are provided in Figure 6.8. Here, both NHibernate (df) and EntityFramework4

(df) have to load the associations Child and Parent, clear their references to the object

about to be deleted and only then delete the object. Because Eloquera (df) and DB4O (df)

manage object pointers rather than primary and foreign keys, each iteration only needs to

delete the object. CazDAL only deletes the fetched rows without loading and updating

185

6.5. Joins

(referencing) the associated rows. Other delete tests on CazDAL were conducted with

eager associations and updating the associated rows and the result was only 17% slower.

00:00:00,0

00:01:26,4

00:02:52,8

00:04:19,2

00:05:45,6

00:07:12,0

00:08:38,4

00:10:04,8

0 5000 10000 15000 20000 25000 30000

Ti
m

e

Nº of object instances managed

Eloquera

DB4O

NHibernate

EntityFramework4

CazDAL

Figure 6.8: Benchmark Tests: Fetching and deleting multiple objects with a variable
database size

Thus, according to these tests, it is apparent that DB4O and Eloquera run updates

and deletes faster than ORM frameworks.

6.5 Joins

Joins were tested with NHibernate and DB4O only because, here, the intention was to

compare ORM frameworks with OODBMSs. Also, because DB4O has similar results

to Eloquera and NHibernate with EF. In here, the loaded object graph was tested

with a variable depth up to 4000 associated objects similar to a linked list. Figure 6.9

demonstrates the performance of the following algorithms:

• DB4O (1): Explicit load with graph depth size N;

• DB4O (df): Default implicit load with graph depth size 5;

• NHibernate (1): Eager load with N SQL Selects;

• NHibernate (2): Eager load with join fetch running N/2 SQL Selects;

• NHibernate (df): Lazy Load.

186

6.6. Conclusions

00:00:00,0

00:00:00,9

00:00:01,7

00:00:02,6

00:00:03,5

00:00:04,3

00:00:05,2

00:00:06,0

0 500 1000 1500 2000 2500 3000 3500 4000

Ti
m

e

Nº of object instances managed

DB4O (1)

DB4O (df)

NHibernate (1)

NHibernate (2)

NHibernate (df)

Figure 6.9: Benchmark Tests: Fetching an object graph with variable join operations

As expected, in DB4O the lazy strategies are constant and the eager loading is faster,

supporting more objects than any of the eager load strategy of NHibernate which do

not load more than 1000 objects. Fast joins is a typical characteristic of OODBMSs as

opposed to ORM frameworks.

6.6 Conclusions

The various tests in here demonstrate that there is no best solution for all cases. NHiber-

nate is a full featured ORM and for that it has the most difficult learning curve of all 5

technologies. It can provide good results if it is well optimized, despite the overly com-

plex multi-layered architecture (ORM and relational database). EF performs similarly

to NHibernate, although less feature rich and easier to learn. CazDAL is fast overall

due to its close-to-relational API, although it does not provide much useful features of

the ORM frameworks or OODBMSs. Even though ODBs still support a very small niche

market, DB4O proves it can overcome RDBMSs in certain aspects like its simplicity and

performance on join operations.

187

6.6. Conclusions

188

Chapter 7

Conclusion

The aim of this dissertation has been to discuss the persistence problem on object oriented

applications and find the best solutions. The main focus lies on the Object Relational

Mapping (ORM) limitations, patterns, technologies and alternatives.

7.1 Developed work

This dissertation was developed in Cachapuz under the project Global Weighting Solu-

tions (GWS). Essentially, the objectives of GWS were focused on finding the optimal per-

sistence layer for CazFramework, mostly providing database interoperability with close-

to-Structured Query Language (SQL) querying. Recall the CazFramework is a generic

solution working on top of legacy databases and its Data Access Layer (DAL) code had

previously been generated with ClassBuilder, a custom ORM tool developed by Cacha-

puz. Overall, this dissertation described various approaches to achieving GWS’ goals,

from enhancing ClassBuilder to adopting a different ORM tool.

Chapter 1 provided an overview of CazFramework, introduced to the ORM problem

and delineated the objectives of this work. In chapter 2 both the object and the relational

paradigms were explained before identifying the object-relational mismatch. Here, some

alternatives such as Object-Oriented Database Management Systems (OODBMSs) were

presented, as well. Additionally, chapter 2 suggested that ORM can be addressed as a

paradigm (based on Kuhn’s book [Kuh96]). Chapter 3 defined the most relevant patterns

and practices that drive ORM implementations. In chapter 4, two popular .NET ORM

frameworks (NHibernate and Entity Framework (EF)) were analysed against requirements

specified by Cachapuz and, with the help of ORM design patterns from the previous

chapter.

Because the analysed ORM frameworks had not provided the expected functionality,

189

7.2. Discussion

the enhancement of ClassBuilder was the following step. That led to the development of

CazDataProvider, the software artefact of this dissertation, which is discussed in chapter

5. Before explaining its architecture and implementation, an analysis on ClassBuilder and

ADO.NET providers proved essential, in chapter 5, to fulfil the objectives. ClassBuilder

was identified as a good alternative to some ORM problems like Dual-Schema and Partial-

Object mostly due to its Relational Domain Model approach. The other sections provided

insight on how CazDataProvider had enabled database interoperability features with dy-

namic querying relying only on the relational schema. Some issues arose, mostly due

to ADO.NET data provider and SQL dialect idiosyncrasies. Also, CazDataProvider was

complemented with LinqToCaz, a Language Integrated Query (LINQ) implementation

for query criteria features.

Chapter 6 presented a set of performance tests run on ORM frameworks (NHiber-

nate and EF) , OODBMSs (DB4O and Eloquera) and CazDAL (ClassBuilder with

CazDataProvider).

7.2 Discussion

Even though ORM technology has been advancing fast in the last few years, the ORM

paradigm might or might not be a good solution depending on a number of factors like the

know-how of the developers and the domain logic complexity. In the case of Cachapuz,

ORM was used but only up to a certain extent like that of ClassBuilder’s Relational

Domain Model.

CazDataProvider is a good solution for CazFramework to provide database interoper-

ability and dynamic query features. Nevertheless, it still needs to support more Relational

Database Management Systems (RDBMSs) and data providers, better LINQ support and

continuous maintenance. Another disadvantage is the effort to produce something that

already exists, i.e. database-agnostic features are already implemented and supported by

other ORM frameworks like NHibernate or EF, even though not in the same way.

From the tested technologies in this dissertation, OODBMSs are a good alternative to

ORM for its simplicity if performance is not an issue. ORM frameworks like NHibernate

tend to be overly complicated towards others like EF, although in some cases it might

compensate the extra effort to learn them. Also, typical ORM frameworks respond well

to complex domain logic if they are allowed to take control over databases. Otherwise,

ClassBuilder and CazDataProvider is a good solution for it produces lesser overhead and

adapts better to legacy databases.

All in all, the content of this dissertation delivers a guide for developers who are on the

190

7.2. Discussion

verge of implementing or adopting an ORM tool and hope to find answers for their doubts

or problems before taking unnecessary risks. Perhaps they can find in ClassBuilder and

CazDataProvider the answers they have been looking for.

191

7.2. Discussion

Appendix

192

Appendix A

Relational Database Mechanics

One essential step to better comprehend the Object Relational Mapping (ORM) patterns,

is to acknowledge how well a Relational Database Management System (RDBMS) per-

forms when submitted to a various range of operations. Also, because an ORM mediates

the process of data retrieval for the application via Structured Query Language (SQL)

statements, it is important to know how to write them in the most optimal way possible.

Throughout the last decades, querying data became more and more complex greatly

based on the growth of data schemas. The continuous evolution of SQL is proof of

the effort to alleviate this problem. However, the whole work of data retrieval in a

RDBMS goes far beyond SQL. The ability of fulfilling such operations in the most fast

and consistent way is often definite to choose one database system over another.

Once the SQL query is compiled, the database optimizer delineates an appropriate

execution plan. During the compilation and optimization, the plan assembles a set of

physical operators in the best possible order so that the result can be delivered efficiently.

Often the optimizer has to make algorithmic decisions such as whether to enforce a hash-

join followed by a sort or a sort-merge join.

Disk access is the primary concern for optimizing database applications. Therefore,

the dominant time cost for the physical operators is measured in disk input/outputs

(I/Os). Other important variables include CPU cost and main memory size available.

The smallest unit of physical or cache storage is a block or page. The database organizes

table rows in blocks, usually 2KB-16KB of size. Generally each block contains from less

than one hundred to a few hundred rows [Tow03].

Databases also rely on caching to avoid unnecessary physical I/Os. Thus the block

buffer cache is a shared memory segment containing recently used blocks, accessible

through logical I/O. That means any user can take advantage of cached blocks placed

there by any other user. This cache organizes the most recently used blocks at the head

193

A.2. Indexes

of the list and the least recently used at the tail. The most recently used blocks are the

fastest, allowing its access to be 30 to 200 times faster than physical I/O [Tow03].

Physical table growth and ageing is one more concern of databases. Whether to have

a continuous growth or purge (delete) rows in a table can greatly impact caching and

physical access.

The primary physical operators of the execution plan only perform access to the tuples

of a relation which are: table-scan and index-scan. A table-scan inspects the tuples of

a relation by single or multi block reads. An index-scan uses an index structure to find

tuples through leaf blocks on B-tree indexes or hash buckets on hash-based indexes. These

concepts are described in detail, below.

A.1 Full table-scans

The full table-scan consists of reading a whole table without an index. Thus, it is common

for most databases to request physical I/Os that read multiple blocks each at a time, rather

than a single block. However, file systems work with much larger block sizes than physical

blocks mostly due to fragmentation issues, which makes database multi-block I/O not so

critical. Also, because a multi-block read is an atomic operation, even if all the blocks

are cached except one, the database still requests physical I/O for all the blocks [Tow03].

Large full table-scans generally put its rows in the tail of cache buffer because they

are not likely to be needed often.

The I/O cost of a full table-scan is linear and proportional to the number of blocks in

use to make the relation persistent.

A.2 Indexes

On the other hand there is Indexed table access. To match exact values or a range of

values requested by a certain query criteria, the database starts at the root block of the

according index tree with the exact value or the value that delineates the beginning of the

range. From there it descends deeper into the tree through branch blocks and leaf blocks

as it converges to the desired value. Once the leaf block that best meets the criteria is

found, the database follows each rowid to the respective table block.

The most common type of index is the B-tree index which is a balanced tree struc-

ture in which a node can have two or more children. It has a natural sort order and is

effective when query criteria contains equality or range conditions. In these conditions,

function-based indexes are not supported, i.e. the index is often disabled if functions

194

A.2. Indexes

are applied to the indexed column rather than the constant. For instance, the condi-

tion UPPER(Last Name) LIKE ’SMITH%’ will not apply the index. Indexes use rowids as

pointers to the actual rows in the table. A rowid is composed of a block address and a

row number [Tow03].

A B-tree index structure has one single root block, followed by branch blocks and leaf

blocks at the bottom. A single leaf block has up to 300 index values. Each index value

is composed by both the value of indexed column and the pointer or rowid. If a B-tree

index is two-deep, it points at 300 to 90,000 rows of a table and its root block points at

up to 300 leaf blocks, without using branch blocks. If the table has less than 300 rows,

then the root block is a leaf block itself. If the table has more than 90,000 rows, the index

B-tree is three-deep or more [Tow03].

Every leaf block has a pointer to the next leaf block sorted by the indexed values.

From here, index range scans read as many as the number of leaf blocks that meet the

query range condition. It is often enough for medium-sized range scans to only touch one

single leaf block given that each holds 300 values.

The problem of inefficiency and ambiguity left by null values greatly affects index

performance. This problem is handled differently among the database vendors. For

instance, Oracle indexes do not contain entries that point at rows having null values for

their indexed columns. So an index on a mostly null column can be very small, even on

a very large table.

The I/O cost of a single lookup in an index B-tree has logarithmic complexity. The

higher the factor of child nodes per node the lesser disk I/O reads performed. CPU cost

will, however increase. For example, a lookup in a binary tree that has 2 sub-ranges on

every branch, costs log2 90, 000 ∼ 16 jumps or I/O reads (plus one I/O read for the actual

row) but only performs one condition check per jump. In a B-tree with 300 sub-ranges

on every branch, it will only make log30090, 000 = 2 jumps but a linear cost of up to 299

condition checks per jump. Branch conditions can be optimized to have a logarithmic

cost, though. In the end, both the algorithms have similar CPU cost, but the B-tree is

better prepared to reduce disk I/O when the structure does not fit entirely in memory. A

range scan takes as much cost as a single lookup to get to the starting row. From there

it requires one I/O read per table row access.

Inserting a large number of new rows can be painful, for each insert forces the index

to rebalance itself. The delete operations provoke empty blocks which are less efficient to

cache. An update is usually the same as an insert of new value and delete of old value.

This is less problematic for quiet tables or when the index is on the primary key column,

which implies the values do not change. When there are many pending changes (inserts,

195

A.3. Indexed access Vs Table-scan

updates or deletes) that can be run at once, it is advised to drop the index, make the

changes and then rebuild it.

Clustered indexes are the same as regular indexes except they physically arrange the

table rows, sorted by the key value and sequentially on disk. Therefore a table can only

have one clustered index. At the bottom of the tree the leaf blocks point at the physical

rows. For that reason, there is no need for rowids which allows reading more rows per

block. Also, the disk overhead spent in range scans to retrieve each physical row, is

avoided in clustered indexes, through optimal caching.

Multi-table clusters can also improve the performance of joins between tables.

A.3 Indexed access Vs Table-scan

Overall it is imperative to draw a comparison of performance on both indexed access and

table-scan, which is provided by the following example. Considering a 40-block table of

typically 3,200 rows at which it is executed a query criteria that defines a value range

only met by 5 rows. If the database performs an index range scan, as it is a small table,

the index B-tree is only two-deep. It is likely that all 5 rowids will be found on the same

leaf block. Although, if the starting value of the range is at the end of one leaf block,

an extra hop will be required to the next leaf block for completing the range. From this

point, the database accesses the table blocks of all 5 rowids found. Once again it is likely

that all 5 rows are close together, and thus a single logical I/O read to a table block is

enough to cache all 5 rows at once. However that depends on the clustering factor which

determines how well are the rows ordered in conformity with the index [Tow03].

In the same example, a full table-scan performs 5 multi-block I/O reads of 64KB each

across all the 3,200 rows, assuming each block has 8KB and about 10 rows. At the same

time, the CPU is responsible for checking and discarding all 3,200 rows, throughout 40

blocks, but the 5 rows that match the query criteria.

For the indexed access, at the worst clustering factor, caching is useless. Thus it

requires 7 physical I/O reads, 2 for finding the leaf block in the B-tree and 5 for accessing

individual table blocks. For small tables and small indexes such as in this case, caching

is likely to be effective. Also, with the full table-scan, 5 logical I/O reads are alone more

expensive than the 7 logical I/O reads of the index scan [Tow03]. Apart from that, there

is a CPU load in the full table-scan that covers all 3200 rows and is avoided with the index

plan. In a real test this example would be fast enough to let the difference between both

plans pass unnoticed. Larger tables would, however, be more expensive in full table-scans

due to its linear complexity as opposed to logarithmic from index tree access.

196

A.4. Joins

It is not always obvious whether indexed access performs better than full table-scan.

Moreover, the database optimizer does not always make the right decision. Thus it is

estimated that if the result hands more than 20% of the rows, the full table-scan out-

performs the indexed access and if less than 0.5% otherwise. If between 0.5% and 20%

rows are returned it will depend on the clustering factor and how well the cache performs

[Tow03]. This characteristic of a single condition that identifies the percentage of filtered

rows from the total, is called selectivity.

When the query criteria holds two conditions it is possible to achieve the same result

with different costs through different strategies such as one multicolumn index, two inde-

pendent indexes or one single index. However a more complex solution is often not worth

the effort.

A.4 Joins

The most interesting problems of optimization occur on multi-table queries. The high

variety of SQL join operations and algorithms confirms that. Typically a join takes two

input relations and outputs a single relation as a result of the association of the other

two. Among the least valuable is the Cartesian join despite it being often misused through

deceiving SQL syntax.

The most used are the inner joins and the outer joins. The generic algorithm for these

two joins consist of primarily scanning all the rows of the driving table. Also a search

is performed during or after the previous step, in order to find all the rows in the other

table that match the join condition with the rows in the driving table. Finally it arranges

a result with the joined rows. The difference between an inner join and an outer join is

that the latter returns all the rows in the driving table, even those that do not meet the

join condition with any row in the other table.

Though there are some variations among the database vendors regarding join imple-

mentations, the execution plan generally always ends up choosing one of the three join

algorithms: nested-loop join, hash-join or sort-merge join. The book ”Database Systems

The Complete Book” ([UGMW01]) was essential to fulfil the research on these three

algorithms.

A.4.1 Nested-loop join

The earliest join algorithm remaining from the primordials of relational databases is called

nested-loop join. Its basic implementation defines an outer loop that iterates over every

197

A.4. Joins

tuple in the driving table. Within this outer loop, at least one nested loop iterates through

all the tuples of the other table while verifying the join condition and filtering the resulting

rows. This is called tuple-based nested-loop join and it covers both the relations tuple

by tuple, careless of block buffering [UGMW01]. Consider the following example focusing

on the cost of performing a join operation between the relations R (driving table) and S

(other table). R has 3,000 rows throughout 10 blocks and S has 6,000 rows throughout 20

blocks which makes a rate of 300 rows per block.

Without caching, the tuple-based algorithm makes Rows(R) × Rows(S) = 3, 000 ×
6, 000 = 18, 000, 000 I/Os. With block buffering, however, it makes Blocks(R)+Rows(R)×
Blocks(S) = 10 + 3, 000× 20 = 60, 010 logical I/Os, which would be more acceptable. In

rare perfect caching scenarios it would only make Blocks(R) + Blocks(S) = 30 physical

I/Os.

The tuple-based algorithm is not used in RDBMS for it has been fairly optimized and

thus giving place to the block-based nested-loop join. The block-based algorithm reads

each relation block by block while using a memory buffer. This buffer has the size of M

blocks and only stores tuples from smallest relation in the outer loop. Thus, the outer

loop iterates on the relation R,
Blocks(R)

M
times while performing the same amount of

physical I/Os. The inner loop iterates on every tuple of the relation S reading block by

block. Within this inner loop the memory buffer, containing M blocks of relation R, is

iterated to finally match the join condition with current tuple of S. In some cases (e.g.

hash join), the buffer is organized into a searching structure such as a hash table, where

the buffer iteration is avoided [UGMW01].

Hence, considering the memory buffer stores up to 5 blocks, the block-based nested-

loop join performs Blocks(R)+
Blocks(R)

M
×Blocks(S) = 10+

10

5
×20 = 50 logical I/Os.

If the blocks of R could fit entirely in memory buffer (M = Blocks(R)), this algorithm

would perform 30 logical I/Os.

Withal, a nested-loop join is a simple and robust algorithm for it can deliver huge

result sets even for huge arguments without ever running out of memory. When the main

memory is not enough to fit the join arguments or input relations, two-pass algorithms

are generally more efficient than nested-loop joins. They are either sort-based, hash-based

or index-based and require disk as an intermediary memory [UGMW01].

A.4.2 Hash join

The one-pass hash join operates in similar steps with block-based nested-loop of memory

buffer the size of the smallest relation and using a searching structure to avoid iterating

198

A.4. Joins

on the buffer. For that matter, hash-based algorithms use a hash function to spread the

argument tuples into single buckets in a hash table structure.

In this algorithm, the optimizer begins by comparing both relations and estimating

which is expected to return less relevant tuples to the joined rowset. Then it takes this

smaller rowset to calculate a hash table based on its join key. This means running over

every single row, perform the hash function for each and insert it into the correspondent

hash bucket.

The ideal hash algorithm prevents collisions, allocating each row to a different bucket

so that the lookup cost is constant. For that matter the optimizer calculates the best hash

function algorithm possible to perform the operation. The simplest hash join expects the

smallest relation to engender a hash table that can fit entirely into memory. Although, if

otherwise, a two-pass algorithm is the resorting solution to write that structure into disk

and then retrieve it by chunks.

Once the hash table is built, the second relation is retrieved from disk by blocks. Then,

for each row on this second relation, a hash lookup is performed on its join key. The hash

code leads to a hash bucket in the hash table, containing the row of the first relation with

same join key. Although in case of collisions the process is not that simple. In the end

the joined rows are retrieved and the rows with no match on both relations are discarded

in an inner join scenario.

If the hash structure fits in memory the I/O cost of this algorithm is Blocks(R) +

Blocks(S). Otherwise, there is an additional cost, of reading all the blocks of R and

persist the same blocks within a hash structure, before performing the actual join. Thus

the two-pass algorithm takes 3×Blocks(R)+Blocks(S) physical I/Os . The performance

of this algorithm also relies on the hash lookup cost and concerns the I/O operations spent

on unnecessary rows [UGMW01].

In the end, the variables that affect the use and efficiency of hash-joins are:

• Randomness. Since the returning rows of a hash join are expected to be in random

order, this algorithm should be avoided if sorting is needed.

• Selectivity. When point queries are more relevant than range queries, the hash-

based algorithms are preferred over index-based B-tree algorithms. In such cases,

joins are favoured for they can create many point queries.

• Size of smallest relation. Hash-based algorithms such as hash-joins, require the

smallest argument to be small so that they can avoid the additional disk I/Os of

the two-pass. In these cases hash-joins are strictly more efficient than nested-loop

joins.

199

A.4. Joins

A.4.3 Sort-merge join

The sort-merge join merges two previously sorted input relations and outputs the tuples

that match the join condition.

A sort-based algorithm can be as simple as an in-memory sort, although most cases

require a two-pass. A two-pass sort consists of slicing the argument into memory-sized

sub-lists, i.e. it reads M blocks of a relation into the available buffers on every iteration and

until all blocks are read. Each time, the sub-list inside the buffer, is sorted in-memory with

an efficient one-pass algorithm. An in-memory sort can have slightly more than a linear

cost, though it is not expected to exceed the I/O block reads. After the in-memory sort,

the sub-list is written into M blocks of the disk. This step is necessary because relations

are often too large to fit entirely in memory. Once every sorted sub-list is persisted, they

are all brought up together to as many buffers, except only loading one block for each

sub-list. Thus, the merging process can be done into a single sorted list, in a single step.

The final step of the two-pass sort-merge join occurs the same ways as the two-pass

sort-based algorithm, except it has two already sorted inputs, thus enabling reading more

blocks of both into memory.

The algorithm of the merge step for a sort-merge join between relations R and S is

given by a loop which ends when the end of relation S is reached. Additionally the buffers

have to be previously set to iterate over the relation R and S. Inside the loop, if the current

iterated tuples of R and S do match the join condition, they will be sent to the output. If

the R tuple join key is smaller or equal to the S tuple join key, then the R iterator advances

to the next tuple. Otherwise, the S iterator advances. Note that in case of multiple S

tuple matches with current R tuple, they all must reside in-memory so that they can be

checked with other R tuples.

Generally, the sort-merge join performs efficiently because the second input or relation

S has a join key which is a primary key or at least unique. However, at the extreme there

is only one join key value throughout the operation and every tuple of relation R joins with

every tuple of S. Since every tuple of S has the same key, not only sorting becomes useless

but also all the S tuples must be kept in-memory. This is normally not possible because

memory buffers do not often cover medium sized tables, which leaves the nested-loop join

approach to be the obvious choice for the optimizer. Note that this rare scenario enforces

the so-called product or Cartesian join as it outputs Rows(R) ×Rows(S) rows.

Furthermore, this sorting and merging algorithm is most used in duplicate elimination

or grouping. For duplicate elimination, the merge takes two sorted sub-lists generally into

two buffers holding the current block of each. The following step is to identify all the

200

A.4. Joins

tuples on both relations to have the same sort key, discarding all others.

The cost of a sort-merge join is of 3×(Blocks(R)+Blocks(S)) physical I/O operations

in which the first 2 × (Blocks(R) + Blocks(S)) is for sorting only [UGMW01].

In the end, sorted-based algorithms should be favourable when sorting or duplicate

elimination is required. Otherwise, for instance, a sort-merge join is dependent on both

sizes of the arguments to fit in main memory in order to avoid two-pass . The hash-based

algorithms only rely on the size of the smallest relation, thus outperforming the sort-based

when sorting is not required [UGMW01]. Regarding two-pass algorithms, data variability

can greatly effect the performance of a sorting algorithm.

A.4.4 Index-based join

Index-based algorithms are very efficient for conditions of equality and range when there

is low selectivity. Index-based joins are similar to hash joins except they already have a

pre created structure on disk, plus the advantage of sorting by the indexed columns. This

join is efficient when one argument is very small and the other has an index with high

variability of values.

If both the arguments have a sorted index on the join key, they can be served as inputs

to a sort-merge-join. Towards relieving the sorting cost, with B-tree indexes for the join

key on both relations, it is possible to perform a sort-merge join that avoids the first steps

of sorting each relation separately. Additionally, only the index structure of the driving

table or relation R is fully iterated in memory, while the tuples of S that find no match

on the join key are never loaded.

Eventually, the index-based join performs less iterations than nested-loop or hash join

and as a consequence it avoids reading unnecessary rows. While the other two algorithms

perform Rows(R) × Rows(S) iterations for join condition checks, the index-based join

only iterates Rows(R) times despite each iteration costing more.

201

A.4. Joins

202

Appendix B

Testing EF querying: Examples of

code and SQL generated

This appendix provides VB.NET code for using Entity Framework (EF) querying API

and the SQL generated by such code. The many examples in here are discussed in section

4.1.5.

B.1 Basic querying

This section presents 9 EF querying examples discussed in 4.1.5.2 regarding their efficiency

and quality of SQL generated.

1. EQL 1 example

Code:

cazEntitiesContext.CreateQuery(Of User)("SELECT VALUE u

FROM cazEntities.User AS u WHERE u.Id = 1").First

SQL generated:

SELECT ‘Extent1‘.‘Id‘, ‘Extent1‘.‘Name‘

FROM ‘User‘ AS ‘Extent1‘

WHERE ‘Extent1‘.‘Id‘ = 1 LIMIT 1

2. EQL 2 example

This example pre-creates the query before executing it n times.

203

B.1. Basic querying

Code:

Dim q As System.Data.Objects.ObjectQuery(Of user) =

cazEntitiesContext.CreateQuery(Of user)("SELECT VALUE u FROM

cazEntities.user AS u WHERE u.Id = 1") ’exectuted 1 time

q.Execute(Objects.MergeOption.NoTracking).First() ’exectuted 10^n times

SQL generated:

SELECT ‘Extent1‘.‘Id‘, ‘Extent1‘.‘Name‘

FROM ‘User‘ AS ‘Extent1‘

WHERE ‘Extent1‘.‘Id‘ = 1

3. Linq-to-Entities 1 example

This example uses dynamic Linq-to-Entities.

Code:

cazEntitiesContext.user.Where("it.Id = 1").First()

SQL generated:

SELECT ‘Extent1‘.‘Id‘, ‘Extent1‘.‘Name‘

FROM ‘User‘ AS ‘Extent1‘

WHERE ‘Extent1‘.‘Id‘ = 1 LIMIT 1

4. EF API 1 example

Code:

cazEntitiesContext.GetObjectByKey(New EntityKey(

"cazEntities.User", "Id", 1))

SQL generated:

SELECT ‘Extent1‘.‘Id‘, ‘Extent1‘.‘Name‘

FROM ‘User‘ AS ‘Extent1‘

WHERE ‘Extent1‘.‘Id‘ = 1

5. EF API 2 example

Code:

cazEntitiesContext.GetObjectByKey(New EntityKey(

"cazEntities.User", "Id", i)) ’so that i goes from 1 to 10^n

204

B.1. Basic querying

SQL generated:

SELECT ‘Extent1‘.‘Id‘, ‘Extent1‘.‘Name‘

FROM ‘User‘ AS ‘Extent1‘

WHERE ‘Extent1‘.‘Id‘ = i

6. Linq-to-Entities 2 example

This examples takes advantage of lambda expressions.

Code:

cazEntitiesContext.User.Where(Function(c) c.Id = 1).First()

SQL generated:

SELECT ‘Extent1‘.‘Id‘, ‘Extent1‘.‘Name‘

FROM ‘User‘ AS ‘Extent1‘

WHERE ‘Extent1‘.‘Id‘ = 1 LIMIT 1

7. Native-SQL 1 example

Code:

Dim conn As New MySqlConnection

conn.ConnectionString =

"server=localhost;User Id=root;database=caz"

’exectuted 1 time

conn.Open()

Dim sql = "SELECT ‘Extent1‘.‘Id‘, ‘Extent1‘.‘Name‘ " & _

"FROM ‘User‘ AS ‘Extent1‘ WHERE ‘Extent1‘.‘Id‘ = 1;"

Dim cmd As MySqlCommand = New MySqlCommand(sql, conn)

conn.Close()

’exectuted 10^n times

SQL generated:

SELECT ‘Extent1‘.‘Id‘, ‘Extent1‘.‘Name‘

FROM ‘User‘ AS ‘Extent1‘

WHERE ‘Extent1‘.‘Id‘ = 1

8. Native-SQL 2 example

205

B.1. Basic querying

Code:

Dim conn As New MySqlConnection

conn.ConnectionString =

"server=localhost;User Id=root;database=caz"

conn.Open()

’exectuted 1 time

Dim sql = "SELECT ‘Extent1‘.‘Id‘, ‘Extent1‘.‘Name‘ " & _

"FROM ‘User‘ AS ‘Extent1‘ WHERE ‘Extent1‘.‘Id‘ = 1;"

Dim cmd As MySqlCommand = New MySqlCommand(sql, conn)

’exectuted 10^n times

conn.Close()

’exectuted 1 time

SQL generated:

SELECT ‘Extent1‘.‘Id‘, ‘Extent1‘.‘Name‘

FROM ‘User‘ AS ‘Extent1‘

WHERE ‘Extent1‘.‘Id‘ = 1

9. Native-SQL 3 example

Code:

Dim conn As New MySqlConnection

conn.ConnectionString =

"server=localhost;User Id=root;database=caz"

conn.Open()

Dim sql = "SELECT ‘Extent1‘.‘Id‘, ‘Extent1‘.‘Name‘ " & _

"FROM ‘User‘ AS ‘Extent1‘ WHERE ‘Extent1‘.‘Id‘ = 1;"

Dim cmd As MySqlCommand = New MySqlCommand(sql, conn)

cmd.Prepare()

’exectuted 1 time

cmd.Parameters.AddWithValue("id", i)

Dim m = cmd.ExecuteReader()

m.Close()

’exectuted 10^n times

conn.Close()

’exectuted 1 time

206

B.2. Eager and Deferred Loading

SQL generated:

SELECT ‘Extent1‘.‘Id‘, ‘Extent1‘.‘Name‘

FROM ‘User‘ AS ‘Extent1‘

WHERE ‘Extent1‘.‘Id‘ = i

B.2 Eager and Deferred Loading

This section presents 3 querying examples of eager loading and 2 of deferred loading

strategies in EF. These examples are discussed in 4.1.5.3 regarding its performance and

SQL generated code.

Eager loading

1. EQL 1 Code:

cazEntitiesContext.CreateQuery(Of User)("SELECT VALUE u " & _

"FROM cazEntities.User AS u WHERE u.Id = " & 1).Include("Profile").First

2. Linq-to-Entities 1 Code:

cazEntitiesContext.User.Where("it.Id = " & 1) _

.Include("Profile") _

.First()

3. Linq-to-Entities 2 Code:

cazEntitiesContext.User.Include("Profile") _

.Where(Function(c) c.Id = 1) _

.First()

SQL generated:

SELECT ‘Project2‘.‘Id‘,‘Project2‘.‘Name‘, ‘Project2‘.‘C1‘,

‘Project2‘.‘C3‘ AS ‘C2‘, ‘Project2‘.‘C2‘ AS ‘C3‘,

‘Project2‘.‘Field1‘, ‘Project2‘.‘Field2‘, ‘Project2‘.‘Desc‘,

‘Project2‘.‘Id1‘, ‘Project2‘.‘UserId‘

FROM (

SELECT ‘Limit1‘.‘Id‘, ‘Limit1‘.‘Name‘, ‘Limit1‘.‘C1‘,

‘Extent2‘.‘Field1‘, ‘Extent2‘.‘Field2‘, ‘Extent2‘.‘Desc‘,

‘Extent2‘.‘Id‘ AS ‘Id1‘, ‘Extent2‘.‘UserId‘,

CASE WHEN (‘Extent2‘.‘Id‘ IS NULL) THEN (NULL)

207

B.2. Eager and Deferred Loading

ELSE (1) END AS ‘C2‘,

CASE WHEN (‘Extent2‘.‘Id‘ IS NULL) THEN (NULL)

ELSE (1) END AS ‘C3‘

FROM (

SELECT ‘Extent1‘.‘Id‘, ‘Extent1‘.‘Name‘, 1 AS ‘C1‘

FROM ‘User‘ AS ‘Extent1‘

WHERE ‘Extent1‘.‘Id‘ = 1 LIMIT 1) AS ‘Limit1‘

LEFT OUTER JOIN ‘Profile‘ AS ‘Extent2‘

ON ‘Limit1‘.‘Id‘ = ‘Extent2‘.‘UserId‘) AS ‘Project2‘

ORDER BY ‘Id‘ ASC, ‘C3‘ ASC

Deferred loading

4. EF API with deferred load Code:

Dim u As User

u = cazEntitiesContext.GetObjectByKey(_

New EntityKey("cazEntities.User", "Id", 1))

u.Profile.Load()

5. Linq-to-Entities 1 with deferred load Code:

Dim u As User

u = cazEntitiesContext.User.Where("it.Id = " & 1).First()

u.Profile.Load()

SQL generated:

SELECT ‘Extent1‘.‘Id‘, ‘Extent1‘.‘Name‘

FROM ‘User‘ AS ‘Extent1‘

WHERE ‘Extent1‘.‘Id‘ = 1 LIMIT 1

--exectuted 1 time

--’LIMIT 1’ only executed in Linq-to-Entities 1 example

SELECT 1 AS ‘C1‘, ‘Extent1‘.‘Field1‘, ‘Extent1‘.‘Field2‘,

‘Extent1‘.‘Desc‘, ‘Extent1‘.‘Id‘, ‘Extent1‘.‘UserId‘

FROM ‘Profile‘ AS ‘Extent1‘

WHERE (‘Extent1‘.‘UserId‘ IS NOT NULL) AND (‘Extent1‘.‘UserId‘ = 1)

--exectuted 10^n times

208

Bibliography

[AMC01] D. Alur, D. Malks, and J. Crupi. Core J2EE Patterns: Best Practices and

Design Strategies. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2001.

[Bec97] K Beck. Smalltalk: best practice patterns. Prentice-Hall, Inc., Upper Saddle

River, NJ, USA, 1997.

[BK06] C. Bauer and G. King. Java Persistence with Hibernate. Manning Publica-

tions Co., Greenwich, CT, USA, 2006.

[BW99] P. Bishop and N. Warren. Java in practice: Design styles and idioms for

effective java, 1999.

[Cat11] R.G.G. Cattell. Scalable sql and nosql data stores. SIGMOD Rec., 39(4):12–

27, May 2011.

[CB00] R.G.G. Cattell and D.K. Barry. The object data standard: ODMG 3.0. Mor-

gan Kaufmann Pub, 2000.

[Cod70] E. F. Codd. A relational model of data for large shared data banks. Commun.

ACM, 13:377–387, June 1970.

[Dat04] C. J. Date. An Introduction to Database Systems. Pearson Addison-Wesley,

Boston, MA, 8. edition, 2004.

[Dat07] C.J. Date. Logic and Databases: The Roots of Relational Theory. Trafford

on Demand Pub, 2007.

[dpb08] dpblogs. Sampleedmxcodegenerator sources @ONLINE. http://blogs.

msdn.com/b/adonet/archive/2008/01/24/sampleedmxcodegenerator-

sources.aspx, January 2008.

[Fow02] M. Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA, 2002.

209

http://blogs.msdn.com/b/adonet/archive/2008/01/24/sampleedmxcodegenerator-sources.aspx
http://blogs.msdn.com/b/adonet/archive/2008/01/24/sampleedmxcodegenerator-sources.aspx
http://blogs.msdn.com/b/adonet/archive/2008/01/24/sampleedmxcodegenerator-sources.aspx

BIBLIOGRAPHY BIBLIOGRAPHY

[Fus97] M.L. Fussell. Foundations of object relational mapping. White Paper, 1997.

[GHJV95] E. Gamma, R. Helm, R. E. Johnson, and J. Vlissides. Design Patterns:

Elements of Reusable Object-Oriented Software. Addison-Wesley, Reading,

MA, 1995.

[GL02] S. Gilbert and N. Lynch. Brewer’s conjecture and the feasibility of consistent,

available, partition-tolerant web services. SIGACT News, 33:51–59, June

2002.

[How04] R. Howard. Provider model design pattern and specification, part

1 @ONLINE. http://msdn.microsoft.com/en-us/library/ms972319.

aspx, March 2004.

[KBA+12] G. King, C. Bauer, M.R. Andersen, E. Bernard, S. Ebersole, and H. Fer-

entschik. Hibernate reference documentation v3.6.10. 2012.

[KBHK09] P.H. Kuaté, C. Bauer, T. Harris, and G. King. NHibernate in action. Man-

ning Pubs Co Series. Manning, 2009.

[Kim90] W. Kim. Introduction to object-oriented databases. 1990.

[Kuh96] T.S. Kuhn. The structure of scientific revolutions. University of Chicago

press, 1996.

[Ler09] J. Lerman. Programming Entity Framework. O’Reilly Media, Inc., 1st edi-

tion, 2009.

[Mal05] S. Malik. Pro ADO.NET 2.0. Apresspod Series. Apress, 2005.

[Mar03] R.C. Martin. Agile software development: principles, patterns, and practices.

Alan Apt series. Prentice Hall, 2003.

[MH03] M. MacDonald and B. Hamilton. ADO.NET in a Nutshell. O’Reilly Media,

Inc., 2003.

[Nay08] K. Nayyeri. How to write a provider model @ONLINE.

http://dotnetslackers.com/articles/designpatterns/

HowToWriteAProviderModel.aspx, January 2008.

[New06] T. Neward. The vietnam of computer science. Blog post, The Blog Ride, Ted

Neward’s Technical Blog (June 2006), 2006.

210

http://msdn.microsoft.com/en-us/library/ms972319.aspx
http://msdn.microsoft.com/en-us/library/ms972319.aspx
http://dotnetslackers.com/articles/designpatterns/HowToWriteAProviderModel.aspx
http://dotnetslackers.com/articles/designpatterns/HowToWriteAProviderModel.aspx

BIBLIOGRAPHY BIBLIOGRAPHY

[Nur05] P. Nurani. Object relational mapping. 2005 Georgia Oracle Users Conference,

2005.

[SSRB00] D. Schmidt, M. Stal, H. Rohnert, and F. Buschmann. Pattern-Oriented

Software Architecture, Volume 2: Patterns for Concurrent and Networked

Objects. Wiley, 2000.

[Sta11] NHibernate Staff. Nhibernate reference documentation. In http: //

nhforge. org/ doc/ nh/ en/ index. html . nforge, 2011.

[Sto05] M. Stonebraker. One size fits all: An idea whose time has come and gone.

In Proceedings of the International Conference on Data Engineering (ICDE,

pages 2–11, 2005.

[Tow03] D. Tow. SQL tuning - generating optimal execution plans: covers Oracle,

DB2 and SQL server. O’Reilly, 2003.

[UGMW01] J. D. Ullman, H. Garcia-Molina, and J. Widom. Database Systems: The

Complete Book. Prentice Hall PTR, Upper Saddle River, NJ, USA, 1st edi-

tion, 2001.

[VZ10] P. Van Zyl. Performance investigation into selected object persistence stores,

2010.

211

http://nhforge.org/doc/nh/en/index.html
http://nhforge.org/doc/nh/en/index.html

BIBLIOGRAPHY BIBLIOGRAPHY

212

Glossary

.NET The Microsoft platform .NET. i, iii, xii, 2, 5, 7, 29, 41, 46, 49, 60, 62, 72, 74, 84,

85, 89, 90, 103–105, 107, 113, 135, 137, 147–149, 151, 165, 173, 174, 179, 189

Global Weighting Solutions Global Weighting Solutions is a project aiming to con-

stitute an unified software development approach for all the enterprises in Europe

that belong to Bilanciai Group. 220

C++ C++ programming language is an enhancement of C language. 10

C# C# object-oriented programming language for .NET. 8, 10, 28, 38, 85, 94, 96, 97

3-Tier Three Tier Architecture (Presentation, Business and Data). 56

Abstract Factory GoF creational pattern. 113, 146, 150, 155, 176

Active Record PoEAA data source architectural pattern. xi, 43, 54, 62–65, 78, 81

Adapter GoF structural pattern. 44, 92

ASP.NET Microsoft’s .NET Web application framework. 50

Association Table Mapping PoEAA object-relational structural mapping pattern. 27,

65, 118

C C programming language. 10, 11

Cachapuz Cachapuz Weighting Solutions (based in Braga, Portugal). i, iii, v, 2, 3, 7,

89–91, 102, 132, 133, 135, 136, 144–146, 153, 163, 176, 189, 190

CazDataProvider DAL abstraction layer proposed in this dissertation, to be used in

CazFramework. i, iii, xiii, 5, 6, 88, 135, 136, 147, 149, 151, 155, 156, 158, 161, 163,

165–171, 173, 175–177, 179, 190, 191

213

Glossary Glossary

CazFramework The solutions framework built and maintained in Cachapuz and in-

serted in Project GWS. i, iii, 2, 3, 5, 8, 102, 135–137, 145–147, 149, 151, 153, 155,

156, 163, 165, 166, 177, 189, 190

ClassBuilder It is an ORM tool maintained by Cachapuz. xii, 3, 5–8, 88–90, 134–147,

151, 155, 156, 166, 176, 177, 179, 189–191

Data Mapper PoEAA data source architectural pattern. xi, 54, 55, 57, 62, 64–68, 70,

71, 73–76, 78, 80, 82, 85, 86, 88, 91, 92, 105, 106, 137–140, 143, 144, 176

DataAdapter Class from ADO.NET API. 50

DataReader Class from ADO.NET API. 46, 52, 61, 133, 147

DataRow Class from ADO.NET API. 50, 52

DataSet Class from ADO.NET API. xi, 47–53, 56, 60–62, 74, 86, 88, 90, 137, 147

DataTable Class from ADO.NET API. 48–50, 52, 147

Decorator GoF structural pattern. xii, 79, 113, 159–161, 176

Dependent Mapping PoEAA object-relational structural mapping pattern. 27, 65, 75

Domain Model PoEAA domain logic pattern. i, iii, xi, 29, 44, 47, 54–62, 64–69, 74, 76,

81, 82, 84, 86, 88, 90, 105, 106, 110, 115, 126, 137

dotConnect Database connectivity solution in ADO.NET supporting integration with

some relevant databases. 91, 96

Dual-Schema ORM problem described by Neward. 27, 41, 58, 64, 65, 90, 133, 146, 176,

190

Entity Bean J2EE server side component EJB which represents a persistent data object.

56, 57

EntityManager JPA class that implements the Entity Manager pattern. 29

Explicit Initialize OO pattern [Bec97] implementing an API, explicitly called by the

client, to fill the properties or associations of an object after it has been first created.

77, 100, 140, 145

Facade GoF structural pattern. xii, 44, 55, 61, 73, 152, 153

214

Glossary Glossary

Factory Method GoF creational pattern. 44, 47, 67, 71, 72, 78, 80, 96, 150, 151, 153,

154, 156, 158, 159, 161, 166, 168, 176

Foreign Key Mapping PoEAA object-relational structural mapping pattern. 27, 63,

65

Gateway PoEAA base pattern. 44, 46, 61

Ghost An object state used in Lazy Load (PoEAA). 32, 77, 80, 81, 109, 110

Hibernate ORM framework for Java. 1, 4, 16, 17, 28, 30, 31, 55, 57, 73, 75, 84–86, 104,

105, 108

Identity Field PoEAA object-relational structural mapping pattern. 29, 63

Identity Map PoEAA object-relational behavioural pattern. 33, 55, 65, 67, 69–71, 73,

75, 76, 81, 88, 90–92, 105, 106, 108, 119, 136, 141, 146

Interpreter GoF behavioural pattern. xiii, 85, 163, 164, 173–176

Java The Java software platform from Sun Microsystems. 8–10, 28, 29, 35, 38, 41, 46,

52, 61, 62, 72, 84, 85, 104, 179

Layer Supertype PoEAA base pattern. 67, 70, 92

Lazy Initialization OO pattern [Bec97] for delaying the creation of an object instance

to the time it is actually accessed. xii, 32, 51, 52, 77, 78, 81, 86, 87, 153

Lazy Load PoEAA object-relational behavioural pattern. xii, 27, 32, 33, 43, 55–57, 59,

66, 75–82, 88, 91, 92, 95, 96, 100, 101, 105, 106, 108, 132, 133, 136, 138, 145, 186

Linq-to-Entities LINQ implementation of EF querying. 91, 92, 97–103, 133, 204

Linq-to-NHibernate LINQ implementation of NHibernate querying. 105, 106, 119,

124, 126

Linq-to-SQL A .NET ORM framework, now obsolete. 85, 90, 98

LinqToCaz LINQ implementation for CazDataProvider. xiii, 173–177, 190

Mapper PoEAA base pattern. 64

215

Glossary Glossary

Metadata Mapping PoEAA object-relational metadata mapping pattern. xii, 59, 66,

70, 75, 82–87, 90, 91, 105, 106, 108–112, 115–117, 126, 130, 132, 136, 139

Microsoft Microsoft Corporation. 90, 150

Money PoEAA base pattern. 44, 46

MySQL Oracle’s open source relational database system. xii, 34, 35, 37, 96–99, 101,

115, 131, 135, 146, 147, 155, 158, 161, 162, 164, 165, 170–172

N-Tier Multi Tier Architecture. 32, 36, 40, 43, 54, 64, 90–92, 94, 108, 113, 115, 137,

145, 155

NHibernate The .NET Hibernate port. i, iii, xii, xiii, 1, 5, 6, 31, 60, 73, 74, 90, 101,

104–120, 123–126, 128, 130–133, 136, 138, 144, 146, 163, 164, 176, 179–183, 186,

187, 189, 190

ObjectContext Entity Framework class that implements Unit of Work pattern. 74,

91–94, 96, 97, 99, 103, 106

Observer GoF behavioural pattern. 73

Optimistic Offline Lock PoEAA offline concurrency pattern. 73, 93, 108, 132, 140,

143

Oracle Oracle Database Server. 7, 9, 11, 15, 35, 146, 147, 159, 177, 195

Partial-Object ORM problem described by Neward. 32, 41, 54, 67, 76, 81, 133, 138,

176, 190

Perl Perl programming language. 11

Pessimistic Offline Lock PoEAA offline concurrency pattern. 73

Plugin PoEAA base pattern. 44

Proxy GoF structural pattern. 78, 79, 92

Query Object PoEAA object-relational metadata mapping pattern. xii, 43, 55, 59, 75,

84–86, 91, 92, 97, 105, 106, 121, 132, 136, 162–164, 166, 169, 170, 173, 176

Record Set PoEAA base pattern. 44, 47, 48, 50, 62, 137

216

Glossary Glossary

Relational Domain Model Domain logic pattern discovered in ClassBuilder. xii, 136–

139, 145, 176, 190

Repository PoEAA object-relational metadata mapping pattern. xii, 75, 85–87, 91, 92,

96, 99, 103, 106, 107, 116, 173

ResultSet Class from Java API. 46, 52, 61–63, 65

Ripple Loading Lazy Load problem described in Core J2EE patterns. 81

Sculpture .NET open source Model-Driven Development code generation framework.

xii, 115–118, 130

Session Hibernate and NHibernate Session class that implements Unit of Work pattern.

29, 55, 56, 74, 105–108, 112, 113, 116, 117, 119, 123, 181

Session Bean J2EE server side component EJB suitable for implementing tasks and

keeping conversations with clients. 56

Silverlight Microsoft Silverlight application framework (similar to WPF) for running

Rich Internet Applications essentially on the browser (like Adobe Flash). 95

SQL Server Microsoft SQL Server is a relational database system. 2, 9, 11, 96, 103,

135, 136, 145–147, 149, 161, 163–166, 170–173, 176, 179, 180

SQLite Open source embedded relational database system. 135, 146, 165, 171, 172, 176

SQLJ Embedded SQL in Java. 41

Strategy GoF behavioural pattern. 80, 150–152, 156, 176

Table Data Gateway PoEAA data source architectural pattern. xi, 44–50, 52, 61, 62,

151

Table Module PoEAA domain logic pattern. xi, 44, 47–52, 54, 60–62, 87, 137

Table-per-class Object-relational structural mapping pattern introduced by Neward

[New06]. xi, 18, 19, 21–23, 65, 75, 91, 105

Table-per-class-family Object-relational structural mapping pattern introduced by Neward

[New06]. xi, 18, 22, 23, 29, 65, 75, 78, 91, 105, 110

217

Glossary Glossary

Table-per-concrete-class Object-relational structural mapping pattern introduced by

Neward [New06]. xi, 18, 21–23, 65, 75, 91, 105

Template Method GoF behavioural pattern. xii, 94, 159–162, 164, 166, 168–170, 176

TopLink ORM framework for Java. 73

Transaction Script PoEAA domain logic pattern. xi, 44–46, 60–62, 87

Unit of Work PoEAA object-relational behavioural pattern. xi, xii, 40, 43, 47, 55, 57,

59, 66, 67, 69–74, 76, 78, 82, 88, 90–93, 95, 96, 99, 104–107, 132, 133, 136–138, 141,

146, 176, 181

Value Holder A strategy for implementing Lazy Load (PoEAA). 77, 79, 80

Value Object PoEAA base pattern. 44

Virtual Proxy A Proxy GoF structural pattern for loading expensive objects on-demand.

xii, 32, 52, 77–81, 92, 94, 96, 101, 105, 106, 153

Visual Studio Integrated Development Environment(IDE) for Microsoft .NET plat-

form. 3, 60, 89–91, 93, 94, 96, 105, 115, 116, 118, 129, 133, 165, 179

Windows Forms Microsoft’s graphical API. 50

218

Acronyms

ACID Atomicity, Consistency, Isolation and Durability. 12, 13, 29, 35, 37, 39, 46, 108,

179

ADO.NET ActiveX Data Object for .NET. i, iii, xi, 1, 6, 41, 45, 47, 52, 53, 61, 91, 93,

135, 146–152, 154–156, 159, 165, 169, 176, 177, 190

ANTLR ANother Tool for Language Recognition. 85, 126, 164

AOP Aspect Oriented Programming. 73, 92

API Application Programming Interface. 3, 7, 29, 30, 34, 35, 37, 39, 44, 46, 47, 50,

52, 55, 60–64, 67, 69, 70, 75, 85, 86, 88, 91–93, 95, 98–100, 102, 105–107, 117–119,

131–133, 135–140, 143, 145–147, 150–152, 154, 156, 158–161, 164, 165, 168, 169,

171, 173, 175, 176, 180, 181, 184, 187, 203

CMP Container Managed Persistence. 56, 57

COM Component Object Model. 149

CPU Central Processing Unit. 34, 193, 195, 196

CRUD Create, Read, Update, Delete. 3, 44, 47, 50, 52, 62, 63, 65, 74, 117, 136–140,

143, 151

DAL Data Access Layer. 3, 5, 7, 8, 44, 52, 62, 90, 94, 135–137, 150, 151, 155, 177, 189

DAO Data Access Object. 44, 45

DB4O Database for Objects. 36, 179, 180, 182, 184–187, 190

DBA Database Administrator. 13, 19, 23, 27, 28, 41, 58, 61

DBMS Database Management System. 41, 69, 103, 107

219

Acronyms Acronyms

DDD Domain Driven Design. 58, 60, 84, 104, 132

DDL Data Definition Language. 39, 84

DLL Dynamically Linked Library. 3, 118, 132

DTO Data Transfer Object. 32, 44, 50, 52, 54, 57, 61, 64, 81, 95, 102, 103, 137, 138

EDMX Entity Data Model XML. 84, 94, 96, 97, 99

EF Entity Framework. i, iii, xii, xv, 1, 5, 6, 17, 30, 31, 55, 60, 74, 84, 85, 90–104, 106,

107, 109, 115, 129, 132, 133, 135, 136, 138, 144, 146, 176, 179, 180, 186, 187, 189,

190, 203, 207

EJB Enterprise JavaBeans. 1, 56, 57

EQL Entity Query Language. 31, 91, 98–100, 102, 104, 133, 184

GC Garbage Collector. 81

GoF Gang of Four. 4, 6, 15, 32, 43, 44, 54, 59, 152

GUI Graphical User Interface. 2, 3, 32, 41, 50, 91, 105, 112, 115, 139, 146, 165, 177

GUID Globally Unique Identifier. 29

GWS Global Weighting Solutions. i, iii, 2, 3, 5, 7, 189, 213

HBM Hibernate Mapping. 84

HQL Hibernate Query Language. 31, 85, 105, 106, 119, 124, 126–129, 132, 133, 164, 184

I/O input/output. 12, 20, 193–196, 198–201

IDE Integrated Development Environment. 30, 31, 165

IoC Inversion of Control. 74, 82, 105, 107, 112, 113, 133

J2EE Java Platform, Enterprise Edition. 7, 56

JDBC Java Database Connectivity. 1, 37, 41

JDO Java Data Objects. 38

JPA Java Persistence API. 38, 56

220

Acronyms Acronyms

JVM Java Virtual Machine. 78

LINQ Language Integrated Query. 30, 41, 85, 98, 101–103, 106, 119, 129, 130, 132, 133,

146, 164, 165, 173–177, 179, 183–185, 190

MDA Model-Driven Architectire. 58

NoSQL Not only SQL. 5, 34–37, 146

ODB Object Database. 180, 187

ODBC Open Database Connectivity. 1, 149, 150, 152

ODL Object Definition Language. 39, 84

ODMG Object Data Management Group. 38, 39, 85

OLAP Online Analytical Processing. 31

OLEDB Object Linking and Embedding, Database. 3, 135, 140, 145–147, 149–151, 155,

156, 162, 165, 166, 170

OLTP Online Transaction Processing. 34

OML Object Manipulation Language. 39

OODBMS Object-Oriented Database Management System. i, iii, 1, 5, 6, 12, 15, 33,

36–41, 55, 73, 76, 85, 86, 107, 146, 179, 180, 183, 184, 186, 187, 189, 190

OQL Object Query Language. 38, 39, 55, 85, 86, 133, 177, 179, 184

ORM Object Relational Mapping. i, iii, 1–9, 13, 15–17, 27, 28, 30–38, 40, 41, 43, 44,

51, 52, 54–58, 60, 64, 67, 68, 73–76, 81, 82, 84–90, 104, 115, 120, 132–138, 140, 144,

163, 176, 177, 179, 184, 186, 187, 189–191, 193

PIM Platform Independent Model. 33, 57, 73, 82, 133, 151

POCO Plain Old CLR Object. xii, 90, 92, 95, 96, 103, 105, 106, 110, 111, 115, 117, 130,

133, 136–139, 142, 145, 177

PoEAA Patterns of Enterprise Application Architecture. 15, 43, 44, 46–48, 55, 87

POJO Plain Old Java Object. 35, 57

221

Acronyms Acronyms

PSM Platform Specific Model. 57

QBA Query-By-API. 30, 85, 86, 98, 164, 165

QBE Query-By-Example. 30, 164

QBL Query-By-Language. 30, 31, 85, 86, 98, 164

RDB Relational Database. 18

RDBMS Relational Database Management System. i, iii, 1, 3–5, 7–9, 11, 12, 22, 26, 34,

35, 37, 38, 40, 41, 84, 96, 102, 108, 132, 135, 146, 147, 151, 153–155, 161, 163, 165,

170, 177, 179, 187, 190, 193, 198

RMI Remote Method Invocation. 57

SAP System, Applications and Products in Data Processing. 7

SQL Structured Query Language. i, iii, xiii, 3–5, 8, 9, 12, 15, 20, 22, 24, 30, 31, 33–35,

38, 39, 44, 45, 47, 50–52, 60–63, 66, 67, 69, 70, 84–86, 90, 92, 93, 98–109, 113,

118–140, 142, 145–147, 149, 151, 153–156, 158, 161–166, 168–177, 183–186, 189,

190, 193, 197, 203–208

T4 Text Template Transformation Toolkit. 91, 94, 96

TDS Tabular Data Stream. 149

TLS Thread Local Storage (see specification in [SSRB00]). 72, 113, 144, 150, 155

UML Unified Modeling Language. 23, 27

VB.NET Visual Basic .NET. 3, 94, 97, 99, 136, 139, 203

WCF Windows Communication Foundation. 51, 91, 95, 113

XML eXtensible Markup Language. 35, 57, 66, 82, 84, 132, 144, 150

222

	Introduction
	Context of Work
	Persistence Problem
	Objectives
	Structure of Dissertation

	Object Relational Mapping Theory
	Object Paradigm
	Relational Paradigm
	ORM as a Paradigm
	The ORM Commitment
	Inheritance
	Table-per-class
	Table-per-concrete-class
	Table-per-class-family

	Associations
	Schema complications
	OID (object identity)
	Data retrieval
	Partial-Object dilemma and Load Time trap
	Transparent Persistence

	Alternatives to ORM
	Conclusions

	Design Patterns for ORM
	Domain Logic Patterns
	Transaction Script
	Table Module
	Domain Model
	Making a Decision

	Data Source Architectural Patterns
	Table Data Gateway
	Active Record
	Data Mapper

	Object-Relational Behavioural Patterns
	Unit of Work
	Identity Map
	Lazy Load

	Object-Relational Metadata Mapping Patterns
	Metadata Mapping
	Query Object
	Repository

	Conclusions

	Object Relational Mapping Frameworks
	Entity Framework
	Unit of Work
	Optimistic Locking
	Code Customization
	POCOs
	Testing EF
	Configuration and model testing
	Basic querying
	Eager and deferred load

	Dynamism in EF

	NHibernate
	Unit of Work
	Optimistic Locking
	Lazy Load
	Code Customization: Audit Logging
	Testing NHibernate
	Simple Load and Identity Map
	Linq-to-NHibernate join query examples
	Lazy Collections examples
	Cascading Delete operations
	HQL examples
	Dynamic LINQ
	Database Synchronization

	Dynamism in NHibernate

	Conclusions

	Implementation of CazDataProvider
	Analysis of ClassBuilder
	Relational Domain Model
	Data Mapper
	Unit of Work and Optimistic Locking
	Audit Logging
	Conclusions

	.NET Data Providers
	Designing an Architecture
	Solution 1: Data Context Facade and Factory
	Solution 2: Provider Factory
	Solution 3: Abstract Provider Factory
	Solution 4: Provider Factory with Subclassing
	Solution 5: Provider Factory with Template Method
	Solution 6: Query Object

	Implementation
	LinqToCaz
	Conclusions

	Benchmark Tests: Comparing CazDAL, ORM Frameworks and OOSBMSs
	Creating
	Loading All
	Fetching One
	Updates and Deletes
	Joins
	Conclusions

	Conclusion
	Developed work
	Discussion

	Appendix
	Relational Database Mechanics
	Full table-scans
	Indexes
	Indexed access Vs Table-scan
	Joins
	Nested-loop join
	Hash join
	Sort-merge join
	Index-based join

	Testing EF querying: Examples of code and SQL generated
	Basic querying
	Eager and Deferred Loading

	Bibliography
	Glossary
	Acronyms

