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Abstract

The recent sequencing techniques and omics approaches are generating huge
amounts of data that can provide ways to extract meaningful knowledge,
by resorting to appropriate computational tools. One important technique
resorts to the use of genome scale model reconstructions. These models are
widely used in Metabolic Engineering, attempting to optimize an organism’s
functions, genetically modifying it to produce compounds of industrial inte-
rest.

Another area that became widely important within the fields of Systems
Biology and Bioinformatics was network analysis and visualization. Networks
can provide a way to better understand the relationships between biological
entities, by allowing their visual representation. However, biological networks
usually comprise a large number of entities and interactions, that cannot be
easily interpreted by the human eye.

Integrating visualization and analysis is, therefore, a goal of high interest
in several scientific areas, and this has been tackled by several visualization
tools available. However, regarding the integration of metabolic engineering
techniques with metabolic network visualization, there are still few examples
of success. Usually, it is necessary to use more than one tool and the agility
of the methods is limited.

In this work, a metabolic network visualization framework is presented,
with the goal of being a tool that will help researchers in metabolic engineer-
ing projects. This framework is divided in two layers: the first deals with
the importation and exportation of networks in different formats, while the
other layer provides all the visualization and edition features.

A metabolic layout is based on the reactions contained in the metabolic
model, and it can represent just a part of the metabolism of an organism.
To have the possibility to use the same layout in different models, a strategy
was defined to map the entities of the visualization with the entities of the
model.

The layouts are displayed in a bipartite graph, with different node types
and colors. It is possible to visualize additional information of the network
by clicking the nodes. Some of the features include dragging, zooming and
highlighting. On top of all this, it is also possible to apply filters and overlap
information over these networks. The filters can change what is visible in
the network, while the overlaps allow defining new labels, colors and shapes
to the nodes, and new colors and thickness to the edges. Finally, the frame-
work was also integrated within OptFlux, an open-source software to support
metabolic engineering available at www.optflux.org, to provide a connection
between visualization and metabolic simulation methods.
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Resumo

As recentes técnicas de sequenciação e as abordagens ”ómicas” estão a gerar
enormes quantidades de dados que, através do uso de ferramentas computa-
cionais adequadas, podem fornecer formas de extracção de conhecimento
biológico significativo. Uma importante metodologia recorre à reconstrução
de modelos metabólicos à escala genómica. Estes modelos são muito usados
na Engenharia Metabólica, tentado-se optimizar o funcionamento do orga-
nismo, modificando-o geneticamente, de forma a maximizar a produção de
compostos de interesse industrial.

Outra área de estudo que tem ganho bastante importância nos campos da
Biologia de sistemas e Bioinformática é a análise e visualização de redes. As
redes podem oferecer formas de melhor compreender as relações existentes
entre entidades biológicas, fornecendo uma representação visual destes rela-
cionamentos. No entanto, as redes biológicas, usualmente, são compostas
por um elevado numero de entidades e relacionamentos, o que pode tornar
dif́ıcil a sua interpretação a ”olho nu”.

A integração de visualização e análise sempre foi um objectivo de interesse
em todas as áreas cient́ıficas, e respostas a este problema têm surgido sob a
forma de diferentes ferramentas. No entanto, no que se refere à integração
de técnicas de engenharia metabólica com visualização de redes metabólicas,
existem ainda poucos exemplos com sucesso. Usualmente, é necessário o uso
de diversas ferramentas e as funcionalidades e flexibilidade é ainda limitada.

Neste trabalho é apresentada uma plataforma para a visualização de re-
des metabólicas, com o objectivo de ser uma ferramenta que assista inves-
tigadores em projectos de engenharia metabólica. Esta plataforma está di-
vidida em duas camadas: a primeira lida com a importação e exportação
de redes em diferentes formatos, enquanto a outra camada oferece todas as
funcionalidades de visualização e edição.

Um layout metabólico é baseado nas reacções contidas num modelo meta-
bólico, e pode representar apenas uma parte do metabolismo do organismo.
De forma a ser posśıvel utilizar o mesmo layout em modelos diferentes, foi
definida uma estratégia para mapear as entidades da visualização com as
entidades do modelo.

Os layouts são representados sob a forma de um grafo bi-partido, com
diferentes tipos de nodos e cores. É posśıvel visualizar informação adicional
sobre a rede clicando nos nodos. Algumas das funcionalidades incluem arras-
tar, focar e realçar partes da rede. Para além de tudo isto, é posśıvel aplicar
filtros e sobrepor informação sobre a rede. Os filtros permitem definir o que
é viśıvel na rede, enquanto a sobreposição permite definir novas etiquetas,
formas e cores dos nodos e cores e espessura das conecções. Finalmente, a
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plataforma foi integrada no OptFlux, uma ferramenta de código aberto para
engenharia metabólica que está dispońıvel em www.optflux.org, de forma a
estabelecer uma conexão entre a visualização de redes metabólicas e métodos
de simulação do metabolismo.
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Chapter 1

Introduction

1.1 Motivation

The surge of new experimental high-throughput techniques in the biomedical

fields, including next generation sequencing and omics data, brought impor-

tant advances and challenges. One of the fields that gained importance due to

the generalization of these techniques was Metabolic Engineering, a field that

involves designing genetic alterations in microorganisms to optimize the pro-

duction of compounds of interest. The availability of genome scale data made

possible the reconstruction of large scale metabolic models, integrating the

knowledge obtained from classical biological techniques, with genome scale

data.

Metabolic Engineering uses genome scale metabolic models (GSMMs) in an

attempt to optimize an organism’s functions, by means of predictions. In

the last years, we have been experiencing a large increase in the sequencing

of industrially viable micro-organisms that foster the interest on ME and

GSMMs.

On the other hand, biological networks became more popular with the ap-

pearance of the recent sequencing techniques. They comprise a large number

of entities and their interactions that cannot be easily interpreted by the hu-
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2 Introduction

man eye. One can have large networks simply by representing reactions and

the metabolites they produce/consume, but the integration of information re-

garding protein coding, regulatory events, transcription factors or co-factors

and the heterogeneity of such data takes the problem to even higher levels

of complexity.

A lot of visualization tools arose to face this issue [2]. Most of them resort to

the more intuitive way of representing such interactions, by mapping them

as 2D graphs, where biological entities are represented as nodes and their

interactions as edges. Several tools allow the representation of massive net-

works and also integrate diverse network analysis methods. The capability

of allowing users to specify the representation of the nodes and edges also

poses as an attractive property, as well as the features related to the inte-

gration with experimental data. The automatic layout capabilities are also

very desirable assets, since most models in their raw forms do not comprise

layout information.

In the majority of the visualization tools, biological entities/ interactions are

represented as shapes/ lines, with different colors/formats standing for their

classes. Although this seems a reasonable solution, the inherent complexity

of the integrated information, the range of possible different interactions and

the growing trend to more accurately represent them motivated the develop-

ment of standard graphical notations. The most successful was the Systems

Biology Graphical Notation (SBGN) [3], where networks are modelled in a

state-transition way. One other successful standard format is the Systems

Biology Markup Language (SBML), that aims at storing and exchanging

biological models. Combined with the development of the SMBL Layout

package, this makes up a very promising effort.

While in the pre-genomic era, the analysis and visualization of data patterns

were approached as independent computational problems, presently it is de-

sirable that these two levels are very well integrated in order to complement

each other [4]. More particularly, this work aims at integrating two levels

of analysis: network visualization and ME. Indeed, this work focuses on the

development of a visualization framework for ME purposes. On the other
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hand, there will also be a focus on integrating the visualization framework

within a ME platform, allowing the visualization of the models with phe-

notype simulation, overlapping results of those simulations in the metabolic

network, providing a useful tool to assist researchers on ME projects.

1.2 Goals

The aim of this work will be to develop a computational platform for the

visualization of metabolic models, integrated within the OptFlux workbench

for ME, developed by the host group of this work.

This will encompass the following scientific/technological objectives:

• Review the main tools and standards within the field of metabolic

model visualization;

• Implement a generic library for the visualization of metabolic models,

well integrated within the OptFlux Metabolic Engineering workbench;

• Over the previous library, implement tools to allow importing/ export-

ing models and layouts in standard formats, including SBML, SBGN-

ML, KEGG Markup Language (KGML) and eXtensible Graph Markup

and Modeling Language (XGMML);

• Design and implement tools to allow the integration of the OptFlux

visualization library with relevant tools in the field, such as Cytoscape

and CellDesigner;

• Integrate the visualization of the models with phenotype simulation

tools in OptFlux, overlapping results of simulations with models and

exporting these results in standard formats;

• Develop methods to automatically generate layouts for specific path-

ways from a given metabolic model, and provide ability to edit those

layouts;
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• Apply the selected tools in selected case studies.

1.3 Structure of the document

This document is organized in the following way:

Chapter 2

Systems Biology and Metabolic Engineering

A brief introduction to the field of SB and ME. Some explanation on metabolic

models and simulation methods are given. A survey of relevant ME tools is

made.

Chapter 3

Biological Networks

Some basic definitions of networks and graphs are provided as well as some

biological networks properties. Some of the main challenges of visualization

of biological networks are discussed.

The chapter ends with a survey of some of the available network visualization

tools.

Chapter 4

Results and Development

In this chapter the results of the work are presented. First a global view of the

architecture of the visualization framework is made. Secondly, the features

of the framework are described, as well as the features of the OptFlux’s



1.3 Structure of the document 5

plugin developed. Finally, more technical details of the development of the

framework and the plugin are also presented.

Chapter 5

Case Study

This chapter presents case studies of application of the developed framework.

Chapter 6

Conclusions and Future Work

In this chapter, some conclusions about the work are drawn. Some limitations

of the framework are and future work possibilities are discussed.





Chapter 2

Systems Biology and Metabolic

Engineering

2.1 Systems Biology

The increase in the amount of experimental data generated by high through-

put sequencing and omics approaches has brought Bioinformatics to the

spotlight in the field of the life sciences.

The need to intelligently store the huge amounts of data generated and pro-

vide ways to access knowledge provided by that data is perhaps the greatest

challenge of bioinformatics today. In order to make sense of all these data,

it is necessary to develop computational tools capable of analysing sheer

volumes of data and extract meaningful knowledge interpretable by biolo-

gists. One of the major uses of such data is to provide knowledge enabling

enhanced understanding of biological processes, and the complexity of their

interactions. Due to this fact, systems biology arose recently as an important

field in the biological sciences.

Systems biology (SB) aims at the system-level understanding of biological

systems. While molecular biology currently focuses mainly on the identi-

fication of genes and functions, or the parts of the system, SB focuses on

7



8 Systems Biology and Metabolic Engineering

understanding how those parts interact, and is more concerned with be-

haviour. The identification of the components of a system provides limited

knowledge, so it is essential that the study of these systems can also provide

comprehension of what happens when certain stimuli or disruptions occur.

Systems biology combines efforts from several research areas, such as molec-

ular biology, high-precision measurement, computer science and other engi-

neering and biological fields. Genomics and molecular biology, computational

analysis and simulations, analysis of dynamics and measurements are key ar-

eas in SB research [5].

The design of these systems should be performed to meet specific functional

properties, and to achieve the complete understanding of a biological system.

Indeed, the following properties should be met [4]:

i System Structure: focuses on the identification of the interactions of

the different compounds of the organism, such as regulation, interaction

of proteins and metabolic pathways, as well as the physical structures of

the system;

ii System Behaviour Analysis: understanding the behaviour by analysing

how the system reacts to certain stimuli or perturbations;

iii System Control: determine methods that control the biological sys-

tems, allowing to obtain the knowledge on how to transform, for instance,

a malfunctioning cell into a healthy one;

iv System Design: in the best case scenario, develop methodologies that

allow the design of biological systems with beneficial goals, such as, pro-

viding potential cures for diseases.
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2.2 Metabolic Engineering and Metabolic Mo-

dels

The reconstruction of genome scale models of cells is one of the major chal-

lenges of SB. The purpose of this effort is to integrate the knowledge obtai-

ned with the classic biological research methods, with genome scale data

obtained, for instance, from modern sequencing techniques. Metabolic En-

gineering (ME) makes use of genome scale metabolic models (GSMMs) to

better understand the organism’s functions and predict alterations that can

optimize the production of compounds of industrial interest. In the last years,

we have been experiencing a large increase in the sequencing of industrially

viable micro-organisms that foster the interest on ME and GSMMs.

GSMMs [6] are mathematical representations of the metabolic transforma-

tions of a cell. The main purpose of these models is to allow the simulation of

the metabolism of the cell, taking into consideration specific environmental

conditions, as well as to predict how the cell reacts to genetic modifications

such as, for instance, gene deletions or under/over expression. These type

of problems usually focus on two main goals, which are the maximization

of the production of a given product, while keeping the cell viable(the usual

strategy is maximizing the biomass production). These predictive models

are also called in silico metabolic models.

There are two classes of models that are mostly used in ME:

• Stoichiometric Models: are derived from the metabolic network of

an organism. The information about reaction stoichiometry is the star-

ting point [7], and it is represented by a set of equations that describe

the chemical transformations of the system [8].

The metabolic network is composed by a set of compounds (nodes)

and a set of reactions/fluxes (edges). The network is represented in a

stoichiometric matrix of m rows (representing the metabolites), and n

columns (representing the reactions).
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• Kinetic Models: dynamically describe the mass balances for each

metabolite of the network. The system is typically represented by

a set of differential equations to simulate the behaviour of the orga-

nism. These models are less common due to the fact that they have

a larger number of parameters and there is less data regarding the

dynamic intra-cellular behaviour [7], creating greater difficulties in the

reconstruction of such models.

The fact that stoichiometric models are more commonly used by the majority

of metabolic engineering tools, will lead us, from now on, to focus solely on

the analysis of these models.

2.2.1 Constraint based analysis

Stoichiometric models’ starting point is the determination of the stoichio-

metric matrix that represents the translation of biological knowledge into

mathematical terms. Then, it is possible to represent the mass balances of

the metabolites with differential equations:

dc

dt
= S.v − µ.c (2.1)

where c is the vector of the metabolites concentrations, v the flux vector and

µ the growth rate. Each equation describes the evolution of the concentration

of each metabolite over time.

The term µ.c is eliminated, due to the fact that in most scenarios this value

(dilution) it is much smaller than the value of the fluxes [9]. A pseudo steady

state assumption is normally taken [9] stating that the amount of intra-

cellular compounds that is consumed is the same amount that is produced,

which means that the mass balances can be described by a homogeneous

system of linear equations:

S.v = 0 (2.2)
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Equation 2.2 defines all feasible flux distributions [10] instead of a particular

solution. Despite being feasible that does not mean that those are biologically

realistic solutions, which means that there is a necessity to further restrict

the solution space. It is possible to restrict the model by limiting the value

of the fluxes:

αi ≤ vi ≤ βi (2.3)

where αi is the minimum value, vi the value of the flux, and βi the maximum

value for the flux i.

There are two main types of restrictions, adjustable and non-adjustable.

Adjustable restrictions may change through evolution and can be specific

for different organism cells [11], and are usually used to validate the cell

under specific conditions. The non-adjustable restrictions are, for instance,

restrictions imposed by thermodynamics or enzyme capacities.

The type of restrictions shown in equation 2.3 allows to set limits to the

value of the fluxes, and it also provides ways to restrict the model by the

reversibility of the reactions and to restrict fluxes to a constant value. A

reaction is reversible if αi ∈ < ∨ βi ∈ <, and irreversible if either αi or βi

are 0. Fixing the value of a flux is possible by giving the same value to αi

and βi. Also, this can accommodate restrictions coming from other types of

experimental data, such as metabolomics or fluxomics.

The process of stoichiometric modelling (Figure 2.1) of a cell is a process

that starts by determining the stoichiometric matrix, which will give us the

mass balances, by assuming a pseudo steady state of the system (Equation

2.2), and by following a constraint based approach, limiting the value of the

fluxes through restrictions (Equation 2.3).

Network pathway analysis is the attempt to understand and determine sys-

tematic properties that the metabolic network presents. It is possible to de-

termine Elementary Modes [12] (EM) by analyzing the stoichiometric model

constraints and the irreversibility of certain reactions. An EM is a flux vector

that [12]:
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Figure 2.1: Representation of the principles of stoichiometric modelling with
a constraint based approach.

• satisfies the steady state;

• is thermodynamically feasible;

• there is no other non null vector that satisfies the previous constraints

with a proper subset of its reactions.

EMs are the set of all routes through the network in steady state conditions

that, from specific sets of substrates to products, cannot be decomposed to

simpler routes [13], while maintaining steady-state, so they provide ways of

analysing the set of pathways in the metabolic network.

As mentioned before, ME looks for ways to optimize the cell’s production

of desired compounds, and in order to do so, predictive analysis of the cells

behaviour is an important step. When the point is reached when the stoichio-

metric model is fully built, there are methods that allow the calculation of

flux distributions if a flux to maximize (or minimize) is chosen. Flux Balance

Analysis (FBA) is the most common of these methods.
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Phenotype simulation methods

Flux Balance Analysis [14] (FBA) uses linear programming (LP) to deter-

mine the steady-state flux distribution in a metabolic network by maximizing

an objective function, such as the maximization of biomass or ATP produc-

tion. Biomass production is in fact one of the most commonly used objective

functions, based on the hypothesis that the metabolic objective of the cell

is to maximize growth. While this may not seem correct, for instance, for

human cells, it has been shown that for simpler uni-cellular organisms this

principle may be applied [14]. To the existing model, additional restrictions

are added usually to represent the model substrate uptakes. The result of a

FBA simulation is an optimal steady state flux distribution (Figure 2.2).

Figure 2.2: FBA major steps.

FBA assumes that the cell’s optimal behaviour maximizes its growth, and

can also be used to simulate mutant strains. The mutation may result from

gene knockouts or changes in expression values. However, FBA’s assumption

of optimal growth may not be suitable for these cases, if we consider that the

mutant cells were not exposed to long-term evolutionary pressure. There are

other methods that can be better suited for mutant strain simulation.

The Minimization of Metabolic Adjustment [1] (MOMA) method assumes

that the mutant cell tries to minimize the result of the perturbation caused
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by the mutation. This means that, if we consider the FBA solution space, the

MOMA solution will be as close as possible from the optimal FBA solution.

(Figure 2.3)

Figure 2.3: Relation between mutant and wild type FBA solution space.
MOMA solution based on the distance. Adapted from [1].

Considering that the objective function is the minimization of the quadratic

distance from both solutions, we are dealing with a quadratic programming

(QP) problem.

Another common method for mutant simulation is the regulatory on/off mi-

nimization of metabolic fluxes [15] (ROOM). ROOM minimizes the total

number of significant flux changes from the wild type flux distribution. This

is made under the assumption that the cell minimizes the effort of adaptation

to the new mutation, and it has been shown that there has been evolutionary

pressure to minimize the cost of gene expression [15]. In terms of optimization

methods, ROOM resorts to the use of a mixed integer linear programming

(MILP) formulation.

In ROOM’s predictions of growth rate, the flux distributions are very differ-

ent from FBA’s predictions, but the value of the growth rate is actually very

close, while MOMA’s are significantly lower. In fact, flux distributions from
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ROOM are claimed to be more correlated with experimental data than the

two other methods [15].

2.2.2 Existing software for Metabolic Engineering

In this section, some ME software tools are presented. The chosen tools focus

on the capabilities to use metabolic models, perform steady state simulations

and implement strain optimization methods.

OptFlux

OptFlux [16] www.optflux.org is a ME framework developed by the Bioin-

formatics and Systems Biology research group of the University of Minho.

OptFlux aims at being the reference computational application in the field.

OptFlux has available a number of operations to visualize, import and export

stoichiometric metabolic models, including reactions, metabolites, equations

and, if available, gene-reaction associations. It also allows the use of stoi-

chiometric metabolic models for phenotype simulation of both wild-type and

mutant organisms, using several methods such as FBA, MOMA and ROOM.

The strain optimization functionalities provide interfaces to identify sets of

reaction deletions that maximize a given objective function related with a

desired objective. The ultimate purpose of the implemented algorithms is

to identify genetic modifications that force the microorganism to produce a

particular metabolite, while still obeying the physiological aim of maximizing

biomass production. OptFlux also provides a tool for EM calculation which

provides a simple user interface that allows an intuitive filtering of the results

that match given patterns.

OptFlux is open source, user friendly and compatible with standards, such

as SBML [17], and utilizes free and commercial solvers such as Coin-or linear

programming (CLP), the GNU Linear Programming Kit (GLPK) and IBM

ILOG CPLEX Optimization Studio (CPLEX).

www.optflux.org
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OptFlux is built in Java on top of AIBench (http://www.aibench.org), a

software development framework that was born as a collaborative project be-

tween the host group and researchers from the University of Vigo in Spain.

AIBench is a lightweight, non-intrusive, MVC-based Java application frame-

work that eases the connection, execution and integration of operations with

well defined input/output. This basic idea provides a powerful programming

model to fast develop applications.

This tool was selected as the basis for the development of this project and,

therefore, its implementation layers will be further analysed later in detail

(Chapter 3).

COBRA

The COBRA Toolbox [18, 19] is a constraint-based reconstruction and ana-

lysis toolbox running in the Matlab environment. It allows for quantitative

prediction of cellular behaviour using a constraint-based approach, and has

methods to simulate, analyse and predict a variety of metabolic phenotypes

using genome-scale models.

COBRA allows the use of stoichiometric metabolic models, that can be im-

ported and exported in different formats, and a variety of phenotype sim-

ulation methods, including FBA, with several available objective functions

(such as growth rate optimization, MOMA, flux variability analysis, among

others). Solver support includes Gurobi, CPLEX and GLPK among others.

In version 2.0 several new features were added: ME Optimization algorithms

(such as OptKnock [20] and OptGene [21]), model visualization with overlap-

ping capabilities for flux distributions and metabolite concentrations, model

reconstruction tools, etc.

COBRA is indeed a very powerful toolbox for ME and combined with the

visualization functionalities added in version 2.0, it makes one of the most

complete ME tools available. The fact that it is a Matlab toolbox means

http://www.aibench.org
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that it is not possible to use the toolbox without a paid license, and that is,

probably, its main disadvantage.

FASIMU

FASIMU [22] is a command line oriented software for the computation of

flux distributions. FASIMU aims at being a comprehensive, flexible and

user-friendly computation environment for FBA.

Fasimu presents a really vast number of implemented algorithms, including

biomass maximization, fitness maximization, MOMA and ROOM. For the

solution of the optimization problem, and like the tools presented before,

FASIMU uses different solvers, such as CPLEX, LINDO and GLPK.

For the visualization, FASIMU’s team developed a plugin for BiNA (http:

//www.bina.unipax.info/), that allows the visualization of a computed flux

distribution where the thickness and color of reaction arrows visualize the flux

rate. FASIMU also prepares the input files needed by CellNetAnalyzer [23]

and FluxViz [24], a plugin for Cytoscape [25].

FASIMU presents the most extensive list of FBA algorithms. The main

disadvantages of FASIMU lie in the fact that it does not have an easy to use

interface, and for the visualization a third party application is required.

http://www.bina.unipax.info/
http://www.bina.unipax.info/




Chapter 3

Biological Networks

Networks can be viewed as sets of entities related with each other, being

used in several fields of science and engineering, which are rich in systems

that can be represented by this approach. The difficulty of interpretation

and analysis of large-scale databases makes networks useful tools for un-

derstanding the complexity of biological processes, being commonly used

to represent biological entities and their interactions. This means that the

analysis of networks is a rather important task, and to do so, a mathematical

approach is necessary. Graph representation and graph theory assume a vital

role in this approach.

3.1 Networks and graphs

3.1.1 Basic definitions

A graph can represent a network, and is composed by a set of objects that

can be connected by links. The interconnected objects are usually called

vertices, and the links are called edges. A graph can be represented as an

ordered pair G = (V, E) where V is the set of vertices and E the set of

edges. An edge is represented by identifying the two vertices it connects,

19



20 Biological Networks

and a graphical representation of a graph can be easily achieved with points

for vertices and lines or arrows between those points for the edges.

Figure 3.1: Representation of a graph with three vertices and three edges.

There are some basic definitions that must be taken into considerations when

studying graphs:

• Walk: sequence of vertices and edges, where all vertices are connected

to the next by the edge between them in the sequence (v1, e1, v2, e2,

v3...);

• Path: walk where all the edges are unique;

• Path length: number of intermediate edges contained in the path;

• Neighbour vertices: vertices connected by an edge;

• Vertex degree: number of edges that connect to a vertex;

• Strongly connected graph: graph where, for all pair of vertices,

there is an edge connecting them.

There are also some metrics associated with the analysis of the shortest paths

of a graph:

• Distance: length of the shortest path between two vertices;

• Characteristic path length: mean of the distance of all pairs of

vertices;
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• Efficiency: inverse of the characteristic path length;

• Diameter: largest number of vertices which must be traversed to

travel from one vertex to another without backtracking, detouring, or

looping.

The attributes of the graph may affect the paths and the walks. It is ex-

tremely common that edges in a graph are not equivalent, and they can have

a weight associated. This weight can represent cost, distance, time, etc..

Therefore, the sum of the weights of the path takes precedence on the length

metric, and it can greatly change how the shortest paths are considered (for

example, see Figure 3.2).

Figure 3.2: Changes in shortest path calculation on graphs with and without
equivalent edges.

Calculating the shortest path can be very heavy computationally, and along

the years some efficient algorithms arose, such as breadth-first search (BFS)

[26] and the Dijkstra algorithms (we will not go into further detail about

those in this work).

Another important aspect of a graph is its directionality. The directionality

is associated with the edges of the graph, and it is classified as directed

if the edges e = (s,t) take into consideration the order (holds only from

s to t), and it is classified undirected if the order of the s and t are not

taken into consideration. We can have three types of graph when considering

directionality (see Figure 3.3): directed, undirected and mixed.
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Figure 3.3: Different graph types, taking into account the directionality of
the edges. Graph A is undirected, B directed and C mixed.

The directionality affects other metrics, such as the degree. When directio-

nality is present (directed and mixed graphs), we can consider two types of

degree of a vertex:

• Indegree: number of edges that end in the vertex;

• Outdegree: number of edges that start from the vertex.

The notions of walk and path must also take into consideration the direc-

tionality of the graph. If we have a directed edge e = (v1, v2), walks can

only consider this edge for paths that go from v1 to v2 and not otherwise.

3.1.2 Network representation

Besides the common graphical representation of a graph (vertices as dots and

edges as lines or arrows), and the mathematical format - G=(V,E) - there are

other representations more suited for computational purposes and two of the

most common representations of a graph are adjacency lists and adjacency

matrices.

For adjacency matrices, the graph is stored in a matrix, where each row and

column represents a combination of vertices. If the value of that cell is 0

(false), then there is not a connection between those two vertices, while if
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it is 1 (true) it means that those vertices are connected. If the connections

between the vertices have an associated weight, it is very common to represent

it in the connection cell. Adjacency lists, as the name indicates, are lists

where for each vertex there is a vector of connections.

Figure 3.4: Example of graphical representation, an adjacency matrix and
and adjacency list, for the same graph.

3.1.3 Centrality and Clustering

Centrality

Determining which nodes are more important in a graph is one of the chal-

lenges of graph analysis. A centrality is a metric that allows the ranking

process of the nodes by importance. The use of centrality measures is very

common in social network studies, where persons or organizations are ranked

by their position in the network, interpreted as their prominence in a social

structure [27]. The importance of a vertex depends on the purpose and cha-

racteristics of the network. An important node in a social network can have

different features when compared with an important node in a biological net-

work. The metrics that are used to measure centrality must be chosen taking

into account the specific characteristics of the problem. Centrality metrics

have been successfully used for the study of multiple types of networks, such

as citation networks, computer networks and metabolic networks [28]. Some

of the most commonly used centrality measures are:

• Degree centrality: ranks vertices in descending order of their degree.
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This metric is limited by the fact that it only takes into consideration

the immediate neighbours of the vertex;

• Closeness Centrality Measures: defined in terms of geodesic dis-

tance between nodes in a graph. The importance of a node resides in

how close and how quickly it can communicate with the other nodes in

the network. Some closeness measures were developed in the context of

resource allocation and were used in metabolic and protein interaction

networks [29];

• Betweenness Centrality Measures: concept of betweenness cen-

trality was introduced as a means of quantifying an individual’s influ-

ence in a social network [30]. An important node will be present on a

high proportion of shortest paths between other nodes in the network

[29];

• Eigenvector Centrality Measures: also introduced in the analysis

of social networks, the main idea is that a node is important if it is

connected with important nodes.

Clusters

Cluster analysis or clustering is the task of grouping by similarity a set of

objects. These groups of objects are called clusters. Networks often present

strongly connected clusters, and in the case of biological networks, these

clusters can have a biological significance. Within a cluster, two vertices that

are both neighbours of the same third vertex have a heightened probability

of also being neighbours of one another. The metric that quantifies this

phenomenon is called the clustering coefficient [31].
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3.2 Biological Networks

3.2.1 Types of biological networks

A large variety of biological systems can be represented as networks. In this

section, a brief introduction to some of the most common types of biological

networks is made. Some of those are given as follows:

• Metabolic networks: Focus on cell metabolism, and are composed

of two main entities: compounds and reactions. The chemical com-

pounds, or metabolites, can be converted by the cell into cellular build-

ing blocks, or decomposed to generate energy or other compounds.

• Regulatory networks: In a cell, the metabolism must be able to

adapt to the changes of environmental conditions. The expression of

genes must be regulated for the genes to be expressed at the correct

time and in the proper amounts to ensure the functional integrity of the

cell. Gene regulatory networks (GRNs), involving interactions between

genes and their regulators, have been mapped onto graphical diagrams

and networks that are used to analyse the regulatory relationships and

understand global principles of gene regulation [32].

• Signalling networks The ability of biological cells to respond to sig-

nals from the external environment can be seen as a fundamental cha-

racteristic of life. In fact, cells have evolved highly elaborated and

complex networks of signalling pathways [33]. Studying this type of

networks will provide the understanding of how the cell coordinates

and integrates the responses to external and internal signals.

These typically focus on specific systems, so the integration of these systems

and understanding how they connect and interact with each other can give

a larger comprehension of how organisms function as a whole. Biological

network analysis can be a very important tool in this effort.
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3.2.2 Metabolic Networks

Metabolism can intuitively be perceived as a network of chemical transforma-

tions. Metabolic pathways are series of chemical reactions that share several

compounds and combining those pathways into the same network can provide

a global overview of the metabolism of an organism.

Taking into account the goals of this work, metabolic networks are the most

relevant type of networks, and thus will be analysed here in more detail.

The genome sequencing projects and the modelling of micro-organisms, dis-

cussed in Chapter 2, provide the scientific community with resources to de-

velop this type of networks.

Of all the possible representations of metabolic networks, three must be

referred:

• Reaction-Compound networks: In this type of networks, there

are two types of vertices, the reactions and the metabolites, while the

edges represent the directionality of the reactions. This is the most

complex representation, but it is the most intuitive, and the one that

provides the largest amount of information. The graph is, by definition,

bipartite.

Figure 3.5: Reaction-Compound metabolic network.

• Reaction-Reaction networks: In these networks, the vertices repre-

sent the reactions, while the edges point from reactions that produce
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given compounds to reactions that use those compounds as substrates.

This approach has advantages when studying relations between reac-

tions.

Figure 3.6: Reaction-Reaction metabolic network.

• Compound-Compound networks: This approach is similar to the

reaction-reaction networks, but instead vertices represent compounds,

and edges represent reactions. This brings advantages for studying the

relationships between the compounds. A disadvantage is that several

edges may represent the same reactions, which may lead to difficulties

in analysing the network.

Figure 3.7: Compound-Compound metabolic network.

All these approaches use directed graphs, and for reversible reactions it would

be necessary to duplicate all edges with the opposite directions. In the case

of this work, that focuses on visualization of the network and not on the

analysis, an approach using a mixed graph was chosen with the Reaction-

Compound topology, that will be detailed later.

3.3 Visualization of biological networks

3.3.1 Important features in network visualization

Biological networks may represent processes from simple metabolic, signalling

or regulatory pathways to broader ways of cellular organization. While it was



28 Biological Networks

common to manually curate maps and iteratively improve as new informa-

tion became available, the appearance of high-throughput genetic techniques

provided genome-scale analysis capabilities, which brought to the light the

importance of software tools capable of automatically generating the visual-

ization of these large networks.

Being able to capture a cell state in a visual form can provide insight to the

biology of an organism, and network analysis has shown that a multitude of

organisms share relevant properties [2]. Probably, the most important find-

ing on biological network studies, was the fact that most cellular networks

follow (or approximate) a scale-free topology [34]. Scale-free networks are

characterized by having a few highly connected nodes, called ’hubs’, while

the others are connected by a few neighbours. Biologically this can explain

the fact that biological systems are resistant to most attacks and very vul-

nerable to few specific ones[35]. Scale-free networks are, therefore, resistant

to random node removal, but vulnerable to the removal of a few ’hubs’ that

will disrupt all network connectivity.

Visualization of these large networks is, therefore, problematic. While sca-

lability of the networks can be successful addressed by generic visualization

packages and graph algorithms, usually the generic layouts available produce

unsatisfying results. This happens mostly due to the fact that these layout

algorithms do not take into consideration biological knowledge, such as cell

localization or molecular functions.

Another problem comes with the filtering of the networks. It is necessary to

have an easy way to query the network and visually filter it to specific sets

of nodes of interest, allowing an improvement of the analysis.

Finally, another common problem comes with the fact that there is an in-

creasing number of the types of interaction between cellular entities, which

brings problems to network modelling, and as a consequence to the visuali-

zation process.

In order to address all these problems a visualization tool should offer some

basic features: layouts, graphical notation, integration of analysis and user
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interface [2].

Layouts

The first thing that comes to mind, when dealing with biological networks, is

the ability to automatically draw the network, or build the network layout.

There are several known layout categories:

• Circular: simple circular layout, where nodes are placed in a circum-

ference form and links are straight lines between them;

• Force-directed [36]: Force-directed algorithms are iterative processes

that attempt to place nodes in equillibrium. This is achieved by as-

signing forces to edges that pull linked nodes together and pull un-

linked nodes apart. These algorithms are commonly used because they

produce relatively good results, and are simple to adapt for specific

purposes, such as using subcellular localization to better position the

nodes.

The main disadvantage also comes from the iterative nature of the

algorithms, that may be time consuming reaching the equilibrium state,

which can be solved (from the user’s point of view) by animating the

layout building.

• Hierarchical [37]: aims at highlighting the main direction of a directed

graph. The nodes are placed in arranged layers such that the majority

of the edges show the same overall orientation. The order of the nodes

is reached to reduce the number of edges crossing;

• Simulated annealing: named from annealing in metallurgy, this

method follows a notion of slow cooling, or in this case a slow decrease

in the probability of accepting worse solutions as it explores the solution

space. For layouts, the solution space is composed of network layouts

that are selected according to an associated energy so that low energy

states correspond to potential solutions. Accepting worse solutions
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allows for a more extensive search for the optimal solution. The main

disadvantage is the slowness of the method which limits the size of the

network to be visualized.

• Hierarchical clusters: it has already been shown that the hierarchi-

cal clustering can produce simplified layouts of biological networks [38].

This is particularly true for protein-protein networks as the existence

of general protein clusters attest [39, 40].

Graphical Notation

As mentioned before, graphical notation is a very important aspect of net-

work visualization. In the case of biological networks, these rely on the clas-

sical graph representation, where the nodes identify the entities (sometimes

distinguishable by shape) and edges relations between the edges. Colors can

also be used to represent some network properties, for instance, subcellular

localization or gene expression.

In terms of visualization, there is not a well defined standard, or at least

the attempts of standardizing biological networks representation have not

been very successful. This has been solved by the development of informal

standards, usually imitating approaches followed by more popular tools.

There are, however several attempts at developing these standards that are

promising: the Systems Biology Graphical Notation (SBGN) [3], for instance,

is a good example, which uses state transition diagrams to model biological

processes, and it is used in CellDesigner [41, 42]. The SBML Layout pack-

age is also worth mentioning, being a package that gives the possibility to

add SBML annotations with layout information, which would allow tools to

exchange SBML files without loosing information on layout alterations.
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Integration with analysis

Ii is very common that tools specialize only on visualization or analysis of

data. The ideal scenario is that these two features are incorporated in one,

and developers should always aim at this scenario.

Sometimes this can be solved by recurring to an integration with another

software, which highlights the importance of plugin-based software, that can

be the solution for the integration of visualization and analysis.

Another case worth mentioning is the incorporation of external data sources,

for both analysis and visualization purposes, that are common in several

tools. There are a lot of public repositories with data that can be useful,

bringing once more to light the problem of the lack of standards. The trans-

lation of data from various sources with different formats is a non-trivial task.

There are, however, some biological network tools that that offer partial so-

lutions to this problem.

User interface

A visualization tool should support a graphical user interface where it is pos-

sible for the user to interact with the network, as easily as possible. Network

edition, such as creation and removal of nodes, and access to information,

for instance, by clicking on the nodes, are desirable features for a better user

experience.

However, in the case of biological networks, what happens, in most cases, is

that the features provided by the tool are not sufficient for the specific tasks

the users want to perform. This is partially solved by the fact that several

visualization tools can be expanded by the development of plugins. This

allows advanced users to develop features they desire, but the development

of these plugins requires time and expertise.
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3.3.2 Software tools for biological network analysis and

visualization

In this section, some of the available software for biological network visuali-

zation and analysis are presented, and some of their main capabilities are

highlighted.

Cytoscape

Cytoscape is a popular bioinformatics package, that became a standard tool

for integrated analysis and visualization of biological networks [25]. It sup-

ports the visualization of molecular interaction networks, biological pathways

and the integration of experimental data using attributes which map nodes

or edges to specific data values, such as gene expression levels or protein

functions [43].

Cytoscape is a flexible visualization and editing tool that allows the user

to create and edit networks using a user-friendly graphical user interface

(GUI). It has several functionalities, such as ”visual styles” that allow users to

customize the appearance of the network, and associate several visual styles

for the same network. It also supports several layout algorithms, but they

tend not to perform well with large networks. On top of all this, Cytoscape

is a plugin based framework, and there is a vast number of plugins available,

that expand the functionalities provided by the core packages. There are

several plugins for network analysis, that use some of the metrics mentioned

before, such as CentiScaPe [44] for centrality metrics, NetworkAnalyzer [45]

that computes a large number of network topological parameters, ClusterViz

and MCODE [46] for clustering, ShortestPath for shortest path calculations,

among others.

One plugin that must be mentioned, since it is closely related to the scope of

this work, is FluxViz [24], a plugin for the visualization of flux distributions in

networks. Primarily developed for FASIMU [22], a software for flux-balance

computation, it uses the generated result files as input for visualization. The
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fact that the visualization depends only on the flux distribution and network

structure, makes FluxViz independent from the simulation tool, making the

importation of the flux distributions also possible for other formats (CSV

and Cytoscape attributes).

FluxViz features include:

• importation of flux distributions (FASIMU val files, CSV and Cy-

toscape attributes). Networks can be imported using Cytoscape ca-

pabilities;

• all layout algorithms available in Cytoscape;

• multiple flux distributions in one session;

• filtering of the view based on flux values or node attributes and gener-

ation of subnetworks;

• flexible mappings of flux information to the visual node and edge at-

tributes;

• exportation of the network view for multiple formats (PDF, SVG, EPS,

JPEG, PNG, BMP).

Another important plugin that is closely related to this work is the CySBML

[47], a plugin designed to work with Systems Biology Markup Language

(SBML) with the following main features:

• importation of SBML files;

• support for SBML layout package;

• support for qualitative model packages;

• network navigation based on SBML structure;

• SBML validation.
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Cytoscape is a powerful and easy to use visualization platform, but the visua-

lization of flux distributions requires the usage of an additional tool. Besides

that, flux distributions are numeric values, which brings some limitations

when distinguishing, for instance, a reaction that has a flux of 0 from reac-

tions that was knocked-out as an effect of a gene deletion.

CellDesigner

CellDesigner [41, 42] is a user-friendly editing and visualization tool for bio-

chemical networks. CellDesigner supports Systems Biology Markup Lan-

guage (SBML) [17], an XML format that tries to provide the systems bio-

logy community with a standard for model and network representation, and

uses a graphical notation and listing of symbols based on the proposal by

Kitano[48].

The tools provided by CellDesigner allow the user to build readable networks,

with several shapes for edges and vertices, and multiple layout algorithms are

available. It is also possible to extract networks from a series of databases.

Users can also use their own SBML model created by CellDesigner for simu-

lations on all SMBL compliant applications.

CellDesigner is a powerful visualization tool, whose main disadvantage lies in

the fact that it lacks network analysis methods, and only supports network

models in SBML.

Vanted

VANTED [49] (Visualization and Analysis of Networks containing Experi-

mental Data) is an application for the visualization and analysis of networks

with related experimental data. VANTED has a user friendly interface; net-

works can be manually created or imported from a series of formats such

as Graph Markup Language (GML) and SBML, as well as direct importa-

tion from available databases, such as KEGG; it also supports several layout

algorithms.
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VANTED’s main advantage is the fact that it handles experimental data

quite nicely. The data can be associated with the network and if the necessary

elements are not all present they are automatically added into the network

which means that it is possible to create networks from scratch just with the

experimental data. It is then possible to use VANTED’s statistical methods

to analyze the resulting network.

VANTED’s functionalities can be expanded by the available add-ons that

can be obtained from the application website and there are two in particular

that are closely related to this work:

• FluxMap: allows the visualization of measured or simulated fluxes

in the network by changing the appearance (thickness) of the edges.

Available visualization options and interaction possibilities enable com-

parison of complex experimental setups in an interactive way.

• FBASimVis: add-on for constraint-based analysis of metabolic mo-

dels, with a special focus on the dynamics and visual exploration of

metabolic flux data resulting from model analysis. It supports wild

type and knock-out Flux Balance Analysis simulations with the mo-

dels represented by the networks. The graphical representation of the

network is changed to represent the fluxes and critical reactions.

Patika

Patika [50] is an integrated software environment designed to provide the

scientific community with a solution for modelling and analysing cellular

processes. Its main goal is to provide ways of modelling and storing a vast

amount of cellular pathway data in a centralized database.

Patika uses a representation of the pathways very similar to the chemical

equations in metabolic networks. The network represents each state and

transition in specific nodes. States can be molecules or complexes of physical

phenomena, while transitions can be group additions and removals, complex
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formations, transportations as well as other cellular events. Patika is a client-

server based application that requires an internet connection to function.

The server manages the database, queries, submissions and users, while the

client provides the user an easy to use interface for querying, retrieving and

manipulating pathways from the database.

Pathways are created on the fly and their information is obtained from the

database. Then, the user can manipulate that data and even add more

information. This new pathway can be stored locally or be submitted to the

server, and after an evaluation it can be added to the Patika database.

The client provides several edition tools, such as zooming, scrolling, selection,

dragging, event-handling and persistent storage, as well as automatic layouts

functions.

One of the particular aspects of Patika is that it allows a series of queries

to the database, not only to search particular pathways but also to find

relationships not noticed before. It is possible to query certain states or

transitions, search for paths between states or transitions, shortest paths

between states, among others.

Later, PATIKAweb [51] was also introduced and it provides a Web interface

for retrieving and analysing biological pathways in the PATIKA database.

The server contains data integrated from several public databases, and this

provides a Web-based service with a user friendly interface without requiring

any registration or installation, and usable with any internet browser.



Chapter 4

Results and Development

In this chapter, the development of the visualization framework and its func-

tionalities will be presented. Implementation details and technical aspects

will also be covered. Firstly, the goals and architecture adopted will be de-

tailed, followed by the description of the features of the visualization frame-

work and the integration with OptFlux. Finally, technical aspects of the

development will be detailed, from the core libraries to more specific techni-

cal characteristics.

4.1 Development methodology and overall ar-

chitecture

The main goal of this work is to create a visualization tool that will allow

researchers to perform visualization tasks in the context of ME projects. The

main focus of the visualization is, therefore, the metabolism. Metabolism

can be represented as a series of transformations of chemical compounds/

metabolites, and that makes it relatively easy to represent as a graph.

37
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4.1.1 Layout components and model mapping

There are two main entities that will have to be addressed by the visualiza-

tion: the reactions and the compounds/metabolites. A reaction is a chemical

transformation that uses a set of metabolites as reactants and produces an-

other set of metabolites as products, that can be used as reactants for other

reactions.

Figure 4.1: Reaction representation in a reaction-compound network.

As seen in Chapter 2, there are three main types of metabolic networks,

but for visualization purposes it seems that the most descriptive, and at the

same time, most visually attractive is the reaction-compound network. For

these reasons, this representation was used, where a reaction is composed by

two sets of nodes - one for the reactants and the other for the products -

connected by a reaction node, as depicted in Figure 4.1.

A metabolic layout is based on the reactions contained in the metabolic

model, and since one of the goals of this work is to provide a link between

the visualization and the metabolic model, a strategy must be defined to map

the entities of the visualization with the entities of the model. On top of this,

it is also desired that a layout can represent just a part of the metabolism of

an organism, and the possibility to use the same layout on different models

(e. g. for different strains of different model versions).

Another aspect of metabolic networks is the fact that, to make them visually

more understandable, some nodes may be replicated. It is very common to

replicate metabolites such as cofactors, or highly connected hubs that do not
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have a high interest (e.g. water), to make the network more readable. These

metabolites are typically referred as currency metabolites. It is desired that

these nodes are differentiated from the other metabolites but it also means

that the metabolic identifiers from the metabolic model may be present in

several nodes of the same layout.

Figure 4.2: Mapping of metabolic reactions and metabolites with the nodes
of the layout.

To comply with the previously mentioned features, each reaction node and

metabolite node will have a list of metabolic identifiers that will provide the

link between the metabolic model and the layout (Figure 4.2).

If we take into consideration the definition of a reaction node, that is com-

posed by the metabolic identifiers and by the reactant and product metabolite

nodes that represent the substrate and products of the metabolic reaction, it

is possible to define a layout with a list of these reactions. The visual repre-

sentation will have three types of nodes, the reaction nodes, the metabolite

nodes and the currency nodes - used to represent the previously mentioned

cofactors or hubs with little interest. On top of this, the user who develops

layouts may want to associate some kind of information to a reaction, which
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will be possible by adding another type of node: the information node.

Thus, each reaction in the layout is composed by the following set of at-

tributes:

• Unique identifier : uniquely identifies the reaction node;

• Label : text that will be shown in the reaction node;

• Metabolic identifiers : identification of the reactions that the node rep-

resents from the model;

• Coordinates (x,y): position of the node in the layout;

• List of reactants : nodes that represent the metabolites consumed by

the reaction;

• List of product : nodes that represent the metabolites produced by the

reaction;

• Information nodes : information nodes that provide additional informa-

tion about the reaction.

Each reaction has two sets of nodes: one that represents the metabolites

consumed and another that represents the metabolites produced. Addition-

ally, there is a third set of nodes, that are the information nodes, that give

additional information about the reaction. Each of these nodes are defined

by the following information:

• Unique identifier : uniquely identifies the node;

• Label : text that will be shown in the node;

• Metabolic identifiers : identification of the metabolites the node repre-

sents from the model;

• Node type: indicates whether it is a normal or a currency metabolite

or an information node;

• Coordinates (x,y): position of the node in the layout.
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4.1.2 Overall architecture

With the definition of the layout and the composition of each of its elements,

an overall architecture of the visualization framework was designed.

The two main tasks of the software to be developed are to be able to build

these layouts from external sources ( being able to export them as well), and

visually representing them. This leads to the idea of a 2-layer architecture

(Figure 4.3), where one layer has the capabilities to read and write metabolic

layouts, while the other layer, the visualization layer, handles the visualiza-

tion and edition of the metabolic layout. The main features of each are given

below:

Figure 4.3: 2-layer architecture of the metabolic visualizer.

• Visualization layer: this layer should provide all the functionalities

related with the visualization and edition of a layout. Some of the fea-

tures should include automatic layout, creation and edition of layouts,

visual filters and actions to change the aspect of the network (colors,

shapes, etc.).

• Input and output layer: There are several tools that provide net-

work creation and exportation capabilities for a multitude of file for-

mats. The Input and Output Layer has the objective of providing the

capability to read a given network in a specific file format, and building
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the metabolic layout, usable by the visualization layer. At the same

time, it shall also provide the possibility to export those layouts into

some of those formats.

4.2 Main features of the visualization frame-

work

4.2.1 Visualization layer

As stated previously, the visualization layer provides all the functionalities

related with visualization and edition of the metabolic layout. In Figure 4.4,

it is possible to see how a metabolic layout is shown in the visualizer. In

this figure, it is possible to see how the four node types are represented. The

green ellipses are the regular metabolites, while the smaller yellow ellipses

are the currency metabolites. The blue rectangles are the information nodes,

while the small gray squares are the reaction nodes (the edges have the same

color as the reactions to give the visual notion of a single element).

The visualization tool graphical user interface (GUI) is composed of two

major elements, as seen in Figure 4.5: the network view, where it is possible

to edit the network and click/drag the nodes, and the side panel where filters,

overlaps and node information are available. This way, it is possible, for the

user to easily interact with the network, using all the features this interface

offers.

Highlight, node information, zooming and dragging

The visualizer provides a highlighting functionality. If an user hovers the

cursor over a node it will highlight it. If the node is a metabolite, and it is

represented in other nodes of the network, these will be highlighted as well.

If the node is a reaction, it will highlight all the elements of that reaction.



4.2 Main features of the visualization framework 43

Figure 4.4: Metabolic layout in the visualization tool: an example.
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Figure 4.5: Visualization tool GUI: A- metabolic network visualization panel;
B - filters and overlaps panel; C - node information panel; D - Zoom panel
and export button.

By clicking a node, the node information panel (Figure 4.5 C) will display

information on that node. It is possible for advanced users to implement an

information panel and add it to the visualizer, to visualize information of

specific interest. This will be explained in more detail later.

Zooming and dragging allows the user to navigate the layout. Zooming can

be made by using the mouse wheel or using the zoom buttons in the side

panel (Figure 4.5 D), while dragging can be made by pressing the right mouse

button and moving the screen. It is also possible to drag nodes or sets of

nodes. To drag a set of nodes, it is necessary to select several nodes, which

can be done by pressing the control key while selecting nodes, or selecting

an area of the network pressing the left mouse button.
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Layout Algorithms

One of the characteristics desired for the visualizer is the capability to load

layouts from different sources. Some layouts may not specify the coordinates

of the nodes, at least for some of the nodes. For instance, if the original

network is not a bi-partite graph, it is necessary to have a layout algorithm

that will take this into account.

The layout used by the visualizer, by default, is the Force Directed Layout

(FDL). Force directed based algorithms determine the nodes positions by as-

signing forces among the nodes and edges based on physical laws of attraction

and repulsion.

Prefuse (www.prefuse.org) libraries already provide a FDL layout, which

was altered to support fixed nodes. These nodes already have a specified

position, and will be fixed in that position, influencing the position of the

variable nodes, which will be placed by the FDL algorithm.

Edition tools

Another crucial aspect of the visualizer is the ability to edit the metabolic

layout. This feature combined with the import and export capabilities of the

visualizer provides the users with the means to create and edit their layouts,

and export them for later use.

By right clicking on the nodes of the layout, the possible edition options are

shown to the user (Figure 4.6). The possible actions are:

• Fix/Unfix nodes: this option allows the user to fix a node to the

specific position it is in, or drag it to a desired position; unfix a node

will remove the position information of the node, making it susceptible

to the FDL forces, adjusting its position automatically according to its

surroundings. It is also possible to unfix and fix nodes by type, allowing

to fix/unfix all reaction or metabolite nodes at the same time.
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A BA B

Figure 4.6: Right click menu of reaction nodes (A) and metabolite nodes
(B).

• Merge and Replicate metabolite/currency nodes: as stated

above, the same metabolite can be represented several times in a layout

by a multitude of nodes. To allow the user to choose if he wants a

single node or several nodes representing a metabolite, it is possible to

replicate the node (if several reactions are connected to it) or merge

it to have several reactions connected to that specific node (as seen in

Figure 4.7).

X5P

RPE1

TKL1_TKL2

X5P

X5P

RPE1

TKL1_TKL2A B

Figure 4.7: Metabolite node merged (A) and replicated (B). It is possible to
go from one state to the other by merging or replicating the node.

• Change metabolite node type: it is possible to change the type

of a simple metabolite to a currency metabolite and vice versa. When

the type is changed, if there are other nodes representing the same
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metabolic compound, they are also changed. This can be useful if, for

instance, the user wants to hide the currency nodes (a filter defined by

default in the visualization interface).

• Merge and Replicate reaction nodes: it is possible to replicate

a reaction node that has more than one metabolic identifier. This will

result in two, or more, reactions connected to the same metabolite

nodes. Merging two reactions is only possible if the reactions to merge

are exactly the same (as seen in Figure 4.8), i.e. they are connected to

exactly the same nodes (if different nodes represent the same metabolic

compound they can be merged before merging the reaction);

RU5PP6G

NADPcyt NADPHcyt
CO2

GND1 GND2 RU5PP6G

NADPcyt NADPHcyt
CO2

GND1

GND2

A B

Figure 4.8: Reaction node merged (A) and replicated (B). It is possible to
go from one state to the other by merging or replicating the reaction node.

• Delete reaction node: it is possible to delete a reaction node, and

when this is done all edges and nodes that are only connected to that

reaction node are also deleted.

Filters and Overlaps

On top of the edition capabilities, the visualizer was also developed to support

”visual overlaps”, that are the functionalities that allow the application of

filters to the network, changing the color, shape and labels of nodes as well as
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the thickness of the edges. By applying overlaps to the network it is possible

to manipulate its aspect.

The visualizer supports visual filters in two distinct ways:

• By type: it is possible to hide nodes by type, for instance hide all

currency metabolites, or information nodes.

• By reaction: a list of reactions to hide; this will also hide metabolites

that are connected only to these reactions.

Overlapping supports changing the direction of the edges, thickness and col-

ors, while for nodes it is possible to change the color and shape (Figure 4.9).

These functionalities allow, for instance, the visual representation of steady-

state simulations that will be better described in the OptFlux interaction,

in a later section. All the overlaps are shown in the Overlap panel ordered

by category. For instance, a simulation result is displayed in the category

”Simulations”.

4.2.2 Input and output layer

The features of this layer are the support for the different input/output

formats it provides. The supported file formats are:

• CellDesigner SBML (CD-SBML): CD-SBML is a graphical nota-

tion system proposed by Kitano [52], where layouts are stored using a

specific extension of the Systems Biology Markup Language (SBML).

The structure of a CD-SBML is a lot similar to the structure of the

metabolic layout, it also has the notion of metabolites and reactions

which facilitates the conversion.

• eXtensible Graph Markup and Modeling Language (XGMML):

This format is based on the Graph Modelling Language (GML), being
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Figure 4.9: Some of the possible changes to the networks using overlaps and
filters. A has thickness and label changes; B has nodes with cross shapes and
red edges; C has nodes with arrow shapes and edges with different colors.
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used for graph description using XML tags to describe nodes and edges

of a graph. It is supported, for instance, by Cytoscape.

To create a metabolic layout from an XGMML file it is necessary to

specify some fields for the nodes: the metabolic identifier, node type

(metabolite, currency, information, reaction) and, in the case of reac-

tion nodes, the reversibility of that reaction.

The exportation of a layout in this format also adds Cytoscape fields,

so it is possible to export these generated networks to Cytoscape with

a specific visual aspect.

• KEGG Markup Language (KGML): KGML is an exchange format

created for the Kyoto encyclopaedia of genes and genomes (KEGG)[53]

maps automatic drawing. KEGG pathways’ conversion is relatively

easy because they contain the notion of reaction, but other types of

problems arose with this format. The fact that this format exclusively

uses KEGG-ids while genome scale metabolic models do not use these

identifiers as primary source of identification of their compounds and

reactions, brings the need to provide a map of identifiers to make pos-

sible the connection between the model and the layout.

Another problem comes with the fact that it is very usual that a KEGG

reaction node represents several reactions (and the same with com-

pounds), which may require some work over the layout before it is

ready for use.

• Systems Biology Graphical Notation (SBGN)[3]: SBGN is a vi-

sual language developed by biochemists, modellers and computer scien-

tists that aims at being the standard for visual representation of bio-

logical processes.

SBGN defines three visual languages: Process Description (PD), Entity

Relationship (ER) and Activity Flow (AF). For the purpose of this

work, which focuses on metabolism, support was only developed for

PD language files. The PD language was based on Kitano’s proposal

used in CellDesigner’s graphical representation, using bi-partite graph
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representations of metabolic processes, which is the same approach used

for our metabolic layouts defined previously. It is also possible to export

simple PD language files for metabolic layouts.

• COBRA Layouts: maps developed for COBRA Toolbox. There are,

at the moment,several maps on this format for many of the models

hosted in the BiGG knowledgebase (http://bigg.ucsd.edu). These maps

can be used on different models that have similar pathways, with a cor-

rect mapping of the identifiers between the layout and the BiGG model.

The files are text tab-delimited files divided in four sections, and since

they were created to map a metabolic model for a ME tool, the con-

version to the metabolic layout presented in this work was relatively

straight forward. These files contain the notion of molecules (metabo-

lites/currency), reaction nodes (transformations) and reactions (reac-

tion nodes).

Besides the support for all the formats mentioned, there is another feature

that is included in this layer, but it is slightly different from the ones men-

tioned before, the pathway generation layout.

It is possible to generate a layout by using a list of reactions from a genome

scale metabolic model. This can be done following two strategies: choosing

a list of reactions, or in the case that the model has pathway information,

building layouts with the reactions from those pathways. It is also possible

to use another metabolic layout as a base, and choose other reactions or

pathways to add to that layout. This functionality, along with the edition

capabilities of the visualization layer, provides the means to create and edit

layouts.

4.2.3 Integration with OptFlux

As mentioned before, OptFlux is a ME tool developed by the University

of Minho’s Bioinformatics and Systems Biology research group. OptFlux is

open source, easy to use and compatible with standards.
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Since OptFlux’s main goal is to provide a ME tool that is easy to use, simple

and intuitive, the user interaction was based in three main concepts:

• Datatypes: represent the data of the application. These datatypes

can be simple or combinations of multiple datatypes. Users can manage

objects, instances of the different datatypes, through the use of an

hierarchical clipboard.

• Views: represent the visualization of the datatypes. Each datatype

can have one or more views, represented in different tabs.

• Operations: available actions that allow the creation of instances

of the datatypes. Operations are transformations that have a set of

arguments as input, and a set of output objects. Operation’s user

interface can be automatically generated by AIBench or defined by the

developer.

Based on these concepts, a user-friendly Graphical User Interface (GUI) was

developed using the original layout of the components that can be observed

in the screenshots presented in Figure 4.4.

OptFlux is also plugin based, which allows new features and services to be

easily added. This facilitates reusing and integrating new functionalities.

With all these issues considered, it was the chosen tool to integrate the visua-

lizer packages described before, integrating the phenotype simulation capabi-

lities with the visualization of metabolic models. This led to the development

of a visualization plugin for OptFlux, named MetabolicVisualizer4OptFlux3.

A visualization plugin for OptFlux

This plugin is included in the core set of plugins for OptFlux 3, being readily

available when the application is downloaded and installed. To obtain the

software and further information, check the website www.optflux.org. A

www.optflux.org
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tutorials of this plugin operations’ is also available on-line at the OptFlux

Wiki (http://darwin.di.uminho.pt/optfluxwiki/).

The visualization plugin has three operations that allow importing layouts,

listed in Table 4.1. The Import Layout operation, is the operation that allows

the importation of layouts from XGMML, SBGN, CellDesigner or COBRA

files. One thing that must be kept in focus is the fact that this plugin

has the goal to make the connection between the genome scale metabolic

models loaded in Optflux, and layouts from the visualization framework.

The identifiers of the metabolites and reactions on the metabolic model are

unique by nature, but as shown before, a metabolite can be represented

by more than one node, and the node can have more than one metabolic

identifier associated with it.

This operation offers ways for the user to map the identifiers of the metabolic

model with the metabolic identifiers of the reactions and metabolite nodes

of the layout. In this operation there are two different methods of mapping

available: loading a simple two column file with the mapping of the identifiers

(from metabolic model identifier to layout identifier), or by applying regular

expressions to the identifiers in the model and/or the layout. The regular

expressions must only contain one group (as seen in Figure 4.10), and if the

groups from both identifiers match, the layout metabolic identifier will be

replaced with the identifier from the model.

Another available operation allows the importation of KGML layouts. These

layouts can be automatically downloaded from the KEGG site, removing that

workload from the user. The mapping of the identifiers in this case can also be

made following two distinct methodologies. In the first, the imported KGML

layout will have the KEGG identifiers as metabolic identifiers in the layout,

so it is necessary to map these identifiers with others from the metabolic

model. Sometimes, metabolic models already have KEGG identifiers, and in

OptFlux those identifiers are stored in the ”additional information” of the

http://darwin.di.uminho.pt/optfluxwiki/
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Operation Descritption
Import Layout Importation of layout from a XGMML,

SBGN, CellDesigner or COBRA layout
file. This operation also has the neces-
sary tools to map the identifiers from
the model to the layout.

Import KGML Layout Importation of a KGML layout, that
can be automatically downloaded or
loaded from a file on the local system.

Create Pathway Layout Generate a pathway layout from a list
of reactions, with the possibility to use
another layout as base.

Table 4.1: MetabolicVisualizer4Optflux3 operations.

Figure 4.10: Import layout operation GUI.

model. When loading the layout, it is possible to specify this case, and the

mapping will be done automatically. The other way is, like in the default

import operation, by loading a two-column file with the mapping.

The third operation allows the creation of layouts from reactions of a metabolic
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model. In this case the conversion of identifiers is not necessary, due to the

fact that the identifiers come directly from the reactions of the model. The

generation of this type of layouts can be made by selecting a pathway from

the model, in the case that the model has that information, or by selecting

a list of reactions manually. It is also possible to select an existing layout of

the same project as a base for the new layout. This will allow to create new

layouts or add new reactions to existing layouts (Figure 4.11).

Figure 4.11: OptFlux plugin pathway layout creation operation interface. It
is possible to use pathways (if the model has that information) or manually
select a list of reactions. It is also possible to use an already existent layout
as a base.

The most desired functionality of the connection between a metabolic en-

gineering tool such as Optflux, and a visualization tool, is the ability to

visualize phenotype simulations in the network, and hopefully, be able to use

the visualization to better understand the organism, and improve it.

In order to visualize alterations in the network, the visualizer provides the

filters and overlap functionalities. To allow this operation, there must be a

conversion from a steady state simulation result from Optflux, to an overlap

object and pass it to the visualization.

In OptFlux, simulation results have two major elements of interest for the

visualization: the flux distributions and the genetic conditions. The flux

distributions, as the name indicates, represent the flux values of the reac-

tions. To represent the flux distribution in the network, first a conversion of

identifiers is needed. The identifiers of the reaction nodes are specific of the
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visualization tool, but as mentioned before, they can have multiple metabolic

identifiers associated. It can happen that two or more fluxes are present in

the same reaction node, and the methodology chosen was to sum all those

values. In the end, all these flux values, now mapped by reaction node identi-

fier, are normalized to a numeric range of 1 to 10, which will be the thickness

of the edges. Additionally, the labels of the reaction nodes are also changed,

adding the value of the flux in front of the reaction name (Figure 4.12).

G6P

NADPcyt NADPHcyt

G15LZWF1 : 0.0

G6P

NADPcyt NADPHcyt

G15LZWF1 : 29.61

G6P

NADPcyt NADPHcyt
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C

Figure 4.12: Phenotype simulation genetic conditions visual conversion: A
is a knocked-out reaction; B is an under-expressed reaction; C is an over-
expressed reaction.

The genetic conditions of a simulation are all genetic alterations made to

the organism for that specific simulation. It contains all knock-outs, and

under/over expressed reactions. For the visual representation some node

shapes and colors were adopted to represent these reactions. As seen in

Figure 4.12, a knocked-out reaction will have the shape of a red cross, and
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the reaction edges will also have a red color. An over-expressed reaction will

have the shape of an arrow pointing up and with a green color for the node

and the edges. Finally, an under-expressed reaction will have the shape of

an arrow pointing down and an orange color to the node and edges.

Elementary Flux Modes Plugin integration

In Optflux, there is a plugin that gives the tool the capability to determine

the set of Elementary Flux Modes (EFMs) of a model. This plugin also

provides an interface that allows filtering the results, including the selection

of EFMs based on presence/absence of external metabolites or sorting by

yield. It is possible to select sets of EFMs browsing these results, and it is

possible to visualize the EFMs in a column-wise table. From this point, it is

possible to obtain the flux values for each EFM.

The visualization plugin converts these flux distributions to an overlap, in a

similar way to the one used for the simulation results. Considering that in

this case, we are dealing with simple flux distributions, only the thickness

and labels of the edges are passed to the overlap, and a visual filter can be

applied that hides the zero value fluxes, allowing a visualization of the EFM

in the visualization tool. The overlaps obtained from EFMs are stored in the

category ”Flux Distributions” (Figure 4.13).

On top of this, if the model is loaded from a Cell Designer file it can be

exported to Cell Designer and for each reaction in the EFM, the line in the

Cell Designer layout is represented with a thickness that is proportional to

the value of the flux.

4.3 Implementation details

The strategy adopted in the development of the visualization framework had

the goal of creating a tool that can be used independently, but at the same
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Figure 4.13: EFM flux distribution overlap in the visualization plugin.

time built in a way such that the integration with an ME tool (OptFlux in

this case) was facilitated.

This brings to light the importance of the MVC (model-view-controller) de-

sign pattern. MVC’s principle is to split applications into three independent

components, making the replacement of any of these components an easier

task [54]:

• Model: the data and logic of the application.

• View: representation of the data to the outside world.

• Controller: means of communication between the outside world and

the model. Receives the input and passes information to the model,

that may result in changing the data of the application.

Building an application following the MVC design pattern may turn out to

be very time consuming. This may happen because all the three components

have to be developed separately and at the same time guarantee that the
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communication between them is fully functional. But, at the same time, it

grants the applications independence between the different components, so

it is easier to update or add new functionalities.

The importance of MVC in this work was highly relevant, not only in the

development of the framework, but also in the integration with OptFlux,

that also follows this design principle.

4.3.1 Core Libraries

In Figure 4.14, it is possible to see how the visualization framework packages

are organized. As mentioned before, there are two logic layers that deal with

the reading and writing of layouts, as well as visually representing them. A

third layer is related to the GUI and user interaction.

The metabolic layout is defined by the interface ILayout, specifying that

classes implementing it should include the methods getReactions() and

getNodes() (metabolites, currency and information). All implementations

must, therefore, have a built layout with all the nodes and reactions. The

class LayoutContainer is such an implementation, and as the name indicates

it is a container for a layout. The CellDesignerContainer is an extension of

the LayoutContainer keeping the structure of the CD-SBML for exportation

purposes. In a later phase of development, other methods were added to

the ILayout interface that are related with the edition of the layout. The

metabolites and reactions nodes are also defined by two interfaces: INodeLay

and IReactionLay, that define the rules that were presented in the previous

section.

The class LayoutVisualizer is the responsible for the generation of the

visualization of the ILayout. The visualization is provided by the Prefuse

packages as it will be explained in detail in the next section. This class builds

a table containing all the necessary information on the graph, and an object

of the class Visualization is built from this table.

All overlaps and filters are processed over this table, which will result in a



60 Results and Development

VisualizationBLayer
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Figure 4.14: Visualization framework core packages class diagram (using
UML).

change in the visualization. This table is managed by the LayoutVisualizer

and can be accessed by the interface in several ways. The interface is the

bridge between the user and the LayoutVisualizer class. The central ele-

ment of the interface is the LayoutVisualizerGUI class, that provides the

basic interface of the visualizer, with additional information and actions pro-

vided by the other elements, the InformationPanel and OverlapPanel.
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The InformationPanel is an abstract class that extends a JPanel and im-

plements the methods showNodeInformation() and showReactionInfor-

mation(). This allows for advanced users to develop their own information

panels, with node and reaction information for specific needs.

Importation and exportation of ILayouts are made by the respective readers

and writers. All the readers implement the interface ILayoutBuilder, that

only has one method, buildLayout(). This was made to facilitate adding

support for new formats. CellDesignerContainer is exported in a different

way, due to the fact that the CellDesigner SBML must be preserved. To read

and write the CellDesigner SBML file the JSBML was used, a Java library

for reading, writing, and manipulating SBML files and data streams [55]. It

is also possible to export the layouts as images to PDF and SVG formats

directly from the visualizer. This was accomplished using the libraries Batik

Java SVG Toolkit (http://xmlgraphics.apache.org/batik/) and Vector-

Graphics2D (http://trac.erichseifert.de/vectorgraphics2d/).

4.3.2 Implementing the visualization layer with prefuse

The Prefuse software framework (www.prefuse.org) was created for the de-

velopment of interactive visualization applications, using the Java program-

ming language. It simplifies the process of visually representing and mani-

pulating data. With Prefuse, it is possible to map data using their spatial

position, size, shape, color, etc, while being able to directly manipulate the

visualized data.

The design of the Prefuse toolkit is based upon the information visualization

reference model[56], depicted in Figure 4.15.

In the Figure 4.15 the first step of the reference model is not mentioned (the

Source Data), because in this work it was not used. The reading and writing

of data is handled by the Input and Output layer described previously.

For this work, the first step that used Prefuse is the construction of the data

tables. The Prefuse packages provide a Graph data structure for represent-

http://xmlgraphics.apache.org/batik/
http://trac.erichseifert.de/vectorgraphics2d/
www.prefuse.org
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Figure 4.15: Prefuse toolkit overview.

ing data, providing the data tables of the reference model. Table rows are

represented by the Tuple class, while the Node and Edge classes represent

the entities of the graph. The Graph class is implemented using a Table

instance to store the node and edge data.

After building the data tables, and following the reference model, it is ne-

cessary to create a visual abstraction, that will contain all the necessary

information needed to draw the graph. This visual abstraction of a data set

can be created by adding the data to the Prefuse Visualization class. This

class is a data structure that has the original data provided by the tables,

but also visualization-specific fields such as coordinates, color, size and font

values. For every node and edge of the table an object is created of the class

VisualItem, providing access to the original data of the table, as well as the

newly-added visual fields.

The last step is the actual rendering of the defined structures through the

views that provide the means of interaction with the user.

4.3.3 Implementing the OptFlux plugin

To understand the development of the OptFlux plugin it is first necessary

to understand how Optflux is organized. Optflux is built on top of AIBench

(http://www.aibench.org/), a software development framework developed

by researchers from the University of Vigo in Spain.

AIBench follows the previously described MVC design pattern, and comes

http://www.aibench.org/
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Datatypes and Views
Datatypes LayoutBox Datatype that stores the layout.

CellDesignerLayoutBox Datatype that stores a CellDesigner
layout.

Views PathwayView View that displays the layout in Opt-
flux.

Table 4.2: MetabolicVisualizer4Optflux3 datatypes and views.

as an answer to the effort that takes developing applications following MVC.

Indeed, it provides the abstraction that was also described earlier, defining

the connection between the components of the MVC. Thus, AIBench provides

an easier way to develop user-friendly applications, and Optflux is such an

example.

The three operations defined for the plugin were already described previ-

ously, since they represent the features that the plugin offers. Their re-

sults are stored in the datatypes developed for the plugin: the LayoutBox

that, as the name indicates, is a datatype that has a LayoutContainer, and

the CellDesignerLayoutBox that works similarly to the LayoutBox but for

CellDesignerContainer. This was implemented in this way due to fact

that OptFlux needs to serialize its datatypes to keep the workspace func-

tional. Since the CellDesignerContainer is different in structure from the

other container (it keeps the structure of the CellDesigner-SBML file), a dif-

ferentiation is necessary in the serialization processes provided by the two

datatypes. This allows both datatypes to be displayed in the same view, the

PathwayLayoutView. The summary of the datatypes and views is shown in

Table 4.2.

Another crucial point in the development of the plugin, was the mapping of

the metabolic model’s entities and the ones in the layout.

The basis of the implementation of the operations in OptFlux, is the Metabolic

library. Its packages implement all the ME methods and algorithms used in
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OptFlux. It contains the implementation of methods for phenotype simula-

tion such as FBA, pFBA, MOMA and ROOM, as well as strain optimiza-

tion methods together with many other features for ME. It also contains all

structures used to represent metabolic models, and reading/writing files in

different formats.

OptFlux’s datatype for simulation results is the SteadyStateSimulation-

ResultBox, that contains a class from the Metabolic packages named Steady-

StateSimulationResult, and from this class it is possible to access all the

necessary information of a specific simulation.

In a previous section, it was mentioned that converting a simulation result

to an overlap required two key elements: the flux values and the genetic

conditions that describe the genetic alterations made to the organism. The

flux distribution is represented by the class FluxValueMap, that as the name

indicates, contains the simulation flux values.

The GeneticConditions class represent all genetic alterations made to the

organism for that specific simulation. It is possible to access the reactions

affected by these changes as a list of pairs of values. Each pair has the

identifier of the reaction and an associated value. If this value is 0, than

that reaction is knocked-out, if it is between 0 and 1, than the reaction is

under-expressed and if the value is higher than 1 then that reaction is over-

expressed.

The conversion of overlaps for EFMs distributions is simpler. The EFM

distributions implement an interface called IFluxValueContainer that has

only one method that returns a FluxValueMap. The conversion is similar to

the one of the fluxes of a simulation result, explained above.



Chapter 5

Case Study

5.1 Case study I

For the first use case a simple model was chosen to show some of the fea-

tures from the visualization framework integrated with OptFlux. The chosen

model was an example from Z.Szallasi et al book [57]. The model comes with

a CellDesigner SBML, so it is possible to load it using the reader from the

wizard in OptFlux (Figure 5.1).

The model is composed of 10 reactions and 10 metabolites. In order to

simulate it, it is necessary to change the bounds of the drains, so substrates

can enter the cell. This is done by defining environmental conditions in

OptFlux. In this way, the reactions R1 and R2 were open, and it is possible

to perform simulations with this model.

In Figure 5.2, it is possible to see several of the possible instances of the model

layout available from the operations of the the visualization plugin. Figure

5.2 A shows the model layout, B shows the model overlapped with a wild-

type simulation, with the environmental conditions described previously. It

is possible to see that the sum of the quantities of substrate that enter the

model are the same that are produced. C shows the model overlapped with a

simulation with a knockout to the reaction R2, and this means that half the

65
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Figure 5.1: OptFlux visualization plugin reader, in the OptFlux new project
wizard readers list.

quantity of substrates will enter the network, resulting in half the products.

It is also possible to see that the R2 reaction changes shape according to the

genetic conditions of the simulation. Finally Figure 5.2 D shows an EFM

flux distribution, calculated with the EFM plugin described previously.

5.2 Case study II

Succinic acid is a member of the C4-dicarboxylic acid family and plays a role

in the citric acid cycle, an energy-yielding process. It is used as precursor to

a wide range of products, from pharmaceuticals, to polyesters, and even on

food and beverage industry as an acidity regulator[58].

Succinic acid has been produced by chemical processes, but due to pollution

problems there has been an effort to use microbial fermentation processes

with anaerobic bacteria [59]. Optimizing micro-organisms to over-produce

succinic acid, is one goal of interest for ME researchers.

For this case study, the core E. coli metabolic model was used. This model is
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C

B D

A

Figure 5.2: Examples of operations with the visualization plugin: A is the
layout view; B is a wild-type phenotype simulation; C - is a simulation with
a reaction knock-out; D is a EFM with the zero value fluxes filter.

a subset of the genome-scale metabolic reconstruction iAF1260 and it is used

in the EcoSal chapter of the book by Orth et al [60]. The model is available

for download directly from OptFlux’s internal repository. This model has

95 reactions (20 external and 75 internal), 72 metabolites (20 external, 52

internal) and 137 genes with 95 gene rules.

For visualization purposes, a COBRA layout was loaded for this particular

model, available at BiGG Database (http://bigg.ucsd.edu/). The first

problem appeared with the identifiers of the model. With the application of

regular expressions using the OptFlux plugin interface the majority of the

identifiers were mapped. Still, some of the identifiers were not mapped. To

solve this, the layout was exported to XGMML, and those identifiers were

corrected manually. With this new layout, a second version was available

http://bigg.ucsd.edu/
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and able to be fully mapped to the E. Coli Core Model.

The next step was to run a knock-out optimization, using the optimiza-

tion capabilities that OptFlux offers. The optimization was set up with the

production of succinate as a target, with glucose as substrate. The optimiza-

tion algorithm used was the Strength Pareto Evolutionary Algorithm 2 [61]

(SPEA2), with 10000 evaluations. A set of solutions were obtained (Figure

5.3), being possible to add the simulation results of these solutions to the

OptFlux clipboard.

Figure 5.3: OptFlux optimization setup and results.
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All solutions, except Simulation 2 show results for succinate production.

From these there are five that have better results than the others: Simu-

lation 0, 1, 3, 4 and 7. Since the goal of the optimization was to maximize

the succinate production the focus on the visualization analysis shall be on

these 5 solutions (Table 5.1).

Solution BPCY Succinate
Simulation 0 0.3237 5.6347
Simulation 1 0.3237 5.6347
Simulation 2 0.0 —
Simulation 3 0.3237 5.6347
Simulation 4 0.3237 5.6347
Simulation 5 0.2675 4.0795
Simulation 6 0.0122 0.67815
Simulation 7 0.3237 5.6347
Simulation 8 0.3161 5.3528
Simulation 9 0.2675 4.0795

Table 5.1: Succinate optimization results.

All these five solutions have the same values for BPCY, biomass and succinate

production. By checking the knock-outs for each solution we can see that they

are very similar (Table 5.2), and this can mean that they can be instances of

the same solution, i.e. the same overall flux distribution. This can happen

because when we face chains of linear reactions, knocking-out any of the

reactions from the chain leads to the same result, in terms of fluxes, although

the solution for the optimization algorithm (knock-out set) is different. This

means that if we look at the small variations of these solutions, we can begin

to understand how they improve the production of succinate. To address

this task the visualization plugin was used, allowing to visualize the different

solutions overlapping the original layout of the model.

Figure 5.4 represents the E. coli core layout loaded in the visualization frame-

work. Over it is possible to overlap the simulations one by one to see the

differences between them.



70 Case Study

nhO

rbp
xubpMD

gBp
s:p

icit

glx

succ

pi

nadp

g p

h

 pgl

nadph

f p
eOp

accoa

hFo

h

coa
m
alML

nad

lacMD

nadh

h

pyr

glnML

hFo

gluML

nhO

akg

coa

nad

coF

nadh

succoa

etoh

nad

h

nadh
acald

pep

h adp

atp

nad

coa

coF

accoa

nadh

succ

rubpMD

gBp

f p

pi

nad

YBdpg

nadh

h

for

atp

oaa

adp

coF

pi

h

adp

hFo

h

atp

nad

coF nadh

akg

h h

pi

fdp

dhap

pi

coa

actp

hFo
nadp

nadph
h

nhO

fum

hh

fum

nadnadh

h

q0hF

oF

h

q0

hFo

h

nadh

h

nad

h

gluML

Fpg

hFo

nadph

nad
nadh

nadp

fru

pep

pyr

nhO

hFo

atp

am
p

pih

glcMD

h

for

h

atp

adp

h

nadp

nadph

coF

nad
coa

nadh
h

Bpg

atp

adp

hFo

hFo

h
h

h
h

pep
pyr

acald

hFo

h

coa

cit

h

etoh

h

atp

nhO

adp

pi h

hh

ac

atp

adp

lacMD

am
p

nadp

coF

nadph

coa

pyr

coF

hFo

h

pi

h
h

hFo

aconMC

nadp

 pgc

nadph
coF

q0
q0hF

h

ac

h

h h

hFo

pi

h

h
h

m
alML

hFo

hFo
h

glnML

oF

coF

atp

coa

pi

adp

coF

h

h

hh

hFo
atp

h
adp

pi

nadph

h

nadp

h

hFo

pi

R
_E

X
_nhO_e

R
_T

K
T
Y

R
_IC

L

R
_E

X
_pi_e

R
_G

 P
D
H
Fr

R
_T

A
L
A

R
_M

A
LS

R
_LD

H
_
D

R
_G

LU
N

R
_A

K
G
D
H

R
_A

LC
D
Fx

R
_P

Y
K

R
_P

D
H

R
_E

X
_succ_e

R
_R

P
E

R
_T

K
T
F

R
_G

A
P
D

R
_R

P
I

R
_E

X
_for_e

R
_P

P
C
K

R
_A

T
P
S
Or

R
_M

E
Y

R
_E

X
_akg_e

R
_P

ItFr

R
_F

B
A

R
_P

T
A
r

R
_G

LU
D
y

R
_F

U
M
tF_F

R
_M

D
H

R
_C

Y
T
B
D

R
_N

A
D
H
Y 

R
_E

X
_gluML_e

R
_E

N
O

R
_N

A
D
T
R
H
D

R
_F

R
U
p
tsF

R
_N

H
Ot

R
_P

P
S

R
_E

X
_glc_e

R
_F

O
R
tF

R
_P

F
K

R
_M

E
F

R
_A

C
A
LD

R
_P

G
K

R
_H

FO
t

R
_G

LU
tFr

R
_S

U
C
C
tF_F

R
_G

LC
pts

R
_A

C
A
LD

t

R
_C

S

R
_E

T
O
H
tFr

R
_G

LN
S

R
_T

H
D
F

R
_A

C
K
r

R
_E

X
_lacMD

_e

R
_T

P
I

R
_A

D
K
Y

R
_IC

D
H
yr

R
_P

F
L

R
_E

X
_pyr_e

R
_P

P
C

R
_A

K
G
tFr

R
_A

C
O
N
T
a

R
_G

N
D

R
_S

U
C
D
i

R
_A

C
tFr

R
_E

X
_ac_e

R
_D

_LA
C
tF

R
_A

T
P
M

R
_P

Y
R
tFr

R
_E

X
_acald_

e

R
_P

G
M

R
_A

C
O
N
T
b

R
_E

X
_m

al_
L_e

R
_F

U
M

R
_F

O
R
ti

R
_F

R
D
:

R
_P

G
L

R
_E

X
_glnML_e

R
_E

X
_hFo_e

R
_E

X
_oF_e

R
_P

G
I

R
_E

X
_coF_e

R
_E

X
_etoh_e

R
_S

U
C
O
A
S

R
_E

X
_fru_e

R
_C

O
Ft

R
_S

U
C
C
tB

R
_M

A
LtF_F

R
_E

X
_fum

_e

R
_G

LN
abc

R
_G

LU
S
y

R
_E

X
_h_e

R
_F

B
P

R
_O

Ft

nadp
h

 pgl

nadph

rubpMD

nadp

 pgc

nadph
coF

hFo
h

R_G PDHFr8:8NSN
R_GND8:8NSN

R_PGL8:8NSN

p
i

c
o
a

actp

a
c

a
tp

a
d
p

h

ac

h

R_PTAr8:8NSN

R_ACKr8:8NSN

R_ACtFr8:8NSN

B

A

su
cc

m
a
lML

fu
m

q
0

q
0
h
F

h
F
o

R_SUCDi8:8NSN

R_FUM8:8NSN

R
_
F
R
D
:
8:8N

SN

succ
succ

h

h

R_EX_succ_e8:8bS B
R_SUCCtB8:8bS B

C

D

E

F
igu

re
5.4:

E
.

C
oli

core
layou

t
in

th
e

v
isu

alization
.

A
llth

e
six

sim
u
lation

k
n
o
ck

-ou
ts

are
p
resen

t
in

th
e

im
age.

K
n
o
ck

-
ou

ts
to

force
fl
u
x

to
go

to
th

e
T

C
A

-cy
cle

(E
)

are
in

A
an

d
C

;
B

are
k
n
o
ck

-ou
ts

to
p
reven

t
su

ccin
ate

con
su

m
p
tion

;
D

is
th

e
p
ro

d
u
ction

of
su

ccin
ate.



5.2 Case study II 71

Solution Knock-outs
Simulation 0 R-PGL, R-SUCDi, R-ACKr
Simulation 1 R-GND, R-SUCDi, R-ACKr
Simulation 3 R-G6PDH2r, R-SUCDi, R-ACKr
Simulation 4 R-PGL, R-FUM, R-ACKr
Simulation 7 R-G6PDH2R, R-FUM, R-ACKr

Table 5.2: Knock-out sets obtained in the best solutions from the optimiza-
tion.

In all the solutions, a knock out appears in one of the reactions R-G6PDH2r,

R-PGL or R-GND (Fig. 5.4 A) and on the reaction R-ACKr. This seems to

happen to direct more flux to the TCA-cycle (Figure 5.4 E). Another thing

in common in all 6 solutions is a knock-out in the TCA-cycle in the R-FUM

or R-SUCDi reactions (Fig. 5.4 B). This happens because the reaction R-

SUCDi consumes succinate, and by knocking-out one of these reactions there

is a greater accumulation of succinate in the network, directed later to the

succinate drain (Figure 5.4 D).

Analysing the network and overlapping the solutions facilitates the under-

standing of the basic principles behind the solutions obtained in the strain

optimization. The genetic modifications are made to maximize the influx on

the TCA-Cycle, and removing the reactions that lead to succinate consump-

tion results in an increase of accumulation of this compound.





Chapter 6

Conclusions and Future Work

6.1 Discussion

In the last years, the problem of visualizing biological networks has been

tackled by several available tools. More particularly, metabolic networks

have been addressed by some of these tools, and many network analysis tools

are used to study the structure and properties of these networks. However,

integration with ME tools and/or phenotype simulation methods is not very

common. Usually, phenotype simulations results or flux distributions can

be visualized by using a third-party software, even though there are good

examples, like COBRA, that already integrate these two features.

In this work, a metabolic network visualization framework was presented.

This framework has the ability to load networks from a variety of formats

and display those networks using a layout. It provides features of creation

and edition of these layouts, as well as exportation capabilities. On top of

this it is possible to overlap the network with visual changes, a functionality

that allows, for instance, to visualize fluxes in phenotype simulations.

The framework was integrated with OptFlux, by the development of a plugin.

This allows ME researchers to use the visualization directly from OptFlux,

and use a series of operations that will allow loading and exporting layouts
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with a user-friendly interface.

This framework presents itself as an useful tool that can help researchers

involved in ME projects to have a way of integrating the visualization of

the metabolic networks they are studying easily. The ability to dynamically

visualize phenotype simulations is also an important asset.

This framework, and the combination of visualization with ME simulation

and optimization processes, will help researchers to achieve knowledge about

the structure and functioning of organisms of interest that was not available

before.

The visualization framework and the plugin were developed in JAVA and are

a part of the development effort of the Bioinformatics and Sistems Biology

research group of the University of Minho, integrating researchers from the

Computer Science and Technology Center (CCTC), the University of Minho

research unit in Informatics, and the Center of Biological Engineering (CEB).

The work developed in this thesis was partially published in the 7th Inter-

national Conference on Pratical Applications of Computational Biology and

Bioinformatics (PACBB) [62], while an extended article is under preparation

for a journal.

6.2 Future Work

The goals proposed in this work were generally accomplished, but there are

some points that can be improved in the future. Some are given next:

• to develop ways of comparing several simulations in the same over-

lap, instead of only being able to visualize one simulation result at a

time. This would drastically improve the analysis capabilities of the

framework;

• find an improved way to map the layouts with the metabolic model, or

at least, develop a more effective and easier way for the user to make
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that mapping;

• add different types of reactions, for instance, support for simplified

reactions, where it would be possible to simplify a layout by merging

equivalent reactions and returning to the initial mode if wanted;

• adding support for regulation: there are currently efforts on integrating

regulatory models with metabolic models, and visualization support for

those would also be a good asset.





Bibliography

[1] Segre D, Vitkup D, and Church GM. Analysis of optimality in natural
and perturbed metabolic networks. Proceedings of the National Academy
of Sciences, 99(23), 15112–15117, National Acad Sciences, 2002.

[2] Suderman M and Hallett M. Tools for visually exploring biological net-
works. Bioinformatics, 23(20), 2651–2659, Oxford Univ Press, 2007.

[3] Le Novere N, Hucka M, Mi H, Moodie S, Schreiber F, Sorokin A, Demir
E, Wegner K, Aladjem MI, Wimalaratne SM, et al. The systems biol-
ogy graphical notation. Nature biotechnology, 27(8), 735–741, Nature
Publishing Group, 2009.

[4] Azuaje F and Dopazo J. Data analysis and visualization in genomics
and proteomics. John Wiley & Sons, 2005.

[5] Kitano H et al. Foundations of systems biology. MIT press Cambridge,
MA, 2001.
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[47] König M, Dräger A, and Holzhütter HG. CySBML: a Cytoscape plugin
for SBML. Bioinformatics, 28(18), 2402–2403, Oxford Univ Press, 2012.

[48] Kitano H. A graphical notation for biochemical networks. Biosilico, 1(5),
169–176, Elsevier, 2003.

[49] Junker BH, Klukas C, and Schreiber F. VANTED: a system for ad-
vanced data analysis and visualization in the context of biological net-
works. BMC bioinformatics, 7(1), 109, BioMed Central Ltd, 2006.

[50] Demir E, Babur O, Dogrusoz U, Gursoy A, Nisanci G, Cetin-Atalay R,
and Ozturk M. PATIKA: an integrated visual environment for collab-
orative construction and analysis of cellular pathways. Bioinformatics,
18(7), 996–1003, Oxford Univ Press, 2002.

[51] Dogrusoz U, Erson E, Giral E, Demir E, Babur O, Cetintas A, and
Colak R. PATIKAweb: a Web interface for analyzing biological pathways



82 BIBLIOGRAPHY

through advanced querying and visualization. Bioinformatics, 22(3), 374–
375, Oxford Univ Press, 2006.

[52] Kitano H, Funahashi A, Matsuoka Y, and Oda K. Using process di-
agrams for the graphical representation of biological networks. Nature
biotechnology, 23(8), 961–966, Nature Publishing Group, 2005.

[53] Kanehisa M, Goto S, Sato Y, Furumichi M, and Tanabe M. KEGG for
integration and interpretation of large-scale molecular data sets. Nucleic
acids research, 40(1), 109–114, Oxford Univ Press, 2012.

[54] Applying MVC in VisualAge for Java.
http://javadude.com/articles/vaddmvc1/mvc1.htm.
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