

Outubro de 2011

Dissertação de Mestrado
Engenharia Informática

Trabalho efectuado sob a orientação do
Professor Doutor João Luís Sobral

Nuno Filipe Monteiro Faria

Locality optimizations on irregular algorithms
and data structures

Acknowledgments

This dissertation would not have been possible without the aid of my parents and my sister,
which have always endured and supported me through my life.

Second, I thank my advisor, Professor João Lúıs Sobral, for giving me the opportunity to
join him and his team in research, for fostering my critical thinking, guiding me and sharing
his experience and wisdom with me. I would also like to thank the professors I found along my
master course for introducing me to the highly motivating theme of high performance comput-
ing, Professor João Lúıs Sobral, Professor Alberto Proença, Professor Rui Ralha and Professor
António Pina.

Last but not least, thank you to all my friends and lab colleagues in university, Roberto
Ribeiro, Rui Silva, Rui Gonçalves, Diogo Mendes, Nuno Silva, for all the brainstorm-ish discus-
sions and opinions that allowed me to improve and push myself further - a few themes presented
in this dissertation were discussed in some of those brainstorms. To my colleagues/room-mates
through my graduate years with whom I shared unforgettable experiences, Nuno Silva, Pedro
Silva, Emanuel Gonçalves, André Félix, Samuel Moreira, Roberto Ribeiro and Pedro Miranda -
I believe I have made friends for life.

Nuno Filipe Monteiro Faria

The project that served as ground for this dissertation was funded under the agreement of the protocol
between FCT and UTAustin

Parallel Programming Refinements for Irregular Applications (UTAustin/CA/0056/2008)

ii

Otimizações de localidade em algoritmos e estruturas de dados
irregulares

Resumo

Estruturas de grafos baseadas em apontadores têm sido amplamente discutidas por várias co-
munidades cient́ıficas que tencionam usar este tipo de estruturas. Muitas destas áreas têm
a necessidade de usar e implementar algoritmos complexos e sofisticados, como por exemplo,
encontrar a árvore de expansão de custo mı́nimo de um grafo. Estes algoritmos têm um com-
portamento t́ıpicamente irregular no que toca aos padrões de acesso à memória. Como tal, o
objectivo é otimizar estas implementações de estruturas de grafos visando aspetos que melhorem
a localidade dos acessos à memória. O impacto da latência de memória tem sido continua-
mente atenuado através do uso de memórias cache nas arquitecturas de computadores atuais
- as técnicas de otimização para estruturas regulares (ex., matrizes) são bem conhecidas neste
âmbito, contudo estruturas irregulares inserem-se numa classe de problemas para os quais ainda
não existem consolidadas representações eficientes.

Nesta dissertação é efetuado um estudo sobre as optimizações posśıveis em algoritmos como
métodos de ordenação heap-sort : são apresentadas uma implementação padrão de um algoritmo
heap-sort e uma versão amigável da cache, originalmente apresentada por Emde Boas. Junta-
mente com os problemas de esforço de memória, existem também os problemas de algoritmos
intensivos em linguagens de alto ńıvel. Frameworks orientadas a objectos são normalmente
baseadas em conceitos, linguagens e mecanismos abstratos de alto-ńıvel, o que pode criar incon-
sistências quando combinadas com aspetos habituais da computação avançada (contiguidade de
elementos em memória, localidade, eliminar a redundância do código-fonte, etc.). Aspetos como
a gestão de objetos em memória (introduzidos por poĺıticas como type-erasure e auto-boxing)
e conceitos abstratos relativamente ao encapsulamento (uso ineficiente de APIs, em conjunto
com mecanismos de tipos genéricos) são identificados como sendo problemáticos na resolução de
sobrecarga e introdução de refinamentos nas implementações. É notada uma clara incompatibil-
idade entre aplicações irregulares intensivas e metodologias object-oriented, nomeadamente em
Java. Otimizações e alterações ao código-fonte são propostas em aplicações que sofrem destas
limitações de desempenho, com o intuito de diminuir a sobrecarga que a abstração introduz nas
implementações. É feito um conjunto de experiências com aplicações intensivas ao ordernar el-
ementos com o heap-sort e com o algoritmo sobre grafos para encontrar a árvore de expansão
de custo mı́nimo, para que se possam introduzir otimizações como novas distribuições de dados
nas estruturas para melhorar os padrões de acesso à memória, mais amigáveis da cache. Padrões
eficientes de acesso à memória é o principal interesse tendo em consideração aspetos sobre a
localidade, quer seja utilizando primitivas eficientes de distribuições de dados em memória, ou
diminuindo a complexidade do código-fonte dos algoritmos e estruturas. As otimizações pro-
postas melhoram o comportamento de cache verificado em versões iniciais, assim como o tempo
de execução. Aspetos baixo-ńıvel como misses nas caches L1 e L2 salientam o carácter amigável
da cache das distribuições de dados e as melhorias no número de misses; os menores misses na
TLB mostram as melhorias na complexidade das implementações.

iii

Locality optimizations on irregular algorithms and data structures

Abstract

Pointer-based graph structures has been discussed by the scientific community that aims to use
such structures on several areas. Many of these areas have the need to implement complex
and, sometimes, extremely sophisticated algorithms, like finding the minimum spanning tree of
a graph. These algorithms are well known for being hard to efficiently execute on current multi-
core machines due to irregular patterns of memory accesses. Thus, the objective is optimizing
the implementation of graph structures aiming for better memory locality. Memory latency
problems have been attenuated by using cache memories in nowadays computer architectures -
the memory optimization techniques for regular data-structures (e.g., matrices) are well known,
as for irregular data-structures insert themselves in areas where efficient representations are not
yet well known.

Optimization algorithms like sorting problems are studied through the use of heap-sort meth-
ods: we present a standard implementation and an optimized version originally presented by van
Emde Boas. Along with the problems of memory straining we refer also to the problems of in-
tensive algorithms in modern high-level languages. Object-oriented frameworks usually operate
with high-level concepts and abstract mechanisms that may not combine well with core features
of high performance computing (element contiguity, locality, eliminating code redundancy, etc.).
We identify aspects like inefficient object-memory management (introduced by type-erasure and
auto-boxing) abstract concepts regarding encapsulation (inefficient API usage alongside with
generic mechanisms) as being problematic issues in the resolution of overheads of data-intensive
algorithms. A mismatch is clearly noticed between irregular data-intensive applications and
object-oriented in Java. We propose a series of optimizations and changes to the source code
of applications that suffer from bottlenecks related to these, in order to demean the setbacks
imposed by abstractions. We perform tests on heap sorting and Prim’s minimal spanning tree
algorithm in order to introduce the improvements made in data layouts optimizing irregular
memory accesses. Efficient memory access patterns are the main concern in this thesis and good
cache locality on modern memory architectures, whether by using efficient sorting techniques
or improving pointer-chasing complexity in algorithms and data structures, are the main goals.
The optimizations proposed are able to decrease the cache misses of applications and, most im-
portant, execution time. We analyse the low-level instruction counts in order to accurately show
that instruction complexity decreases; L1 and L2 cache miss lower counts prove the efficiency of
cache-friendly layouts and show the miss behaviour improvement; TLB low miss counts verify
the improvement in address and memory management.

iv

Contents

Acknowledgments ii

Resumo iii

Abstract iv

List of Figures vii

List of Tables viii

1 Introduction 9
1.1 Data intensive and Irregular applications . 10
1.2 Locality of reference . 11
1.3 Optimizing data layouts . 12

1.3.1 Object-oriented and Memory management 12
1.3.2 Parallelism motivations . 13

1.4 Main goals, Scope and Contributions . 13
1.5 Organization of the Dissertation . 14

2 Background 15
2.1 Cache-aware and cache-oblivious . 15
2.2 Memory models . 15

2.2.1 RAM model . 16
2.2.2 External memory model . 16
2.2.3 Hierarchical memory model . 17
2.2.4 Ideal-cache model . 17
2.2.5 Caches in multi-processor environments 19

2.3 Cache-aware/oblivious sorting . 19
2.3.1 Efficient heap implementations . 19
2.3.2 Cache-efficient heap and priority-queues 21

2.4 Locality optimizations . 23
2.4.1 Algorithmic locality optimizations . 23
2.4.2 Data layout locality optimizations . 25
2.4.3 JVM level optimizations . 27

2.5 Graphs . 28
2.5.1 Existing graph libraries and tools . 28
2.5.2 Development methodologies . 29
2.5.3 Parallel Irregular applications . 30

v

3 Optimizing data structures 34
3.1 Data containers in Object-Oriented frameworks 34

3.1.1 Type erasure in Java collections . 35
3.1.2 Main reasons for overhead . 35

3.2 Sorting . 39
3.2.1 The heap sort problem . 40
3.2.2 Van Emde Boas data layout . 43

3.3 Graphs . 52
3.3.1 Formal graph description . 53
3.3.2 Graph representations . 53
3.3.3 Linked data structures . 54
3.3.4 Minimal Spanning Tree: Prim . 55
3.3.5 Data layout optimizations . 57
3.3.6 Graph pointer-based complexity analysis 58

3.4 Composing implementations . 59
3.4.1 Benchmarks . 62

3.5 Benchmark methodology . 68
3.5.1 Benchmark environment . 68
3.5.2 Hardware performance counters . 68
3.5.3 Profiling with PAPI . 69
3.5.4 Benchmark decisions . 70
3.5.5 Measuring relevant parts of the program 70
3.5.6 Performance measurement metrics model 71

4 Conclusions and Future Work 73
4.1 Summary . 73
4.2 Future work . 74

Bibliography 76

A Sift optimizations in Van Emde Boas-based heap 81

B Tables Appendix 84

vi

List of Figures

1.1 High and low memory levels in memory hierarchy 10

2.1 Matrix loop-tiling scheme . 25
2.2 A Delaunay triangulation in the plane with circumcircles shown [55] 33
2.3 Galois view of DMR problem [36] . 33

3.1 Concepts that led to problems of object-oriented in HPC. 36
3.2 Primitive and generic type array representations in memory 36
3.3 API encapsulation and decapsulation schematic 37
3.4 OO collections and pointer complexity. 38
3.5 A min-heap example . 40
3.6 Inserting a new element (-2) and sifting up . 41
3.7 Removing smallest element (root) and sifting down 41
3.8 A binary heap and its array representation . 42
3.9 Van Emde Boas layout . 44
3.10 The VEB data layout - numbers correspond to array indices 45
3.11 Schematic to explain the traversal details in a binary heap 46
3.12 Schematic to explain the traversal details in a VEB heap with block size of 3 . . 47
3.13 AMAT and instruction counts for heaps . 52
3.14 Collections example . 55
3.15 Graph-Neighbour-Vertex AoP . 57
3.16 Optimized graph representations . 58
3.17 Priority-queue layout changes. 60
3.18 Neighbour API encapsulation and decapsulation schematic 61
3.19 Summarized performance hardware counts of instructions, L1 and L2 access-

es/misses and execution time (the average values for each API implementation
are shown). 63

3.20 Discriminated performance hardware counts for instructions 64
3.21 L1 and L2 cache miss and hit counts (note: logarithmic scale o y-axis). 65
3.22 L1 and L2 miss ratios and rates. 65
3.23 Performance hardware counts of TLB data and instructions misses for all imple-

mentations (note: logarithmic scale on y-axis). 66
3.24 Average memory access time metrics for all implementations. 67
3.25 Schematic for costs between levels in memory hierarchy. 72

vii

List of Tables

3.1 Benchmarks comparing Array-Lists, Linked-Lists and its variants 39
3.2 Benchmarks comparing priority-queues with boxed and unboxed types. 42
3.3 Benchmarks comparing a binary heap implementation to VEB-based heap 49
3.4 Benchmarks comparing binary heap and VEB 3 and 7 versions: no optimizations,

optimized sift-down and optimized sift-down and sift-up operations (d and u in
VEB refer to sift-up and sift-down). 51

3.5 Non Commenting Source Statements average for each API version and average
increase in % for encapsulated and decapsulated APIs for all implementations of
graphs and priority-queues. 62

3.6 Benchmark environment settings. 69
3.7 Considered hardware performance counters pre-set measurement events in PAPI 70
3.8 Average values for memory levels latency and miss penalties. 72

B.1 Hardware performance counters pre-set measurement events in PAPI 87
B.2 Benchmarks combining graph and priority-queue versions (a = ×108; b = ×106) 88

viii

Chapter 1

Introduction

We become what we behold.

We shape our tools and then our tools shape us.

Marshall McLuhan

Several strands in today’s computational science scene use and depend on large scale data

such as molecular dynamics through the form of neighbourhood lists, computational biology, ge-

ographic pin-pointing software (maps are basically processed graphs with pertinent data), etc..

These kinds of applications, holding massive data sets, require capable and large enough mem-

ory systems able to attain a reasonable coefficient between processing phases and I/O phases.

However, since larger memory levels are usually slower there is an inborn memory latency that

impacts program execution. Which is why optimized software solutions that decrease latency

times in I/O phases are extremely welcome. Due to today’s heterogeneity in devices (worksta-

tions, clusters, laptops, phones, tablets, etc.), simply increasing memory characteristics may not

be feasible - it may be expensive, or even physically challenging. Recently, the size of these devices

has been decreasing making cache memories smaller and increasing the need of cache-efficient

applications.

From an architectural point of view, the processor-memory gap has been increasing in modern

architectures composed of efficient and high frequency processors. Processors in modern com-

puter architectures are extremely powerful and can compute data at an intense rate. However

data is not always readily available for processors to access, systems sometimes have to search for

data in memory and this searching operation implies transferring data through a slow bus. Mod-

ern memory architectures are usually a multi-level hierarchy, each level ranging from smallest and

fastest to bigger and slower, in respect to the processing unit. The current memory architectures

are extremely well prepared and the problems caused by memory stalls in an application, where

the application needs to wait for data to be available to be read, are very well thought through.

However, their throughput rate may not attend to current efficiency in processing units (CPUs,

9

1.1 Data intensive and Irregular applications Chapter 1: Introduction

Figure 1.1: High and low memory levels in memory hierarchy

GPUs, etc.) due to their limitations in memory size and bandwidth. Processor-in-memory is a

concept that refers to a processing unit (such as a CPU) tightly coupled with memory modules

in the same chip, in order to reduce memory latency. This has enabled the appearance of cache

memories that are fast memories integrated with the processor to store data that the processor

is likely to use - searching for data elements in higher level1 memory is fast - see Figure 1.1. CPU

cache memories are much faster than, e.g., RAM memories, and when the processor searches for

an element that is in cache this is called a cache-hit, on the other hand, if the element is not in

cache and we have to fetch the data from the original memory device, we call this a cache-miss.

1.1 Data intensive and Irregular applications

A data-intensive application is, as the name implies, an application that needs to perform a

large number of read/write operations from and onto memory in order to be able to proceed.

When dealing with large chunks of data that do not fit into the small-fast memory levels (cache

memory), data is stored in bigger and slower levels. Analysing in a finer grain how data-intensive

applications perform in memory systems, memory stalls are caused by the lack of memory stor-

age space and bandwidth responsible for bringing pertinent in-memory data chunks into close

distance memory of the processing unit, and since pertinent data is not accessible the application

must wait until it is loaded by the memory architecture from bigger-lower levels, stalling program

execution.

Irregular applications are so due to the irregular access patterns performed over memory or,

or due to a random factor that may condition and influence computations - let us focus in irreg-

ular data structures. The irregularity in data structures comes from the seemingly amorphous

representation of data in memory - one cannot predict the memory access patterns as done in,

for instance, a matrix multiplication problem where properties like cache alignment and tiling

are easily predicted and managed to improve performance - the subject of data cache reuse and

its positive impact in performance has been widely studied in [31]. Irregular data structures

1For clarity reasons, smaller/faster levels are considered high level and bigger/slower levels are considered lower

levels in memory hierarchy.

10

1.2 Locality of reference Chapter 1: Introduction

are usually featured by a pointer-chasing nature, which means a data chunk brought into cache

memory (resultant from a load from a memory reference) may not be usable and the system has

to perform a load from higher and more expensive levels. As a visual aid, the reader can imagine

memory accesses jumping back and forth throughout a data structure taking no advantages from

the data bulk loads made into cache memories.

Irregular applications often relate to data intensive applications because they both strain

memory architectures due to their data-dependent nature - an algorithm cannot proceed until

memory data dependencies are resolved and data is loaded by processing units.

1.2 Locality of reference

In this dissertation locality of reference (considered only locality for simplicity) is widely discussed

as being one of the main issues to optimize - locality is related to the storage and loading

processes in memory systems where load operations try to bring pertinent chunks of data into

high-level memory, i.e., the relevant data to an application, thus minimizing the number of data

fetches on slower memory levels. There are two kinds of locality: temporal locality and spatial

locality. Good temporal locality consists of referencing data that will probably be referenced in

the future (a good example of temporal locality is the caching system of browsers, by keeping

the information of the most recent pages visited in memory); for instance, if the time interval in

which the same memory region is accessed twice is a long time interval, it is very likely that the

memory region has already been evicted from cache memory. Good spatial locality occurs when

data is referenced and nearby memory sections become more likely to be referenced in the near

future, avoiding loading memory that is off-chip, i.e., in lower memory levels - a good example of

this are loop reordering optimizations in matrix multiplication problems, mentioned in Section

2.4.1.

The three C’s

Caches memories are defined by three main parameters that drive their basic functioning: total

capacity, block size (or cache line size) and associativity (direct mapped, fully associative or set

associative). An ideal combination of these parameters is hard to find because it deeply relies

on the nature of applications being run. The authors in [22] performed an empirical study by

benchmarking several different caches and distinguished three kinds of misses that might occur:

i. compulsory misses, caused by first reference to a memory region - unavoidable regardless of

associativity and capacity.

ii. capacity misses, caused by the limited cache size solely - cache associativity is not considered.

iii. conflict misses, misses that could be avoided, caused by earlier evictions of pertinent data.

Two sub-types are also considered: mapping misses, cannot be avoided due to particular

cache associativity level, and replacement misses originated by replacement policies.

11

1.3 Optimizing data layouts Chapter 1: Introduction

With the appearance of recent multiprocessor architectures has risen a new C, coherence

misses, where concurrent writes and reads may injure a program’s correctness and performance.

The class of misses studied in this dissertation does not fall directly into any of these categories,

although it is related to each one: pointer-chasing misses can be caused by the first reference to a

memory region (compulsory), that was not loaded due to the sparsity and size of the considered

data (capacity); pointer-misses can also be conflicting in the way that data reuse is hard in

irregular memory access due to the amorphous nature of irregular structures (conflict misses) -

data reuse is hard to predict.

1.3 Optimizing data layouts

As a way of improving memory performance, improving data layout representations in memory

is a good way to achieve better locality in cache memories. Data layouts have impact on cache

performance because they directly affect the memory access patterns for a given dataset, improv-

ing, for instance, cache-hit behaviour by reorganizing data elements for tighter adjacent memory

addresses. Some of the most used data layouts consist in rearranging how elements and/or at-

tributes in a data set are layed out in memory to achieve better alignment and spatial/temporal

locality.

Of course, these optimizations sometimes strongly rely on the destined framework. Object-

oriented frameworks show some possibly troublesome features in the scope of data intensive

and irregular applications. Specifically auto-boxing and encapsulation can stand as a barrier to

performance; some studies were made regarding the core features of data collections and their

representation (layout) in memory in object-oriented environments.

1.3.1 Object-oriented and Memory management

Object-oriented (OO) frameworks appear as an undeniably useful resource providing software

developers flexibility, abstraction and modularity. However, OO languages like Java and C#,

implement virtual machines with their automatic memory management policies (garbage collec-

tion, allocating and freeing allocated memory). The problem with (i) auto-boxing is that it does

not guarantee memory element contiguity in datasets with abstract data types; the problem with

(ii) encapsulation is that it may originate overhead in cross-structure optimizations.

In the specific case of Java, in the Java Virtual Machine (JVM) and its Garbage Collector

(GC) the programmer has little or no control over memory allocation; when writing data intensive

algorithms one must be careful and consider the overhead of generic type mechanisms and its

underlying pointer-resolving overhead in generic collections.

12

1.4 Main goals, Scope and Contributions Chapter 1: Introduction

1.3.2 Parallelism motivations

Part of our interest in optimizing data layouts in irregular applications as also to do with the

scalability problems of irregular data intensive algorithms in modern multi/many-core environ-

ments, in which the problems of irregular accesses are aggravated. Conflict misses are common

in this scope and can be avoided by rearranging the data space distribution for better use of

memory accesses, however coherence problems are strongly related to multi-core environments,

which can be a setback on optimization methodologies applied. Primitives which allow analysing

the regions of data able to be processed in parallel have already began to be considered [36] -

a data-centric view of irregular algorithms, instead of looking at computational dependencies, is

the main analysis. However, parallelism concepts are not considered in the presented work.

1.4 Main goals, Scope and Contributions

Goals

The main goal with this dissertation is to look at problems related to memory inefficiency in irreg-

ular data intensive applications, perform a study on memory locality optimizations by changing

data layout instead of using common loop reordering methodologies. Also, the aim is to study the

impacts of high level object-oriented languages and show that despite the software development

facilities, combining HPC with abstractions may generate undesired overhead. Layout optimiza-

tions come as a suitable way to decrease cache miss counts and increase memory efficiency in

modern multi-level memory architectures. Although abstractions may generate overheads there

are possible solutions to demean them, for instance, improved virtual machine management or

decreasing the complexity of the underlying abstraction layers in between optimized structures.

We aim to present and study data layout arrangements that benefit performance through locality

in overhead-prone environments of object-oriented.

Scope

The subjects in this dissertation are studied regarding locality optimizations, memory access

patterns and pointer resolving complexity decrease. The main themes are:

• Object-oriented programming in scientific data intensive algorithms and related overheads.

• Cache-friendly heap sorting algorithm.

• Linked data structures, which are typically irregular data structures being characterized

by a jump-pointer memory access pattern.

• Graph related algorithms, in the scope of irregular algorithms and data structures, namely

Prim’s Minimal Spanning Tree (MST) graph algorithm.

• Low level benchmark analysis; architectural bottlenecks and improvements.

13

1.5 Organization of the Dissertation Chapter 1: Introduction

Contributions

In-depth analysis of low-level information gathered in a series of benchmarks to instruction

counts, clock cycles, level 1 (L1) and level 2 (L2) cache-hits and misses in typically irregular

algorithms and data structures is provided considering the main problems found in high-level

languages. We point to important cares to take in high performance programming in these

abstraction-based frameworks.

1.5 Organization of the Dissertation

This dissertation is composed of four chapters including the current Chapter 1 and the concluding

Chapter 4. In Chapter 2 is discussed the current state of the art of the theories, methodologies

and technologies applied in the scope of the dissertation.

Chapter 3, Optimizing data structures, embodies the studies made, taken considerations,

work and results. Section 3.1 explains the problems of object-oriented frameworks. Benchmark

and OO considerations have impact on how the case studies for priority-queues and graphs

are contextualized, so these concepts are opportunely recalled in further sections (Sections 3.2

and 3.3). Layout optimizations and API refinement compositions are introduced in Section 3.4.

The benchmarking methodology, so the reader can have a better understanding of the results

presented are discussed and presented in Section 3.5, Benchmark methodology.

In Chapter 4, the concluding remarks are given and future work is proposed.

14

Chapter 2

Background

The goal of this chapter is to discuss the state of the art for models able to represent the I/O

complexity of memories, introducing the concepts of cache aware and cache oblivious as perfor-

mance improvement opportunities, optimizations at JVM level for object-oriented frameworks

and finally a section dedicated to graph related data structures, algorithms and current method-

ologies.

2.1 Cache-aware and cache-oblivious

Cache-aware algorithms are those that work optimally by regulating certain configurations that

have direct impact on cache performance. These configurations must often be tuned for each

platform since they perform better in some architectures than others. One simple example may

be, the block size that many applications use in order to explicitly optimize cache alignment. As

affirmed by Frigo in [20], cache-oblivious algorithms have no notion of specific cache parameters

in order to make a given execution more scalable in a specific memory architecture. A cache-

oblivious (COB) algorithm tends to perform well on any memory hierarchy model. Recent

memory trends have deep variations of details such as the number of levels in its hierarchy or the

memory size of each level, the data block size transferred between each level and associativity

specifications. COB algorithms’ objective is then to ignore the memory specifications and adapt

with some leeway to the memory model the algorithm is running on. Another big advantage

is in its modelling aspect: if we model a COB algorithm according, for instance, to a two-level

memory model, the COB nature will not be lost when applied to hierarchies with more levels.

2.2 Memory models

Computational models are an important mathematical tool used to express the implementation

complexity of an algorithm in a relatively general way, and there are many models available to

15

2.2 Memory models Chapter 2: Background

express the complexity of modern memory systems [51]. Memory models are discussed in some

depth by many authors that aim at cache conscious implementations of data-structures to help

understand how we can consider in computational and abstract terms how to take advantage

from cache memories to maximize cache efficiency (temporal and spatial locality) [47]. The

memory models discussed in some depth are: random access machine model, external-memory

model, hierarchical memory model and the ideal-cache model.

2.2.1 RAM model

A Random Access Machine (RAM) is considered to be a hypothetical computer used to analyse

and measure the running time of an application. The abstract computer considered in this

model has following features : (i) each simple operation takes 1 time step (arithmetic, logical

and jump operations); (ii) loops are not single-step operations given that the code inside a loop

can influence the total program complexity - the complexity of loops depends on the number

of iterations; and lastly, but most importantly, (iii) each memory access takes 1 time-step - the

RAM model does not differentiate any level of memory hierarchy.

The main advantage in this model is its simplicity, however, this fact makes it most of the

times unreliable in practical terms since it may ignore or violate important architecture features

like: multiplication operations can take longer than sum operations; it does not represent modern

memory systems properly not worrying about memory sizes, latencies or cache associativity.

2.2.2 External memory model

Typical external memory algorithms are a well known topic in problems in which data dimensions

overcome the high level memory - the internal memory close to processing units which we consider

to be internal when data is not transferred via slow BUS communication interfaces. External

memory models are also known as disk access models or I/O models. According to Rønn et al.

[47], this model can be seen as two consecutive memory layers communicating with each other:

an internal and an external one. This model considers the following parameters:

• N, number of elements to process

• M, size of internal memory

• B, number of elements that can be transferred in a block, 1 ≤ B ≤ M

• P, number of blocks (B) transferred simultaneously, 1 ≤ P ≤ bM/Bc

One of the disadvantages of this model is that these parameters are specific of each architec-

ture which makes code portability a burden, as most cache-aware implementations are.

16

2.2 Memory models Chapter 2: Background

2.2.3 Hierarchical memory model

The hierarchical model is different from the external memory because it considers several memory

layers, each layer size increases in powers of 2 as it distances itself from the CPU. This model

is not enough regarding some details between memory levels, for instance cache associativity. In

this model each memory access does not take 1 time-step nor a constant time-step: each memory

access depends on a certain function which defines the existing number of memory layers and

the size of each layer, f(i).

2.2.4 Ideal-cache model

Algorithm analysis using this model considers, as in external model, the parameters B, M and

N; the multiple transferring factor P is ignored. The underlying cache-obliviousness gender

of algorithms sprays optimality in memory-bound algorithms considering any two contiguous

memory levels, disregarding any specific architecture detail; also any portability problems raised

by embedding architecture details in the code disappear, since cache-oblivious algorithms are

unaware of B and M parameters.

The ideal-cache model is often referred by many authors as the model to consider for cache-

oblivious algorithms and data structures. The ideal-cache model is a simplification of actual

memory systems. With a number of assumptions made and justified by Frigo et al. [20] and

mentioned in [47], this model can closely relate to modern memory hierarchies. An ideal cache

considers the properties presented in the following assumptions.

Tall cache assumption

The tall cache assumption states that the block size is not greater than the number of blocks,

B ≤ M . A good visual aid for the reader is presented by Olsen et al. [39]: a tall cache is

the opposite of a wide cache, where the block size covers the size of the whole memory level.

According to Brodal, the tall cache assumption is needed to achieve the optimal sorting bound

with the Funnel-Sort algorithm [7]. The tall cache assumption is representative of most memory

architectures in current computers, therefore memory models that assume a tall cache existence

tend to present accurate analysis.

A common cache size assumed by most authors for modern architectures is M = Ω(Bγ+1),

where γ is a constant factor γ > 0, and is usually set to γ = 1 [10, 39, 7], therefore, cache size is

defined by M = Ω(B2).

Optimal replacement assumption

A least-recently-used (LRU) replacement policy is used for cache data replacement, using a FIFO

(first-in/first-out) strategy. According to Sleator, Tarjan [52] and Rønn [47], considering a cache

size of M and a constant factor c > 0, any algorithm will incur in c times more cache misses than

it would have when using an optimal cache with size 1 − 1
c . According to [47], for a constant

17

2.2 Memory models Chapter 2: Background

c = 2, an algorithm that causes 2Q caches misses on an LRU cache (with cache size M, and

block size B), will cause a maximum of Q misses in an optimal cache of size M
2 .

Rønn et al. [47], presented a fairly interesting example for this replacement problem. Before

hand lets clear some necessary concepts for understanding the next presented case:

• BS = block size

• M = memory size

• M
BS

= cache line size

Recurring to the same example in [47], consider a cyclic scan over an array divided in b blocks,

and each block stores #elsb =
M
BS

+ 1 elements; an access to the first element of the first block

will bring into cache a block of M
BS

elements, leaving the last block element out of the loaded

block. Since we consider an LRU policy, when accessing this last element, which is already out

of the cache block, the first accessed element will be discarded (due to LRU eviction), however

since this last element belongs to another block, a cache miss occurs and as a result another

block is discarded - this will cause a cache miss per access until the algorithm is finished.

However, this worse case scenario rarely occurs when dealing with regular complexities, also,

when compared with random data placement policies, the results are similar.

Two memory layers assumption

Since the ideal cache model considers only two memory layers, real and common memory sys-

tems operate with up to five levels, we need to ensure that this model is applicable on such

architectures. Rønn et al. discusses two alternatives to justify the optimality of a two memory

layer:

(i) data in a given memory layer i is also present at layer i + 1, being layer i the closest to

CPU - this is called the inclusion property.

(ii) the inclusion property is maintained in between any two consecutive memory layers for any

sequence of accesses; the data present in a given memory layer i is also present at memory

layer i + 1, given the same memory access patterns. In theory, it is as if layer i works as

the highest level (closest to the CPU) in the memory hierarchy.

Auto-replacement and full associativity assumption

The underlying idea behind auto-replacement is to automatically replace cache blocks in case

of occurrence of cache misses. This is a concept easily understood from a programmer perspec-

tive: hardware processes high-level cache-misses and usually the operating system handles data

transfers in lower levels like RAM or disk.

Full associativity allows for a memory system to choose freely where to store data loaded

into cache levels - this property, although forcing programs to search in more cache memory

addresses, can result in fewer cache misses.

18

2.3 Cache-aware/oblivious sorting Chapter 2: Background

2.2.5 Caches in multi-processor environments

Although we do not attend the problems of parallelism in this dissertation, it is important to note

that cache systems in current parallel architectures may implement a series of features that may

revolutionize more traditional approaches to cache efficiency: inclusive and exclusive caches. In

inclusive cache environments if a chunk data is present in L1 cache it is forced to be present in

deeper cache levels as well. This assumption is made for the ideal cache memory model presented

in this chapter.

The appearance of exclusive caches goes against the assumptions made in the presented

models - inclusion is expected for all considered memory levels. Multi-core processors like AMD

OpteronTMmaintain the coherence of data between several cores by sharing a cache that serves

all cores in the process of fetching data from non-cache levels [24, 1, 12]. L2 and L3 caches

are exclusive to each core, in order to reduce the costs of synchronization between core-specific

caches. In these cases, L2 and L3 caches work as victim-caches (holding data evicted from L1

cache), and all data fetches are directly aimed at L1 cache, skipping L2 and L3 that might have

been causing coherence problems, or overhead-ish operations to avoid them.

Nevertheless, we initially assume for all models and analysis made in the dissertation, the

inclusion property in multi-level cache systems.

2.3 Cache-aware/oblivious sorting

Sorting algorithms restrain memory architectures - we can look at different optimization scopes

depending on its intended usage and data-type to sort: (i) optimization from a complexity

optimization point-of-view or (ii) from a memory performance point-of-view.

Many authors provide several sorting primitives and alternatives to traditional sorting prim-

itives, being the most popular cache-aware/oblivious variants of sorting primitives like heap-sort

[49]: Distribution-Heap [3], Funnel-Heap [8], etc. One of the most interesting cache-oblivious

implementations is the one proposed by van Emde Boas [15]. But before jumping into the cache

oblivious/aware studies we study sorting implementations that do not concern about cache effi-

ciency - some examples are: Fibonacci-Heap [19], Pairing-Heap [18], Violation-Heap [14].

In this section we provide an overview of the studies made around the efficient priority-queue

(PQ) and heap implementations.

2.3.1 Efficient heap implementations

A sorting algorithm may apply various techniques, such as divide-and-conquer - let us focus

on heap-sort techniques. A heap is a tree-based data structure that obeys the heap property

(Definition 1). Many authors studied and developed efficient structures in this area, some of

which are explained with some detail and discuss the main advantages/disadvantages between

them.

19

2.3 Cache-aware/oblivious sorting Chapter 2: Background

Definition 1. Heap property - the key of a child node must be higher or equal than the key of

its parent (this can vary whether we consider a min-heap or a max-heap; in our case we consider

a min-heap).

Fibonacci-Heap

A Fibonacci-heap, developed by [19] is a binomial heap that follows a specific set of rules. A

binomial heap may be composed of several binomial trees. The order k of a binomial-tree1 inside

a binomial heap can vary; if it has order k = 0 the tree is composed of a single node; if not,

the binomial tree with order k has a root with k children, each of order corresponding to the set

represented in equation 2.1, i.e., the order of each child would be [k − 1, k − 2, . . . , k − k].

{k − i}, i ∈ [1, 2, . . . , k] (2.1)

Binomial-heaps obey the heap property (Definition 1) and several other properties not con-

sidered here.

The Fibonacci-Heap data structure is a linked-list where each node stores pointers to four

other nodes: parent, left and right sibling, and one of its children - the structure does not need

to point out all children because that is implicit by making the linked-list circular. The main

aspect to take into account here is optimizing operational complexity. The most commonly

found operations in heaps are: insert, find-min, delete, delete-min (a combination of find-min

and delete) and update-key (with the variations increase-key or decrease-key). For the Fibonacci-

Heap, having a full understanding of how these operations work may be complicated, so we first

provide an explanation of the main intention grounded to this heap.

Underlying idea in Fibonacci-Heaps and Amortized analysis

The Fibonacci-Heap’s main feature is the amortized bound costs in operations delete and decrease-

key. Amortized analysis2 is focused on analysing an algorithm basing judgements in not only the

immediate results but also in longer-term results that are based in a sequence of operations. The

underlying idea is to ”delay” work for later operations that will do it in less asymptotic time that

it would if it had been done in a single operation. In this Fibonacci-Heap case, amortized analysis

comes in, for instance, in delete-min operation: the work related to obeying the heap-property

after each operation is successively delayed to later operations - even though we do not know the

absolute correct position of every element in the heap, we know what is the minimum/maximum.

The insert operation takes constant time O(1); decrease-key takes amortized cost O*(k), where

k is a constant therefore O*(1); delete-min takes O(log n).

1For clarity and simplicity we may sometimes refer to a binomial tree with order k has Bk
2For simplicity, when referring to amortized costs in Big-O-notation we will add a ”*” character.

20

2.3 Cache-aware/oblivious sorting Chapter 2: Background

Pairing-Heap

Pairing-Heaps were introduced in [18], and studied further in [53, 17, 42]. This heap is a multi-

way heap ordered tree which is based also in amortize-bounded operations and it has better

practical results when compared to other heaps such as Fibonacci-Heaps. The data structure

used for this implementation is in general terms a pair composed by a root element and a possibly

empty list of pairing sub-heaps. The heap property presented in Definition 1 is also present: all

sub-heap roots must not be smaller than the root element.

Underlying idea in Pairing-Heaps

The heap property is maintained with delete-min operation which consists in two phases im-

plicitly made by recursive calls (first phase) and their corresponding backward steps (second

phase):

(i) a left-to-right pass, merging pairs of sub-heaps together (thus its designation),

(ii) and a right-to-left pass, merging the resulting list of sub-heaps.

Insert operation runs in asymptotic time of O(1); delete-min takes O(log n); and the merge

operation takes O(1).

2.3.2 Cache-efficient heap and priority-queues

From this scope we now take a look at the memory behaviour of cache-efficient heaps instead of

just relying in complexity analysis and operational optimization. The heaps mentioned further

also consider the memory models (see Section 2.2) and the analysis is done based on these.

The cache oblivious nature of algorithms in this section is crucial for the good results that

have been achieved in most recent research material. Data structure engineering has a higher

importance in cache-aware/oblivious - these may directly influence the performance of a given

algorithm because memory issues such as cache alignment, cache replacement policies or size

assumptions play an important role.

Funnel-Heap

The Funnel-heap, introduced as a priority-queue in [8], is based on binary-merging of values

present in buffers existing in a queue. The data structure is simple and easily imagined as a binary

tree of buffers and binary mergers, the two main elements for this priority-queue structure. This

algorithm is a variant of merge-sort (divide-and-conquer paradigm) [11] and was based on funnel-

sort [20]. The data structure presented in [20] has a good memory behaviour for its operations;

the insert and delete-min consider a tall-cache (see Section 2.2.4) and have an amortized I/O

cost per operation of O(1
B logM/B

N
B).

21

2.3 Cache-aware/oblivious sorting Chapter 2: Background

Distribution-Heap

The cache-oblivious PQ implementation presented in [3, 39] is partitioned by levels, each of which

has buffers with sizes depending on the level its in. The authors of [3] divided their structure

explanation in three parts: levels, buffers and data layout.

This structure consists of Θ(log(log(N))) levels that can extend from size N to a constant

c. The ith level has size N (2
3)

i−1

therefore level sizes would be the following: N , N
2
3 , N

4
9 , ..., c.

Elements are stored in buffers from each level that do not only store elements but are also used

to pass elements up and down the structure levels. The number and sizes of such buffers are, for

level X :

• one up buffer uX , with a maximum size of X elements,

• and at most X
1
3 down buffers, each with maximum size between 1

2X
2
3 and 2X

2
3 elements.

There are invariants defined by the authors to ensure the correctness of this heap throughout

these various levels:

Invariant 1. The down buffers in level X are sorted externally, but their internal elements may

not be sorted.

Invariant 2. At level X, the elements in down buffers have smaller keys in up buffers.

Invariant 3. The down-buffer elements of level X have smaller keys than down buffer elements

of the next higher level X
3
2 .

Up buffers store elements on their way up the heap; as for down buffers store elements on

their way down the heap. The single-element insert and delete-min operations are not directly

implemented. The operations that insert and remove elements from this heap are push and pull,

which insert and remove a stream of elements (respectively) into/from a given level. In [39] the

author implemented the single-element operations creating auxiliary insertion/extraction buffers.

Cache-oblivious B-Tree

A B-tree [5] with a block size B (according to memory parameters) gets to an optimal search

bound of O(1 + logB+1(N)) and allows insertions, removals, updates in amortized logarithmic

asymptotic time. It is basically a regular binary tree data structure with the possibility of storing

several elements per node as well as having several children. The cache oblivious B-tree developed

in [5] uses the van Emde Boas layout [15], not the data structure itself, only the data layout.

The objective was to create a multi-level structure that behaved well in more than two memory

levels as well as consider several sizes for transfer blocks. As explained in [15] the van Emde

Boas layout is a recursive data layout that allows for spatial locality benefits, which allied to the

characteristics of B-trees and good asymptotic times the authors proved to have near-optimal

efficiency on any multi-level memory architecture.

22

2.4 Locality optimizations Chapter 2: Background

In order to maintain locality of reference, the authors in [5] developed the tree to be strongly

weight-balanced and to do so they considered the following properties:

(i) Descendent amortization - under the assumption of whenever a node is rebalanced, their

descendants are all touched ; the amortized number of elements per insertion is O(log N)

(ii) Strong weight balance - for some constant d, every node at a given height h has Θ(dh).

One of the main concerns in this research was the inefficient usage of memory space due to

the strong weight balance property: it makes the PQ waste array storage space creating unused

wholes in the B-tree data structure, therefore a packed-memory array is considered in their work.

2.4 Locality optimizations

In a general way, applications have been optimized regarding locality of reference through the use

of two methodologies: (i) changing the order of nested loops [34, 2, 21] and (ii) through the use

of data space transformations (changing array layouts) [25, 2, 33, 9]. One of the main concerns

in parallel computing is, precisely, locality of reference. Locality optimizations allow for multi-

processor architecture to make better use of data distribution. As stated in the early research

in [2], in order to increase locality, skilled programmers manually altered data structure and

algorithm specifications. An effort is clearly made to make compilers automatically generate such

optimizations, specially in multi-processor environments where the performance gains are scalable

[2]. For instance, the data layout of a parallel application through several processors can be

optimized by automatically assigning memory regions to specific processing units (or the opposite,

processing units to memory regions) in order to increase memory coalescing and decrease inter-

processor data communication and synchronization [25, 2] (which results in unwanted latency).

This is broadly explored by reordering nested loops to alter the access patterns for each (possibly

parallel) iteration, basically to assign to each iteration work that operates in contiguous or the

same memory addresses. However, problems like legality and data correctness of algorithms may

not always allow loop reordering techniques. Data space transformations do not interfere with

the specifications of an algorithm, however they can limit an application: if a data structure is

transformed, all accesses to that structure must be revised; as for loop reordering, only the loop

in question is affected [2]. In modern object-oriented frameworks, accesses to structures can be

abstracted, however such abstractions are prone to overheads.

2.4.1 Algorithmic locality optimizations

Optimizing locality can go through changing the access patterns of the computations. Since

loop-based applications are more susceptible to locality optimizations, changing the order and

the amount of accessed data at different iterations can greatly improve performance.

23

2.4 Locality optimizations Chapter 2: Background

Loop reordering

This optimization consists in inter-changing and interfering with the order of the loops to change

the access patterns of the computations applied in the data structure. Another common consid-

eration is to improve register usage, i.e., prevent unnecessary slow memory accesses if the value

can be stored in fast memory, through the use of temporary variables [56]. Changing the order

of loops can greatly improve the efficiency of memory accesses - spatial locality is improved -

see Listings 2.1 and 2.2, which show a matrix multiplication algorithm. The improvement is

in the order of access to rows and columns: the optimized version iterates through the second

(B) matrix in a raster manner (row-major), which for row-major languages 3 means good cache

alignment and spatial locality improvement, since the loaded row from B will be used, instead

of the column from B - this means that each resulting matrix (M) element is not fully computed

at each iteration, instead it is successively computed to take advantage of row-major accesses in

matrix B.

Listing 2.1: Regular matrix multiplication implementation

1 for i = 1 to N

2 for j = 1 to N

3 for k = 1 to N

4 M[i , k] += A[i , j] ∗ B[j , k]

Listing 2.2: Matrix multiplication implementation with loop-reordering

1 for i = 1 to N

2 for k = 1 to N

3 for j = 1 to N

4 M[i , k] += A[i , j] ∗ B[j , k]

Loop tiling

Loop tiling (or blocking) consists in considering blocked versions of a given loop-based application

that uses nested loops, in order to improve aspects like cache alignment and data reuse (through

the form of temporal locality) and loading of pertinent adjacent memory (spatial locality). This

form of optimization has been studied also as a way to identify independent data chunks and

uncover parallelism [57, 56]. Tiling reduces the number of loads from lower memory levels, by

taking advantage of the data already present in cache.

Listing 2.3: Matrix multiplication implementation with loop-tiling

1 for i i = 1 to N step s

2 for j j = 1 to N step s

3 for i = 1 to N

4 for j = i i to min (i i + s − 1 , N)

5 for k = j j to min (j j + s − 1 , N)

6 M[i , k] += A[i , j] ∗ B[j , k]

3The majority of languages operate on memories in a row-major manner.

24

2.4 Locality optimizations Chapter 2: Background

The main aspect optimized in tiled matrix multiplication algorithm in Listing 2.3 is temporal

locality: the values that have already been accessed and computed, and will be needed for future

computations are reused in inner loops. Ideally, the blocks implicitly created by partitioning

computations correspond to blocks that fully fit in cache. A scheme of loop-tiling is shown in

Figure 2.1 for multiplying matrices A and B, resulting in matrix M.

Figure 2.1: Matrix loop-tiling scheme

2.4.2 Data layout locality optimizations

The previous optimizations only interfere with the algorithmic part of a program - it is basically

adapting an algorithm to the data structure by performing the necessary actions to better suit

the algorithm to the data structure and hardware specifications. Data layout optimizations refer

to an alternative concept which is interfering with the data layout of the considered structure

and make the necessary data arrangements in memory in order to improve the access patterns

performed by a given algorithm.

Tiling and recursive layouts

Tiling is a data rearrangement technique used to improve the cache efficiency by explicitly place

elements in memory in such a way that cache accesses are maximized [45, 40, 15]. In [15] a

recursive layout is defined for the tree in a heap-sort implementation: this layout consists in

storing down-going children tree elements in adjacent memory regions so that memory accesses

converge to the same memory regions. This kind of optimizations (data layout optimizations)

relies mostly on the improvement of spatial locality - the arrangement of elements in contiguous

memory addresses.

Inlining and marshalling layouts

Inline allocation of data structures consists in optimizing spatial locality by eliminating one level

of indirection in pointer-chasing structures: the referenced data is brought into close memory

25

2.4 Locality optimizations Chapter 2: Background

of the reference to avoid wholes in memory (preserving semantic order). This optimization is

possible to be applied in compilers and object-oriented frameworks - where usually objects are

considered memory references. This optimization gender has positive impact in data intensive

applications where collections of objects are used. Many compilers and, in the case of object-

oriented, garbage collectors, apply similar policies to eliminate some level of indirection between

pointers and data, resulting in lower pointer dereference costs. For instance, object-online re-

ordering in Jikes [23] increases spatial locality by performing compile-time analysis, adaptive

sampling and object traversal in garbage collecting phases: it finds the hot spots (fields and

methods) in an application and rearranges them in memory for improved spatial locality.

Marshalling may be perceived as the process of serialization, however backed by a different

concept: if data is present in a pointer-chasing collection is sparsely layed out in memory, the

process of marshalling compacts data elements together, not considering any specific order except

that of the original order of the elements - this concept is used for example in computer com-

munication policies to decrease the storage space of structures, but can also be used to influence

data layout and access patterns.

Studies on the latency impact of data-intensive applications on modern memory architectures

have been made in [4] - the authors study three kinds of memory access patterns and offer

some views over software pre-fetching and locality optimizations. Both sides are singly analysed

warning to the value of latency tolerance and latency reduction for software pre-fetching and

locality optimizations respectively. According to their study, locality optimizations show better

latency behaviour than software pre-fetching in low memory bandwidths, and the opposite for

high memory bandwidths. The work at [4] denotes three specific types of structures that provide

different approaches on memory access patterns: affine array accesses, indexed array accesses

and pointer-chasing accesses.

Affine array accesses

Memory accesses with a constant and well known behaviour such as accessing multidimensional

arrays, common on applications like dense-matrix linear algebra and finite-difference PDE (par-

tial differential equations) solvers - no irregular data accesses.

Indexed array accesses

As seen further, this access pattern organizes data in an indexed manner so that less space

is needed. However the cache performance on such patterns is poor due to irregular memory

accesses. One does not know previously the data organization on memory. These irregular

accesses on memory make an irregular algorithm, where the amount of computation is only

uncovered at run-time.

26

2.4 Locality optimizations Chapter 2: Background

Pointer-chasing accesses

Structures based on pointers, like linked lists and n-ary trees, are part of this memory access

class. It shares some characteristics with the indexed concept, because the access to a specific

portion of data must be resolved (at run-time) to access the data itself. The main characteristic

in this type of access is that an access to an additional part of the data-structure can only be

resolved when the pointer to that portion of data is resolved.

Software pre-fetching consists in explicitly placing fetching instructions on memory that is

likely to be missing in cache. This has proved to be a good way to avoid memory stalls and some

studies are made regarding this subject on memory access patterns (discussed earlier). The

authors use pre-fetching for all three kinds of memory accesses to hide memory latency - locality

optimizations are presented as a way to reduce latency by reordering computations and/or data

layouts: (i) for affine array accesses, tiling is given as a good choice; (ii) for indexed accesses, data

and data layout reordering can also be used to improve spatial locality at compile and run-time;

(iii) for pointer-chasing programs the used technique is dynamic memory allocation to improve

spatial locality, for instance, dynamic locality-conscious placement of parent and children nodes

of a tree at run-time - a cache-conscious heap is introduced.

2.4.3 JVM level optimizations

The Jikes RVM4 (Research VM) project is a research aimed Java virtual machine that introduces

several optimizations. Studying the topics of multi-threading, multi-core heterogeneity and, in

our interest, garbage collection strategies for improved performance, namely in the field of locality

optimizations. In [23] et al., the authors state that although explicit memory management in

C offers benefits in allocation performance, it has a hidden setback: ”it cannot move objects

without violating language semantics”, like in Java’s GC. Online object reordering (OOR) is

introduced as a way to inject locality in Java applications, by using copying collectors, finding

hot (frequently used) field accesses and storing objects in memory using heat information. The

authors in [23] concluded that their framework optimizations improved locality aspects with a

negligible overhead.

Regarding one of the problems studied in this dissertation - OO related overheads (Chapter

3.1) - the need of high-level low-level programming is enhanced in [16], where the authors explain

that underlying abstractions commonly used in Java may represent a source of overhead in

program performance. As such, an optimized framework is implemented addressing the problems

of data representation (primitive, compound and unboxed types) - featuring, for instance, layout

control of fields/attributes inside a class.

4http://jikesrvm.org/

27

http://jikesrvm.org/

2.5 Graphs Chapter 2: Background

Object-online reordering in Jikes

In the interest of locality, object-online reordering (OOR) in Jikes virtual machine goes through

three phases: static hot field access identification, dynamic hot field identification and garbage

collection reordering [23].

(i) static analysis: at compile-time, the program code blocks are marked as cold or hot. This

distinction is made through a series of heuristics mentioned in [23], like loop analysis and

branch-prediction; for instance, loop code blocks are marked as hot since these are eligible

to be run multiple times.

(ii) dynamic hot field identification: samples are periodically taken at run-time for methods

and fields accesses - heat parameters are then redefined for each code block at each sample.

(iii) garbage collection reordering: at GC-time, hot blocks are traversed first, and an array

with all heat values is created to map hot fields; finally, hot fields are enqueued in memory

according the order of the heat-array - the data layout is in agreement with the program’s

memory access pattern.

When compared to the work presented in Jikes, although with the same concerns in mind,

the approaches presented in this dissertation rely more on data structure optimization aspects

- we do not aim at run-time analysis nor garbage collecting methodologies to improve locality,

instead we study data layouts, optimization opportunities in memory access patterns and the

problems of core features in object-oriented development.

2.5 Graphs

In this section we focus on graphs, a type of data structures with a seemingly amorphous rep-

resentation in memory. Graph considerations in computer science can extend from development

methodologies for generic purposes and usability [35] (such as Jung and JGraph libraries), to

lower level considerations like memory usage and performance [29, 43, 50, 36].

2.5.1 Existing graph libraries and tools

Although serving different purposes, there are several libraries and tools that allow the use of

graphs in the most distinct areas like social networking, flight travel map, statistical analysis or

general optimization problems. Libraries like JUNG or JGraph implement generic graph data

structures and algorithms that consider a wide range of concepts - directionality, weighed or

unweighed, multi-graph (one edge connecting more than two nodes), etc. These general-purpose

tools and data structure implementations are separated in several layers, distinguishing their

formal specification from the implementation decisions, by applying APIs, generic data types and

inheritance to represent multiple graphs variations. Graph data structures in this general context

28

2.5 Graphs Chapter 2: Background

are usually represented has maps between nodes and a corresponding list of edges representing

the neighbouring nodes (and respective weights if applied).

2.5.2 Development methodologies

When it comes to develop a tool or library capable of efficiency and structural flexilibity there

is a wide range of methodologies possible to apply. In this section we will focus on development

methodologies applied in the field of software engineering and advanced computing more turned

to our scope, graph based irregular applications. The use of generic ideals is the main goal when

mentioning development issues, therefore generic programming is widelly cared for.

Product-line methodologies

A product-line (PL) is software product that results from using abstraction models and interfaces

in order to compose a set of features an application should have - thus making an application -

where the idea is to define isolated members and building elements that are able to be articulated

and combined with each other, thus creating an application with its own set of features. The

purpose of PL methodologies comes from the convenience of building an application based on

a group of features, rather than writing a whole application from scratch; PL is more practical

and cheaper.

The authors of [35] show that the areas in which one should apply different kinds of product-

lines are still unclear in the scope of computer science. Different technologies, as well as different

design orientations (such as object-oriented) may have applied and may themselves apply different

PL methodologies.

Graph product-line

Regarding implementation issues, the studies made in [35] provide a good insight in this subject.

Graph product-line (GPL) is a family of classical graph applications where each application is

built by combining graph-based features modelled as a common grammar. A central property

of PL applications, is that some features may block the appliance of some other features. For

instance, in order to implement an MST algorithm the graph must be weighted. In this thematic

GenVoca is introduced as a step-wise extension modelling view of building an application - the

underlying idea is ”programs are values [35]”.

The evolution of implementations presented in [35] is very important since it denotes the fact

that the usage of different implementations in different applications may result in very different

performance outcomes. The three different implementations presented are: (i) adjacency lists,

(ii) neighbour list and (iii) edge-neighbour representation. The differences between each one

of the representations came (as the authors imply) from a series of optimization attempts and

improvements. One of the problems identified by the authors was conceptual shifts that might

29

2.5 Graphs Chapter 2: Background

have been occurring when evolving the implementation, and its effects on the final application/al-

gorithmic results; the example given was the folding of conceptual objects into singled physical

objects, i.e., premature optimizations can obstruct development.

The generic graph component library (GGCL)

GGCL is a framework developed in C++ that makes use of technologies like the Standard

Template Library (STL). The goal is to produce a tool that follows object-oriented philosophies,

providing functionality, reliability, usability, efficiency, maintainability and portability [37, 32].

The work presented at GGCL shows a generic graph programming framework, where the concepts

and ideals of the generic programming paradigm are applied.

Algorithms implemented with GGCL don’t operate directly with data-structures, where usu-

ally graph specific data like node and edge data is stored, unlike the majority of graph tools

available (LEDA, Graph Template Library, etc.). Most existing graph tools are inefficient when

it comes to flexibility - properties like the weight and color of an edge are often explicitly hard-

coded on algorithms, which leaves little further usage on other possible contexts or algorithms.

The GGCL framework makes use of the visitor pattern concept, applied with generic program-

ming concepts in order to implement generic operations (a concept similar to functors). The

interaction between data-structures and algorithms is made via abstract interfaces on the graph

domain: vertex, edge, visitor and decorator. Generic data-structures may not be usable enough

in graph domain problems, therefore, specific interaction interfaces were needed so that the

authors define generic enough algorithms (using graph abstractions).

The graph, vertex and edge concepts are fairly easy to understand. On the other hand, visitor

and decorator concepts are more complex, however interesting. A decorator is presented as a

”generic mechanism for accessing vertex and edge properties”; these properties are, for instance,

weight or color. Visitors, much like functors, define the behaviour of generic operations. This

proved to be an easy and efficient way of adding operations to an algorithm without changing

the source code of the original implementation. These two features, allow for more flexibility

when using graph structures or algorithms. Also, the programmer is able to extend and add new

user-defined visitors and decorators. In terms of performance, the GGCL framework proved to

be more efficient than other commercial and vendor-tuned libraries like LEDA.

2.5.3 Parallel Irregular applications

Irregular algorithms are mostly based in pointer-based data structures and are called so because

one cannot assume or decide on the future operations it will do due to an external factor that

is out of control of the programmer or algorithmic control. This factor can be influenced, for

instance, by probability or the data itself, i.e., the fact that we do not previously know data

values and layouts does not let us apply optimizations such as in matrix multiply with tiling or

for -loop reordering for better cache locality. In typically irregular algorithms one is not aware

30

2.5 Graphs Chapter 2: Background

of the sequence order of data accesses.

A specific branch of irregular algorithms are graph related algorithms and a good part of

recent research on parallel irregular applications using graphs is done in Galois - a parallel

irregular algorithms framework that unveils the concept of parallelism at run-time.

Parallelism in Galois

We will see that the Galois parallel framework is based on the optimistic parallelization technique,

over the pessimistic and inspector-executor techniques [29]. A brief overview of the parallelization

techniques is followed.

• Pessimistic parallelization: The standard way to start parallelizing sequential code is to

perform an analysis to identify the code regions that are independent from one another.

Once these independent regions are identified they can be run in parallel, therefore, if the

iterations on a loop are independent they can all be run in parallel. The reason Galois

cannot use a pessimistic parallelization technique is that, for example, for the Delaunay

Mesh Refinement [50] problem some iterations may be dependent from each other, since

the mesh can have overlapped cavities/regions.

• Inspector-Executor parallelization [13, 44]: This approach splits the process of parallelizing

in two phases: (i) inspector phase that determines dependences between work units and

(ii) an executor phase that uses the schedule to perform the parallel computations. This

approach is not suitable when using data-structures that change throughout the algorithm,

since the structure inspection is only performed at the beginning and ceases to be accurate

whenever there is a change in the original structure.

• Optimistic parallelization: The optimistic approach is based on speculatively executing

regions of code while relying on some run-time mechanism to check for dependencies. If a

dependency is detected and one of the threads cannot run in parallel, one of the changes

is rolled back. Some work has been made regarding run-time mechanisms that check for

loop conflict detection at hardware level and rollback systems are also studied under the

subject of Thread-Level Speculation [54].

Galois was born due to the need to explore parallelism in irregular algorithms more easily

by using the available API to represent irregular structures (amorphous data-structures) and by

annotating which loops are to be run in parallel. The key idea here is to improve performance

not by focusing on the study of detailed low-level pointer-based structure implementations, but

by looking at algorithm’s patterns and focusing more on data parallelism that may come from

it [43].

The work done with the Galois system has proved that one of the main problems in graph

usage in many applications is in fact the level of sparsity that a graph may reach, posing unique

and difficult problems to memory architectures. Galois has its goal centred on optimizing not

31

2.5 Graphs Chapter 2: Background

only the irregular programs that are possible to run on such amorphous data structures, but

also identify general-purpose optimizations that may be present on several irregular algorithms.

Galois has also provided several tools of parallelizing an irregular algorithm operating on ir-

regular data structures, and introduced the concept which the researchers named amorphous

data-parallelism.

The initial studies of the Galois research team showed that despite of the apparent lack

of parallelism it is possible to distinguish a series of parallization options on irregular data-

structures. These optimizations consist in properly using abstractions for the data-structures in

such programs. This led to an OO development of the Galois system, and proved that optimistic

parallelization (based on abstractions) is a viable way and a starting point to parallelize irregular

algorithms. The conclusions drawn from their experiments assert that exploiting data-types

semantically proved to be a good way to allow concurrent accesses and updates to shared objects

[30].

The authors of [36] provide the definition of amorphous data-parallelism: ”Amorphous data-

parallelism is a generalization of conventional data parallelism in which: (i) concurrent operations

may conflict with each other, (ii) activities can be created dynamically and (iii) activities may

modify the underlying data-structure”.

Unveiling parallelism in irregular applications

Unveiling the parallelism in applications has been increasingly critical since the appearance of

parallel environments. Many regular applications like matrix factorization and BLAS kernels

are well known and the memory access pattern is made well-conducted through a series of

optimizations - however, irregular codes do not share this feature. The main difference, stated

in [28], between regular and irregular codes is that: regular codes depend on the input size

as for irregular codes depend upon the values of such input. The ParaMeter tool featured in

[28], works under the inspector-executor technique in order to unveil the possible parallelism in

an irregular application by (i) creating and analysing computation graphs, and (ii) creating a

schedule on such computations by deciding over the computation graph (that may be undirected,

and made directed5). In ParaMeter, inspection phases generate the computation graph and

identifies dependencies; execution phases execute the current computation step and sets up next

steps considering data dependence statuses. Both these phases are interleaved in order to generate

the conflict graph correctly.

Delaunay Mesh Refinement in Galois

One of the case studies of Galois is the Delaunay Mesh Refinement [50] (DMR), which is a

technique to generate: triangular meshes suitable for interpolation, the finite element method

and the finite volume method (see Figure 2.2 [55]). The challenge with this technique is to get

5An undirected computation graph means the order of actions in the program is not relevant; in a directed

graph the order in which actions are taken is considered - a schedule is created.

32

2.5 Graphs Chapter 2: Background

to a triangulated solution where a good result is fixed on a series of constraints: (i) the angles

in the triangulations should insert themselves in an acceptable interval; (ii) the triangles should

not be smaller than necessary nor bigger than desired (solution quality).

Figure 2.2: A Delaunay triangulation in the plane with circumcircles shown [55]

Figure 2.3: Galois view of DMR problem [36]

As we can see in Figure 2.3 [36] , Galois looks at data in a data-centric perspective. This

data-centric view is based on thinking of an algorithm in terms of the data it is applied to [36].

An algorithm is thought of as the repetition of certain activities on nodes or edges of the graph.

For this example, it identifies the active (red) nodes in each partition (highlighted blue areas),

where there is a case of data dependency between i1 and i2. This is solved by implementing a

roll-back system and backing up data in order to recover the data that would have been lost

in locked decisions. With Figure 2.3, we see more easily the concepts in which Galois based it

optimizations: (i) the locks necessary to apply are only applied at the boundary nodes instead of

locking the whole partition and (ii) activities are more easily modularized with generic iterators

throughout the data.

33

Chapter 3

Optimizing data structures

Optimizing data layouts in data structures may be challenging because they have specially deep

impact in irregular sorting and graph algorithms are a good example of that. In modern high-level

languages the problems of memory usage are aggravated. In this chapter, the main subjects are a

class of memory straining algorithms, heap sorting problems, and an irregular graph algorithm,

Prim’s MST, where the underlying data structures (graphs and priority-queues) and possible

optimizations are studied. Section 3.1 works as a case study introduction to the problems found

when applying data layout optimizations in OO frameworks. Graphs are addressed in a more

formal manner in Section 3.3, where graph concepts are exposed (undirected, weighed, adjacency

lists, etc.). Data layout optimizations are applied to a regular binary heap in order to improve

locality - the van Emde Boas layout is presented in Section 3.2. The compositions applied in

cross-structure optimizations raise some problems regarding object-oriented (OO) collections and

solutions are proposed at Section 3.4. The benchmarks presented for both case studies are in

accordance to the methodologies explained in Section 3.5.

3.1 Data containers in Object-Oriented frameworks

The appearance of class hierarchies in programming has allowed software developers to build,

change and maintain software solutions in a relatively easy manner enhancing the importance

of abstraction and reuse. This reuse philosophy has enabled developing methodologies where

flexibility and modularity are key features. The concept of object-oriented (OO) is based on

abstractions in which a programmer looks at parts of a program in a modular way. This abstrac-

tion in OO programming is bloated in such a way that even more abstract design methodologies

have risen to the level of almost visual programming.

On the one hand, OO abstractions enabled the rising of new design patterns and methodolo-

gies like UML (Unified Modelling Language) [6], developed up to the point of visual engineering

and aiding programmers by defining helpful abstract program semantics. APIs (Application

34

3.1 Data containers in Object-Oriented frameworks Chapter 3: Optimizing data structures

Programming Interface) play an important role in this context, these represent the set of generic

operations used in a certain domain by multiple entities. The consequence of this is encapsula-

tion which offers security to possibly critical decision implementations. On the other hand, the

mechanisms that manage these abstractions may be a source of overhead.

In this section we focus on generic typed mechanisms often used in OO frameworks and how

abstract data types (ADT) can influence performance for scientific applications. The focused

subjects are related to the problems of auto-boxing types and encapsulating APIs. Let us refer

to the specific case of Java OO development.

3.1.1 Type erasure in Java collections

Type erasure in Java is known as the process in which the Java compiler only treats data types at

compile time for type safety checking and then removes all type information for classes, methods,

arguments and parameters. For instance, if a anyList = new List<Integer>() is declared in Java,

the compiled byte codes will only recognize the object anyList as being of type List, being able to

contain arbitrary type objects, or memory references to objects. This also happens when using

generic data types, where type compatibility checking is only done at compile time. In C++, for

instance, when using generic data types mechanisms known as templates the compiler does not

perform type erasure: template <typename T>.

The template mechanisms in C++ are basically code generation mechanisms called at pre-

processing phases whenever a template is instantiated. Despite the absence of type-erasure,

using templates in C++ leads to instruction-level code bloating: different instantiations of the

same template with different types, generates different codes; for instance, the generated code

for myvector<int> is different than that of myvector<float>.

In Java this code bloat does not happen because every generic data type is treated as an

Object instance, thus it is accessed via an untyped memory reference. In the case of generic-

typed collections, this means that all elements are stored in untyped memory and accessed via

a collection of memory references. This feature makes code reuse in Java a powerful tool for

developers. It is more or less intuitive that abstract data types lead to re-usability and improves

software development productivity - abstraction is a primary concern. In Figure 3.1 are outlined

the main concepts that led to the main problems found in the scope of this dissertation.

3.1.2 Main reasons for overhead

Boxing is the process of wrapping primitive data type values in corresponding classes which are

object memory references, in the case of Java. Auto-boxing occurs in the Java compiler as a

way to automatically do this conversion with no need of explicit specification. The reason is:

when using, for instance, a primitive type value int in a generic type environment (such as an

API using the type T), Java automatically boxes the value into the corresponding type object

Integer. For instance, when an array of type T is declared, one normally expects to have all

35

3.1 Data containers in Object-Oriented frameworks Chapter 3: Optimizing data structures

Abstraction
⇓

Code reuse and usability
concepts

⇓
Type erasure: data types are
not needed to run a program

⇓
All objects are treated as

memory references
⇓

Leading to APIs, auto-boxing,
encapsulation, etc.

Figure 3.1: Concepts that led to problems of object-oriented in HPC.

its elements (of type T) to be in contiguous memory regions. The Java generic mechanisms

apply however another level of indirection between the collection and the stored value. Also,

and due to traditional garbage collection, the JVM manages the allocation and moves objects

around according to its policies - this may break the expected element contiguity (and often

does). In the themes approached in this dissertation, where an intensive use of collections is

applied, automatic processes like boxing can result in major overhead. The main problems are:

(i) auto-boxing means extra overhead-ish operations and (ii) elements in Object/generic-typed

collections may have an unexpected layout in memory. Figure 3.2 depicts this phenomena.

(a) Primitive array (b) Generic collection

Figure 3.2: Primitive and generic type array representations in memory

Another aspect in OO is the usage of generic APIs to modularize the access to certain

properties in specific parts of a program. The overhead related to APIs has to do with the data

types handled by them: APIs can handle generic data types which can be bottlenecking areas

for data layouts because data structures are obligated to obey a certain structure which may

originate redundant object instantiations.

36

3.1 Data containers in Object-Oriented frameworks Chapter 3: Optimizing data structures

(a) Encapsulation

(b) Decapsulation

Figure 3.3: API encapsulation and decapsulation schematic

Encapsulation in OO collections

Optimizing data-structures is not enough on most cases. In OO languages that handle generics,

encapsulation1 is usually a good feature because it is a consequence of generic APIs which

favours modularity and programming flexibility. However, if we use optimized data-structures

in conjunction with APIs, the attempt of simplifying implementations through the use of a

common language (an API) creates an implementation prone to instantiation overheads. The

specific case of combining optimized structure with APIs that handle generic data types (i.e.,

objects) originates redundant objects, when the goal could simply be communicating a value.

The communication of values via a generic API is made through objects, and to use an object

one must create an object, which means additional computations and memory allocation.

In scientific algorithms and specifically in pointer-chasing problems, encapsulation can intro-

duce redundant object instantiation and deletion operations resulting in instruction overhead

and straining of the memory system. In Figure 3.3a we see an example of the encapsulation

process: here we illustrate a hypothetical get method from a data structure - in order to obey

the API, the initial structure must return an object E, therefore the method must create a new

object to return at the second structure2 (which is obeying the same API), where its set method

decapsulates the previously encapsulated attributes.

As expected, encapsulation is an extremely heavy operation for data-intensive algorithms, one

way to optimize this process is creating a decapsulated API (Figure 3.3b) where each attribute is

returned (by the first structure) and received (by the second structure) independently. This kind

of API is now not as modular and flexible than the previous one but the bottleneck is greatly

1The concept of encapsulation is also referred to as the process of encapsulating data in an abstract entity,

an object. In the context of this dissertation, we consider encapsulation as the liabilities APIs impose in data

structures.
2In practical terms, the first structure does not return directly to the second structure - there is usually a

middle layer.

37

3.1 Data containers in Object-Oriented frameworks Chapter 3: Optimizing data structures

reduced.

Clarifying generic APIs

We consider a generic API as, not only using generic data types, but also as an abstract concept,

or a tool to imprint modularity into implementations; they are usually used to form a common

language in an application, which different parts, or modules of the program use to communicate

- this creates application layers.

Generic collections benchmark: overhead of boxing

This section aims to show the overhead of auto-boxing in collections with generic APIs. We study

two kinds of collections - linked-lists and array-lists - in order to show the underlying overhead of

auto-boxing. For each collection it was implemented an optimized variant with unboxed elements

to remove the level indirection added by generics.

(a) Java AL (b) Opt. AL (c) Java LL (d) Opt. LL

Figure 3.4: OO collections and pointer complexity.

In Figure 3.4a (Java AL), the native implementation in Java of an ArrayList, is noticeable

that Java generic mechanisms introduce unnecessary pointer-resolving operations: between the

list element and the actual element in memory. The other collection is a LinkedList, and as the

first one, it creates implicit memory references. In order to measure the instruction and cache

behaviour, these implicit pointers are removed as illustrated in Figures 3.4b and 3.4d. In the

figures we consider objects with multiple fields, however, for our benchmark test case we perform

a sum over a list of integer elements, one field solely is considered. In Table 3.1, we present the

benchmarks made to the structures in Figure 3.4, using 10×106 integer elements, and performing

a sum over the entire list.

In array-list implementations: Java AL accesses elements by first resolving memory references

to objects that were previously boxed. In addition to failing to ensure element contiguity, it needs

more operations to resolve an access to an element. The raw view of the problem: an array is

expected to store all its elements in contiguous in memory addresses, as it is in Figure 3.4b. The

opt AL version is more efficient because it accesses elements directly. Notice that the count of L1

accesses corresponds approximately to the number of int elements added to the array (10×106)

- this means that elements are in contiguous locations in memory and pertinent data is brought

38

3.2 Sorting Chapter 3: Optimizing data structures

Table 3.1: Benchmarks comparing Array-Lists, Linked-Lists and its variants

java AL opt AL java LL opt LL

Instructions (×107) 24.952 1.333 22.989 24.204
Cycles (×107) 19.810 2.360 28.639 20.854

L1 accesses (×106) 80.415 10.136 90.611 101.799
L1 misses (×106) 5.295 0.628 7.571 4.664

L2 accesses (×106) 10.564 0.018 15.766 9.510
L2 misses (×106) 5.327 823×10−6 7.831 4.698

Time (s) 0.100 0.016 0.148 0.107

into L1 cache - however, still incurring in misses because the dataset does not fit in memory

(approx. 39 MB).

Comparing the results for Java LL and opt LL, it is noted an increase in instruction count due

to the increase in code complexity for the optimized version: this fact would not be expectable,

because a pointer resolving layer was removed, unless we account for JVM management of allo-

cated objects and corresponding memory references, i.e., the JVM needs less operations to load

elements due to implicit memory referencing, which results in less explicit loading instructions

- this is confirmed by the lower L1 cache accesses count for Java LL. However, cache efficiency

is higher for opt LL - approximately 39% less L1 cache misses - making the number of cycles

decrease and thus, running time. This decrease in L1 cache misses is explained by the lower mem-

ory space requirements for the optimized version: the native Java Linked-List stores elements in

boxes with meta-data, making each list element take up more memory space - traditional object

encapsulation in Java.

Summary

Object-oriented frameworks usually operate with high-level languages and abstractions that may

introduce features that go against core functionalities of high performance computing. Features

like memory management, type erasure that transform types in memory references, element

adjacency in collections and over-layering in cross structure optimizations. We identify object

encapsulation (related to type erasure and auto-boxing) and structure encapsulation (related to

API usage and generic mechanisms) as problematic issues in the resolution of overheads and

refinement of intensive algorithms.

3.2 Sorting

In this section we address to the problem of memory efficient sorting, which is a well known

problem in memory architectures due to its memory-bound nature. We address to heap based

sorting primitives, specifically a binary heap and an optimized variant based on the Van Emde

Boas (VEB) layout [15].

39

3.2 Sorting Chapter 3: Optimizing data structures

The importance of this matter is mentioned by many authors as being of crucial importance

to several cache-oblivious graph algorithms - the main bottleneck in MST graph algorithms is

precisely the memory bound complexity created by high connection rates in dense/sparse graphs,

where the efficiency of an algorithm depends on efficiently sorting connections between nodes

of the graph. Before jumping into more complex sorting primitives a simpler implementation is

presented, the binary-heap, in order to gradually advance to our VEB implementation.

3.2.1 The heap sort problem

The objective of many existing implementations of priority-queues is to quickly find the minimum

or maximum element, at the account that it is at the root position of a tree. A heap is a tree

based data-structure that follows a specific property (heap property), which is defined as follows:

the key of a child node must be higher or equal than the key of its father - when applied in a

min-heap - a min-heap (Figure 3.5) is sorted in a decreasing manner. There are no restrictions

limiting the number of children each node has in a heap.

The operations often found in a heap are: find minimum/maximum, delete node, insert node

and increase/decrease key. There is a wide range of heap variants, each with its peculiarities

when maintaining the heap property. For example, the binary heap needs sift-up and sift-down

operations when inserting and removing, in order to keep the heap property verified. A simpler

case of variant is a d-heap where each node has d children (d corresponds to the degree of the

tree).

Figure 3.5: A min-heap example

A binary heap is a data-structure based on a binary tree and it is the specific case of a d-heap

with d = 2. In order to maintain the heap property, this heap needs to implement two specific

operations commonly known as sift (or percolate) operations: sift-up and sift-down - these

operations maintain the heap property verified and deserve proper focus because they traverse

the tree up and down (respectively), until the reaching the heap-property or the top/bottom of

the tree, representing the memory straining operations in this implementation.

Inserting in a binary heap

When inserting an element in a binary heap, the new element is added at a leaf position and

swapped iteratively up through the tree until the heap property is reached - this is called the sift-

up operation. This operation is performed in O(log2(N)) time (N = number of heap elements).

40

3.2 Sorting Chapter 3: Optimizing data structures

See schematic in Figure 3.6.

Figure 3.6: Inserting a new element (-2) and sifting up

Removing in a binary heap

As for removing, the underlying operation is sift-down. The time it takes to find the lowest key

value is O(1) since this element is the root element. After removing the root, the last element

stored in the heap (in a leaf position) is made the root and sifted down the tree to assert the heap

property. The sift-down operation also runs in asymptotic time of O(log2(N)). See schematic in

Figure 3.7.

Figure 3.7: Removing smallest element (root) and sifting down

Implementation details

Implementing the insertion, removal and sifting operations is fairly simple. An important detail

regarding the data-structure is that it is an array containing all heap elements we want to order.

The pointers to children and parents of each node are not explicit, these are computed at run-

time. Because the data layout is represented in a breadth-first manner, the parent/children index

computations are fairly simple (see Figure 3.8).

• computing children indices: the expressions for left and right child are, respectively, 2i+1

and 2i+ 2

• computing parent indices is also simple, i−1
2

In order to simplify the computations for navigating in the tree, there is one simple optimiza-

tion one can perform: ”ignore” the first array position (index 0), making it null, i.e., perform

a conceptual right-shift in order to ignore the 0-index element because it is the null-able multi-

plier, this way we are able to find the left/right children and parent indices with the following

expressions:

41

3.2 Sorting Chapter 3: Optimizing data structures

left(i) = 2i (3.1)

right(i) = 2i+ 1 (3.2)

parent(i) = b i
2c (3.3)

Figure 3.8: A binary heap and its array representation

This heap version is simple to implement and understand, also it behaves rather well in

terms of asymptotic times and complexity. However, locality is a main concern, that is why we

continued to study this heap type and tried to optimize it and combine it with other important

and ingenious ideas and layouts - we focus on data layouts in the next section.

Sorting with auto-boxing

To demonstrate the overhead that auto-boxing adds to data intensive applications we perform

some benchmarks with generic data typed priority-queues (with Integer) using a binary heap

sort method. In Table 3.2 we present the native priority-queue used in Java and an analogous

generic implementation of a binary heap (using Integer elements), and a binary heap variant with

primitive data types (int).

Table 3.2: Benchmarks comparing priority-queues with boxed and unboxed types.

Java PQ BinHeap Integer BinHeap int

Instructions (×108) 132.15 151.86 73.33
Cycles (×108) 201.71 195.00 58.14

L1 accesses (×108) 68.91 79.75 28.15
L1 misses (×106) 234.73 231.12 39.51

L2 accesses (×106) 417.60 405.62 93.94
L2 misses (×106) 279.37 261.63 50.82

Time (s) 10.113 9.700 2.868

In the first two columns we compare the analogous implementations of binary heaps (Java’s

native priority-queue is also a binary heap). The implementations differ in object management

related issues and thus the differences in instruction and cycle count. For disambiguation, these

differences are in object allocation: in Java PQ the JVM is in charge of allocating all elements,

as for BinHeap Integer, the storage space is declared at the initial instantiation; this may take

42

3.2 Sorting Chapter 3: Optimizing data structures

more instructions but takes less cycles and execution time. When using primitive data types,

i.e., removing one level of indirection between the collection and memory addresses, the JVM

is no longer in charge of element management in memory (happening in Java PQ and BinHeap

Integer). Instruction counts decrease considerably due to reduced pointer-chasing operations.

Also, since the data layout in BinHeap int is not handled by JVM, the implementation has

tighter control of memory accesses taking benefits from the loads of elements made in the same

array. Its storage array is a contiguous chunk of memory, where all its elements are layed out

according to the binary tree specifications. Sift operations are the main bottlenecks: to swap

elements the implementation does not swap the memory references but the values in memory -

in order to reach, get or set a value in BinHeap Integer, several pointer-chasing operations have

to be resolved to change the value encapsulated in an object.

The highest overhead causing factor is the fact that elements are not in the same memory

regions. Java PQ and BinHeap Integer version are pointer-based structures, only references

are made implicitly by the JVM. In summary, boxed data types have an additional cost of

dereferencing values.

3.2.2 Van Emde Boas data layout

The pattern in which memory is accessed depends, among several architectural details, in the way

data is distributed through memory, for instance, the data layout of the previously mentioned

binary heap is a breadth-first layout - looking at the array distribution in a binary heap (Figure

3.8), parent and children nodes are not in contiguous array positions, unless at the root of the

tree.

In order to introduce memory locality in these implementations we studied the Van Emde

Boas layout, presented in [15]. The work at [15] introduces a hierarchically decomposed dynamic

search tree structure, in our case, the tree is implicitly decomposed by redefining index com-

putations (for children and parent) to achieve the desired access patterns. The data structure

is hierarchically decomposed tree that takes advantage of the depth-first layout of elements in

memory, so it can perform its operations with good asymptotic memory bounds.

The main feature about this layout is the arrangement of elements which allows to minimize

accesses to lower and more expensive memory levels. Since children elements in deeper levels of

the tree are in the same index/memory regions cache miss rates naturally decrease.

To avoid creating unused memory wholes in the structure the tree is balanced in a quick

and efficient way: by using a packed memory structure, an m-bit array that makes use of the

mathematical properties of binary trees to represent indexes with operations over bit-values. This

heap allows for good asymptotic times with space complexity of O(m)3 and insertion, deletion

and search operations with complexity O(log log m) (see schematic in Figure 3.9).

3The original representation [15] uses an auxiliary structure, an associative m-bit array to keep track of key

positions and balance.

43

3.2 Sorting Chapter 3: Optimizing data structures

Figure 3.9: Van Emde Boas layout

Note about priority-queues

As an important side note, the originally presented Van Emde Boas heap uses keys to prioritize

heap elements. So this heap sorts non repeating values - each key is unique. In our case, we

use priority-queues as sorting primitives that retrieve the maximum/minimum element from a

list where repeated values are allowed, we do not use prioritizing keys because the main goal

is to study the cache behaviour of the presented data layout. For our work, we consider key-

prioritizing elements an additional cost. So we move forward in implementing a simpler version

of a Van Emde Boas-based heap, or blocked version of a binary heap.

Cache-friendly heap sort - Van Emde Boas Heap

We implement this data layout as a binary tree also, however data will be distributed differently

from earlier versions of binary heaps. We did not explicitly implement a VEB data-structure,

we simply organized array elements using this concept. It consists in looking at the binary tree

data-structure from a blocked point-of-view4 so that each memory access to the root of each

block access may also bring data from adjacent nodes, preferably children nodes. Note that

there is a difference between this concept and our first binary heap example: in this version we

use the first array position to store the root element, contrary to the earlier binary heap version

which maintains the first position null to simplify index expressions.

The tree structured layout in Figure 3.10 has a block height of 1, thus, in a binary heap, the

number of elements per block is 3. As shown, we now also consider a block hierarchy - apart from

regular children and parent nodes, we now have the notion of children and parent blocks. For

VEB-based binary heaps with height = 1, each block has 4 children blocks. These specifications

vary according to the degree of the tree (binary, ternary, etc.) and the height assigned to each

block. Other tree degrees are left aside and we focused only on binary trees.

4There are not explicit memory blocks, only the data will be layed out in a blocked manner

44

3.2 Sorting Chapter 3: Optimizing data structures

Figure 3.10: The VEB data layout - numbers correspond to array indices

Objective of Van Emde Boas-based layout

The objective with this layout is to increase the cache hits by placing in contiguous memory

addresses the children of root elements in each block. In a quick and shallow analysis to the

hit rates of a binary heap we perform an example tree traversal on both binary and VEB heap

data-structure so we can better figure out how the cache hit rates increase in VEB heap. Let us

consider:

• for simplicity and easier explanation, that we are working with a cache line size of 3 elements

(not considering type sizes) - assume that each memory access to an array position will

bring into cache memory the two next adjacent array positions.

• the traversal of a tree in both binary and VEB representations - it is important to mention

that: even though the tree might not be the same the only concept we want to apply

is the traversal following a determined path down the tree in order to check the cache

hit/miss rate in both implementations. The objective here is to traverse both structures

in the same way. An arbitrary path down the tree was chosen (L = left, R = right):

L → R → R → L → R → L → R.

• the basic cache behaviour: an access to an array brings into cache a chunk of size equal to

the cache line size, with the adjacent positions of the position accessed.

Considering the traversal path presented, in Figure 3.11 we present a schematic for the

traversal in a binary tree. We can see that in a total of 8 array accesses, 6 of them are misses

(dark dots), which means the element is not in cache, originating in a cache miss ratio of 6
8 = 0.75,

because there is no previous access to an adjacent interval of 3 positions5. Note that each block

5Depending on the memory architecture we consider, some architectures may provide backward adjacent access,

i.e., not only it loads into cache the next adjacent addresses, but also the backward adjacent accesses relative to

45

3.2 Sorting Chapter 3: Optimizing data structures

Figure 3.11: Schematic to explain the traversal details in a binary heap

presented in the array corresponds to the amount of elements loaded into cache memory (3

elements).

In Figure 3.12, we present the VEB schematic for the considered traversal path showing a

blocked VEB layout. For simplicity we used a VEB block size of 3 elements, which matches

the assumed cache line size. The hit ratio increases due to the blocked manner in which array

elements are organized - at the root of each block we have a miss 6 but the next element in the

block is guaranteed in cache. Since the cache line size loads all elements within the block we

guarantee that the next element is in cache. Cache hit ratio should increase if we consider a real

cache line size with bigger VEB blocks. Cache miss ratio for this example is 3
8 = 0.375.

Index expressions

Finding the index expressions in this layout is more complex than in a regular binary heap,

because there are two levels to consider: inner and outer-block indices.

• inner-block indices are computed normally as if they were in a regular binary tree (see

equation group 1) - they depend solely on the degree, which for a binary tree is 2 (see

Equations 3.4, 3.5, 3.6).

• outer indices, or block ids, depend on the inner block height, which defines the number

a memory address. However we will only consider forward accesses to simplify our explanation.
6The first block does not miss because usually we maintain a pointer to the root - compulsory misses are

ignored in this analysis.

46

3.2 Sorting Chapter 3: Optimizing data structures

Figure 3.12: Schematic to explain the traversal details in a VEB heap with block size of 3

of leaves per block, which in its turn defines the number of child blocks each block has,

#ChildBlocks = #Leaves · degree · 2 (in Figure 3.10, we have 2 leaves per block, thus 4

child blocks per block).

For this specific case of inner block height = 1, finding the left and right children and parent

indices is simple:

inner left child(i) = i+ 1 (3.4)

inner right child(i) = i+ 2 (3.5)

inner parent index(i) = i− (i mod 3) (3.6)

The number 3 in the inner parent index expression stands for the number of elements in each

block (which we call the block size). These expressions only work when navigating inside a block,

to navigate outside the blocks we must be aware of

• if a given position i is in a leaf position: the leaf id(i) will decide which pair of children

blocks to descend to;

• the block id of position i, block id(i) = b i
blockSizec.

The expressions to compute the outer indices are somewhat complex resulting in bottlenecks

for our VEB data-layout, even for a constant block size of 3 elements, therefore we performed

some optimizations to reduce this index computation overhead, presented ahead. The expressions

are:

47

3.2 Sorting Chapter 3: Optimizing data structures

outer leftchild(i) =

4i− 1, if i mod 3 = 1

2i · (i mod 3) + 1, if i mod 3 = 2
(3.7)

outer rightchild(i) =

i+ 4 + 1 + ((i mod 3) mod 2), if i mod 3 = 1

2i(i mod 3) + 4, if i mod 3 = 2
(3.8)

outerparent(i) = 3bBlockId(i)−1
2#Leaves c+ bBlockId(i) % (2#Leaves)

2 c+ 1 (3.9)

In the expressions above BlockId(i) = b i
3c and #Leaves corresponds to the number of leaves

per block, which in our case is 2. As the reader can perceive these expressions will result in a

major bottleneck, since they are massively called inside simple iterations - such complexity in

what should be atomic operations is heavy. Gathering all equations, the index expressions are:

leftchild(i) =


i+ 1, if α(i) = 0

i · 4− 1, if α(i) = 1

2 · i · (i mod 3) + 1, if α(i) = 2

(3.10)

rightchild(i) =


i+ 2, if α(i) = 0

i+ 4 + 1 + ((i mod 3) mod 2), if α(i) = 1

2 · i · (i mod 3) + 4, if α(i) = 2

(3.11)

parent(i) =

i− (i mod 3), if α(i) = 0

3bBlockId(i)−1
2#Leaves c+ bBlockId(i) % (2#Leaves)

2 c+ 1, if α(i) 6= 0
(3.12)

α(i) = i mod 3

The main problem with these expressions is that they are based on conditions to check the height

a given index i is at - check if i is at a block-root position or at a block-leaf position (and for

leafs we must check the left and right coordinates).

In Table 3.3 we present priority-queue benchmarks made to a binary heap and the VEB-based

with a block size of three elements. In both heaps were inserted the same list of int values to

ensure the same traversal paths; 10×106 elements were inserted, to guarantee that all int values

do not fit in all cache levels (approximately 39 MB).

The VEB 3 heap shows better cache behaviour, about 37% less L1 and L2 cache misses.

However, the index expressions for VEB are extremely heavy when compared to binary heap

index expressions. The instruction count for VEB 3 is almost two times higher than BinHeap -

since VEB 3 index expressions use up several local variables and they do not all fit in the number

of registers available, cache memory space is being used, as proved by the higher number of L1

accesses for VEB 3. This increase in instruction complexity also increases the clock cycles the

48

3.2 Sorting Chapter 3: Optimizing data structures

Table 3.3: Benchmarks comparing a binary heap implementation to VEB-based heap

BinHeap VEB 3NotOpt

Instructions (×108) 73.33 141.29
Cycles (×108) 58.14 86.95

L1 accesses (×108) 28.15 49.08
L1 misses (×106) 39.51 24.91

L2 accesses (×106) 93.94 64.24
L2 misses (×106) 50.82 31.66

Time (s) 2.868 5.391

program runs in, which also increases execution time.

Refining index expressions in VEB-based heap

As expected, the overhead caused by index computations in the VEB-based heap is much higher

than the one found at regular binary heaps. Children and parent index expressions are now based

in conditions which represent a serious stall in performance. We use if operations to process the

positioning of the current index in the tree: it may be in a parent, child or middle position in a

block. With the right amount of loop-unroll applied in sift-down operations one can completely

remove if operations in index expressions if we assume the sift-down algorithm to start at the

root of the tree. For blocks with size of three elements, we applied a loop-unroll of two iterations.

In an ideal scenario, the amount of loop unroll is correspondent to the block height, however,

this would mean completely unrolling cycles. We applied the same methodology for block sizes

of seven elements (height = 2).

Another concern to have is the number of accesses to the array; we try to minimize accesses

to the storing array by keeping the compared values in local variables (i.e., registers).

49

3.2 Sorting Chapter 3: Optimizing data structures

Listing 3.1: Traditional (non optimized) sift-down algorithm for heaps

1 si ftDown (i) {
2 l e f t = l e f tCh i l d (i) ;

3 while (l e f t < s i z e) {
4 r i gh t = r i gh tCh i ld (i) ;

5 min = 0 ;

6 i f (array [l e f t] <= array [r i g h t]) {
7 min = l e f t ;

8 } else {
9 min = r i gh t ;

10 }
11 i f (array [i] > array [min]) {
12 // swap elements . . .

13 i = m;

14 l e f t = l e f tCh i l d (i) ;

15 } else {
16 break ; // heap property i s v e r i f i e d

17 }
18 }
19 }

With the VEB layout applied using the algorithm presented in Listing 3.1, if conditions

in index expressions introduce a serious amount of overhead. In Listing 3.2, we apply loop

unroll and make better use of array accesses to ensure that jumping memory accesses that may

originate cache misses are not occurring, local variables wleft, wright, wmin, etc., serve this

purpose. The optimizations for sift-up operations are analogous, so they will not be presented

here (for consulting all optimizations see Appendix A).

Listing 3.2: Optimized sift-down algorithm for VEB-3 heaps

1 optSiftDown (i) {
2 l e f t = 1 , r = 2 , wi = array [i] ;

3 while (l e f t < s i z e) {
4 wright = array [r i gh t] ; w l e f t = array [l e f t] ;

5 i f (w l e f t <= wright) { /∗ update wmin ∗/ } // . . . Loop unro l l 1

6 i f (wi > wmin) { /∗ swap ; l e f t , r i g h t = . . . ∗/ }
7 wright = array [r i gh t] ; // . . . Loop unro l l 2

8 wl e f t = array [l e f t] ;

9 wi = array [i] ;

10 i f (wle f t<= wright) { /∗ update wmin ∗/ }
11 i f (wi > wmin) { /∗ swap ; l e f t , r i g h t = . . . ∗/ }
12 }
13 }

By removing the if conditions from index expressions the computational pattern is very

similar to the binary heap: instruction counts decrease when applying optimizations in sift-down

for VEB 3d in relation to VEB 3, as well as L1 accesses due to better register usage. Optimizing

the sift-up operation also introduces more instructions (about 1.7% more instructions) but the

L1 misses decrease - this means that removing the fat from the implementation made way

for locality benefits inherent from the VEB-based layout that was hidden by index expression

overhead. Execution time decreases successively as sift operations are optimized for VEB 3,

50

3.2 Sorting Chapter 3: Optimizing data structures

Table 3.4: Benchmarks comparing binary heap and VEB 3 and 7 versions: no optimizations,
optimized sift-down and optimized sift-down and sift-up operations (d and u in VEB refer to
sift-up and sift-down).

BinHeap VEB 3 VEB 3d+u VEB 7d+u

Instructions (×108) 73.33 141.29 74.77 97.70
Cycles (×108) 58.14 86.95 56.93 74.09

L1 accesses (×108) 28.15 49.08 35.89 48.84
L1 misses (×106) 39.51 24.91 28.82 22.76

L2 accesses (×106) 93.94 64.24 71.03 59.66
L2 misses (×106) 50.82 31.66 39.63 30.60

Time (s) 2.868 5.391 2.805 3.661

reaching an execution in the same order of magnitude to the binary heap: from this we draw

that the VEB-based heap (VEB 3d+u), with only approximately 2% more instructions, shows

better cache behaviour when a more cache-friendly data layout is applied in (approx.) the same

execution time, comparing to BinHeap. To see further cache improvements, we applied the same

kind of optimizations in sift operations to VEB 7 (block height of 2), making the code more

complex (loop unroll now extends to three iterations). Despite the increase in execution time

due to code complexity for VEB 7d+u, the cache misses were the lowest.

The average memory access time (AMAT) and instruction counts for different priority-queue

implementations are shown in Figure 3.13 for growing element sizes between [1×106, 10×106]. As

already stated, using generic data types on java pq and gen bin heap we see the most bottlenecking

implementations. The AMAT values become more stable as the heap size grows. The instruction

count for gen bin heap are higher due to less efficient object in memory management. The

implementations (int bin heap, int veb3, and int veb7) use primitive int data types: in these

implementations boxing is removed and dereference costs greatly decrease as they all spend

around 4.0 clock cycles for each memory access (considering our memory hierarchy, Section

3.5.6). An interesting result is noticed in the instruction counts for int bin heap and int veb3:

these follow the same instruction counts - this verifies that the computational pattern between

the two heap implementations is similar, however decreasing cache misses for int veb3. The

instruction complexity for index expressions in int veb7 is once verified in the graphic, achieving

higher instructions counts than int veb3.

Summary

In this section, we discussed the topic of memory efficient sorting, its problems and main bottle-

necks, from two distinct points of view:

• memory and computational complexity, analysing traditional binary-heaps and promoting

a simplified version of the van Emde Boas heap [15].

• object-oriented related problems; the problem of auto-boxing and its negative impact in

51

3.3 Graphs Chapter 3: Optimizing data structures

AMAT

size

cl
oc

k
cy

cl
es

1e+06 3e+06 5e+06 7e+06 9e+06

3.
9

4.
0

4.
1

4.
2

4.
3

4.
4

4.
5

Instructions

size

ha
rd

w
ar

e
co

un
ts

1e+06 3e+06 5e+06 7e+06 9e+06

0.
0e

+
00

5.
0e

+
09

1.
0e

+
10

1.
5e

+
10

java pq
gen bin heap
int bin heap
int veb3
int veb7

Figure 3.13: AMAT and instruction counts for heaps

maintaining the initially assumed element contiguity in memory, crucial for the VEB data

layout optimization.

The execution times obtained for the VEB heap are slightly lower with the addition of lower

cache miss counts. Although cache miss behaviour is important, ultimately, the most important

metrics is execution time - despite not showing significantly greater improvements in execution

time, the VEB heap shows better memory efficiency which can be harnessed into other applica-

tions, like graph algorithms.

3.3 Graphs

In computer science, graph representation has been evolving from the use of simple matrix

representation to more sophisticated representations, such as compressed row, neighbourhood

lists or edge lists. Several graph representations may be more suited than others (depending

on their final application) due to details in their implementation, like matrix representations for

dense graphs have fast access to neighbours, compressed row for space complexity and locality

benefits for sparse graphs. Some representations prime by their simplicity over efficiency, like

adjacency matrices. Adjacency lists and compressed row representations do not consider absent

edges. Aside from the data-structure implementations possible to implement there is a wide

range of support structures we can account in graph problems: sorting primitives, auxiliary data

structures like forests, colouring mechanisms for cycle checking, among others.

The case study is Prim’s Minimal Spanning Tree (MST) algorithm. The minimal spanning

tree of a graph is logically, a tree that reaches/touches every node through the smallest weighted

edges. In order to apply such algorithms efficiently we consider the implementation frameworks,

52

3.3 Graphs Chapter 3: Optimizing data structures

pointer resolving complexity, data layouts and cross structure optimizations.

3.3.1 Formal graph description

The main issue to have in mind in this scope is the efficient use of memory regarding space and

operational complexity, for instance, the complexity of reaching a neighbouring node in the data

structure. In this dissertation we treat weighed undirected graphs.

G = (V,E)

• V is a non-empty set of vertices,

• E is a set of edges where each edge is a pair of vertices,

• an undirected graph assumes that if there is an edge ei = (va, vb) ∈ E we assume the

existence of a mirrored edge ej = (vb, va) ∈ E

• aside from being undirected, graphs are also weighted. In the previous item, ei and ej have

the same weight.

∀ei = (a, b) ∈ E,∃ej = (b, a) ∈ E

⇓
wei = wej , wei ∈ {Wex}

Where wei is the weight associated to the edge in question (ei). It represents the link cost

between the vertices a and b. In the case of undirected graphs we assume wei = wej .

Since we treat undirected graphs, in our representation we consider edge derivations to represent

each uni-directional side of an edge, we call each side a neighbour, i.e., for each edge ei = (a, b)

there is a pair of neighbours (na→b, nb→a).

3.3.2 Graph representations

The main problem in specifying and using a graph data-structure is memory usage. The most

known and straight-forward ways of represent a graph using practical ideas are:

(i) Adjacency Matrices. An adjacency matrix consists of an N×N matrix, where N = #nodes.

More specifically, if the graph to consider is not weighted, the values in the matrix are

boolean typed, if they are weighted, then it stores weight-typed values; if the graph is

undirected, the matrix will be symmetric. This is a space consuming representation since

it considers that the graph reaches a size of N ×N , i.e., a complete graph where every node

is connected to itself and every other existing node - space complexity of O(N2).

53

3.3 Graphs Chapter 3: Optimizing data structures

(ii) Adjacency Lists. Lists where the neighbourhood (other adjacent nodes) of each node is

denoted by a list of nodes. If the graph is weighted, another twin list may be added with

the weights of each edge. Another way to do this is (in a more object oriented approach)

to add the weight information to the edge entities. Along with the weight information,

information like the source node of each edge may be added. Space complexity of O(N+E),

where E is the number of edges.

(iii) Incidence Lists. An incidence list basically consists of a list where all the graph edges

are stored. The mandatory information to be present in each edge are both the source

and target vertices - therefore data-replication occurs, however at a low cost of explicitly

represent the connections of the graph. To these edge entities, more data can be added,

like its weight. Space complexity of O(N + E).

(iv) Incidence Matrices. An incidence matrix, establishes a relation between the nodes of a

graph (rows of the matrix) and its edges (columns of the matrix). Altering with the graph

structure means matrix resizing operations. Space complexity of O(N · E).

3.3.3 Linked data structures

This kind of data structure is know for its referential nature, i.e., it is composed mainly by

references (or links) to other data elements in different memory regions, usually offering pro-

gramming flexibility, but due to its pointer-chasing character, not a good choice for performance

issues, specifically memory locality issues. Roth and Sohi [48] studied pre-fetching primitives in

pointer-chasing structures, namely jump-pointer techniques - consisting in placing explicit mem-

ory calls to future called memory addresses. Nevertheless, our main goals are not prefetch-based

optimizations but structural optimizations which ultimately benefit locality.

In our scope, linked data structures (LDS) are mixed with graph concepts and the developed

structures are pointer-chasing ones, therefore we now explain the constituting variants of the

used collections: sets, lists and maps.

Types of data-containers

The basic constituents in our data containers/collections can be combined using lists, sets and/or

maps. It is possible to create and derive collections with concepts from other collections, for

instance, a map can be seen as a set of list-elements. Typically, maps differ from other containers

(lists and sets) because they offer another level of indirectionality, associating a key to a value or

a collection of values, while lists and sets only allow for one level, unless we consider a list do be

indexable - an indexable list can be considered a simple map where the index value is the mapping

key. The difference is that key-index values in lists are implicit. A map is also considered an

associative collection because an association is made between a collection of unique keys and a

collection of values. Each unique key may be associated with a single value or multiple values, in

54

3.3 Graphs Chapter 3: Optimizing data structures

the latter case the map is called a multi-map. In irregular graph data structures, sparse graphs

are usually represented with a multi-map to associate a unique set of vertices to a collection of

edges connecting the vertices. In Figure 3.14 we show how these types of collections may be

understood by most programmers and programming frameworks.

(a) List (b) Set (c) Map

Figure 3.14: Collections example

3.3.4 Minimal Spanning Tree: Prim

The Minimal Spanning Tree (MST) problem is a graph algorithm, for weighted, and in our case,

undirected graphs, that consists in finding the spanning tree of the original graph touching every

node through the smallest weighted edges. The algorithm we focus on for our case study is

Prim’s MST algorithm [46] which uses a priority-queue to find the smallest weighted available

edges to add to the resulting MST graph.

Prim’s algorithm works by successively adding graph neighbour connections to the PQ, re-

moving the smallest weight connections and marking the touched vertices as visited for cyclic

control. The implemented data-structures can take many forms depending on the algorithm

and the usage we intend to give to it, for instance: for a different MST algorithm, Kruskal’s

algorithm [27], one must implement the Union-Find data-structure (simply put, a set of trees).

After a series of profiling we concluded that the main bottleneck was in using the priority-queue

(PQ) to sort-remove the edges in the original graph. We could have opted for a different path to

optimization, like implementing a Fibonacci-Heap as a PQ (see Section 2.3.1), however, this kind

of implementation, using a decreaseKey operation (which significantly lowers the total execution

time) is not our goal since it changes the algorithm, i.e., we aim for an algorithmic implemen-

tation that is simple and as independent as possible from the specific optimizations. In Listing

3.3 the pseudo-code for Prim’s MST algorithm is presented - all our implementations follow this

pseudo-code.

55

3.3 Graphs Chapter 3: Optimizing data structures

Listing 3.3: Pseudo-code for Prim’s MST algorithm

1 Prim MST(G) {
2 CurrentVertex = Random Star t Vertex ;

3 Neighbours = Neighbours Of (Current Vertex) ;

4 Add To PQ(Neighbours) ;

5 while (Unvi s i ted Ve r t i c e s Exis t) {
6 // la zy removal of prev ious l y v i s i t e d neighbours

7 do {
8 Min Neighbour = Get Minimum(PQ) ;

9 Current Vertex = Vertex Of (MinNeighbour) ;

10 } while (i s V i s i t ed (Current Vertex)) ;

11 v i s i t (Current Vertex) ;

12 Add To MST(Min Neighbour) ;

13 Neighbours = Neighbours Of (Current Vertex) ;

14 // add unv i s i t ed neighbours to PQ

15 for each neighbour in Neighbours {
16 i f (i s Not V i s i t ed (Vertex Of (neighbour)))

17 Add To PQ(neighbour) ;

18 }
19 }
20 }

In this specific algorithm there are a few decisions that made the algorithm perform a little

better than the initial implementation: visiting interface and cyclic control. Visiting vertices

is a concept easy enough to implement and allows efficient cyclic control - often implemented

with flag attributes or auxiliary data structures, like a visited-vertices array. Cyclic control is

important in this algorithm because it prevents processing vertices already visited, therefore

infinite loops are prevented. There are several variants of this algorithm that allow cyclic control

in various forms and using a wide variety of structures, some more efficient than others. For

instance,

(i) according to the chosen graph API, each edge removed from the priority-queue should be

checked for cycles, i.e., if the destination-vertex from that edge is already visited we ignore

it. The fact that we chose to represent only one vertex per neighbour and not to store both

vertices related to an edge in a single structure, greatly simplifies cyclic control because we

do not have to check both vertices in a pair of vertices. Therefore, to benefit algorithmic

complexity, an edge in our graph structure corresponds to a pair of neighbours, stored on

both ends of an edge, i.e., each neighbour is symmetric to its sibling and is stored at the

corresponding source vertex7. In the priority-queue we can go for a process of lazy removal

of the elements we no longer want consider in the heap - it is called lazy because we do not

remove the unavailable neighbours right away, instead it is delayed to a check in a do-while

removal. This allows us to gradually remove elements that are no longer necessary (already

visited) in the priority-queue;

(ii) the Fibonacci-Heap (Section 2.3.1) is an efficient priority-queue that implements a decrease-

7Note that this decision would also be valid for directed graphs, for each edge we would only store one neighbour,

a neighbour is an unidirectional edge.

56

3.3 Graphs Chapter 3: Optimizing data structures

key operation, which in contexts like Prim’s MST can be very useful. When we need to

decrease an element’s priority in the heap, much like what happens when a neighbour gets

visited in the graph, the decrease-key operation allows for a fast update of that element

in amortized constant time O(1). For fast update we must have external access8 to the

element otherwise we would have to search the heap looking for it. This detail changes

the algorithm implementation to a slightly more complex one. However, the number of

elements added and removed from the heap is substantially decreased, so memory usage

is lower. We do not go forward with this implementation because we are aiming at a

structure-independent algorithm and the Fibonacci-Heap carries too many implications.

3.3.5 Data layout optimizations

Since graphs are irregular structures, meaning, their representation and traversal path in mem-

ory are unknown, it is hard to infer and optimize its data layout because it has an amorphous

structure, with no seemingly form. We can however optimize their pointer resolving operations,

lowering the pointer complexity often found in graphs, ultimately leading to opportunities in spa-

tial and temporal locality. More specifically changing the data layout of collections of attributes

can greatly improve graph implementations.

The optimizations found in this particular kind of data-structure, a graph, are concerned

with locality. In Figure 3.15 we see a usual representation for graph structures: a map-like

structure. The most important optimization opportunity here is related to the neighbours list

stored in each vertex object - when it comes to algorithmic challenges, lets consider Prim’s MST,

neighbours store pointers to other vertices assigning the pointer-based nature to the structure.

This neighbours list is implemented as an array, however, we are operating with API-compatible

types which makes array elements not contiguous in memory - Neighbour objects follow a generic

interface - the neighbours list is an array of pointers (AoP).

Figure 3.15: Graph-Neighbour-Vertex AoP

After studying the cache-miss behaviour and pointer-resolving complexity from the structure

in Figure 3.15, the locality considerations taken are:

(i) Bottlenecking layout with pointer-chasing nature on the neighbours array in each vertex

shows low locality - Neighbour objects are not contiguous.

8External to the priority-queue, so the algorithm must store a set of pointers to inner heap elements.

57

3.3 Graphs Chapter 3: Optimizing data structures

(ii) By embodying Neighbour data (weight, neighbour-vertex, etc.) in the Vertex object, data

can be distributed in two possible ways, according to their API usage:

(a) Arrays of Structures (AoS) - several objects (Neighbour) are forced to be adjacent,

increasing the overall attributes’ spatial locality (Figure 3.16a).

(b) Structure of Arrays (SoA) - several arrays, each holding an attribute for each Neighbour

object, increasing the spatial locality for each attribute independently (Figure 3.16b).

(iii) Better chances of increasing temporal locality in the initial graph vertex-holding structure

by, in each Neighbour, explicitly pointing at the initial array (both sub-figures in Figure

3.16).

(a) Graph-Vertex-

Graph AoS

(b) Graph-Vertex-

Graph SoA

Figure 3.16: Optimized graph representations

The different graph implementations are named as being AoP, AoS or SoA by looking at

how the Vertex structure holds the Neighbour array. The GNV AoP shows in fact a double

pointer-resolving complexity, because it lacks the locality of the neighbour-vertex pointer present,

for instance, in GVG AoS.

3.3.6 Graph pointer-based complexity analysis

In order to analyse the time complexity of traversing a graph pointer-based9 structure we consider

the sparsity level of the graph so we can choose the most appropriate graph representation and

implementation. The graph considered in our implementations is a sparse undirected graph so

our preferential graph representation is an adjacency list due to its good space usage by not

allocating storage space for absent edges. Regarding implementation details, we implement our

structures and algorithm in Java which is an OO language - this has impact as seen on Section

3.1. The objective with this section is to show how we look at pointer complexity in our structures

and to provide some basic understanding of how our pointer-based structures are built.

For this we do not only apply the traditional cache-miss concepts - for now we also focus on

misses likely to be caused by a pointer-resolving operation, for simplicity we refer to this kind of

9For coherency, in this section we will also call the term reference a pointer.

58

3.4 Composing implementations Chapter 3: Optimizing data structures

miss as a pointer-miss. Our test case is the is-adjacent operation: check if two given nodes in a

graph are adjacent using the structures presented in Figures 3.15 and 3.16. We present a generic

pointer-miss analysis over the mentioned graph structures:

(i) AoP - this structure is composed of an array of pointers to Vertex structures, each Vertex

holds an array of pointers to Neighbour structures, each Neighbour holds a pointer to another

Vertex. At first glance we identify three pointers that might be causing misses, but we

consider an additional (compulsory) pointer-miss which is the access to the first structure

holding all vertex objects. Since each Vertex may store many Neighbours the pointer-miss

cost is bounded by O(N).

(ii) AoS - in this implementation we implement a hashing mechanism so we can take advantage

from the attributes data layout in a primitive-typed array, for the reasons explained in

Section 3.1. The neighbours array, instead of storing pointers to structures, now store the

attributes themselves eliminating one pointer-resolving operation, one level of indirection

is removed. By referring to a Vertex with an id field we can directly consider if one exists

in another vertex’s neighbours list and infer the bounded cost as O(NB)., where is the cache

block size. In the previous point, the cache block size is not considered because it is an

AoP implementation, i.e., adjacency is not guaranteed so loading contiguous element is out

of the picture.

(iii) SoA - this analysis is made analogously to the previous point (ii), with the difference that

the Neighbour attributes are distributed by several arrays. The pointer-miss costs is also

O(NB).

3.4 Composing implementations

The compositions are related to AoS and SoA optimizations applied in graphs and priority-

queues. The performance of these layouts is injured by API encapsulating mechanisms and

related problems mentioned in sub-Section 3.1.2 - summarizing what is said: APIs are generic

mechanisms which offer modularity to software development but may offer performance barriers

with cross structure optimizations, i.e., in order to achieve the desired efficiency an API is made

compatible with the structures it operates on, in detriment of abstraction and code reuse. In the

specific case of graph algorithms, the priority-queue presented in Section 3.2.2 is implemented

with AoS and SoA layouts in order to store the attributes used in Neighbour objects (sorted

in Prim’s MST). One level of indirection between the memory reference to the object and the

object attributes was removed. However, in our case this leads to excessive and redundant object

creation and discarding, which generates massive overhead.

59

3.4 Composing implementations Chapter 3: Optimizing data structures

Data layout for priority-queues

The data layout for priority-queues can also be changed according to AoS and SoA layouts. The

native implementation of a priority-queue in Java is represented through an array of pointers

(AoP layout).

The AoP layout (Figure 3.17a) is a popular layout due to its abstract features - memory

references (or pointers to memory addresses) serve a better purpose of being able to include an

object of any data type more easily managed by generic data type mechanisms. Regardless of

their ability to easily store abstract objects, this kind of layout is usually adopted by automatic

memory management systems like garbage collectors in virtual machines, making them hard to

optimize locality-wise. As seen previously this layout works with high dereference costs and

element adjacency is not guaranteed.

(a) AoP (b) AoS (c) SoA

Figure 3.17: Priority-queue layout changes.

To change the data layout of priority-queue one must consider the fields of the objects intended

for storage. In the AoS (Array of Structures) layout, Figure 3.17b, fields are stored continuously

in memory, as in SoA (Structure of Arrays), Figure 3.17c, fields are stored into a separate array.

Choosing the best alternative depends on how the algorithm accesses data. The SoA layout

provides better locality if the algorithm does not require all fields of the original structure in the

same time-frame. The AoS layout is the alternative used for problems that require all fields of

the structure at once, although this choice is difficult to implement in Java since it is not possible

to use explicit pointers to data. It is also more difficult to use if the fields are not of the same

type. To improve the spatial locality in Java collections it is necessary to transform an AoP

implementation into an AoS or a SoA. In the latter case, the fields of the objects are converted

into arrays, which normally evolves removing the encapsulation of data. This provides better

performance, but it might enforce significant restructuring of the code. In this work we intend

to study the impact on performance of this transformation.

60

3.4 Composing implementations Chapter 3: Optimizing data structures

Changing data structures

In order to use the optimized heap implementations as priority-queues in conjunction with our

Neighbour-API abiding graph data structures, the priority-queue storage structures were specif-

ically changed to store Neighbour attributes like weight or vertex-id. Therefore, the AoS heap

implementations (which demand that the attributes are of the same data type; single array)

store all attributes of each object contiguously in the array; as for SoA distribute the attributes

through several arrays. Thus, for each priority-queue considered in the benchmarks (binary heap

and VEB 3 heap) the combinations are: (i) generic binary and (ii) generic VEB 3, (iii) AoS

binary and (iv) AoS VEB 3 heap and (v) SoA binary and (vi) SoA VEB 3.

Decapsulating API

Beside altering the storage data structure, decapsulating the API (as depicted in Figure 3.18b),

means having having direct access to each attribute via a previously defined method that specif-

ically accesses (get and set) each attribute, instead of creating an object to communicate the

values of attributes (API abiding implicit operations). This process enables us to eliminate

redundant object instantiation costs, shown in Figure 3.18a. The figure shows the process of

querying the graph data structure for an element and storing it it in the priority-queue data

structure. The API is also changed for graph data structures, GVG AoS and GVG SoA which

initially use the AoS/SoA layouts but still encapsulates data.

(a) Encapsulation

(b) Decapsulation

Figure 3.18: Neighbour API encapsulation and decapsulation schematic

Code bloating

One of the main setbacks in performing transformations in data spaces is that all accesses of a

program to an altered data structure must be revised and the code may suffer significant changes

if it is not protected behind a common interface. As explained earlier, APIs are removed in order

61

3.4 Composing implementations Chapter 3: Optimizing data structures

to demean encapsulating overhead. There is a trade-off between modularity and efficiency. In Ta-

ble 3.5 we measure the non commenting source statements (NCSS) measured with JavaNCSS10.

For each combination of graph, priority-queue and API we measure the program’s NCSS of all

pertinent classes pertinent to each combination; then we calculate the average for each API im-

plementation. In Table 3.5, we present the average NCSS of: (i) generic implementations, i.e.,

AoP for both priority-queues and graphs; (ii) combinations between AoS and SoA for graphs

and priority-queues, but still with a generic API; (iii) and combinations between AoS and SoA

with decapsulating APIs.

Table 3.5: Non Commenting Source Statements average for each API version and average increase
in % for encapsulated and decapsulated APIs for all implementations of graphs and priority-
queues.

API NCSS Average % NCSS grow

Generic 355 -
Encapsulated 470.25 24.5%
Decapsulated 409.75 13.4%

The NCSS count for Encapsulated is higher than Decapsulated because the attributes of

each Neighbour object are passed directly accessible: get and set methods are directly called by

external structures. These direct calls to get and set methods, instead of undergoing through

several layers, make source code complexity slightly decrease. Nevertheless, NCSS increases in

relation to generic implementations.

3.4.1 Benchmarks

The benchmarks for combinations of graphs and priority-queue implementations are shown in

Table B.2 (Appendix B), in it the generic, encapsulated and decapsulated APIs are shown. Tests

were performed with the following environment:

• The benchmarked algorithm is Prim’s MST, with data structure variations to check which

ones perform better. The same graph is considered for all runs (note, the same graph shape

to guarantee similar access patterns), it contains 3000 nodes with a connectivity rate of

50%, containing a total number of 4,498,870 edges, or 8,997,740 Neighbour objects;

• Generic implementations for graphs and priority-queues were used - using only objects - as

a starting point for comparison (the generic API);

• AoS and SoA layout changes are applied in graphs and priority-queues. The underlying

API in this case still uses objects (as depicted in Figure 3.18) - the objective is to show

the overhead of API encapsulation and its negative impact on instruction count and cache

performance;

10http://javancss.codehaus.org/

62

http://javancss.codehaus.org/

3.4 Composing implementations Chapter 3: Optimizing data structures

– Each priority-queue is experimented with a different layout (binary and VEB 3 are ex-

perimented with AoS and SoA layouts), giving origin to several combinations between

graphs and priority-queues;

• Finally, the common Neighbour API is decapsulated for graphs and priority-queues.

Figure 3.19 shows the average values for instructions, cache misses and execution times of

all implementations for each API variation. It is easily understood that generic APIs due to the

overhead of using abstract layers throughout the program: JVM object management is prone to

pointer chasing operations. Encapsulated APIs introduce another level of operational complexity,

as seen on instruction counts (the creation and discarding of objects). Since the objective of

using the same graph is to lead to similar access patterns, we can conclude that the slightly

higher overhead of generics in L1 cache is in JVM management and implicit pointer resolving

nature of generic collections. In accordance to this premiss, analysing execution times (which

are congruent with clock cycles), we see that the encapsulated API average is approximately half

of the generic API - this means that despite having more instructions, the encapsulated API is

still more efficient than JVM native object management due to locality benefits of the applied

AoS/SoA layouts.

Applying API decapsulating optimizations, we get better results - let us remind that the

encapsulated structures already use primitive data types (to demean auto-boxing overheads)

only under an object-based API. The objective with decapsulated API is to show that in order

to attain the desired efficiency in optimized structures, abstract development mechanisms may

not leverage performance.

Instructions

ha
rd

w
ar

e
co

un
ts

0.
0e

+
00

1.
5e

+
09

3.
0e

+
09

L1 misses

0.
0e

+
00

1.
0e

+
07

2.
0e

+
07

L2 misses

0.
0e

+
00

6.
0e

+
06

1.
2e

+
07

Execution time

se
co

nd
s

0.0

0.5

1.0

1.5

Generic
Encapsulated
Decapsulated

Figure 3.19: Summarized performance hardware counts of instructions, L1 and L2 access-
es/misses and execution time (the average values for each API implementation are shown).

Benchmark analysis and discussion

So that the reader can understand the graph represented in Figure 3.20, the three APIs are

represented through color groups - generic, encapsulated and decapsulated API: (i) first two

columns refer to generic, (ii) the following eight columns refer to encapsulated and (iii) last eight

to decapsulated.

63

3.4 Composing implementations Chapter 3: Optimizing data structures

It is quickly noticeable that the graph bars in Figure 3.20 for instructions represents the three

groups in first graph of Figure 3.19. In the generic API, the one that shows the higher instruction

count is the variation using the VEB 3 heap, because its code is more complex as it is stated in

Section 3.2.2 - this happens for all VEB 3 heap implementations. The most important evidence

is the second block of columns where we notice a high overhead created by encapsulated APIs,

surpassing the code instruction complexity even for fully generic implementations. By eliminating

such redundancy the instructions necessary to complete execution greatly decrease.

in
st

ru
ct

io
n

ha
rd

w
ar

e
co

un
ts

0.0e+00

5.0e+08

1.0e+09

1.5e+09

2.0e+09

2.5e+09

3.0e+09

G
N

V
 A

oP
+b

in
_g

en
er

ic

G
N

V
 A

oP
+v

eb
3_

ge
ne

ric
G

VG
 A

oS
+b

in
_a

os
G

VG
 A

oS
+b

in
_s

oa

G
VG

 A
oS

+v
eb

3_
ao

s

G
VG

 A
oS

+v
eb

3_
so

a
G

VG
 S

oA
+b

in
_a

os
G

VG
 S

oA
+b

in
_s

oa

G
VG

 S
oA

+v
eb

3_
ao

s

G
VG

 S
oA

+v
eb

3_
so

a
G

VG
 A

oS
+b

in
_a

os
G

VG
 A

oS
+b

in
_s

oa

G
VG

 A
oS

+v
eb

3_
ao

s

G
VG

 A
oS

+v
eb

3_
so

a
G

VG
 S

oA
+b

in
_a

os
G

VG
 S

oA
+b

in
_s

oa

G
VG

 S
oA

+v
eb

3_
ao

s

G
VG

 S
oA

+v
eb

3_
so

a

Generic

Encapsulated

Decapsulated

Figure 3.20: Discriminated performance hardware counts for instructions

Cache miss analysis

Figure 3.21 shows the discriminated values for cache accesses and misses. Although miss ratios

can be misleading they are presented in Figure 3.22: unoptimized versions of APIs or generic

implementations that do not show the desired cache efficiency can present low cache miss ratios,

despite having low performance, due to garbage-ish operations that might be occurring in JVM

object management.

As seen in the graphs in Figure 3.21, the main differences in cache efficiency comes from

changing the underlying API the structures use. When comparing cache miss average values

of generic to encapsulated and decapsulated values (for L1 and L2: <L1, L2>) we get the

64

3.4 Composing implementations Chapter 3: Optimizing data structures

G
N

V
 A

oP
+

bi
n_

ge
ne

ric

G
N

V
 A

oP
+

ve
b3

_g
en

er
ic

E
nc

ap
 G

V
G

 A
oS

+
bi

n_
ao

s

E
nc

ap
 G

V
G

 A
oS

+
bi

n_
so

a

E
nc

ap
 G

V
G

 A
oS

+
ve

b3
_a

os

E
nc

ap
 G

V
G

 A
oS

+
ve

b3
_s

oa

E
nc

ap
 G

V
G

 S
oA

+
bi

n_
ao

s

E
nc

ap
 G

V
G

 S
oA

+
bi

n_
so

a

E
nc

ap
 G

V
G

 S
oA

+
ve

b3
_a

os

E
nc

ap
 G

V
G

 S
oA

+
ve

b3
_s

oa

D
ec

ap
 G

V
G

 A
oS

+
bi

n_
ao

s

D
ec

ap
 G

V
G

 A
oS

+
bi

n_
so

a

D
ec

ap
 G

V
G

 A
oS

+
ve

b3
_a

os

D
ec

ap
 G

V
G

 A
oS

+
ve

b3
_s

oa

D
ec

ap
 G

V
G

 S
oA

+
bi

n_
ao

s

D
ec

ap
 G

V
G

 S
oA

+
bi

n_
so

a

D
ec

ap
 G

V
G

 S
oA

+
ve

b3
_a

os

D
ec

ap
 G

V
G

 S
oA

+
ve

b3
_s

oa

ha
rd

w
ar

e
co

un
ts

1e+06

5e+06

1e+07

5e+07

1e+08

5e+08

1e+09
hits

misses

(a) L1 cache misses and hits

G
N

V
 A

oP
+

bi
n_

ge
ne

ric

G
N

V
 A

oP
+

ve
b3

_g
en

er
ic

E
nc

ap
 G

V
G

 A
oS

+
bi

n_
ao

s

E
nc

ap
 G

V
G

 A
oS

+
bi

n_
so

a

E
nc

ap
 G

V
G

 A
oS

+
ve

b3
_a

os

E
nc

ap
 G

V
G

 A
oS

+
ve

b3
_s

oa

E
nc

ap
 G

V
G

 S
oA

+
bi

n_
ao

s

E
nc

ap
 G

V
G

 S
oA

+
bi

n_
so

a

E
nc

ap
 G

V
G

 S
oA

+
ve

b3
_a

os

E
nc

ap
 G

V
G

 S
oA

+
ve

b3
_s

oa

D
ec

ap
 G

V
G

 A
oS

+
bi

n_
ao

s

D
ec

ap
 G

V
G

 A
oS

+
bi

n_
so

a

D
ec

ap
 G

V
G

 A
oS

+
ve

b3
_a

os

D
ec

ap
 G

V
G

 A
oS

+
ve

b3
_s

oa

D
ec

ap
 G

V
G

 S
oA

+
bi

n_
ao

s

D
ec

ap
 G

V
G

 S
oA

+
bi

n_
so

a

D
ec

ap
 G

V
G

 S
oA

+
ve

b3
_a

os

D
ec

ap
 G

V
G

 S
oA

+
ve

b3
_s

oa

ha
rd

w
ar

e
co

un
ts

5e+05

1e+06

2e+06

5e+06

1e+07

2e+07

5e+07

hits

misses

(b) L2 cache misses and hits

Figure 3.21: L1 and L2 cache miss and hit counts (note: logarithmic scale o y-axis).

L1 miss ratio

ra
tio

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

L2 miss ratio

0.20

0.25

0.30

0.35

GNV AoP+bin_generic
GNV AoP+veb3_generic
Encap GVG AoS+bin_aos
Encap GVG AoS+bin_soa
Encap GVG AoS+veb3_aos
Encap GVG AoS+veb3_soa
Encap GVG SoA+bin_aos
Encap GVG SoA+bin_soa
Encap GVG SoA+veb3_aos
Encap GVG SoA+veb3_soa
Decap GVG AoS+bin_aos
Decap GVG AoS+bin_soa
Decap GVG AoS+veb3_aos
Decap GVG AoS+veb3_soa
Decap GVG SoA+bin_aos
Decap GVG SoA+bin_soa
Decap GVG SoA+veb3_aos
Decap GVG SoA+veb3_soa

L1 miss rate

ra
te

0.004

0.006

0.008

0.010

0.012

L2 miss rate

0.0025

0.0030

0.0035

0.0040

0.0045

0.0050

Figure 3.22: L1 and L2 miss ratios and rates.

approximate percentages of (i) <89%, 190%> comparing generic to encapsulated, and (ii) <20%,

62%> comparing generic to decapsulated. The total cache miss counts greatly decrease for

decapsulated. The values for L1 in encapsulated decrease due to AoS/SoA layout changes,

however, there is an increase in L2 encapsulated due to inefficient memory management.

Although miss ratios can be misleading they are useful to show that VEB 3 heap layout

optimizations are mostly noticed in decapsulated API versions - L1 and L2 miss ratios for de-

capsulated are lower than when using the traditional binary priority-queue layout. This VEB 3

improvement is also visible when relating cache misses and instructions, in Figure 3.22 showing

the L1 and L2 miss per instruction, also known as cache miss rate (not ratio).

65

3.4 Composing implementations Chapter 3: Optimizing data structures

TLB miss analysis

The translation look-aside buffer (TLB) is a content addressable memory used to store the map-

pings between virtual and physical addresses. In order to translate virtual to physical addresses,

the system has to perform a page table walk to search for the right page-id, which ultimately

results in four memory accesses [38]. TLB memory caches the recently used page table entries

(PTEs). As for TLB miss handling, they can be handled by hardware or software depending on

the architecture:

• Hardware TLB miss handling: the CPU searches for the correct PTE with a page table

walk, if it finds it the PTE is marked as present and stored in the TLB. Otherwise, if the

PTE is not found the process is handled by the operating system (OS).

• Software TLB miss handling: a page fault is returned by the CPU and the OS intercepts

it. A page table walk is made by the software and if the PTE is found it is equally marked

as present and stored in TLB; if not found the page fault handler takes control.

The costs of a TLB miss, whether in hardware or software, are heavy: they require a page

table walk. Hardware solutions for this problem are usually faster and less flexible than in

software TLB miss handling. Our results for TLB data and instruction misses were captured

via performance hardware counters, so the measurements are related to hardware-handled TLB

misses.

TLB data misses

ha
rd

w
ar

e
co

un
ts

1e+05

2e+05

5e+05

1e+06

2e+06

5e+06

TLB instruction misses

200

400

600

800

1000

1200
GNV AoP+bin_generic
GNV AoP+veb3_generic
Encap GVG AoS+bin_aos
Encap GVG AoS+bin_soa
Encap GVG AoS+veb3_aos
Encap GVG AoS+veb3_soa
Encap GVG SoA+bin_aos
Encap GVG SoA+bin_soa
Encap GVG SoA+veb3_aos
Encap GVG SoA+veb3_soa
Decap GVG AoS+bin_aos
Decap GVG AoS+bin_soa
Decap GVG AoS+veb3_aos
Decap GVG AoS+veb3_soa
Decap GVG SoA+bin_aos
Decap GVG SoA+bin_soa
Decap GVG SoA+veb3_aos
Decap GVG SoA+veb3_soa

Figure 3.23: Performance hardware counts of TLB data and instructions misses for all imple-
mentations (note: logarithmic scale on y-axis).

In Figure 3.23, we present the TLB data misses to show the cache improvements from changing

the data layout, and TLB instructions misses to denote the differences in using different kinds

of APIs. In the first graphic, the counts for each API version successively decrease, being the

peek at the generic implementations showing a lot of TLB data misses probably due to inefficient

66

3.4 Composing implementations Chapter 3: Optimizing data structures

JVM object and address management (excessive pointer resolving operations to non contiguous

memory addresses); and it is interesting to see that all VEB 3 versions show less TLB data misses

than in binary heap, specially in decapsulated API - this means the VEB 3 layout arrangements

show better memory address usage. When comparing AoS and SoA layout arrangements in

graphs and priority-queues the differences are not too noticeable.

For TLB instruction misses we can confirm the overhead caused by encapsulating APIs -

constructing and destroying objects just to communicate values. However we can see that the

generic mechanisms in Java perform relatively good, Java’s generic code complexity is low, almost

to the degree of decapsulated versions, with the exception of generic VEB 3 which has higher

code complexity due to more complex index computations - this higher TLB instruction misses

applies in all VEB 3 implementations. Finally, when comparing AoS and SoA arrangements in

decapsulated API we can see that graphs with AoS layout show a little less misses with one

exception: GVG AoS + VEB 3 SoA

Average memory access time (AMAT)

AMAT

cl
oc

k
cy

cl
es

4.
6

4.
8

5.
0

5.
2

GNV AoP+bin_generic
GNV AoP+veb3_generic
Encap GVG AoS+bin_aos
Encap GVG AoS+bin_soa
Encap GVG AoS+veb3_aos
Encap GVG AoS+veb3_soa
Encap GVG SoA+bin_aos
Encap GVG SoA+bin_soa
Encap GVG SoA+veb3_aos
Encap GVG SoA+veb3_soa
Decap GVG AoS+bin_aos
Decap GVG AoS+bin_soa
Decap GVG AoS+veb3_aos
Decap GVG AoS+veb3_soa
Decap GVG SoA+bin_aos
Decap GVG SoA+bin_soa
Decap GVG SoA+veb3_aos
Decap GVG SoA+veb3_soa

Figure 3.24: Average memory access time metrics for all implementations.

The AMAT performance metrics shows the average number of time units each memory access

spends in the total execution time (time unit for this case is clock cycles) - as the previous graph-

ics, the graphic in Figure 3.24 is divided by vertical lines in three groups: generic, encapsulated

and decapsulated API. We are able to see that decapsulated versions with VEB heap spend less

cycles accessing elements than binary heap, due to its cache-friendly layout - as for binary heaps

uses a näive element layout. Regarding AoS and SoA layouts we do not see much differences in

using one or another, unless we look at decapsulated binary heap with AoS (GVG AoS+bin AoS,

GVG SoA+bin AoS) which shows less access time than the concurrent heap SoA implementations

(GVG AoS+bin SoA, GVG SoA+bin SoA). This is due to the fact of all fields being in the same

memory region, and because we have small and little number of fields, their usage is not too

critical in our case: it is best to access all fields of each object in one memory access.

67

3.5 Benchmark methodology Chapter 3: Optimizing data structures

Why do encapsulated and decapsulated AMATs have the same order of grandeur?

Although the absolute values presented in previous graphics show big differences between API

version (generic, encapsulated and decapsulated), the graphic in Figure 3.24 shows a line that

does not varies much across all implementations. This is because within the AMAT metrics, we

consider a relation between cache misses and instruction counts, which are absolute measures.

In AMAT we consider the cache miss rate

Miss Rate = Misses per instruction = Misses
Instructions ,

which is a relative measure, relating total number of cache misses to the instruction count.

Summary

To summarize the results, when comparing API versions we see that generic and encapsulated

APIs introduce a high amount of overhead causing excessive instructions to be run. Code com-

plexity greatly increases for encapsulated versions. We removed one level of indirection (generic

collection API) between collection and data; and simplified the API specification to eliminate

API abiding instruction operations (encapsulated collection API), leading us to decapsulated

API. It was in decapsulation experiments that we began to see the locality improvements from

cache-friendly heap sort and graph data layout changes (AoS/SoA). Sorting proved to be a good

aspect to optimize since the overall results are better for VEB heap versions.

3.5 Benchmark methodology

This section explains the methodologies used for measuring the graph and PQ tests ran consid-

ering a number of details such as profiling tools used, structure considerations like level of graph

sparsity and randomized but constant values list for sorting.

3.5.1 Benchmark environment

The hardware and software specifications of all tests ran for this dissertation are presented in

Table 3.611.

3.5.2 Hardware performance counters

One way to perform thorough analysis on modern architectures is recurring to hardware perfor-

mance counters, a special set of registers that store information related to hardware events (e.g..,

number of instructions executed, number of accesses to L1 or L2 caches, etc.). These registers are

embedded in most modern microprocessors and provide a powerful analysis tool for developers

enabling them to find and tune bottlenecks.

11CPU information taken also from http://www.cpu-world.com/

68

http://www.cpu-world.com/

3.5 Benchmark methodology Chapter 3: Optimizing data structures

Table 3.6: Benchmark environment settings.

Processor
Name: Intel(R) Core(TM)2 CPU T7200 @ 2.00GHz
Frequency: 2.0 GHz
Cores: 2

Cache
L1 Data: 32 KB, 8-way set associative, cache line size 64 bytes
L1 Instruction: 32 KB, 8-way set associative, cache line size 64 bytes
L2: 4 MB, 16-way set associative, cache line size 64 bytes

TLB

Data TLB: 4 KB Pages, 4-way set associative, 256 entries
Data TLB: 4 MB Pages, 4-way set associative, 32 entries
Instruction TLB: 2 MB pages, 4-way, 8 entries or 4M pages, 4-way, 4 entries
Instruction TLB: 4 KB Pages, 4-way set associative, 128 entries
L1 Data TLB: 4 KB pages, 4-way set associative, 16 entries
L1 Data TLB: 4 MB pages, 4-way set associative, 16 entries

Main memory 2 GB

Java
Version: 1.6.0 26

JVM: Java HotSpotTMServer VM (build 20.1-b02, mixed mode)

PAPI version 4.1.0.0
OS Kernel Linux 2.6.35-30-generic (Ubuntu 10.10)

Although providing in-depth perspective to behavioural issues in an architecture, in profiling

tools that use hardware performance counters, correlating low-level overhead and source code,

forces the analyser (programmer) to have good knowledge of the measured application. Also,

the programmer may be limited by the number of hardware performance counting registers and

may have to perform the same program run multiple times in order to gather all the desired

information.

3.5.3 Profiling with PAPI

PAPI12 stands for Performance Application Programming Interface, it is a programming interface

to call hardware counter related routines with the use of code instrumentation. It provides an

architectural abstraction between the available register set and programming level by considering

a set of pre-set events that are easily perceptible through the use of the caller API. The events

considered for measurement in the architecture described in Section 3.5.1 are shown in Table 3.7

(the list of the total PAPI pre-set event names are listed in Appendix B).

Since there are not enough performance hardware counters in the hardware specification

(Section 3.5.1) several runs are executed in order to measure the events mentioned in Table 3.7:

• first run measures PAPI TOT INS and PAPI TOT CYC events, the total number of in-

structions and cycles executed. Cycles per instruction (CPI) metrics can be extracted from

this.

• second run measures L1 data accesses and misses (PAPI L1 DCA and PAPI L1 DCM)

from where we can extract L1 miss rates.

• third run measures only L2 data accesses (PAPI L2 DCA) due to the lack of sufficient

hardware counters.

12http://icl.cs.utk.edu/papi/

69

http://icl.cs.utk.edu/papi/

3.5 Benchmark methodology Chapter 3: Optimizing data structures

Table 3.7: Considered hardware performance counters pre-set measurement events in PAPI

Event name Description
PAPI L1 DCM Level 1 data cache misses
PAPI L2 DCM Level 2 data cache misses
PAPI TLB DM Data translation lookaside buffer misses
PAPI TLB IM Instruction translation lookaside buffer misses

PAPI TOT INS Instructions completed
PAPI TOT CYC Total cycles

PAPI L1 DCH Level 1 data cache hits
PAPI L1 DCA Level 1 data cache accesses
PAPI L2 DCA Level 2 data cache accesses
PAPI L1 TCA Level 1 total cache accesses
PAPI L2 TCA Level 2 total cache accesses

• fourth run measures L2 data misses (PAPI L2 DCM).

• consequent runs may vary depending on the context but the methodology is analogous -

measuring mainly TLB (translation lookaside buffer) behaviour in independent runs.

3.5.4 Benchmark decisions

For the data structures addressed in this dissertation (priority-queues and graphs) we mention

decisions taken into account for fairness of comparison.

In priority-queues the benchmarks are performed with the same values list so that the memory

access pattern is the same for analogous implementations and in order to confirm improvements

when applying different data layouts. At instantiation time the priority-queue allocates the full

size of used number elements so that possibly distracting operations like re-dimensioning the

storage data structure are avoided.

For graph data structures the method is the same - the same size, connectivity rate and edge

weights (i.e., in general the same graph shape) is used for all competing implementations for fair

comparison in data layout analysis.

3.5.5 Measuring relevant parts of the program

The presented implementations are run in Java, and because (i) measurements use hardware

performance counters, (ii) the PAPI profiling tool does not have any Java based integration

module and (iii) since we do not want to consider any aspects unrelated to the memory access

patterns of our algorithms we used an auxiliary tool to help us isolate the computational relevant

parts of the execution for measurement - this tool works by using AspectJ [26] and its use

of point-cuts for isolation, and PAPI calls integrated with Java through the use of JNI (Java

Native Interfaces). We perform two kinds of measurements regarding priority-queues and graph

structures, which are each stored in file to avoid having different layouts caused by random

70

3.5 Benchmark methodology Chapter 3: Optimizing data structures

generation.

Priority-queue regions relevant for measuring

In priority-queues we load from file a previously generated values list to avoid random generation

costs - I/O phases are not considered in measurements. For isolated benchmarks (i.e., not

considering graph applications) to priority-queues we consider the structure’s initializing time.

The main goal in measuring priority-queues isolated from graph contexts is to analyse the memory

straining properties of the presented heaps (mainly swapping elements in memory), by inserting

a full bulk of elements and then removing them.

Priority-queues use integer values (Integer objects or int primitive values) and in order to

measure cache-miss improvement we promote a high count of cache-miss by completely filling all

cache levels mentioned in Section 3.5.1. Therefore, and considering that integers (or int) have

a size of 4 bytes, 10×106 int/Integer elements are inserted and removed from the priority-queue,

occupying a total of (approx.) 38.14 MB in memory - filling all cache levels.

Graph regions relevant for measuring

Graph I/O phases are also not considered as relevant for measuring; Prim’s MST algorithm is

the initial point of measurement, with the graph already allocated. Unlike graph data structures

the priority-queue initialization is considered as stated in Prim’s Minimal Spanning Tree (MST)

algorithm (graph initialization is considered an I/O phase). Also, the resulting MST is initialized

and considered for run-time.

3.5.6 Performance measurement metrics model

In this sub-section we present the metrics used in this dissertation: the Average Memory Access

Time (AMAT), proposed in [41], to show the average time spent in memory accesses for each

implementation. The formulae of this metric may depend on the number of cache levels in the

memory hierarchy, and since the current architecture where all tests are run has up to L2 cache,

AMAT values consider hit times and miss penalties for L1, L2 and main memory. The AMAT

expression for a 2-level cache environment is has follows:

AMAT = Hit TimeL1 + Miss RateL1 × (Hit TimeL2 + Miss RateL2 × Miss PenaltyL2)

In order to find the suitable values of hit-time and miss-penalty for each cache level an

auxiliary tool is used to retrieve useful information about memory latency - with this we can

infer the intended information. We used the Hound tool integrated with the PerfExpert13 tool-

kit. PerfExpert is used to automatically analyse performance opportunities in applications. An

example output for the Hound tool in the mentioned benchmark environment is followed. All

values presented in Listing 3.4 use the clock cycles (CC) unit to measure latency.

13http://www.tacc.utexas.edu/perfexpert

71

http://www.tacc.utexas.edu/perfexpert

3.5 Benchmark methodology Chapter 3: Optimizing data structures

Listing 3.4: Ecample output for hound tool in PerfExpert.

1 CPI_threshold = 0.5

2 L1_dlat = 3.65

3 L1_ilat = 3.65

4 L2_lat = 13.40

5 mem_lat = 218.65

6 CPU_freq = 996000000

7 FP_lat = 3.00

8 FP_slow_lat = 52.87

9 BR_lat = 1.00

10 BR_miss_lat = 12.00

11 TLB_lat = 15.63

The costs of cache misses and hits between two consecutive memory levels are inferred through

the values of L1 dlat, L2 lat and mem lat. In Figure 3.25 is represented how we infer the miss

penalties and how they are related to hit latencies. When CPU accesses the L1 cache we consider

the hit latency returned by hound output (L1 dlat); when data is not in L1 cache an L1 cache

miss occurs and the L2 cache is accessed, this is the L1 cache miss penalty and simultaneously

the L2 hit latency (L2 lat); finally, when data is not in L2 cache, the process is followed to main

memory and consequent deeper levels - L2 miss penalty equals the main memory hit latency

(mem lat). These assumptions are confirmed in [41].

Figure 3.25: Schematic for costs between levels in memory hierarchy.

The hound tool was ran multiple times and the average was made for all values - only the

pertinent values for the presented AMAT expression are considered (L1 hit latency, L1 miss

penalty, L2 hit latency and L2 miss penalty) using clock cycles (CC) as the time unit, see Table

3.8.

Table 3.8: Average values for memory levels latency and miss penalties.

Consideration Hound designation AVG CC values
L1 hit latency L1 dlat 3.9
L1 miss penalty, L2 hit latency L2 lat 14.8
L2 miss penalty, main memory latency mem lat 221.3

72

Chapter 4

Conclusions and Future Work

In this final chapter we end this dissertation with a summary of the topics mentioned, some

concluding remarks and possible future research directions.

4.1 Summary

Modern memory architectures are increasingly strained as data sets grow larger. Many of these

applications are irregular, meaning the memory usage pattern is unknown and most of the times

unpredictable, taking optimization decisions is hard. For data intensive irregular applications

the data layout in memory is unknown and the leeway for memory optimizations is low. In this

dissertation we mention the topics of locality of reference optimizations in typically irregular

applications. Locality optimizations took place when altering data space layouts in memory for

heap-sort and graph related algorithms. There are many studies made around memory efficient

sorting, namely through several authors that have contributed with their own implementations

of recursive data layouts in memory of heap elements in order to increase. A recursive layout is

presented by van Emde Boas [15] where all descending elements in a tree are stored in the same

memory regions than each of their parents thus decreasing the number of load operations made

from non-contiguous memory regions. We presented a simplified version of van Emde Boas heap

based on a binary heap, where its elements are arranged in blocks in order to increase cache hit

ratio within a heap block.

One of the main problems addressed in this dissertation has to do with the core nature of

object-oriented programming - its abstract mechanisms although allowing for easy, secure and

modular software development may not combine well with high performance computing (HPC)

aspects. A basic aspect of HPC in object-oriented languages, memory management, is usually

left out of programming scope for virtual machines to control like the Java Virtual Machine

(JVM), not designed for scientific nor HPC purposes. The main problems are: (i) lack of element

adjacency due to type erasure and auto-boxing in abstract object management in Java; (ii) the

73

4.2 Future work Chapter 4: Conclusions and Future Work

creation of encapsulating APIs which are good for modular OO development and hiding possibly

critical implementation details but representing natural bottlenecks when applying data layout

changes originating in redundant object instantiation.

Proposed solutions

Locality optimizations have been achieved in the case of heap sorting methods, by altering with

the data layout of the collection, thus increasing cache-friendly patterns - a simplified version of

VEB layout is introduced, where gains (compared to a binary heap) are approximately 28% less

L1 and L2 cache misses (for a test case of 10×106 int elements).

For the graph algorithm test case, two data layout changes are proposed, going against Java

collections’ native layout of Array of Pointers (AoP): array of structures (AoS) and structure of

arrays (SoA). The level of indirection between structure and data is removed in order to directly

operate with the structure rather than with pointers (or memory references). The objective is

to improve field/attribute memory usage by reordering memory accesses to data structures.

Another crucial goal in this subject is to dramatically reduce the pointer resolving complexity,

specially aggravated in irregular data structures. One of the main problems found in optimizing

data structures is the encapsulation occurring due to Java data type handling mechanisms -

encapsulating APIs - the overhead of creating/discarding objects (consuming precious resources)

with the sole purpose of communicating attribute values inside an object. In order to take advan-

tage of memory locality optimizations, abstraction is broken, giving origin to the decapsulated

API which is less generic and built to specifically interoperate with other structures by pass-

ing the intended values of attributes. With this, we greatly reduce the overall pointer-chasing

complexity implicitly added by generic mechanisms: instruction complexity greatly decreases for

decapsulated versions; the locality optimizations and performance investments in cache-friendly

sorting (VEB) finally gain ground when used in conjunction with other concepts - L1/L2 miss

counts, ratios and rates for VEB versions show better behaviour and less bottlenecking stalls;

when combining AoS and SoA implementations between graphs and priority-queue layouts we

do not notice many changes because all fields/attributes are accessed with similar patterns, i.e.,

the differences between using AoS and SoA in our test cases are little, but more specific cases of

graph algorithms might benefit from such layout combinations.

4.2 Future work

We intent to develop further these optimizations by combining AoS and SoA layouts (hybrid

layouts), also not breaking abstract concepts. Because Jikes Research Virtual Machine is an open-

source project, implementing these kinds of optimizations to automatically adjust the memory

layout of data structures without breaking abstraction concepts would be interesting - more

specifically there is the idea of optimizing generic collection data layouts and object management

through the use of source code pragma primitives. Another advantage of interfering with low-

74

4.2 Future work Chapter 4: Conclusions and Future Work

level JVM specifications would be: harnessing the abstract character caused by type-erasure in

all objects, to improve AoS layouts - one of the problems with AoS layouts is that different typed

values may not be present in the same array. With JVM byte encoding occurring in all objects,

one can optimize a collection’s data distribution in memory, by packing all desired (possibly

different typed) attributes/fields/elements to store them in contiguous memory regions, thus

creating an implicit AoS layout.

75

Bibliography

[1] USA Advanced Micro Devices, Inc., Sunnyvale, CA. AMD Opteron Processor Product Data

Sheet. (March), 2007.

[2] Jennifer M. Anderson, Saman P. Amarasinghe, and Monica S. Lam. Data and computation

transformations for multiprocessors. In Proceedings of the fifth ACM SIGPLAN symposium

on Principles and practice of parallel programming - PPOPP ’95, volume 30, pages 166–178,

New York, New York, USA, August 1995. ACM Press.

[3] Lars Arge, Michael a. Bender, Erik D. Demaine, Bryan Holland-Minkley, and J. Ian Munro.

Cache-oblivious priority queue and graph algorithm applications. Proceedings of the thiry-

fourth annual ACM symposium on Theory of computing - STOC ’02, page 268, 2002.

[4] Abdel-hameed Badawy. The Efficacy of Software Prefetching and Locality Optimizations

on Future Memory Systems. Computer Engineering, 1, 2004.

[5] Michael a. Bender, Erik D. Demaine, and Martin Farach-Colton. Cache-Oblivious B-Trees.

SIAM Journal on Computing, 35(2):341, 2005.

[6] Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Modeling Language User

Guide, volume 3 of The Addison-Wesley object technology series. Addison-Wesley, 1998.

[7] Gerth Stølting Brodal and Rolf Fagerberg. On the limits of cache-obliviousness. Proceedings

of the thirty-fifth ACM symposium on Theory of computing - STOC ’03, page 307, 2003.

[8] Gerth Stølting Brodal, Rolf Fagerberg, and Kristoffer Vinther. Engineering a cache-oblivious

sorting algorithm. PhD thesis, June 2008.

[9] A. Choudhary, J. Ramanujam, N. Shenoy, and P. Banerjee. Enhancing spatial locality via

data layout optimizations. In In Proceedings of Euro-Par’98, number 1470 in LNCS, pages

422–434. Springer Verlag, 1998.

[10] R.A. Chowdhury. Algorithms and data structures for cache-efficient computation: Theory

and experimental evaluation. PhD thesis, 2007.

76

BIBLIOGRAPHY BIBLIOGRAPHY

[11] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to Algorithms,

Second Edition, volume 7. The MIT Press, 2001.

[12] B.T. Davis and M. Jordan. Performance evaluation of exclusive cache hierarchies. IEEE

International Symposium on - ISPASS Performance Analysis of Systems and Software, 2004,

pages 89–96.

[13] Chen Ding and Ken Kennedy. Improving cache performance in dynamic applications through

data and computation reorganization at run time. ACM SIGPLAN Notices, 34(5):229–241,

May 1999.

[14] Amr Elmasry. Violation heaps: A better substitute for fibonacci heaps. CoRR,

abs/0812.2851, 2008.

[15] P. Emde Boas, R. Kaas, and E. Zijlstra. Design and implementation of an efficient priority

queue. Mathematical Systems Theory, 10(1):99–127, December 1976.

[16] Daniel Frampton, Stephen M. Blackburn, Perry Cheng, Robin J. Garner, David Grove,

J. Eliot B. Moss, and Sergey I. Salishev. Demystifying magic: High-level Low-level Pro-

gramming. Proceedings of the 2009 ACM SIGPLAN/SIGOPS international conference on

Virtual execution environments - VEE ’09, (c):81, 2009.

[17] Michael L. Fredman. On the efficiency of pairing heaps and related data structures. Journal

of the ACM, 46(4):473–501, July 1999.

[18] Michael L. Fredman, Robert Sedgewick, Daniel D. Sleator, and Robert E. Tarjan. The

pairing heap: A new form of self-adjusting heap. Algorithmica, 1(1-4):111–129, November

1986.

[19] Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses in improved

network optimization algorithms. Journal of the ACM, 34(3):596–615, July 1987.

[20] M. Frigo, C.E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious algorithms.

40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039), pages

285–297.

[21] Hwansoo Han and Chau-wen Tseng. Locality Optimizations For Adaptive Irregular Scientific

Codes. Technical report, 2000.

[22] M.D. Hill and A.J. Smith. Evaluating associativity in CPU caches. IEEE Transactions on

Computers, 38(12):1612–1630, 1989.

[23] Xianglong Huang, SM Blackburn, KS McKinley, J.E.B. Moss, Z. Wang, and P. Cheng. The

garbage collection advantage: improving program locality. In ACM SIGPLAN Notices,

volume 39, pages 69–80. ACM, 2004.

77

BIBLIOGRAPHY BIBLIOGRAPHY

[24] Intel and Jeff Casazza. First the Tick , Now the Tock : Next Generation Intel R© Microar-

chitecture (Nehalem). Power, pages 1–9, 2009.

[25] Mahmut Kandemir, Alok Choudhary, J. Ramanujam, and Prith Banerjee. A Graph Based

Framework to Detect Optimal Memory Layouts for Improving Data Locality. In Proc. IPPS

99, 1999.

[26] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and William G

Griswold. An Overview of AspectJ. Main, 2072(4):327–353, 2001.

[27] J B Kruskal. On the shortest spanning subtree of a graph and the traveling salesman

problem. Proceedings of the American Mathematical Society, 7(1):48–50, 1956.

[28] Milind Kulkarni, Martin Burtscher, Rajeshkar Inkulu, Keshav Pingali, and Calin Casçaval.

How much parallelism is there in irregular applications? ACM SIGPLAN Notices, 44(4):3,

February 2009.

[29] Milind Kulkarni and Keshav Pingali. Scheduling Issues in Optimistic Parallelization. In

2007 IEEE International Parallel and Distributed Processing Symposium, page 301. IEEE,

2007.

[30] Milind Kulkarni, Keshav Pingali, Bruce Walter, Ganesh Ramanarayanan, Kavita Bala, and

L. Paul Chew. Optimistic parallelism requires abstractions. Proceedings of the 2007 ACM

SIGPLAN conference on Programming language design and implementation - PLDI ’07,

page 211, 2007.

[31] Monica D. S Lam, Edward E. Rothberg, and Michael E. Wolf. The cache performance and

optimizations of blocked algorithms. ACM SIGPLAN Notices, 26(4):63–74, April 1991.

[32] Lie-Quan Lee, Jeremy G. Siek, and Andrew Lumsdaine. The generic graph component

library. ACM SIGPLAN Notices, 34(10):399–414, October 1999.

[33] Shun-tak Leung and John Zahorjan. Optimizing Data Locality by Array Restructuring.

Technical Report September, 1995.

[34] Vincent Loechner, Benoit Meister, and Philippe Clauss. Precise Data Locality Optimization

of Nested Loops. J. SUPERCOMPUT, 21:37–76, 2002.

[35] R. E. Lopez-Herrejon and D. Batory. A standard problem for evaluating product-line

methodologies. In Generative and Component Based Software Engineering, volume 2186

of Lecture Notes in Computer Science, pages 10–24. Springer, 2001.

[36] Mario Méndez-Lojo, Donald Nguyen, Dimitrios Prountzos, Xin Sui, M. Amber Hassaan,

Milind Kulkarni, Martin Burtscher, and Keshav Pingali. Structure-driven optimizations for

amorphous data-parallel programs. Proceedings of the 15th ACM SIGPLAN symposium on

Principles and practice of parallel programming - PPoPP ’10, page 3, 2010.

78

BIBLIOGRAPHY BIBLIOGRAPHY

[37] Bertrand Meyer. Object-Oriented Software Construction. Computer Science. Prentice Hall

PTR, 1988.

[38] David Mosberger and Stephane Eranian. IA-64 Linux Kernel: Design and Implementation.

Prentice Hall, 2002.

[39] Jesper Holm Olsen and Søren Christian Skov. Cache-Oblivious Algorithms in Practice. PhD

thesis, 2002.

[40] N. Park, D. Kang, K. Bondalapati, and V.K. Prasanna. Dynamic data layouts for cache-

conscious factorization of DFT. In Proceedings 14th International Parallel and Distributed

Processing Symposium. IPDPS 2000, pages 693–701. IEEE Comput. Soc.

[41] D A Patterson and J L Hennessy. Computer organization and design: the hardware/software

interface. Morgan Kaufmann, 4th edition, 2008.

[42] S. Pettie. Towards a Final Analysis of Pairing Heaps. In 46th Annual IEEE Symposium on

Foundations of Computer Science (FOCS’05), pages 174–183. IEEE, October 2005.

[43] Keshav Pingali, Milind Kulkarni, Donald Nguyen, Martin Burtscher, M. Mendez-Lojo, Dim-

itrios Prountzos, Xin Sui, and Zifei Zhong. Amorphous data-parallelism in irregular algo-

rithms. 2009.

[44] R. Ponnusamy, J. Saltz, and a. Choudhary. Runtime compilation techniques for data parti-

tioning and communication schedule reuse. Proceedings of the 1993 ACM/IEEE conference

on Supercomputing - Supercomputing ’93, pages 361–370, 1993.

[45] V.K. Prasanna. Tiling, block data layout, and memory hierarchy performance. IEEE

Transactions on Parallel and Distributed Systems, 14(7):640–654, July 2003.

[46] R C Prim. Shortest connection networks and some generalizations. Bell System Technical

Journal, 36(6):1389–1401, 1957.

[47] Frederik Rønn. Cache Oblivious Searching and Sorting. PhD thesis, 2003.

[48] Amir Roth and Gurindar S. Sohi. Effective jump-pointer prefetching for linked data struc-

tures. ACM SIGARCH Computer Architecture News, 27(2):111–121, May 1999.

[49] R Schaffer. The Analysis of Heapsort. Journal of Algorithms, 15(1):76–100, July 1993.

[50] J Shewchuk. Delaunay refinement algorithms for triangular mesh generation. Computational

Geometry, 22(1-3):21–74, May 2002.

[51] S S Skiena. The Algorithm Design Manual, volume 40. Springer, 1998.

[52] Daniel D. Sleator and Robert E. Tarjan. Amortized efficiency of list update and paging

rules. Communications of the ACM, 28(2):202–208, February 1985.

79

BIBLIOGRAPHY BIBLIOGRAPHY

[53] John T. Stasko and Jeffrey Scott Vitter. Pairing heaps: experiments and analysis. Commu-

nications of the ACM, 30(3):234–249, March 1987.

[54] J. Greggory Steffan, Christopher B. Colohan, Antonia Zhai, and Todd C. Mowry. A scal-

able approach to thread-level speculation. ACM SIGARCH Computer Architecture News,

28(2):1–12, May 2000.

[55] Wikipedia. Delaunay triangulation, image (Accessed: 25-Oct-2011). http://en.

wikipedia.org/wiki/File:Delaunay_circumcircles.png.

[56] Michael E. Wolf and Monica S. Lam. A data locality optimizing algorithm. In Proceedings of

the ACM SIGPLAN 1991 conference on Programming language design and implementation

- PLDI ’91, volume 26, pages 30–44, New York, New York, USA, May 1991. ACM Press.

[57] M. Wolfe. More iteration space tiling. In Proceedings of the 1989 ACM/IEEE conference on

Supercomputing - Supercomputing ’89, pages 655–664, New York, New York, USA, August

1989. ACM Press.

80

http://en.wikipedia.org/wiki/File:Delaunay_circumcircles.png
http://en.wikipedia.org/wiki/File:Delaunay_circumcircles.png

Appendix A

Sift optimizations in Van Emde

Boas-based heap

Listing A.1: Traditional (non optimized) sift-down algorithm for heaps

1 si ftDown (i) {
2 l e f t = l e f tCh i l d (i) ;

3 while (l e f t < s i z e) {
4 r i g h t = r i gh tCh i ld (i) ;

5 min = 0 ;

6 i f (array [l e f t] <= array [r i gh t]) {
7 min = l e f t ;

8 } else {
9 min = r i gh t ;

10 }
11 i f (array [i] > array [min]) {
12 // swap elements . . .

13 i = m;

14 l e f t = l e f tCh i l d (i) ;

15 } else {
16 break ; // heap property i s v e r i f i e d

17 }
18 }
19 }

Listing A.2: Traditional (non optimized) sift-up algorithm for heaps

1 s i f tUp (i) {
2 while (i > 0) {
3 parentIndex = parent (i) ;

4 i f (array [parentIndex] <= array [cur rent])

5 break ;

6 // swap parentIndex and i

7 i = parentIndex ;

8 }
9 }

81

Appendix A: Sift optimizations in Van Emde Boas-based heap

Listing A.3: Optimized sift-down algorithm for VEB-3 heaps

1 optSiftDown (i) {
2 nmod3 = 1 ;

3 l e f t = 1 , r = 2 ;

4 wi = array [i] ;

5 while (l e f t < s i z e) {
6 // l o c a l vars s tore array va lues for lower misses

7 wright = array [r i gh t] ;

8 wl e f t = array [l e f t] ;

9 // When we are at the f i r s t l e v e l

10 i f (r i g h t >= s i z e OR wle f t<= wright) {
11 min = l e f t ;

12 wmin = wl e f t ;

13 nmod3 = −1;

14 } else {
15 min = r i gh t ;

16 wmin = wright ;

17 nmod3 = 1 ;

18 }
19 i f (wi > wm) {
20 // swap elements . . .

21 i = min ;

22 l e f t = i ∗ 4 + nmod3 ;

23 r i g h t = l e f t + 3 ; // pos i t i on assumption

24 } else {
25 break ;

26 }
27 // Loop unro l l − l e a f l e v e l

28 i f (l e f t < s i z e) {
29 wright = array [r i g h t] ;

30 wle f t = array [l e f t] ;

31 wi = array [i] ;

32 i f (r i g h t >= s i z e OR wle f t<= wright) {
33 min = l e f t ;

34 wmin = wl e f t ;

35 } else {
36 min = r i gh t ;

37 wmin = wright ;

38 }
39 i f (wi > wmin) {
40 // swap elements . . .

41 i = m;

42 l e f t = i + 1 ;

43 r i g h t = i + 2 ; // pos i t i on assumption

44 } else {
45 break ;

46 }
47 }
48 }
49 }

82

Appendix A: Sift optimizations in Van Emde Boas-based heap

Listing A.4: Optimized sift-up algorithm for VEB-3 heaps

1 optSi ftUp (i) {
2 mod = i % 3 ;

3 i f (mod == 0 AND i > 0) {
4 // root l e v e l , compute parent index . . .

5 i f (array [parentIndex] > array [i]) {
6 swap (parentIndex , i) ;

7 i = parentIndex ;

8 }
9 }

10 while (i > 0) {
11 // l e a f l e v e l − loop unro l l 1

12 mod = i % 3 ;

13 parentIndex = i − mod ;

14 i f (array [parentIndex] <= array [i])

15 break ;

16 // swap parent index and i . . .

17 i = parentIndex ;

18 i f (i <= 0)

19 break ;

20

21 // root l e v e l − loop unro l l 2

22 // compute parent index . . .

23 i f (array [parentIndex] <= array [i])

24 break ;

25 // swap parentIndex and i . . .

26 i = parentIndex ;

27 }
28 }

83

Appendix B

Tables Appendix

Event name Description

PAPI L1 DCM Level 1 data cache misses

PAPI L1 ICM Level 1 instruction cache misses

PAPI L2 DCM Level 2 data cache misses

PAPI L2 ICM Level 2 instruction cache misses

PAPI L3 DCM Level 3 data cache misses

PAPI L3 ICM Level 3 instruction cache misses

PAPI L1 TCM Level 1 cache misses

PAPI L2 TCM Level 2 cache misses

PAPI L3 TCM Level 3 cache misses

PAPI CA SNP Requests for a snoop

PAPI CA SHR Requests for exclusive access to shared cache line

PAPI CA CLN Requests for exclusive access to clean cache line

PAPI CA INV Requests for cache line invalidation

PAPI CA ITV Requests for cache line intervention

PAPI L3 LDM Level 3 load misses

PAPI L3 STM Level 3 store misses

PAPI BRU IDL Cycles branch units are idle

PAPI FXU IDL Cycles integer units are idle

PAPI FPU IDL Cycles floating point units are idle

PAPI LSU IDL Cycles load/store units are idle

PAPI TLB DM Data translation lookaside buffer misses

continued on next page

84

Appendix B: Tables Appendix

Event name Description

PAPI TLB IM Instruction translation lookaside buffer misses

PAPI TLB TL Total translation lookaside buffer misses

PAPI L1 LDM Level 1 load misses

PAPI L1 STM Level 1 store misses

PAPI L2 LDM Level 2 load misses

PAPI L2 STM Level 2 store misses

PAPI BTAC M Branch target address cache misses

PAPI PRF DM Data prefetch cache misses

PAPI L3 DCH Level 3 data cache hits

PAPI TLB SD Translation lookaside buffer shootdowns

PAPI CSR FAL Failed store conditional instructions

PAPI CSR SUC Successful store conditional instructions

PAPI CSR TOT Total store conditional instructions

PAPI MEM SCY Cycles Stalled Waiting for memory accesses

PAPI MEM RCY Cycles Stalled Waiting for memory Reads

PAPI MEM WCY Cycles Stalled Waiting for memory writes

PAPI STL ICY Cycles with no instruction issue

PAPI FUL ICY Cycles with maximum instruction issue

PAPI STL CCY Cycles with no instructions completed

PAPI FUL CCY Cycles with maximum instructions completed

PAPI HW INT Hardware interrupts

PAPI BR UCN Unconditional branch instructions

PAPI BR CN Conditional branch instructions

PAPI BR TKN Conditional branch instructions taken

PAPI BR NTK Conditional branch instructions not taken

PAPI BR MSP Conditional branch instructions mispredicted

PAPI BR PRC Conditional branch instructions correctly predicted

PAPI FMA INS FMA instructions completed

PAPI TOT IIS Instructions issued

PAPI TOT INS Instructions completed

PAPI INT INS Integer instructions

PAPI FP INS Floating point instructions

PAPI LD INS Load instructions

PAPI SR INS Store instructions

continued on next page

85

Appendix B: Tables Appendix

Event name Description

PAPI BR INS Branch instructions

PAPI VEC INS Vector/SIMD instructions (could include integer)

PAPI RES STL Cycles stalled on any resource

PAPI FP STAL Cycles the FP unit(s) are stalled

PAPI TOT CYC Total cycles

PAPI LST INS Load/store instructions completed

PAPI SYC INS Synchronization instructions completed

PAPI L1 DCH Level 1 data cache hits

PAPI L2 DCH Level 2 data cache hits

PAPI L1 DCA Level 1 data cache accesses

PAPI L2 DCA Level 2 data cache accesses

PAPI L3 DCA Level 3 data cache accesses

PAPI L1 DCR Level 1 data cache reads

PAPI L2 DCR Level 2 data cache reads

PAPI L3 DCR Level 3 data cache reads

PAPI L1 DCW Level 1 data cache writes

PAPI L2 DCW Level 2 data cache writes

PAPI L3 DCW Level 3 data cache writes

PAPI L1 ICH Level 1 instruction cache hits

PAPI L2 ICH Level 2 instruction cache hits

PAPI L3 ICH Level 3 instruction cache hits

PAPI L1 ICA Level 1 instruction cache accesses

PAPI L2 ICA Level 2 instruction cache accesses

PAPI L3 ICA Level 3 instruction cache accesses

PAPI L1 ICR Level 1 instruction cache reads

PAPI L2 ICR Level 2 instruction cache reads

PAPI L3 ICR Level 3 instruction cache reads

PAPI L1 ICW Level 1 instruction cache writes

PAPI L2 ICW Level 2 instruction cache writes

PAPI L3 ICW Level 3 instruction cache writes

PAPI L1 TCH Level 1 total cache hits

PAPI L2 TCH Level 2 total cache hits

PAPI L3 TCH Level 3 total cache hits

PAPI L1 TCA Level 1 total cache accesses

continued on next page

86

Appendix B: Tables Appendix

Event name Description

PAPI L2 TCA Level 2 total cache accesses

PAPI L3 TCA Level 3 total cache accesses

PAPI L1 TCR Level 1 total cache reads

PAPI L2 TCR Level 2 total cache reads

PAPI L3 TCR Level 3 total cache reads

PAPI L1 TCW Level 1 total cache writes

PAPI L2 TCW Level 2 total cache writes

PAPI L3 TCW Level 3 total cache writes

PAPI FML INS Floating point multiply instructions

PAPI FAD INS Floating point add instructions

PAPI FDV INS Floating point divide instructions

PAPI FSQ INS Floating point square root instructions

PAPI FNV INS Floating point inverse instructions

PAPI FP OPS Floating point operations

PAPI SP OPS Floating point operations; single precision

PAPI DP OPS Floating point operations; double precision

PAPI VEC SP Single precision vector/SIMD instructions

PAPI VEC DP Double precision vector/SIMD instructions

Table B.1: Hardware performance counters pre-set measurement events in PAPI

87

Appendix B: Tables Appendix

T
ab

le
B
.2
:
B
en

ch
m
ar
k
s
co
m
b
in
in
g
gr
ap

h
an

d
p
ri
or
it
y
-q
u
eu

e
v
er
si
on

s
(a

=
×
10

8
;
b
=

×
10

6
)

A
P
I

gr
ap

h
+
p
q

in
st

(a
)

cy
c
(a
)

L
1a

cc
(a
)

L
1m

is
s
(b
)

L
2a

cc
(b
)

L
2m

is
s
(b
)

ti
m
e
(s
)

G
en

er
ic

G
N
V

A
oP

+
b
in

ge
n

18
.6
81

32
.4
13

11
.4
38

22
.4
31

30
.8
86

7.
36

1
1.
53

5
G
N
V

A
oP

+
v
eb

3
ge
n

22
.3
17

37
.3
29

13
.4
56

20
.6
04

28
.2
00

5.
71

2
1.
74

5

E
n
ca
p
su
la
te
d

G
V
G

A
oS

+
b
in

ao
s

29
.8
62

17
.9
30

16
.5
50

18
.7
75

43
.3
90

12
.9
71

0.
88

8
G
V
G

A
oS

+
b
in

so
a

28
.1
86

16
.8
67

15
.5
25

18
.0
06

40
.2
15

11
.9
27

0.
81

2
G
V
G

A
oS

+
v
eb

3
ao

s
31

.2
04

19
.8
25

16
.1
79

18
.1
08

42
.3
48

12
.4
17

0.
98

9
G
V
G

A
oS

+
v
eb

3
so
a

30
.3
20

19
.5
22

16
.2
38

18
.2
97

41
.9
44

12
.3
66

0.
96

6
G
V
G

S
oA

+
b
in

ao
s

30
.4
91

18
.2
37

16
.9
72

18
.6
65

45
.1
68

12
.9
90

0.
88

8
G
V
G

S
oA

+
b
in

so
a

28
.9
14

17
.3
82

15
.9
11

17
.8
58

41
.7
05

12
.0
03

0.
85

7
G
V
G

S
oA

+
v
eb

3
ao

s
31

.9
81

20
.3
93

16
.5
36

18
.0
14

43
.3
00

12
.4
12

1.
00

5
G
V
G

S
oA

+
v
eb

3
so
a

30
.9
75

19
.8
81

16
.4
67

18
.1
94

43
.4
65

12
.4
71

0.
97

8

D
ec
ap

su
la
te
d

G
V
G

A
oS

+
b
in

ao
s

9.
79

2
7.
06

6
4.
95

3
4.
75

1
12

.3
02

4.
37

3
0.
29

4
G
V
G

A
oS

+
b
in

so
a

8.
65

7
6.
22

7
4.
42

8
4.
94

7
12

.2
60

4.
40

3
0.
25

9
G
V
G

A
oS

+
v
eb

3
ao

s
12

.6
18

10
.2
94

6.
51

2
4.
08

1
10

.7
05

3.
82

0
0.
42

0
G
V
G

A
oS

+
v
eb

3
so
a

11
.7
16

9.
66

7
6.
38

1
4.
14

8
11

.0
84

3.
81

6
0.
39

1
G
V
G

S
oA

+
b
in

ao
s

10
.0
27

7.
43

4
5.
33

6
4.
75

4
12

.6
03

4.
34

2
0.
29

3
G
V
G

S
oA

+
b
in

so
a

8.
56

8
6.
63

6
4.
91

4
5.
02

8
12

.3
62

4.
38

5
0.
28

2
G
V
G

S
oA

+
v
eb

3
ao

s
12

.3
89

9.
97

4
6.
10

9
4.
10

4
10

.7
77

3.
80

0
0.
43

0
G
V
G

S
oA

+
v
eb

3
so
a

11
.3
95

9.
64

0
6.
11

8
4.
16

7
11

.1
48

3.
82

6
0.
40

0

88

	
	
	
	
	
	Introduction
	Data intensive and Irregular applications
	Locality of reference
	Optimizing data layouts
	Object-oriented and Memory management
	Parallelism motivations

	Main goals, Scope and Contributions
	Organization of the Dissertation

	Background
	Cache-aware and cache-oblivious
	Memory models
	RAM model
	External memory model
	Hierarchical memory model
	Ideal-cache model
	Caches in multi-processor environments

	Cache-aware/oblivious sorting
	Efficient heap implementations
	Cache-efficient heap and priority-queues

	Locality optimizations
	Algorithmic locality optimizations
	Data layout locality optimizations
	JVM level optimizations

	Graphs
	Existing graph libraries and tools
	Development methodologies
	Parallel Irregular applications

	Optimizing data structures
	Data containers in Object-Oriented frameworks
	Type erasure in Java collections
	Main reasons for overhead

	Sorting
	The heap sort problem
	Van Emde Boas data layout

	Graphs
	Formal graph description
	Graph representations
	Linked data structures
	Minimal Spanning Tree: Prim
	Data layout optimizations
	Graph pointer-based complexity analysis

	Composing implementations
	Benchmarks

	Benchmark methodology
	Benchmark environment
	Hardware performance counters
	Profiling with PAPI
	Benchmark decisions
	Measuring relevant parts of the program
	Performance measurement metrics model

	Conclusions and Future Work
	Summary
	Future work

	
	Sift optimizations in Van Emde Boas-based heap
	Tables Appendix

