
Universidade do Minho

Escola de Engenharia

André Vilas Boas da Costa

RetScan: Efficient Fovea and Optic Disc
Detection in Retinographies

Outubro de 2011

Universidade do Minho

Dissertação de Mestrado

Escola de Engenharia

Departamento de Informática

André Vilas Boas da Costa

RetScan: Efficient Fovea and Optic Disc
Detection in Retinographies

Mestrado de Informática

Trabalho realizado sob orientação de

Alberto José Proença

Outubro de 2011

Abstract

The Fovea and Optic Disc are relevant anatomical eye structures to diagnose var-
ious diseases. Its automatic detection can provide both a cost reduction when
analysing large populations and improve the effectiveness of ophthalmologists and
optometrists.
This dissertation describes a methodology to automatically detect these structures
and analyses a, CPU only, MATLAB implementation of this methodology. RetScan
is a port to a freeware environment of this methodology, its functionality and perfor-
mance are evaluated and compared to the original. The results of both evaluations
lead to a discussion on possible improvements in the metodology that influence the
functionality and performance. The resulting improvements are implemented and
integrated in RetScan. To further improve performance, a parallelization of RetScan
to take advantage of a multi-core architecture or a CUDA-enabled accelerator was
designed, coded and evaluated. This evaluation reveals that RetScan achieves its
best throughput efficiency using a multi-core architecture only and analysing several
images at once. For one image usage, using multi-core only is also the best solution,
but with a small speed-up. The usage of CUDA-enabled accelerators is not recom-
mended for this scope as the images are small and the cost of the data transfer to
and from the accelerator has a severe impact on performance.

iv

Resumo

A Fóvea e o Disco Ótico são estruturas oculares importantes quando se procura
diagnosticar doenças no olho. A sua deteção automática permite reduzir o custo de
um rastreio a grandes populações e também aumentar a eficácia de oftalmologistas
e optometristas.
Nesta dissertação é descrita uma metodologia para detetar estas estruturas auto-
maticamente e é analisada uma implementação em MATLAB desta metodologia.
RetScan é o resultado do porte para um ambiente de desenvolvimento com fer-
ramentas livres (open source) desta metodologia. O RetScan é avaliado quer em
funcionalidade, quer em performance. Os resultados da avaliação levam a uma refle-
xão sobre mudanças a realizar à metodologia para melhorar os resultados em ambas
as avaliações. Estas melhorias são implementadas e integradas no RetScan. Para
melhorar a sua performance é também realizada um paralelização do RetScan de
forma a que tire partido de uma arquitetura multi-core ou de um acelerador compa-
tível com CUDA. Após realizar uma nova avaliação conclui-se que o RetScan atinge
o seu melhor débito de dados (throughput) quando usa apenas os CPUs numa ar-
quitetura multi-core e analisando várias imagens em paralelo. Para a análise de uma
só imagem, o uso apenas de CPUs numa arquitetura multi-core também é o me-
lhor resultado, embora tenha um ganho (speed up) reduzido. O uso de aceleradores
compatíveis com CUDA não é recomendado neste âmbito pois as imagens têm um
tamanho reduzido e o custo da transferência de e para estes aceleradores tem um
grande impacto no tempo total.

v

Agradecimentos

Ao Professor Alberto Proença, pela orientação, partilha de conhecimento e cons-
tante apoio durante o desenvolvimento deste trabalho.
À Critical Health, representada na pessoa do eng. Carlos Manta Oliveira, pelo
desafio lançado e por proporcionar uma oportunidade de aplicar os conhecimentos
adquiridos durante este mestrado a um problema real e complexo.
Ao João Barbosa e ao Ricardo Alves, pela disponibilidade e ajuda prestada durante
este processo.
Ao Dr. Franco pela bondade e disponibilidade em me ajudar a compreender as es-
truturas e processos fisiológicos que seriam objetivo deste trabalho.
Aos meu pais, pelo seu amor, disponibilidade e apoio incondicional na concretização
dos meus objetivos. A concretização de mais uma fase académica é graças a eles, e
por isso tenho que lhes agradecer por tudo.
Ao meu irmão, que é o grande responsável pelo meu interesse pela informática, e
me ensinou as bases da computação desde cedo.
Finalmente, aos meus amigos, pela presença constante em todas as etapas impor-
tantes da minha vida e em que esta não é exceção.

vi

Contents

Abstract iv

Resumo v

Agradecimentos vi

1 Introduction 1
1.1 Context . 1
1.2 Objectives . 2
1.3 Dissertation structure . 2

2 Optic disc and fovea detection 3
2.1 State of the art . 3
2.2 Image processing techniques . 3

2.2.1 To detect the optic disc . 4
2.2.2 To detect the fovea . 7

2.3 Original Code . 8
2.3.1 Code analysis . 8
2.3.2 Code profile . 8

3 Porting to a freeware environment 13
3.1 Available environments . 13

3.1.1 MATLAB vs C/C++ . 14
3.1.2 OpenCV . 14

3.2 Challenges . 14
3.3 RetScan . 17

3.3.1 Overview . 17
3.3.2 Experimental Validation . 20
3.3.3 Performance Analysis . 22

vii

4 RetScan revisited 23
4.1 Critical analysis . 23
4.2 Improvements . 23

4.2.1 Functional improvements . 24
4.2.2 Performance improvements . 25

4.3 Parallelizing the code . 27
4.3.1 In a multi-core environment 28
4.3.2 With a CUDA-enabled accelerator 32

5 Conclusion 35
5.1 Critical Overview . 35
5.2 Future Work . 35

viii

Chapter 1

Introduction

1.1 Context
Critical Health1 has been developing products aimed to reduce costs in healthcare

by automating several stages of the healthcare service. Their products accelerate
the healthcare service and provide more information for everyone involved, reducing
the chance of errors.

Figure 1.1. Schematic diagram of the human eye with the fovea and the optic disc
on the right. Image from [3] page 220

The automatic detection of the fovea and the optic disc is included in decision

1Critical Health’s website: http://www.critical-health.com/about_us.php

1

http://www.critical-health.com/about_us.php

1 – Introduction

support systems based on image analysis properties from retinographies2, namely
the Retmarker family of solutions.

The fovea (fovea centralis) is a region of the eye, located in the centre of the
macula region of the retina [3] (Fig. 1.1). The fovea is the region in the eye where
the vision is formed and the closer lesions are to this area, the greater is their impact
on the reduction of central vision.

The optic disc (or optic nerve head) is the beginning of optic nerve. It connects
eye and brain and is also the entry point of the major blood vessels that supply the
retina [3] (Fig. 1.1). It has no light sensitive photo-receptors to respond to a light
stimulus and this causes a break in the visual field called the "physiological blind
spot". It is the brightest region of the retinography, and this affects the performance
of image processing algorithms. A detailed analysis of the retinography requires the
location of the optic disc to mask it out of the image.

1.2 Objectives
The objective of this work is to analyse the existing work on automatic detection

of eye structures, which includes a literature search for algorithms that can be used
and a full analysis of the implemented algorithm by Pinão [6]. Furthermore this
code should be ported to a programming language with available open source tools.
A functional and performance analysis should be conducted and a critical analysis
should be produced. Finally, an effort to parallelize the code and take advantage of
multi-core architectures, CUDA-enabled GPU devices or both should be made.

1.3 Dissertation structure
In the second chapter the state of the art is debated, the methodology is de-

scribed and the existing code is analysed. In the third chapter the available tools
are described, the challenges overcame are reviewed, the RetScan structure is pre-
sented and its effectiveness is analysed. In the fourth chapter an critical analysis
is compiled, improvements are discussed and their impact is analysed. Moreover,
the parallelization strategies are discussed and analysed for multi-core environments
and with a CUDA-enabled accelerator. This dissertation is finnalyzed with a critical
overview of RetScan capabilities and it is outlined future work to improve them.

2eye fundus photographs

2

Chapter 2

Optic disc and fovea detection

2.1 State of the art
The detection of the optic disc and fovea has been the subject of much work,

and other strategies have been used to successfully identify them. Foracchia et al.
used the fact that the major blood vessels in the eye originate from the optic disc, to
identify it[4], but this approach requires a version of the parabola algorithm for each
data set, and thus is not reliable for large population analysis. Also this approach
only identifies the centre of the optic disc but not its radius. Tobin also used the
blood vessels to detect the optic disc, but in his approach he searches for the thicker
blood vessels that come from within the optic disc[8]. This approach only detects
the optic disc of a certain type of retinograpies and does not include every case
this work is intended to analyse. Sinthanayothin et al. use the contrast between
the bright optic disc and the dark red blood vessels that go through it to detect
the optic disc[2]. This approach might have some difficulties detecting the optic
nerve in older people because the optic nerve tends to degenerate. Huajun Ying and
Jyh-Charn Liu use the dark colour of the macula and fovea and the fact that it is a
vessels free zone to identify the fovea[10]. However, this approach only detects the
fovea-macula region in certain types of retinograpies.

2.2 Image processing techniques
The proposed approach to do a reliable fovea and optic disc detection is based on

shape detection using the Hough transform to detect the optic disc and then detect
the fovea assuming that the fovea is located at two and a half optic disc radius from
its centre [9]. This methodology uses numerous image processing techniques beside
the Hough transform, such as image resizing, grey scaling, Sobel operator, an average
and a median blur, a Gaussian gradient, thresholds, contrast enhancement, regions

3

2 – Optic disc and fovea detection

of interest, image dilation and erosion, image subtractions, image masking, and
image quantization. These techniques have already been implemented in previous
work by Pinão [6] and as been used has an effective method of detecting the optic
disc and fovea automatically.

2.2.1 To detect the optic disc
Applying the Hough transform is usually a time consuming process, and a good

manner in which to accelerate the transform is to reduce the number of pixels in the
image. The fewer pixels it is applied to, the quicker it is. Also, applying the Hough
transform to the unaltered retinography would result in the detection of the most
circular shape, the full eye. A few image-processing functions must be applied to
the image to ensure that the Hough transform is successful:

• Image resize This methodology has been refined through heuristic methods,
as a consequence, several parameters are adjusted for a fixed eye size, and
therefore the eye is identified and the image is resized, focusing in the eye to
meet this requirements, as seen in fig 2.1. All images are resized to a fixed
height while maintaining its aspect ratio.

Figure 2.1. The original image (left) and its resized version (right)

• Noise reduction Since the eye is an irregular surface with different structures,
the colour of the retinography has many fluctuations, and this can cause the
Hough transform to produce erroneous results. To reduce the colour fluctua-
tions, a blur is applied to the image (fig. 2.2 (left)). This reduces the colour
fluctuations but still preserves the anatomical structures of interest, i.e, the
optic disc, the fovea and the blood vessels.

• Computation of the region of interest The Sobel operator calculates the
variance in colour intensity, and can be used to find the most likely area of

4

2.2 – Image processing techniques

the optic disc. Because the optic disc is bright and is the entrance point of
the blood vessels in the eye, it usually has the most colour variations. Also,
because the vessels tend to spread to the rest of the eye in a hyperbolic shape
centred in the optic disc, an horizontal derivative kernel is used in the Sobel
operator (fig. 2.2 (right)).
The region of interest (ROI) is the area, with 31.25% the size of the image,
which has the highest sum of the absolute values of applying the Sobel oper-
ator.

Figure 2.2. The blurred image (left), and the result of applying the Sobel operator
in each colour channel (right)

• Gauss gradient. The Gaussian filter is a widely known filter for image pro-
cessing [5]. In the existing implementation a two dimension Gaussian filter is
applied, using the first order derivative of the Gaussian function to improve
the contrast between the background and the foreground, thus improving the
performance of the Hough transform. Two parameters define the derivative
Gaussian kernel: the standard deviation which controls the width of the Gaus-
sian function and the kernel size (fig. 2.3).

• Vessel detection. The structures detected by applying the Gaussian gradient
are the optic disc and the blood vessels. The blood vessels are long and thin
structures, and exploiting their thinness it is possible to remove them using
a median filter applied to its grey scale image. By using a large number of
pixels and sorting them, the blood vessels pixels will not be located near the
median. This results in an image with the vessels overshadowed. Subtracting
this image from the initial grey scaled image, and turning it into black and
white, generates a blood vessels mask (fig. 2.4).

• Image quantization. By using a greyscale of the Gauss gradient image and
quantizing it into 32 distinct intensity levels, selecting the levels most likely

5

2 – Optic disc and fovea detection

Figure 2.3. The detected gradient using a Gaussian kernel (left), and the same
image focused on the earlier computed ROI (right)

Figure 2.4. The eye grey scale (left) and the extracted vessel trace (right)

to contain the optic disc and discarding all others, can reduce the number of
pixels analysed by the Hough transform without compromising its results. This
image is then turned to generate a black and white image. The image passed
to the Hough transform is the binarized image from the Gaussian gradient
subtracted of this image and the vessel trace (fig. 2.5 (left, centre left and
centre right)).

• Hough transform. The Hough transform is a technique that can be used
to extract or isolate features of a particular shape within an image [5]. It
requires that a parametric form of that shape must exist, which makes it a
tool for the detection of straight lines or regular curves, such as circles or
ellipses. Heuristics have shown that the optic disc is most circular shape with
a 43 to 64 pixel radius (fig. 2.5 (right)).

6

2.2 – Image processing techniques

Figure 2.5. The grey scale ROI (left), the mask generated through the quantization
step (centre left), the image passed to the Hough transform (centre right), and a
representation of the detected circle (right).

2.2.2 To detect the fovea

The fovea is a dark point located 2.5x the radius of the optic disc from its
centre[9, 3]. After successfully detecting the optic disc, a circle is defined with 2.5
times the radius of the optic disc, and centred on it. As the protocol defines, the
fovea should be near the horizontal axis of the retinography[1] . Therefore a new
region of interest is defined using approximately half the image height. The darkest
11x11 square in the region of interest is admitted to be the location of the fovea.

Figure 2.6. The area defined for the fovea search (left) and the final state, with
the optic disc and the fovea successfully detected(right)

7

2 – Optic disc and fovea detection

2.3 Original Code
The optic disc and fovea detection approach previously described was imple-

mented in MATLAB1, a proprietary software from MathWorks. Before attempting
to create an implementation in a language with full support of open source tools,
an in-depth analysis of the existing code is required.

An auxiliary tool, a profiler2 can give insight about the structure of the code,
the way it operates, and indicate the most relevant pieces of code. The profiler can
provide information about the functions dependencies, the most used functions and
the most computational heavy functions.

2.3.1 Code analysis
The approach described previously has a strict division of steps, and actions

taken within each step, and the call graph reflects this (Fig. 2.7). The steps include
few recursive calls, which makes this call graph a flat tree, most functions are aligned
side by side and are called in succession by the main function having low code reuse.

There is a set up, the od_Test function, that gets the data ready for the main
function. The main function, detectODandFoveaV2 receives each image and starts
by resizing it, calling the respective function, and then calls a function for each of the
steps described in the approach. This function call graph (Fig. 2.7) has two features
that deserve special notice, the fact that the functions vesselsVicinity and vesselMask
are not called by any other function, which seems to indicate that it was part of
deprecated version of the code, and has become obsolete. The contrast_enhancement
is the only function that is used in different image processing techniques, and the
function most susceptible of causing bugs if changed.

2.3.2 Code profile
The MATLAB profiler was used to get statistic of the code in a test where 180

retinographies were processed in a laptop with an Intel i7-2670QM processor (quad-
core with Hyper-threading) @2.2 GHz with 32KB instruction cache, 32KB data
cache and 256KB of L2 cache per core, a shared 6MB L3 cache and 8GB DDR3
RAM. It is running Windows 7 Home Premium and MATLAB 7.11.0.584.

The results are shown in figure 2.8.
Analysing the total execution times it comes as no surprise that the function

that prepares the data for execution and then calls the main function and the main

1MATLAB: http://www.mathworks.com/products/matlab/
2MATLAB has an integrated profiler

8

http://www.mathworks.com/products/matlab/

2.3 – Original Code

function itself have the most total execution time. In fact, the "set up" function
execution time is equal to the execution time of the program because every line of
code in the program is part of that function, or one of its children.
Furthermore, analysing the total execution times shows that the auxiliary step
clean_boundary is the function that takes up most of the execution time. This
result was not an expected result, but is justified, this function prepares images for
the Sobel operator and the Gaussian gradient and has a high total execution time
because it is called several times during the execution of the algorithm.
The functions circle_detection and houghcircles are both related to the execution of
the Hough transform, which was expected to be the step with the biggest workload.
When analysing the self execution time it becomes apparent that the application of
the Hough transform and finding the region of interest are the two techniques that
take the most time, as houghcircles and od_detection_quare are the functions that
implement them. The built-in MATLAB functions that appear in both tables are
by-products of the execution of houghcircles and clean_boundary.
This analysis confirms that the Hough transform is indeed a heavy segment of the
implementation, but shows that finding the region of interest cannot be neglected.
The interesting and surprising result is that the auxiliary function clean_boundary
is the function with the most total execution time (apart from the two functions
that include everything) and should be revised to improve performance.

9

2 – Optic disc and fovea detection

Figure 2.7. The call graph.

10

2.3 – Original Code

Figure 2.8. Runtime statistics for 6 functions with the highest total execution
time (top) and with the highest self execution time (bottom). *Self time is the
time spent in a function excluding the time spent in its child functions and also
includes the profiling overhead.

11

2 – Optic disc and fovea detection

12

Chapter 3

Porting to a freeware environment

3.1 Available environments

The original code was developed in MATLAB, a platform developed by Math-
Works, for numerical computation, visualization and programming. MATLAB has
a proprietary high-level programming language following a imperative programming
paradigm.

The C programming language is arguably the most influential programming lan-
guage in the world. It is still one of the most used languages and most of the
major programming languages have been influenced by it, e.g., C#, Java, PHP, Perl
and Python. The C Language has a wide range of open source tools and libraries
available, that can be used freely and safely. Most of these tools and libraries have
been developed for several years and are still maintained. Due to widespread use
and support, there is hardly any risk of any of these tools being abandoned in the
foreseeable future.

MATLAB has support for image processing, with several functions in its kernel
for colour manipulation and the most common image processing techniques. There
are a few open source image processing libraries available for the C language such as
the OpenCV1, VXL2, IVT3 and VIGRA4. Of these open source projects, OpenCV
is the most matured project, with more functionalities and stable multi-platform
versions.

1OpenCV: Open Source Computer Vision; http://opencv.org/about.html
2VXL: Vision-something-Libraries; http://vxl.sourceforge.net/
3IVT: Integrating Vision Toolkit; http://ivt.sourceforge.net/
4VIGRA: Vision with Generic Algorithms; http://hci.iwr.uni-heidelberg.de/vigra/

13

http://opencv.org/about.html
http://vxl.sourceforge.net/
http://ivt.sourceforge.net/
http://hci.iwr.uni-heidelberg.de/vigra/

3 – Porting to a freeware environment

3.1.1 MATLAB vs C/C++

The MATLAB programming language has a syntax similar to C, with no direct
memory access and no control of how the data is stored. The original code uses
the RGB colour model[5] which is stored, conceptually, in a tri-dimensional matrix.
MATLAB has simple matrix manipulation operators and together with the image
processing functions its kernel possesses it was a viable tool for the original code. The
MATLAB kernel has a massive number of functions and functionalities supported
and as such, it has become a heavy computational load and is a herculean task to
squeeze performance out of it.

The C language allows for low level memory access and manipulation, and allows
for greater control of the data, as the programmer knows exactly what and how
everything is stored. The C language has no native support for image processing,
but its functionality can be extended via the use of libraries.

3.1.2 OpenCV

The OpenCV library offers real-time computer-vision support. Released in 1999
by Intel, it is currently supported by Willow Garage5 and Itseez6. It is in version
2.4.27 and has support for Windows, Linux, MacOS, Android and iOS.

The OpenCV library also has a CUDA implementation of some of its most used
functions. However this project8 is still in its early stages and so it only has a limited
number of functions.

With a reliable CPU implementation and a (small) CUDA implementation of
image processing functionalities, combined with the fact that is open source and
freely distributed, it makes OpenCV a good choice for library support in the context
of this port to a freeware environment.

3.2 Challenges
During the implementation of this port some challenges emerged that had to

be solved. These challenges were caused by various factors, namely the insufficient
documentation, the specificity of functions required and heuristic parameters.

5Willow Garage Website: http://www.willowgarage.com/pages/about-us
6Itseez Website: http://Itseez.com/index.php?page=about_us
7At the time of the writing there is a Release Candidate for 2.4.3
8OpenCV_GPU: http://opencv.willowgarage.com/wiki/OpenCV_GPU

14

http://www.willowgarage.com/pages/about-us
http://Itseez.com/index.php?page=about_us
http://opencv.willowgarage.com/wiki/OpenCV_GPU

3.2 – Challenges

Documentation

To help with the interpretation and understanding of the original code, the [7]
document was made available. Despite prividing a good description of the general
algorithm, it is not a good description of the original code, as the code was further
developed internally by Critical-Health. Some functions in the code are not included
in this documentation and others have changed some or all of their criterion. Due
to these obvious discrepancies between the documentation and the original code,
and the fact that no information about the changes made to the work of Pinão
were available, the documentation could not be trusted. There was a need for a full
analysis and an in-depth look at each line of the code to find its true functionality,
if it was introduced after the documentation was produced, and if not, why had
it been changed. This process was time consuming due to the number of lines of
code and the fact that some of the used functions and operators required a deeper
understanding of their internal structure. The analysis of the code identified these
changes:

• Non-documented functions:

– “clean_boundary”; one of the surprising results of the code profile is
the weight of an undocumented auxiliary function called “clean_boundary”
(Fig. 2.8), which removes the border of the eye from the image by creat-
ing a black & white mask of connected components in the red channel,
and applying a strong erode to them. This function is called several times
during the execution of the original code, and since the position of the
eye never changes, in this port the mask is only generated once at the
beginning of the execution, the mask is stored and used when necessary.

– “contrast_enhancement”; a contrast enhancement function is also
used several times during the execution, which is not documented either.

• Implementation that does not follow the documentation:

– The use of the Sobel operator, and the computation of the optic disc
ROI is very different from what the documentation states; the original
code has the Sobel operator running from within a cycle that, from what
is discernible, executes only once. This is probably a remnant of the
noise reduction cycle described in the documentation. Instead, after the
smoothing, the Sobel operator is used in each colour channel. For the
computation of the ROI, instead of a sum of all values within a region,
a count of pixels that have non zero values, but with red or blue values
bellow 40 and a green value above 25.

15

3 – Porting to a freeware environment

– The vessel trace mask also has significantly different usage than the
described; the documentation says it applies the vessel mask in the sobel
operator, but that is not the case. Also, the documentation states that
the vessel subtraction is done after the applying the Gauss gradient, but
in fact it is applied after the quantization but before the small structure
clean up described in it.

Function specificity

OpenCV provides a wide variety of image processing functionalities, but some
of the image processing techniques used in this methodology are so specific for this
usage that cannot use library support. Some functions can still use library support
within themselves using some form of tweaking or refactoring, but these functions
could not:

• clean_sobels: this function is a special case of a threshold, this is a three
channel conditional threshold. A traditional threshold uses only one colour
channel images, and decides if the colour of a pixel changes depending on
its value. This uses a 3 channel image and decides the colour of the pixel
depending on different values in each channel a conditional clause relating the
three channels.

• contrast_enhancement: This function is a contrast enhancement function
that uses a sigmoid function to redistribute the colour values in an uniform
manner throughout the value range.

• bwQuantize: this is can be considered a double threshold, as it is what
it does, but in reality is a fused version of many functions. This function
quantizes the image, discards the irrelevant levels, and binarizes the image.

• minChannel: currently OpenCV does not support the fusing of channels
using a pixel by pixel comparison.

• foveamask: the fovea ROI mask is an area enclosed by two circumferences
centred in the optic disc and has to be generated pixel by pixel.

Heuristic parameters

In the original code, several parameters were calculated using heuristic methods.
Despite being a valid method to improve the quality of the results, this can be
troublesome when designing a new solution.

MATLAB stores the image in matrix form which allows the representation of
colour values in floating point notation, and these values are only rounded when the

16

3.3 – RetScan

Figure 3.1. A greyscale using MATLAB (left) and a darker greyscale created using
OpenCV from the same image (right).

image is written. OpenCV uses a single byte to represent each colour value which
can only represent 256 integer numbers (0-255). Considering this, it is necessary to
round the values after every operation. In addition, some colour transformations
might not be implemented using the exact same kernel values, which can produce
slightly different results. Observing figure 3.1, it is possible to compare the results of
applying a greyscale to the same image in MATLAB and in OpenCV, which demon-
strates how the differences between the software(resources) can be problematic when
using heuristically calculated parameters.

3.3 RetScan
RetScan is the port to the C language of the original MATLAB code using the

support of OpenCV. The functionality remains the same, and the only difference
is the new approach to the clean boundary problem. Instead of calculating and
removing the eye boundary before applying the Sobel operator and the Gaussian
gradient, a mask is produced when resizing the eye and is applied before them.

3.3.1 Overview
RetScan starts by loading the image to the OpenCV basic image structure, using

the RGB colour model (the alpha channel is ignored). As the background of the
image is mostly black with colour values, to easily identify the eye, the three channels
are fused by summing their colour values. This will maintain the darkness of the
background, but will brighten the eye, which allows for an easy eye detection using

17

3 – Porting to a freeware environment

Figure 3.2. A diagram of the RetScan functionalities; each arrow represents data
dependencies and its width the amount of data required.

the Canny edge detection filter. After identifying the eye, the image is resized to a
standard size, cropping most of the background (fig.3.3).

The result of applying the Canny is also used to create the mask used for the
boundary removal. A flood fill starting from the centre of the image paints all the eye
white, and an erode is applied to remove the boundaries from the mask. Afterwards,
this mask is resized to fit the standard size image (fig.3.3).

To compute the optic disc ROI the image is blurred and the Sobel operator is
applied separately to each channel. This image is then fused and prepared using
the conditional three channel threshold described previously (section 3.2) and the
boundaryless eye mask. The ROI is admitted to be the region with the highest
number of remaining pixels(fig. 3.3).

18

3.3 – RetScan

Figure 3.3. An overview of the mask generation and eye identification process.
The original image (top left), the sum of its channels (top centre), the Canny
detection (top right), the flood fill result (bottom left), the mask after an erosion
(bottom centre) and the resized image(bottom right).

The Gaussian kernel is created and used in the horizontal and vertical axis of
the image. The results are fused and the boundaries are removed using the eye
mask. The image is then reduced to the ROI calculated earlier and binarized after
enhancing the contrast of each colour channel independently.

To quantize the image, the grey scale of the resized image is calculated, and the
eye boundaries are removed. Afterwards, the colour contrast is enhanced to ensure
a good colour redistribution and the image is restricted to the region of interest.
Finally, the image is quantized and binarized and eroded to reduce the size of the
detected structures.

The vessel mask is computed using the grey scale of the resized image and apply-
ing a median filter. This new image does not include the vessels and is subtracted
from the grey scale. The result of this subtraction is a faint vessel trace, which is
reduced to relevant ROI and its quality is improved by enhancing its contrast. Since
other colour variations are also present, a threshold is used to select the vessel trace.
This trace is dilated, to ensure the entire vessel is included in this mask. A search
for connected components is conducted and small structures are discarded.

The vessel mask is used to remove the blood vessels from the binarized Gaussian
gradient image, and the binarized image from the quantization is used to remove
other structures, leaving the contours of the optic disc. The Hough transform is
then used to detect the circular shape of the disc.

The first step to locate the fovea is to discard the blue channel and enhance
the contrast of the red and green channel independently. A single channel image

19

3 – Porting to a freeware environment

is formed by fusing the channels selecting the lower colour value in a pixel-by-pixel
comparison. Using the location of the optic disc and its radius, the fovea ROI can
be calculated and the fovea is detected by finding the darkest area in the ROI.

3.3.2 Experimental Validation

The first version of RetScan (or RetScan 1.0) was tested with 200 different retino-
graphies but the overall results are below expectations. The success rate is only 56%,
which is far below the 90% efficiency of the original code. A significant amount of
failures is due to detecting the optic disc slightly out of its position. This is caused
because the filters applied to the Gauss gradient, the vessel mask and the mask
generated through quantization, eliminate part of the optic disc, thus the detected
circle is either smaller than the optic disc, or is detected out of place (fig. 3.4). The
generation of the vessel mask and the mask created by the quantization step errors
are due to the heuristic parameters used.

Figure 3.4. An example of an image where the elimination of a significant part of
the optic disc causes a wrong detection.

The fovea is always correctly detected when the optic disc is also detected, and
is still correctly detected when the optic is detected out of its place.

Assuming that the failed detections can be eliminated through a parameter recal-
ibration, its other failures are due to a erroneous computation of the optic disc ROI.
In these cases, the difference in colour between the optic disc and its surroundings
is small and the Sobel operator does not differentiate the optic disc from the rest of
the eye (fig. 3.5). This is a limitation of this methodology, as the problem comes
from the assumption that the optic disc is always brighter and differentiable from
the rest of the eye. This limitation is also present in the results of the MATLAB
implementation.

20

3.3 – RetScan

Figure 3.5. An example of an image where the optic disc is not identifiable using
the Sobel operator. Original on the left and the result on the right

Figure 3.6. The average execution time of RetScan 1.0, and which functions
consume more time.

21

3 – Porting to a freeware environment

3.3.3 Performance Analysis
The original MATLAB code, set a benchmark of 3.3 seconds per image and

can process a sample of 180 images in roughly 10 minutes (section 2.3.2). RetScan
significantly improved performance compared to the original code. Each image takes,
on average, 228 milliseconds to process, and can process the full data sample, of 200
images, in under 46 seconds (fig. 3.6). RetScan is 14 times faster than its original
code.

Profiling the process of a single image, a function stands out, as the heaviest
function, the “Compute_ROI”. This function is responsible for approximately 40%
of the time consumption of RetScan, and further performance improvement efforts
should focus on this function. The “contrast_enhancement” function is responsible
for approximately 15% of the time, but unlike the “Compute_ROI”, its relative
weight is due to the high number of function calls (7 per image). Apart from these
two functions, no other function has a significant weight on the execution time on
its own.

22

Chapter 4

RetScan revisited

4.1 Critical analysis

RetScan is a freeware version of the original code and has no limitations asso-
ciated with a proprietary product. RetScan can be used and distributed without
cost, and because a C compilers exists for nearly any hardware, its deployment is
only dependent on the limitations of the OpenCV library, which currently is re-
stricted to Windows, Linux, MacOS, iOS and Android. RetScan is still not ready
for deployment, because of its optic disc detection capabilities are still unreliable,
50.5% change of a successful detection is still far from the required. The RetScan
requires an adjustment in its parameters, in order to be a reliable optic disc and
fovea detection utility. With a successful calibration of its parameters, RetScan
would be a good replacement of its original code, as its performance is indisputably
better. RetScan is fourteen times faster than the original code, retaining the same
functionality.

4.2 Improvements

Assuming that a calibrated RetScan, with its parameters perfectly adjusted to
the new functions of OpenCV and its slightly different colour treatment, there are
still areas where the methodology can be improved. The original code has roughly a
90% success rate, but that success rate can still be improved. Also, the pre-Hough
transform preparation of the image seems too complicated with some techniques
redoing, or destroying some of the work done by others, and a simpler approach
might achieve a similar result with a lighter computational load.

23

4 – RetScan revisited

Figure 4.1. The enhanced vessel extraction image (left), and the computed ROI (right)

4.2.1 Functional improvements
In the original code, most of this methodology failures to detect the optic disc,

and consequently the fovea, are due to the miscalculation of the optic disc ROI.
These are the cases where the “clean_sobels” either eliminates too many pixels or
too few.

The blood vessels enter the eye from a single point (optic disc) and tend to
spread in an hyperbolic manner, in such a way that the fovea will be located in a
area without any blood vessels. This behaviour displayed by the blood vessels can
be used to determine the optic disc, as shown by Forracchia et al.[4], Tobin[8] and
Sinthanayothin et al.[2]. All these works use the behaviour of the blood vessels as
a way to detect the optic disc, but they use several steps with some computational
load to achieve it. In RetScan a lightweight method to pinpoint the approximate
location of the optic disc might be more appropriate, and to that affect, the vessel
trace can be used.

Since the hyperbolic shape of the blood vessels, the blood vessels will be more
concentrated near the vertical axis passing through the optic disc, which allows for
an horizontal localization of the optic disc. Retinography protocol dictates that the
optic disc should be located in the horizontal axis of the image[1], which allows for
a vertical localization.

The vessel trace can be produced using the greyscale image of the eye, applying
a large median filter and subtracting it from the original image. This vessel trace
has mostly dark tones, therefore using a contrast enhancement function improves
its quality. The horizontal position can be determined using a rectangular shape,
where the vertical size is larger than the horizontal one. Despite the fact that the
protocol dictates that the optic disc should be in the horizontal axis, the optic disc
position in the retinographies is not always compliant, but seldom strays more than
a quarter of the eye size distance.

24

4.2 – Improvements

Impact analysis

This improvement provides a perfect optic disc ROI determination for the 200
retinographies analysed, completely solving the issue of bad ROI, compromising the
results.

4.2.2 Performance improvements

Figure 4.2. The red (left) and green (centre left) colour channels of the ROI
image, the fused channels image (centre), the result of the threshold (centre
right) and the detected circle (right).

The optic disc is the brightest spot in the retinography, and therefore should
also be the spot with the highest channel colour contributions. Discarding pixels
with low luminosity in the optic disc ROI, and keeping the brighter ones, allows for
a quick way to reduce the number of possible locations for the optic disc.

This selection is calculated using only the red and green channels in the ROI.
The blue channel is discarded because the optic disc is mostly yellow, but in some
images it can present itself as mostly red. Because of this colour fluctuations of the
optic disc, both colour channels have their contrasts enhanced. A binarized image
is produced by selecting the pixels that have a combined colour contribution (red +
green) above 200.

Impact analysis

This approach has less computational load than the original, thus improves the
performance of RetScan, but also increases the number of pixels that are analysed
by the Hough transform. This generates more detected circles, and in some cases,
because of blood vessel interference, a smaller (wrong) circle is selected.

To avoid this problem, a separate circle selection criteria was introduced. This
criteria is the number of (white) pixels included in each detected circle. This removes

25

4 – RetScan revisited

Figure 4.3. An example of an inaccurate detection due to the interference of blood
vessels: the fused channel image, the result of thresholding, the detected circle and
the detected circle in the eye (from left to right).

the problem of selecting a smaller circle, but introduces other errors, as pixels from
outside the optic that were not removed in the first step can form a circle big enough
to include all pixels in the image. This problem occurs less frequently, but a different
criteria could be more effective.

Figure 4.4. An example of the number of pixels in a circle can lead to a erroneous
detection: the fused channel image, the result of thresholding, the detected circle
and the detected circle in the eye (from left to right).

Despite adding a circle selection criteria after the Hough transform, this method-
ology still has a better performance than the original one. In fact, this new method-
ology can process two hundred retinographies in 22.2 seconds, an average of 111
milliseconds per image.

26

4.3 – Parallelizing the code

This improved version of RetScan, or RetScan 2.0, also has an improved detection
success rate compared to the first implementation. While the first version had a
50.5% success rate, this version has a 71% success rate for the analysed images,
which despite being a significant improvement from the first version is still below
the MATLAB version.

Figure 4.5. A comparison between the average executing times of each main
functional block in RetScan v1.0 and 2.0

RetScan 2.0 is much faster than its first version, and fig. 4.5 shows the impact
of the changes made to the methodology.

4.3 Parallelizing the code
In recent years, the CPU architecture has evolved from a single processing unit

(core), to several independent cores integrated in a single chip. Before the introduc-
tion of the multi-core architecture, each new generation of CPU’s were faster than
previous, but since then speed of the processing units has become stable, the focus
has been in increasing the number of these processing units. To take advantage of

27

4 – RetScan revisited

the current generation of processors, every program must move from the sequential
execution model towards the multi-thread environment.

A Graphics Processing Unit (GPU), as the name suggests, is an integrated cir-
cuit specialized in rendering graphics. It became popular in the mid-nineties with
the appearance of 3D games and most computers currently have a dedicated card.
Fuelled by an increasingly relevant video game industry, the GPUs have grown in
computational power and currently a high-end graphics card has a peak perfor-
mance well above of any CPU. Originally, their functionality were mainly texture
mapping and rendering polygons, but later became able to do geometric transfor-
mations. Programming for GPU’s started with the introduction of shaders, which
allowed for custom texture, lighting and geometric transformations to be used. To-
day, GPUs are open to general purpose computing, with programming languages
such as CUDA, OpenCL1.

To efficiently parallelize code, one must consider the two criterion to judge per-
formance: time-to-solution and throughput. Time-to-solution is the traditional form
of performance analysis. It is the time it takes the code to produce results of a single
input; therefore, the lower the latency the better. Throughput is how many results
can be produced within a certain time frame; thus, higher throughput means better
performance. RetScan will be deployed in screening centres and in software aimed
at supporting ophthalmologists, optometrists and opticians in their analysis of indi-
vidual patients. In the first case, a large number of retinographies are analysed and
classified. In this case, high throughput is paramount, RetScan should be focused in
analysing a high number of retinographies and producing a constant flow of results.
In the context of analysing the retinographies of a single patient, time-to-solution
gains more importance as diagnosis decisions should be fast.

4.3.1 In a multi-core environment

A multi-core environment is a system with several independent processing units
(cores) and its memory uses the shared memory model. In this memory model
care must be taken regarding cache coherence: if a core updates a value in its
cache, the other cores are aware and able to obtain its new value immediately. This
model can have a UMA or NUMA memory access. There are several tools available
to implement code in a multi-core environment, such as OpenMP 2, TBB 3 and

1OpenCL: Open Computing Language; http://www.khronos.org/opencl/
2OpenMP: Open Multiprocessing API http://openmp.org/wp/
3TBB:Intel Threading Building Blocks;http://threadingbuildingblocks.org/

28

http://www.khronos.org/opencl/
http://openmp.org/wp/
http://threadingbuildingblocks.org/

4.3 – Parallelizing the code

Figure 4.6. A diagram of RetScan 2.0 functionalities. Each arrow represents data
dependencies and its width the amount of data required.

Pthreads 4.
OpenMP is an API that offers support for multi-platform shared memory multi-

processing programming in C/C++ and Fortran, and it consists in a set of compiler
directives, environment variables and a few library routines. OpenMP is easy to use
due to its compiler directives, most of the parallelism is implicit and requires little
changes to the sequential code to explore shared memory parallelism.

Optimizing throughput

Since the analysis of each image is an isolated event, i.e. the results of analysing
one image does not influence the results of another, the analysis of several images
is an embarrassingly parallel problem. These problems are the easiest to maximize
their throughput, and the best solution is to treat every image as an isolated action

4Pthreads: POSIX Threads API; The standard, POSIX.1c, Threads extensions (IEEE Std
1003.1c-1995)

29

4 – RetScan revisited

and distribute them between the available processing units. Furthermore, because
the process of detecting the optic disc and the fovea has a stable behaviour with
all images, and the available processing units are homogeneous, the images can be
statically distributed between the cores evenly available without it being detrimental
to performance. However, the image distributed is not explicitly defined because the
tools used in this work have schedulers that can dynamically adapt to changes in
the load balance between cores in an efficient manner.

A different machine was used to run the parellelization tests, this machine has
two Intel Xeons E5645 (hexa-core processor with hyper-threading) @ 2.4 GHz with
32Kb of Instruction cache, 32Kb of data caches and 256Kb of L2 cache per core, a
shared 12 Mb L3 cache and 12 GB DDR3 RAM. The machine also has a NVidia
GTX 580 graphics card. It is running Fedora 15 with 2.6.43 64 bits linux kernel,
has GCC 4.6.3 and CUDA toolkit 5.0 beta.

Figure 4.7. A comparison between the sequential version and the OpenMP
version optimized for throughput

The OpenMP version completes the process of 2000 images under 17 seconds,
which corresponds to a speedup of 16 compared to the sequential version. Despite

30

4.3 – Parallelizing the code

these good results, the performance is still hindered by the concurrency control of
writing the results to a single file.

Reducing the latency

RetScan 2.0 has a methodology with reduced inherent parallelism, at any given
point in the execution, no more than 2 functions can be run in parallel due to data
dependencies, which limits the approach of reducing latency by distributing the
functionalities between the different cores. The other alternative is to parallelize its
functionalities.

Figure 4.8. The execution time of RetScan 2.0 functionalities

The code profile indicates that the heaviest functionality in RetScan is “Compute
ROI”, which is responsible for 23% of the execution time (fig. 4.8), should be the
first candidate for parallelization. “Compute ROI” is the last step in determining
which region of the eye is most likely to contain the optic disc. Its process basically
sums the values of pixels within each region and then finds the region with the
greatest sum. The parallelization of this function was implemented in two stages,
the sums of each region are parallelized as if they are were completely independent,

31

4 – RetScan revisited

i.e., each sum is considered an embarrassingly parallel operation and distributed
by the available threads, afterwards the greatest sum is found using the reduction
primitives available by the tools.

#Images Sequential OpenMP
1 0.141 0,107
200 26,506 20,674
500 66,504 51,611
1000 132,785 103,116
1500 199,474 154,713
2000 265,773 206,296

Table 4.1. A performance comparison between the sequential version and the
OpenMP version. Time is measured in seconds

In table 4.1 are the results of processing 1, 200, 500, 1000, 1500 and 2000 images
using the sequential and the OpenMP version of the “Compute ROI” function.
The theoretical maximum speedup obtained by parallelizing the “Compute ROI”
function, which is responsible for 23% of the execution time, assuming a perfect
parallelization (without communication costs and reducing the funstions running
time to 0), is 1.3, as Amdahl’s Law states. The OpenMP version has a speedup of
1.28, which is a small improvement in latency, but near the theoretical maximum
speedup. Despite achieving a good speedup, this version has a low efficiency because
the computational resources increased 24 times but the speedup is only of 1.28.

4.3.2 With a CUDA-enabled accelerator
Compute Unified Device Architecture or CUDA is a parallel computing architec-

ture model developed by Nvidia. This new model has its own programming language
called C for CUDA, which is a version of the C language with some extensions and
restrictions. C for CUDA is a language developed to facilitate general purpose com-
puting in GPUs (GPGPU). These devices are more powerful than CPU’s, and excel
when executing large, regular and embarrassingly parallel problems.

The GPUs are connected to the motherboard through PCIe5 slots, and as a
consequence, the memory transfers between CPU and GPU usually having a big
latency but offering a good data throughput. This limitation should be considered
when programming for these machines, by avoiding small data transfers that suffer
from the high latency but do not take advance of the high throughput connection.

5PCI Express: Peripheral Component Interconnect Express

32

4.3 – Parallelizing the code

The OpenCV library has a small port to CUDA-enabled devices, which does
not include all the functions required to port the RetScan methodology to these
accelerators, such as GPUs. Due to time restrictions only the “Compute ROI”
function was implemented in this environment. This limits the parallelization effort
to a latency reduction approach, and therefore the function calls to the GPU between
different images are not streamed. “Compute ROI”, uses a single channel image of
the eye, which is roughly 300Kb. This is a small data transfer and the high latency
penalty should be a major factor in the performance.

#Images Sequential OpenMP Cuda
1 0.141 0,107 4,671
200 26,506 20,674 25,124
500 66,504 51,611 55,824
1000 132,785 103,116 107,274
1500 199,474 154,713 158,407
2000 265,773 206,296 210,793

Table 4.2. A performance comparison between the sequential version, the
OpenMP and the Cuda version. Time is measured in seconds

The OpenCV GPU port has great initialization cost, and the first function call of
each run takes approximately 4.5 seconds (Table 4.2). Excluding this initialization
cost and the first image, this version also achieves a speedup of 1.28 compared to the
sequential version. These results are surprising, as the data transfers were expected
to severely hinder the performance of this version.

When the images are distributed through the cores using the GPU version of
this function the results are similar, from which we can conclude that the GPU is
still not operating at the maximum of its capacities even when 24 threads are using
it.

33

4 – RetScan revisited

34

Chapter 5

Conclusion

5.1 Critical Overview
The lack of information about the changes made to the original code after the

documented work of Pinão, was the first obstacle to overcome. This lack of infor-
mation forced a complete code check of the supplied code to verify what was, and
was not changed. The slight differences in implementation of image processing tech-
niques between MATLAB and OpenCV also forced some extensive debugging. This
methodology applies several image filter in succession and an image could behave
very differently in the pixel selection steps calibrated with heuristic parameters.
RetScan does offer the functionalities the original code provided, with a greatly in-
creased performance, and is in agreement with the established goals. The RetScan
(1.0 and 2.0 version) has a low detection success rate and is still not ready for deploy-
ment; also the heuristic parameters need to be revised and tweaked, and a different
circle selection criteria is needed.

The parallelization effort in a multi-core environment has returned good results,
the throughput oriented version has a good speedup, and the results of parallelizing
the “Compute ROI” is close to the theoretical maximum speedup. Despite the
good parallelization of “Compute ROI” the overall performance of only parallelizing
that function is hindered by the fact that the function has a a small weight in the
execution time. The GPU version of the the “Compute ROI” also achieved a good
speed up, which was an unexpected result due to the relative small size of the images
and the cost of memory transfers to the GPU.

5.2 Future Work
This dissertation completed all the goals it aimed, but there are still areas where

RetScan can, and need, to improve.

35

5 – Conclusion

The detection success rate still requires work before it is ready for real world
cases. Fine tuning the heuristic parameters used and a better circle selection cri-
teria can be applied to improve the results in both version of the methodology. A
circle selection criteria that besides counting the number of pixels also looks at the
number pixels that form the circle boundary might be a good improvement. The
parallelization effort focused on optimizing the throughput can benefit from a reduc-
ing the number of synchronization points. In its current version every thread writes
the results in the same file, having separate files for each thread and only fusing
them after all images have been processed reduces the number of times when con-
currency control is required. In the effort to reduce latency, extending the number
of parallelized functions, can improve its performance even further. The OpenCV
GPU is a library with high initialization costs, this penalty can be minimized if the
GPU computational load increases by coding more functions that use the GPU.

36

Bibliography

[1] Centers for Disease Control and Prevention. Fun-
dus Photography for Health Technicians Manual, 1989.
http://www.cdc.gov/nchs/data/nhanes/nhanes3/cdrom/nchs/manuals/fundus.pdf.

[2] Helen L Cook Chanjira Sinthanayothin, James F Boyce and Thomas H
Williamson. Automated localisation of the optic disc, fovea, and retinal blood
vessels from digital colour fundus images. Br J Ophthalmol, 83(8):902–910,
1999.

[3] Daniel D. Chiras. Human Biology. Jones & Bartlett Learning, 7th edition,
2011.

[4] M. Foracchia, E. Grisan, and A. Ruggeri. Detection of optic disc in retinal
images by means of a geometrical model of vessel structure. Medical Imaging,
IEEE Transactions on, 23(10):1189 –1195, 2004.

[5] Rafael C. Gonzalez and Richard E. Woods. Digital Image Processing. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2nd edition, 2001.

[6] José Pinão and Carlos Manta Oliveira. Fovea and optic disc detection in retinal
images with visible lesions. In LuisM. Camarinha-Matos, Ehsan Shahamatnia,
and Gonçalo Nunes, editors, Technological Innovation for Value Creation, vol-
ume 372 of IFIP Advances in Information and Communication Technology,
pages 543–552. Springer Berlin Heidelberg, 2012.

[7] José Manuel Neves Pinão. Fovea and optic disk detection and key performance
indicators process automation. Master’s thesis, University of Coimbra, Palácio
dos Grilos, Rua da Ilha, 3000-214 Coimbra, Portugal, 2011.

[8] Kenneth W. Tobin. Detection of anatomic structures in human retinal imagery.
Medical Imaging, IEEE Transactions on, 26(12), 2007.

[9] T. D. Williams and J.M. Wilkinson. Position of the fovea centralis with respect
to the optic nerve head. Optometry and vision science : official publication of
the American Academy of Optometry, 69(5):369–377, 1992.

37

BIBLIOGRAPHY

[10] Huajun Ying and Jyh-Charn Liu. Automated localization of macula-fovea area
on retina images using blood vessel network topology. In Acoustics Speech and
Signal Processing (ICASSP), 2010 IEEE International Conference on, pages
650 –653, march 2010.

38

	Abstract
	Resumo
	Agradecimentos
	Introduction
	Context
	Objectives
	Dissertation structure

	Optic disc and fovea detection
	State of the art
	Image processing techniques
	To detect the optic disc
	To detect the fovea

	Original Code
	Code analysis
	Code profile

	Porting to a freeware environment
	Available environments
	MATLAB vs C/C++
	OpenCV

	Challenges
	RetScan
	Overview
	Experimental Validation
	Performance Analysis

	RetScan revisited
	Critical analysis
	Improvements
	Functional improvements
	Performance improvements

	Parallelizing the code
	In a multi-core environment
	With a CUDA-enabled accelerator

	Conclusion
	Critical Overview
	Future Work

