Universidade do Minho
Escola de Engenharia

Leonel Joao Fernandes Braga

Web Browser Access to Cryptographic
Hardware

Outubro de 2012

7\
_/

I'\

Universidade do Minho
Escola de Engenharia

Leonel Joao Fernandes Braga

Web Browser Access to Cryptographic
Harware

Tese de Mestrado
Mestrado em Engenharia Informatica

Trabalho realizado sob orientacéo de
Doutor Vitor Francisco Fonte

Supervisdo na empresa de
Engenheiro Renato Portela

Outubro de 2012

Acknowledgments

I could not conclude this work without acknowledge all the support, time, and understanding
of all the people who have been around me during this phase and during my journey of life.
I am sure that without them everything would be much more difficult, and the success would

be harder to achieve.

First of all, I want to thank to my supervisor Professor Victor Fonte for being so helpful and
supportive. His guidance certainly improved my work and my knowledge as well. I want also
to thank to Engenheiro Renato Portela from MULTICERT for enlightening me when I was

more doubtful.

A special thanks to MULTICERT for letting me enrol in this project: it made me grow

professionally and enhanced my knowledge.

I want also to thank the Firebreath community for clarifying all the doubts I had. Congrat-

ulations for your great work as well.

In this context, there is one person to whom I could not be more grateful: Pedro, thank
you for your help and patience, even when I had lots of questions. I am also grateful for the
discussions I had with Pedro and Ulisses: they gave me lots of ideas of how I could improve my
work. I want to thank Vasco for introducing me to jQuery and for providing his experience

building beautiful websites. Thanks for your friendship as well.
A humble and sincere thanks to Joana’s Family for giving me a second home.

A special and kindly thanks to my family, to whom I will always be in debt and grateful for
all the opportunities and support they gave me in each step of my life. Thank you, my little

sister Joana for your help.

At last, but not least, I wish to express my gratitude to Joana for kindly supporting me with

her sympathy in every moment.

iii

v

Abstract

Web Browser Access to Cryptographic Hardware

Cryptographic hardware such as Smart Cards (SCs) is being deployed globally in an in-
creasingly broader spectrum of information services, credit and debit banking cards being a
pervasive example of this trend. At the national level, the Portuguese Citizenship Card (PCC)
is a high profile example of this technology, allowing users to do online authentication at the
government Internet-based services. Despite this increasingly common scenario, web browsers
— expect those from the Mozilla Foundation — still have limitations when accessing cryp-
tographic hardware due to the absence of a standard — or at least uniform — mechanism

accessible to the programming logic embeddable in web pages.

In this project we propose a new mechanism to address such limitations, which will expose
SCs to web applications in a clean and uniform way among web browsers. This mechanism
is formed by two main elements: a web browser plugin, and a JavaScript (JS) Application
Programming Interface (API). The plugin will be in charge of connecting the web browser to
the SC. The JS API, accessible through the web browser plugin, will expose the SC features

to web applications.

With the conclusion of this project we managed to successfully create a web browser plugin
which allows web applications to access SC related features, such as the creation of Digital
Signature (DS). In our tests we were able to use and check all the features of the plugin
across several web browsers (Google Chrome, Internet Explorer, and Firefox) and operating
systems (OSs) (Ubuntu, OS X, Windows). The security analysis that we performed helped
us identify the likelihood of possible attacks which could led malicious agents to gain access

to the users’ computers, or get their personal and sensitive data.

Keywords: Web Browser Plugin, Cryptography, Smart Card, Public-Key Cryptography
Standards, PKCS#11, Web Applications

vi

Resumo

Acesso a Hardware Criptografico via Web Browser

O hardware criptografico, como é o caso dos Smart Cards (SCs), tem vindo a ser utilizado num
espectro cada vez mais amplo de servicos de informagao, sendo os cartoes de crédito e de débito
um exemplo desta tendéncia. A nivel nacional, o Cartdo de Cidadao constitui um exemplo
notavel de aplicacao desta tecnologia, permitindo aos utilizadores efetuar a sua autenticacao
online em servicos do governo presentes na Internet. Apesar destes cendrios serem cada vez
mais comuns, os browsers web — a excepcao daqueles provenientes da Fundacao Mozilla
— possuem limitacoes no acesso ao hardware criptografico, devido a inexisténcia de um
mecanismo padrao — ou pelo menos uniforme — disponivel para a programacao de aplicacao

web.

Neste projecto, propoe-se um novo mecanismo para resolver as limitacoes citadas, através de
uma exposicao dos SCs a aplicagoes web de uma forma clara e uniforme entre os browsers
web . Este mecanismo é composto por dois elementos principais: um plugin para o browser
web e uma Application Programming Interface (API) em JavaScript (JS). A ligacdo entre
o browser web e o SC é estabelecida pelo plugin mencionado. A interface em JS, acessivel

através do plugin do browser web , expoe as caracteristicas do SC as aplicagoes web.

Neste projecto desenvolveu-se com sucesso um plugin para browsers web que permite o acesso
das aplicagoes web as funcionalidades do SC, como a criacao de uma Assinatura Digital. Nos
testes desenvolvidos, foi possivel utilizar e verificar todas as funcionalidades do plugin em
vérios browsers web (Google Chrome, Internet Explorer, and Firefox) e sistemas operativos
(Ubuntu, OS X, Windows). A anélise de seguranga realizada permitiu identificar a possibili-
dade de existéncia de locais de ataque que agentes maliciosos podem potencialmente utilizar

para aceder aos computadores dos utilizadores, ou obter os seus dados pessoais.

Keywords: Web Browser Plugin, Criptofrafia, Smart Card, Public-Key Cryptography Stan-
dards, PKCS#11, Aplicacoes Web

vii

viii

Contents

Introduction

1.1 Motivation e e
1.2 Goals
1.3 Contribution
1.4 Dissertation Outline

Related Work

2.1 Web Browser Access to Smart Cards
2.2 Smart Card Access Libraries
2.2.1 A Short Introduction to PKCS #11
2.3 Developing a Web Browser Plugin.
2.4 Tampering Detection and Vulnerability Containment
2.4.1 Code Signing
2.4.2 Application Sandboxing
2.5 Summary ..o e

Plugin Development

3.1 Designing the Solution
3.1.1 Smart Card Access
3.1.2 Plugin Development
3.1.3 Implementation

3.2 API Design
3.2.1 Methods. e
3.2.2 Attributes.
3.2.3 Events

3.3 The Firebreath Framework L
3.3.1 Requirements.
3.3.2 Development Life Cycle of a Firebreath Plugin
3.3.3 Using the Firebreath Framework

X

(=20 G SV VN

10
12
17
19
20
24
28

3.4 Implementation L

3.5 Plugin Usage e
3.6 Plugin Experimentation L

3.6.1 Output Examples
3.7 Summary ..o e

Security Analysis

4.1 Source Code Analysis

4.2 Attack Trees
4.2.1 Modelling Possible Attacks to the Plugin

4.3 Maintainability Analysis

4.4 SUMMATY .« « o oottt e e e

Conclusion

Documentation

A1 JavaScript APL

A2 PKCS #11 Objects Reference

A.3 Plugin Installed in Several Platforms

69
70
71
72
76
83

85

List of Figures

1.1

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3
4.4
4.5

Al
A2
A3
A4
A5
A6
A7

Mechanism Overall Structure 4
Availablele Libraries for SC Access L. 10
General Cryptoki Model 13
Read Only Session States in PKCS #11 13
Read Write Session States in PKCS #11. 14
Objects Hierarchy in PKCS #11 14
Available Techniques for Developing a Web Browser Plugin 19
Abstract Representation of Code Signing 21
Representation of a System Using Sandboxing 25
JS API Interface 38
The getAvailableltems | getltemInformation Procedure 40
Firebreath Development Cycle 45
Class Diagram of the Plugin 54
File Structure of the Plugin 55
Attack Tree - Open Safe 72
Attack Tree - Create Digital Signature 73
Attack Tree - Collect User Data 74
Attack Tree - Compromise the Plugin 74
Attack Tree - Impersonate a Trustworthy Web Application 75
Plugin Installed in the LUbuntu version of Google Chrome. 118
Plugin Installed in the Mac OS X version of Google Chrome 119
Plugin Installed in the Microsoft Windows version of Google Chrome 120
Plugin Installed in LUbuntu version of Mozilla Firefox 121
Plugin Installed in the Mac OS X version of Mozilla Firefox 122
Plugin Installed in the Microsoft Windows version of Mozilla Firefox 123
Plugin Installed in Microsoft Internet Explorer 124

xi

xii List of Figures

List of Tables

3.1 Initial Source Code Structure 54

4.1 Mapping between the characteristics of the maintainability and source code

Properties e e e 78
4.2 Lines of Code per Language in the Plugin Source Code 78
4.3 Conversion Factors to Man Years, and Man Years per Language of the Plugin

Source Code o L 79
4.4 Evaluation of the Volume Metric of the Plugin Source Code 79
4.5 Categories of Risks in Complexity per Unit 79
4.6 Ranking the Complexity per Unit 80
4.7 Repeated Lines of Code in the Plugin Source Code 80
4.8 Ranking the Duplication o 80
4.9 Categories of Risks in Unit Size 81
4.10 Ranking the Unit Size 81
4.11 Lines of Code Covered 82
4.12 Ranking the Coverage e 82
4.13 Overall Results of the Maintainability Analysis 82
A.1 Documentation of the JS Interface of the Plugin 103
A.2 Hardware Feature Objects in PKCS # 11 104
A.3 Mechanism Objects in PKCS # 11 105
A.4 Storage Objects in PKCS # 11 o . 106
A5 Data Objects in PKCS # 11 107
A.6 Domain Parameters Objects in PKCS # 11 108
A.7 Private Key Objects in PKCS # 11 (1 of2) 109
A.8 Private Key Objects in PKCS # 11 (20f2) 110
A.9 Public Key Objects in PKCS # 11 (10f2) 111
A.10 Public Key Objects in PKCS # 11 (20f2) 112
A.11 Secret Key Objects in PKCS # 11 (1 0f2) 113
A.12 Secret Key Objects in PKCS # 11 (20f2) 114

xiii

xiv List of Tables

A.13 Certificate Objects in PKCS # 11 (1of3). 115
A .14 Certificate Objects in PKCS # 11 (20f3) 116
A.15 Certificate Objects in PKCS # 11 (30f3) 117

List of Examples

2.1
2.2
2.3
2.4
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19

Definition of a PKCS #11 Object Template 15
Definition of a PKCS #11 Attribute Template 16
Initializing the Cryptoki 17
Getting Information about a Token in Cryptoki 18
How to define a new method in Firebreath 49
How to register a new method in Firebreath 49
How to register a new attribute in Firebreath 50
How to define a new property in Firebreath 51
How to register a new property in Firebreath 52
Event creation syntax in Firebreath. 52
How to create a new event in Firebreath 52
How to fire an event in Firebreath 53
Excerpt of the class IEventHandler 55
Cross platform support creating mutex L0 L. 56
Loading the Plugin into a Web Application 57
Simplying the Calls to the Plugin, 57
Initializing the Plugin 58
Structure of an Exception thrown by the Plugin 58
Common Steps Towards a Digital Signature Creation 60
Enabling Slot Events in a Web Application 62
Output Example of a Digital Signature 64
Ouput Example of a X.509 Public Key Certificate 65
Subject of a X.509 Public Key Certificate 66

XV

xvi List of Examples

Acronyms

APDU Application Protocol Data Unit

API Application Programming Interface
CA Certificate Authority

CDSA Common Data Security Architecture
CSSM Common Security Services Manager
DS Digital Signature

DOM Document Object Model

DER Distinguished Encoding Rules

GPG GNU Privacy Guard

IDE Integrated Development Environment
JS JavaScript

JVM Java Virtual Machine

JCWS Java Card Web Servlet

LOC Lines of Code

MAC Message Authentication Code

MY Man Years

NPAPI Netscape Plugin Application Programming Interface
NaCl Native Client

xvii

xviii

List of Examples

0s

PPAPI

PIN

PCC

PKC

PKI

operating system

Pepper Plugin API

Personal Identification Number
Portuguese Citizenship Card
Public-key Cryptography

Public-key Infrastructure

PKCS #11 Public-Key Cryptography Standards #11

SC

SCR

STL

SSL

TLS

w3cC

Smart Card

Smart Card Reader
Standard Template Library
Secure Sockets Layer
Transport Layer Security

World Wide Web Consortium

Chapter 1

Introduction

Cryptographic hardware such as Smart Cards (SCs) are present in several services of our
everyday life, such as public transportation and telecommunications. These small devices

allow us to carry our personal information in a portable and secure way.

A typical SC has an integrated circuit, embedded in the card body, capable of transmit,
store and process data [Rankl and Effing, 2004]. In its design we can identity three layers,
from hardware to software, which can control the access to the data, protecting it against
manipulation and unauthorized access [Selimis et al., 2009, Rankl and Effing, 2004]. At the
bottommost layer is the hardware, transparent to users, with the following parts: a microcon-
troller, RAM, ROM, EEPROM, a Coprocessor, and input/output interfaces. The operating
system (OS) is in the middle and manages the resources. The topmost layer corresponds to

the Smart Card applications [Selimis et al., 2009].

The tamper-resistant properties of SCs make them an ideal device to use in Public-key Cryp-
tography (PKC). SCs can safely store either public key certificates and private keys, and they
have built-in cryptographic algorithms to encrypt and decrypt data, and even to create Digital
Signatures (DSs) [Adams and Lloyd, 2003]. The multifactor entity identification is also one
of the major advantages of using SCs in PKC. A multifactor identification scheme requires
users to have a valid public key certificate stored inside a SC — the what-you-have factor
— and this user must know the Personal Identification Number (PIN) needed to unlock the
SC — the what-you-know-factor. This scheme can identify — with a high level of assurance
— users of a given system, addressing some identity theft attacks related to password-based
authentication [Aussel, 2007, Lu and Ali, 2010].

Thus, the adoption of SCs is a natural step in many services to enhance the overall system’s
security. In Health Care a SC can be used to safely store patients’ records. Mobile commu-

nications corporations use SCs to identify its clients, every time they use their cell phone or

2 1. Introduction

their USB modem for wireless Internet. Some online services, such as e-Government or home

banking, are also using SCs to protect the end-user identity credentials [Sauveron, 2009].

At the national level, the Portuguese Citizenship Card (PCC) is a high profile example of this
technology. Currently, each Portuguese citizen owning one of these SCs can authenticate at
online e-Government services digitally signing files, using both the authentication and signing
certificates present in this device [Agéncia para a Modernizacao Administrativa, 2008]. This
operation has the same legal value as a hand-written signature due to the cryptographic
properties of a DS [Adams and Lloyd, 2003]:

e authentication, it is possible to identify precisely who created the signature;
e integrity, any alteration to the document violates the signature;

e non-repudiation, the signer cannot deny the signature.

1.1 Motivation

Smart cards are being globally deployed in an increasingly broader spectrum of information
services. However, web browsers still have limitations when accessing SCs due to the absence
of a common standard — or at least an uniform — mechanism accessible to the programming

logic embeddable in web pages.

The Public-Key Cryptography Standards #11 (PKCS #11)!, also known as Cryptoki, is a de
facto standard created by the RSA Laboratories® which defines a uniform and cross-platform
Application Programming Interface (API) to SC. This standard specifies in an object-based
approach a high level mechanism to either inspect the cryptographic contents, or to perform

cryptographic operations on SCs, among many other functions.

Usually the vendors of SCs compliant with this standard, supply a module that can be
used by software developers to connect applications with the cryptographic device. Besides
the modules deployed by software vendors, there is a community-driven open-source project
named OpenSC? that supplies libraries and utilities to work with SCs. This software is
available for all platforms and has support for many SCs, such as the Portuguese and Estonian
Citizenship Cards*. Among all the utilities and libraries there is also a PKCS #11 module

that can be used in all major OSs to access SC.

"Nttp://www.rsa.com/rsalabs/node.asp?id=2133
*http://www.rsa.com/

3http ://www.opensc-project.org/opensc
*http://www.opensc-project.org/opensc/wiki/SupportedHdardware

http://www.rsa.com/rsalabs/node.asp?id=2133
http://www.rsa.com/
http://www.opensc-project.org/opensc
http://www.opensc-project.org/opensc/wiki/SupportedHardware

1.2. Goals 3

In order to access SCs, web application developers have been deploying custom software —
like Java Applets and ActiveX Controls — that take advantage of the SC. Usually these
solutions lack portability, forcing users to work with a particular — often unfamiliar — web
browser and OS in order to successfully access each particular service, and thus compromising

the cross-platform compatibility of a web application.

The absence of a standard mechanism to access SC forces web application users to resort to
distinct software packages, according to which specific SC and web application they use. This
situation can increase the probability of a security breach, because there are several software
packages being use. An attacker can take advantage of a vulnerability in a plugin, either
by exploiting a flaw in its construction or either by using a known flaw in the technology it
was built — like ActiveX controls. The opportunity for phishing schemes may also increase.
Attackers can lure users to install ill-intentioned plugins similar to the ones they use on a
trustworthy web application, in order to get local, private, important and personal data from

users.

1.2 Goals

The main goal of this project is to create a mechanism which connects web applications and
Smart Cards. The focus of our work is to expose SCs to web applications in a clean and

uniform way, among OSs and web browsers.

The mechanism that we propose introduces two new connectivity layers between web appli-
cations and SCs in web browsers. The first layer of this mechanism is a plugin which enables
a web browser with SC connectivity capabilities. These Smart Card capabilities will then be

exposed by the plugin to web applications through a JavaScript (JS) API — the second layer.

Figure 1.1 describes at a high level view how this mechanism must work. In order to a web
application access a SC, its clients must have installed on the web browser this new plugin.
The client side of the web application will perform JS requests to the plugin in order to
communicate with the SC. The plugin will interact with the SC using a Smart Card access

library.

As mentioned before, the major goal for this project is to develop a clean and uniform mech-
anism that exposes SCs to web applications. To accomplish this goal we will develop a
web browser plugin that acts as frontend to the available features in SCs. We intent that
this mechanism can be easily ported to several web browsers, and that its functionalities

be browser-independent. In particular, due to MULTICERT requirements — a stakeholder

4 1. Introduction

!@ Client _ % Server
Wweb Browser [_][0][X]

Crypto Plugin Web

/| Application

H Smart Card Access Library
-

Figure 1.1: Mechanism Overall Structure

of this project — the plugin must be compatible with the following web browsers: Google

Chrome®, Microsoft Internet Explorer®.
The mechanism should enable a web application to:
e inspect if there is a SC present in the computer;
e get notifications anytime a SC is inserted or removed from the computer;
e get information about SCs, public-key certificates and available mechanisms on the SC;
e create DSs either of data or files.

We will use the PKCS #11 standard as the SC access library, because it can be found in all
major OSs — which can be very usefull to build a cross-platform plugin — and MULTICERT”

requires it.
The PCC will be the proof of concept of this work due to the following reasons:

e any Portuguese citizen has easy access to one of this devices, which makes it easier to

test the plugin with a SC that is being broadly used in Portugal;

e the Portuguese Government supplies a PKCS #11 module and this SC is supported by
OpenSC,

e among its features, the capability of digitally sign documents, or any other kind of data

is something that will be interesting to provide.

Shttps://www.google.com/intl/en/chrome/browser
6http ://windows.microsoft.com/en-us/internet-explorer/products/ie/home
7https ://www.multicert.com/home

https://www.google.com/intl/en/chrome/browser
http://windows.microsoft.com/en-us/internet-explorer/products/ie/home
https://www.multicert.com/home

1.3. Contribution 5

The final task of this project is to perform a exploratory security analysis of the plugin. With

this analysis we intent to:

e find weaken spots that can be exploited by attackers in order to access or manipulate

the user data present in his SC or even in his computer;

e argue which measures can be put in place in order to address the problems we may

found;

1.3 Contribution

In this project we successfully developed a web browser plugin that exposes to web applications
SCs through a JS API. At this point the plugin is able to:

e list the available devices, as well as theirs details;

e get a list of available cryptographic mechanisms;

e get available private and public keys, as well as their details;

e get available public key certificates, as well as their details;

e fire an event to the web application whenever a device is either inserted or removed;

e create DSs;

e create digests.

In our tests we used the PCC and the PKCS #11 module supplied by the Portuguese Gov-
ernment, but we expect that any Smart Card providing a p11 module will be compatible with

the plugin, as well as any other SC supported by OpenSC.
The plugin was successfully tested under the following platforms and web browsers:

Google Chrome Microsoft Windows XP Professional SP3, Mac OS X Snow Leopard, LUbuntu
12.04

Mozilla Firefox Microsoft Windows XP Professional SP3, Mac OS X Snow Leopard, LUbuntu
12.04

Microsoft Internet Explorer Microsoft Windows XP Professional SP3

6 1. Introduction

We expect that any other browser which supports the Netscape Plugin Application Pro-
gramming Interface (NPAPI) architecture will also support our plugin, because we did not

implement web browser specific features.

In this project we also briefly analysed the plugin security. In this analysis we used static
tools to inspect the source code in order to find problems like buffer overflows. We used
Attack Trees [Schneier, 1999] to create a model of what kind of goals an attacker may want
to achieve attacking the plugin. These models helped us discuss the attacks that can be
performed against each goal, and this devising/propose strategies intended to mitigate the
related risks. For each attack we identified which counter-measures to address such attack,
or, at least, reduce the vulnerability to an admissible level. Finally, we also measure the code
maintainability using the model by SIG [Heitlager et al., 2007], because it is easier to analyse

a source code for security vulnerabilities when it is easy to maintain it [Seacord, 2008].

1.4 Dissertation Outline

In the next lines we a describe the document’s structure, where the reader can find the major

topics of each chapter:

Chapter 2 covers the current mechanisms to access SCs and develop web browser plugins,
and to protect both users and applications. We also review in this chapter the related

work.

Chapter 3 describes the development of the plugin, from its design to its implementation
and usage. There is also a Firebreath glimpse of how one can use this framework to

create a web browser plugin.

Chapter 4 presents a security analysis of the plugin. In this chapter we show what tools we

used to check the plugin security, and we discuss their results.

Chapter 5 covers the project final remarks, where we discuss the fulfillment of our original
goals. We finalize this chapter and conclude this document with what we think must

be the guidelines for future releases of the mechanism we proposed.

Appendix A presents the documentation of the JS interface of the plugin, and a set of
tables containing the available data for each one of the PKCS #11 objects.

Chapter 2

Related Work

Reviewing the current available solutions for a problem is a first step towards a successful
work: it allow us to learn with what others did (with their mistakes and achievements) and

to identify which improvements can be made in order to build a better and distinct solution.

In this chapter we present some relevant projects and technologies, from industry to academics
and online communities, that tried to enhance the Smart Card (SC) capabilities in web
applications, and operating systems (OSs). Then, we discuss the current techniques to access
SCs through applications, and present the available methods to develop web brower plugins.
The last section of this chapter introduces some concepts about the current techniques to
protect users and applications from malicious agents, such as Code Signing and Application

Sandboxing.

2.1 Web Browser Access to Smart Cards

Smart Cards are being applied to many services due to their portability and security. Never-
theless, web browsers still have some limitations in working with them. They do not provide
to web applications any mechanism that exposes SCs functionalities. This has caused many
web applications to develop their own software, in order to communicate with SCs. All
these non-standard solutions follow the exact same pattern, where developers publish either
Java Applets!, or web browser plugins using the NPAPI? Application Programming Inter-
face (API) for Netscape-based browsers, or ActiveX for Microsoft Internet Explorer [Sachdeva
et al., 2009].

"Mttp://www.developer.com/java/other/article.php/3587361/Java—Applet—for—
Signing-with—-a-Smart-Card.htm
*https://wiki.mozilla.org/NPAPI

http://www.developer.com/java/other/article.php/3587361/Java-Applet-for-Signing-with-a-Smart-Card.htm
http://www.developer.com/java/other/article.php/3587361/Java-Applet-for-Signing-with-a-Smart-Card.htm
https://wiki.mozilla.org/NPAPI

8 2. Related Work

The only web browser which currently allows web applications to make use of cryptographic
hardware is the Mozilla Firefox. The Mozilla JavaScript Crypto Library® library provides
methods that allow web pages to access cryptographic related services, such as: handling SC
events — smart card insertion and smart card removal; authenticate users and sign text with
the certificates stored in a SC. This cryptographic library is a specific Mozilla extension, and
it cannot be adopted in other web browsers, because it is not a web browser plugin but a

specific feature of Mozilla web browsers.

In the official development website of the Google Chrome web browser we can find in the
project’s roadmap the ticket “Investigate the possibility of supporting digital signing with
PKI”*, where users and developers discuss the introduction of mechanisms to support the
creation of Digital Signature (DS) using SCs. In this discussion there are several topics
regarding the solutions developers have been using in their web applications to access SCs,
but there is not a definitive in order to address this issue. The last comments in this discussion
lead us to conclude that the Google Chrome developers are waiting for World Wide Web

Consortium (W3C) to address this issue in a project that we will explain later in this section.

In healthcare industry there are several projects whose main goal is to develop a system where
SC holding patient’s records can communicate with web applications using web browsers. In
[Chan et al., 2001], its authors used the Java Card® and Java Card Web Servlet (JCWS)
technologies to deploy a SC applet which is stored within the card and can be loaded into the
web browser. This is an attractive solution does not required to download and install new
software. However, this is a specific solution to a specific problem that cannot be generally
adopted to other types of SCs. It also requires the use of Java-compliant SC®. Java Card
technology was invented in 1996, and it enables applications developed in the Java Card
language (a subset of the Java programming language) to run on SCs [Sauveron, 2009]. In
a similar work [Chan, 2000, 2003] an application was developed to provide access to SCs
through an HTTP based interface protocol. This applications runs inside the SC, and can
be seen as a web server which handles HTTP requests from the web browser. This solution
shows low performance, because there are many operations executed inside the SC, which has

low processing power.

The approach brought by [Starnberger et al., 2010] tries to standardize the access to cryp-
tographic devices. For this purpose, the authors developed an application which plays the
role of a proxy, enabling access from arbitrary web applications to arbitrary SCs. In this
project they also defined strict policies regarding access to SCs, in order to protect them from

malicious web applications. Once again users must install third-party software to perform the

Shttps://developer.mozilla.org/en/JavaScript_crypto#Signing_text
‘http://code.google.com/p/chromium/issues/detail?id=73226
Shttp://www.oracle.com/technetwork/java/javacard/overview/index.html
Shttp://www.oracle.com/technetwork/Jjava/javacard/overview/index.html

https://developer.mozilla.org/en/JavaScript_crypto#Signing_text
http://code.google.com/p/chromium/issues/detail?id=73226
http://www.oracle.com/technetwork/java/javacard/overview/index.html
http://www.oracle.com/technetwork/java/javacard/overview/index.html

2.1. Web Browser Access to Smart Cards 9

desired cryptographic operations. Thus, not requiring a new piece of software for each web

application.

The product SConnect” by Gemalto® and referenced in [Sachdeva et al., 2009, Lu et al., 2011]
is similar to the work that we intended to develop in this dissertation. The solution they
propose is also plugin-based, and web applications can access SCs through JavaScript (JS).
Besides connectivity, security was also a major concern of its developers. For instance, a web
application which wants to communicate with a SC must have a valid credential. This solution
was integrated in a wider web framework targeted to governments called Coesys eGo®. The
SConnect is a closed and paid solution, thus we are not able to test its features and its OS

support, SCs, and web browsers.

Cardboss'?, a paid product of Comet Way'!, also seems to provide a plugin-based approach
with a corresponding JS API. At this time, they are only providing versions of their plugin
to Microsoft Windows OSs.

PKI-Facille'? is another solution from industry developed by SmartCon'3, which also seems
to follow an identical approach to Cardboss and Sconnect. The (lack of) information available
in its homepage is not sufficient to conclude if it is free, and to fully understand its technical

features.

In the field of USB Smart Cards there are some relevant projects intended to making SC
truly portable among operating systems and web applications. [Lu and Ali, 2010, Lu et al.,
2009] contributed with a framework in which users can use their USB Smart Cards through
a web browser. This framework is composed of an application which is stored inside the card
and loaded into the host operating system. The application is responsible for establishing the
communications between users, web browsers and web applications. The authentication to
web applications is the only operation provided by this framework. Regarding OS support,
this framework was successfully tested in Microsoft Windows. If specific drivers — like HID
and MSD — are installed on the OS, this framework can be easily used in GNU Linux and
Mac OS X without additional software.

A number of online communities are also concerned with the current solutions. The W3C,

developer of web standards, recently created the project Web Identity Working Group Char-

14

ter One of the deliverables of this project is a Cryptographic API. However, it is not

explicit if this API will offer support for SCs.

7http://www.scormect.com/News/index.html
Shttp://www.gemalto.com/
9http://www.gemalto.com/public_sector/solutions/coesys_egovZ_O_versionB.html
10https://cardboss.cometway.com/
Hhttp://www.cometway.com/
2Yttp://www.smartcon.com.br/cms4/archives/16
13http://www.smartcon.com.br/
Myttp://www.w3.0rg/2011/08/webidentity-charter.html

http://www.sconnect.com/News/index.html
http://www.gemalto.com/
http://www.gemalto.com/public_sector/solutions/coesys_egov2_0_version3.html
https://cardboss.cometway.com/
http://www.cometway.com/
http://www.smartcon.com.br/cms4/archives/16
http://www.smartcon.com.br/
http://www.w3.org/2011/08/webidentity-charter.html

10 2. Related Work

2.2 Smart Card Access Libraries

Enabling smart card functionalities in applications can be achieved by several means. One
can use the available and native cryptographic libraries in operating systems, making the
application restricted to a specific host. Low level interfaces can be used to achieve interop-
erability among OSs, but they require an extensive knowledge of the SC middleware. Figure

2.1 has a generic description of how the different layers are connected among the OSs.

Apple Microsoft _
CSSM CryptoAPI PKCS #11 High Level

Libraries

Middleware
PC/sC CT-API
Smart Card
Device Drivers Reader
Drivers

\];ﬂ Hardware

Figure 2.1: Availablele Libraries for SC Access

As shown in Figure 2.1, the drivers of the Smart Card Reader (SCR) are responsible for
connecting SCs to OSs. It is expected that they conform to a common middleware standard,
like PC/SC' or CT-APIL'® These standards facilitate the development of applications which
support SCs, and the integration of SCs, SCRs, and OSs.

PC/SC is the de facto standard for smart card access and is available for several OSs: Mi-
crosoft Windows, Mac OS X and GNU Linux. This standard ensures that SC, SCRs, and
computers made by different manufacturers work together. [Sachdeva et al., 2009] use this

standard as the communication layer between their plugin and the SCs.

An application that uses PC/SC as the library for accessing SCs is more generic in practice.
It will support all SCs which conform to this standard (most of them are), and it will not

depend on the host specific libraries. However, the development is harder because it is a low

Bhttp://www.pcscworkgroup . com/
Ynttp://www.linuxnet .com/documentation/files/ctapi.html

http://www.pcscworkgroup.com/
http://www.linuxnet.com/documentation/files/ctapi.html

2.2. Smart Card Access Libraries 11

level API. The communication between applications and SCs is possible using Application
Protocol Data Units (APDUs), which can be seen as data packets which carry instructions
or information, from or into the SC. Although this library gives the ability to communicate
with several kinds of SCs, one must always know the behaviour, and the available functions

and informations of each SC he specifically wishes to support.

Operating systems also offer support for SC access. There are cryptographic libraries in OSs
which, among other features, offer dedicated functions to access SCs. These libraries provide

a better abstraction of cryptographic functions and SCs, which make the development easier.

Microsoft OSs offer the Cryptographic API (CryptoAPI)'" library. This library is designed
to hide the details of cryptographic functionalities, providing applications with “pluggable”
cryptography. For each SC there is a corresponding Cryptographic Service Provider (CSP)
which does the mapping between cryptographic functions — exposed through CryptoAPI —
and the low-level commands — accessible through the Win32 SC APIs'®.

In AppleOSs — Mac OS X and iOS — we can find dedicated libraries for cryptographic pur-
poses. The first one of these libraries is Cryptographic Services'?, and it supplies the following
features: encryption and decryption, key management, strong random number generation,
secure communition using Secure Sockets Layer (SSL) and Transport Layer Security (TLS),
and secure storage using Apple’s specific features like FileVault?® and iOS File Protection?.
Another library is Common Security Services Manager (CSSM)?2, which is Apple’s implemen-
tation of Common Data Security Architecture (CDSA)?3. Through this library it is possible
to access SC related mechanisms. Starting on Mac OS X v10.7, CSSM is considered depre-
cated and it should only be used when standard Cryptographic Services do not supply the

desired features.

The Public-Key Cryptography Standards #11 (PKCS #11)** — also know as Cryptoki —
developed by RSA Laboratories® is an API for cryptographic hardware access. Like Cryp-
toAPI and CSSM, PKCS #11 also isolates applications from the cryptographic hardware.
This de facto standard is available in Mac OS X, Microsoft Windows and all GNU Linux dis-
tributions, and it is supported by many SC vendors [Sachdeva et al., 2009, RSA Laboratories,
2004].

"http://msdn.microsoft.com/en-us/library/ms953432.aspx

Bynttp://technet .microsoft.com/en-us/library/dd277376.aspx

Y¥nttps://developer.apple.com/library/mac/#documentation/security/Conceptual/
cryptoservices/Introduction/Introduction.html

2Ohttp://support.apple.com/kb/HT479O

2'http://images.apple.com/ipad/business/docs/i0S_Security_Mayl2.pdf

2nttps://developer.apple.com/library/mac/#documentation/security/Conceptual/
cryptoservices/CDSA/CDSA.html

Zhttp://www.opengroup.org/security/cdsa.htm

24http://www.rsa.com/rsalabs/node.asp?id=2133

Pnttp://www.rsa.com/

http://msdn.microsoft.com/en-us/library/ms953432.aspx
http://technet.microsoft.com/en-us/library/dd277376.aspx
https://developer.apple.com/library/mac/#documentation/security/Conceptual/cryptoservices/Introduction/Introduction.html
https://developer.apple.com/library/mac/#documentation/security/Conceptual/cryptoservices/Introduction/Introduction.html
http://support.apple.com/kb/HT4790
http://images.apple.com/ipad/business/docs/iOS_Security_May12.pdf
https://developer.apple.com/library/mac/#documentation/security/Conceptual/cryptoservices/CDSA/CDSA.html
https://developer.apple.com/library/mac/#documentation/security/Conceptual/cryptoservices/CDSA/CDSA.html
http://www.opengroup.org/security/cdsa.htm
http://www.rsa.com/rsalabs/node.asp?id=2133
http://www.rsa.com/

12 2. Related Work

The operating system specific libraries are the best option when one needs to deploy a native
application, when compared to PKCS #11. They are updated more often — enhancing the
overall system security — and they provide better application integration. [Sachdeva et al.,

2009] However, such solution is not portable to different operating systems.

The Portuguese Citizenship Card (PCC) vendor provides an additional library to communi-
cate with its SC, which is called eID Lib API, in addition to a PKCS #11 module. In this
library we can find several methods to extract information from the SC, but it is not suited
to perform cryptographic operations, such as the creation of DS. This module is available as
a C++ dynamic library for all major OSs, but there are wrappers for Java and C-# [Agéncia

para a Modernizacdo Administrativa, 2007].

2.2.1 A Short Introduction to PKCS #11

The PKCS #11 standard defines an API for SC interaction: from inspection operations to
cryptographic functions, there are many methods developers can use to take full advantage
of SCs. Usually, we can find implementations of this standard in C, but it can be used in
C++ applications, and it is even possible to find wrappers for many other languages, Java?® for
example. The main advantages of PKCS #11 is the device-independence and object-oriented
approach that isolate the development of applications from the details of the cryptographic

devices.

In Figure 2.2 there is a general description of how Cryptoki manages to connect SCs to
applications. Cryptoki provides an interface to the cryptographic devices attached to the
computer, through the concept of “slots”. A slot is a device that may contain a “token”. A
token is a cryptographic device— like a SC —that can be present in the slot. A convenient
feature of PKCS #11 is the fact that software emulated tokens can be seen by applications
as a regular physical token, due to the logical view Cryptoki provides of slots and tokens.
Moreover, Cryptoki handles the connections from applications to SC, and if the library is

initialized correctly, it can handle requests from a threaded application without problems.

From this point on, we must always recall the concepts of slot and token. A token represents

a cryptographic device, and a slot represents a device where tokens are inserted, like a SCR.

Visibility

The access to objects and functions in the PKCS #11 API is restrained, because it depends

on the permissions of the session that is established with the SC. We can define an established

nttp://docs.oracle.com/javase/1.5.0/docs/guide/security/pllguide.html

http://docs.oracle.com/javase/1.5.0/docs/guide/security/p11guide.html

2.2. Smart Card Access Libraries 13

| Application 1 | | Application k |

| Other Security Layers | | Other Security Layers |
v v

| Cryptoki | | Cryptoki |

% V—J

| Device Contention / Synchronization |

‘F—J %

| Slot 1 | | Slot n |
Token 1 Token n
(Device 1) (Device n)

Figure 2.2: General Cryptoki Model. Adapted from [RSA Laboratories, 2004]

session as the moment when an application instructs the PKCS #11 library it she will start
using SC features — such as the creation of DS — or access the stored data — as it is the
case of data of private keys. Some permissions are strictly related to the type of SC user that
is connected to the device. In Cryptoki the following users are available: normal user and
security officer user. The PCC does not provides a Personal Identification Number (PIN) for
a security officer user [Agéncia para a Modernizagdo Administrativa, 2007]. The creation of

a DS is, for instance, a function that requires a user to be logged in with the SC.

In Figures 2.3 and 2.4 we overview the states in read/only and read write/sessions. As shown

in those figures, there are some functions that just authenticated users can perform.

R/O
Public
Session

Close Session /
Device Removed

Open
Session

R/O
User
Functions

Open

Session Close Session /

Device Removed

Figure 2.3: Read Ounly Session States in PKCS #11. Adapted from [RSA Laboratories, 2004]

PKCS #11 Objects

A PKCS #11 compliant SC can store several different kinds of information, like Public Key

Certificates and informations of cryptographic mechanisms. In order to better understand

14 2. Related Work

R/W
SO

Functions
Open

Session

Close Session /
Device Removed
Login SO

Close Session /
Device Removed

R/W
Public
Session

Open Session

Login User Logout

Open
Session

Close Session /
Device Removed

R/W
User
Functions

Figure 2.4: Read Write Session States in PKCS #11. Adapted from [RSA Laboratories, 2004]

the relation between objects and their type, the official PKCS #11 specification [RSA Labo-
ratories, 2004] defines a hierarchy shown in Figure 2.5. In addition to storing values, objects
can be used to perform operations, like in the creation of DS, where a reference to a private

key must be specified in order for the SC to known what key to use.

Object
Hardware .
Mechanism
Feature
Storage
Domain e
Data omal Key Certificate
Parameters

Figure 2.5: Objects Hierarchy in PKCS #11. Adapted from [RSA Laboratories, 2004]

As we can see from Figure 2.5, there are three main types of objects: storage, hardware
feature, and mechanism. A storage object can be used to store keys (public keys, private keys,
and secret keys), certificates (X.509 Public Key Certificates, WTLS Public Key Certificates,

—

2.2. Smart Card Access Libraries 15

and X.509 Attribute Certificates), and other informations like data and domain parameters.
The other two main types hold informations regarding the physical characteristics of the
SC, like user interface features (Hardware Feature), and supported cryptographic mechanism

(Mechanism).

The objects in the PKCS #11 standard are composed by attributes which are responsible
for storing meaningful values. An attribute has always a type, but it may not have its value
defined, for instance: in an object holding a X.509 Public Key Certificate we can find the
attribute CKA_Subject which stores a Distinguished Encoding Rules (DER) encoded array
of bytes containing the certificate subject. Besides storing data, attributes may also be used
to differentiate objects: for instance, in a hardware feature object, the value of the attribute
CK_HD_FEATURE influences the hardware feature (clock, monotonic counter, user interface)

to which the object is referring to.

In order to use, inspect, or manipulate objects, the PKCS #11 standard offers several func-
tions for that purpose. We can find dedicated functions to search for objects, get attributes
from objects, and even manipulating them (create, copy, and modify). The process of finding
objects requires that developers specify a template which matches the properties they want
to find in that object. Example 2.1 shows a template for a private key object, with an id
0x45.

//the object class that we want to find
CK_OBJECT_CLASS keyClass = CKO_PRIVATE_KEY;
//the key id

CK_BYTE keyID = 0x45;

//the template which represents a private key object
CK_ATTRIBUTE pllClassTemplate[] =
{
{ CKA_CLASS, &keyClass, sizeof (keyClass) },
{ CKA_ID , &keyID , sizeof (CK_BYTE) }
bi

Example 2.1: Definition of a PKCS #11 Object Template

H O ©0oO0 Utk Wi

The PKCS #11 API is very flexible: whenever a developer wishes to access only a given part
of an object he can specify exactly which attributes he wants to be retrieved from the SC.
For that purpose, he must specify a template containing the attributes, like in Example 2.2,
where it is defined a template to retrieve label, key type, id, start date, end date, and subject
of what could be a Public Key Certificate.

In Section A.2 there is a full description for each one of the available objects in the PKCS #11

standard.

16 2. Related Work

1 CK_ATTRIBUTE template[] = {

2 {CKA_LABEL , NULL_PTR , 0 },
3 {CKA_KEY_TYPE , NULL_PTR , O },
4 {CKA_ID , NULL_PTR , 0 },
5 {CKA_START_DATE , NULL_PTR , 0 },
6 {CKA_END_DATE , NULL_PTR , 0 },
7 {CKA_SUBJECT , NULL_PTR , 0 }
8 };

Example 2.2: Definition of a PKCS #11 Attribute Template

PKCS #11 Functions

The PKCS #11 standard defines several categories of functions to inspect information in
SCs and to instruct SCs to perform operations, like creating DSs and encrypting data. The

categories we present next are some of the most important:

e General Purpose - The functions in this category are mainly used to initialize or
finalize accesses to a PKCS #11 module.

e Slot and Token Management - The functions in this category have the goal to get
information from the slots attached to the computer and from the tokens inserted in

such slots.

e Session Management - The functions in this category are used to start or finalize

connections with SCs.

e Object Management- The functions in this category can be used to search and
search and get objects from SCs, as weel as getting informations from objects stored in
SCs.

e Message Digest - The functions in this category are used to create digests of data.

e Signing and MACing - The functions in this category are mainly used to create DS
of data.

Using a PKCS #11 module in any given application requires one to first initialize the library.
In this initialization process, the PKCS #11 will allocate any needed resources and prepare
the system for SC connections. In Example 2.3 we show the usual steps one must take to
initialize a Cryptoki module. First, if the application performs multi-threaded access to the
PKCS #11 library, the structure CK_C_INITIALIZE_ARGS must be initialized with pointers
to functions for muter management. Then, an entry point for the Cryptoki library must be
obtained using C_GetFunctionList. Finally, it is time to initialize the PKCS #11 using
C_Initialize and the structure CK_C_INI_ARGS as its parameter. If the application is
single threaded, the parameter can be NULL. Once an application is done using the PKCS #11

2.3. Developing a Web Browser Plugin 17

—
= O

1 CK_C_INITIALIZE_ARGS args;
2
3 args.CreateMutex = (...) //pointer to a function that creates a mutex
4 args.DestroyMutex = (...) //pointer to a function that destroys a mutex
5 args.LockMutex = (...) //pointer to a function that locks a mutex
6 args.UnlockMutex = (...) //pointer to a function that unlocks a mutex
7
8 //Loading all the functions from the library
9 rv = (*pC_GetFunctionList) (&pkcsllFunctions);

//Initializing the pkcsll Library

—_
[\

rv = (xpkcsllFunctions—->C_Initialize) (&args);

Example 2.3: Initializing the Cryptok:

module it should call the function C_Finalize (NULL) to close all connections to SCs and

deallocate resources.

Since Cryptoki provides a high level abstraction of SCs, as well as their operations and data,
the access to the information inside SCs always follows the same pattern. Typically, the
first step in this process is to verify the number of available items present in the SC. In the
following step it should be allocated enough space to accommodate the list of available items.
Finally, it is possible to iterate through that list and access the information about each item.
In Example 2.4 we show how to iterate through the information of all the tokens inserted in
the computer. The first call to the function C_GetSlotList with the second parameter as
NULL indicates that we want to be retrieved in count the number of available slots with
a token present. This process can be applied to many different items, such like mechanisms
and PKCS #11 objects —in these cases one must use the specific functions for mechanisms
and PKCS #11 objects.

2.3 Developing a Web Browser Plugin

The development of a plugin is strictly tied to the web browser where it will be installed.
Currently, we can differentiate Netscape-based web browsers from Internet Explorer. Among
the first type of web browsers (i.e., Mozilla Firefox, Google Chrome, Safari, Opera) one can
use Netscape Plugin Application Programming Interface (NPAPI)? as the development API.
Intuitively we may think that, if one writes a plugin using NPAPI, it will run in all Netscape-
based web browsers. However, if this plugin uses libraries specific to a given web browser, it
will not be possible to integrate it with the others. The same reasoning can be applied to the
relation between the plugin and the OSs, of course. One plugin that uses libraries specific

from a OS is going to be platform-specific.

27https ://developer.mozilla.org/en/Gecko_Plugin_API_Reference

https://developer.mozilla.org/en/Gecko_Plugin_API_Reference

—
= O

18 2. Related Work

© 00~ U WN -

=
ULk W N

N DD = = e
= O © oo

NN N
- W N

CK_ULONG count;
CK_SLOT_ID_PTR pSlotList;
CK_RV rv;
CK_TOKEN_INFO info;
//getting the count of slots which have tokens
rv = (xpkcsllFunctions—>C_GetSlotList) (CK_TRUE, NULL, &count);
assert (rv==CKR_OK) ;
//creating enough space in order to store the list of slots
pSlotList = (CK_SLOT_ID_PTR) malloc(sizeof (CK_SLOT_ID) % count);
//getting the slot list
rv = (xpkcsllFunctions—->C_GetSlotList) (CK_TRUE, pSlotList, &count);
assert (rv==CKR_OK) ;
//getting the information from the Library
for(int i=0; i < count; i++4)
{
rv = (*xpkcsllFunctions—->C_GetTokenInfo) (pSlotList[i], &info);
assert (rv==CKR_OK) ;
processData (info);
}

Example 2.4: Getting Information about a Token in Cryptoki

Google Chrome provides also other APIs for plugin development like Native Client (NaCl)%®
and the Pepper Plugin API (PPAPI). NaCl provides a mechanism for safely execute platform-
independent untrusted native code in a web browser. PPAPI is a branch of the NPAPI,
which is stated by Google to address the portability and performance issues. Since the
development of plugins using this mechanism is restricted to certain libraries provided by
Google Chrome, it is possible to isolate malicious software from the rest of the system. Trusted
code can perform privileged operations outside this mechanism, while untrusted code cannot.
In Google Chrome, NPAPI plugins run outside of this mechanism?’. This mechanism is called

Sandbozing and it will be explained in Section 2.4.

Internet Explorer only supports Microsoft specific APIs, namelly ActiveX Controls®®. An
ActiveX Control can be seen as a library that can be used in Microsoft applications to enhance
their base features. These controls have unrestricted access to the OS, and they can be
developed in C, C++, and Visual Basic.

In Figure 2.6 we summarize the different types of plugin development interfaces that some

web browsers support.

As we can see, developing a generic plugin that can be easily integrated with all web browsers

is hard: it depends on the available plugin mechanisms and libraries in each web browser. For

28https://developers.google.com/native—client/

Phttp://www.chromium.org/nativeclient/getting-started/getting-started-
background-and-basics

3%http://msdn.microsoft.com/en-us/library/aa751968 (v=vs.85) .aspx

https://developers.google.com/native-client/
http://www.chromium.org/nativeclient/getting-started/getting-started-background-and-basics
http://www.chromium.org/nativeclient/getting-started/getting-started-background-and-basics
http://msdn.microsoft.com/en-us/library/aa751968(v=vs.85).aspx

2.4. Tampering Detection and Vulnerability Containment 19

Google Chrome Native Client
o
(n . .
= Mozilla Firefox NPAPI
o
m .
a Safari
[3)
= .
Internet Explorer ActiveX Controls

Figure 2.6: Available Techniques for Developing a Web Browser Plugin

that reason, several frameworks have been developed to ease the creation the web browser

plugins:

e FireBreath3! - can be used to create a web browser plugin that can run in several OS
and has interfaces for the two main development APIs: NPAPI and ActiveX Controls.
Relevant aspects: extensive documentation; the support for web browsers and OSs is

well known; vast community; regular updates; good working examples®?; with no costs.

o Juce®® - is well suited for the development of software for different platforms, including
web browser plugins. Relevant aspects: regular updates; cross platform and cross web
browser support; good source code documentation but it lacks “getting started” guides;

closed source applications require the payment of a fee;

e Nixysa®! - can be used to generate source code for exposing plugin features to the
NPAPI API. Relevant aspects: very poor documentation; the last release is relatively

old (2009); and the cross platform support is not known; only supports NPAPI.

e QtBrowserPlugin® - is a solution for web browser plugin development. Relevant
aspects: closed source applications require the payment of a fee; good documentation;

cross browser and cross platform support.

2.4 Tampering Detection and Vulnerability Containment

Internet growth has helped software developers deploying applications more easily. Now,

anyone can download an application directly from a software producer, and receive software

31http ://www.firebreath.org/display/documentation/FireBreath+Home
32http://wuw.firebreath.org/display/documentation/FireBreath+Users

33http ://www.rawmaterialsoftware.com/juce.php
3nttp://code.google.com/p/nixysa/

¥ nttp://doc.qt.digia.com/solutions/4/qtbrowserplugin/developingplugins.html

http://www.firebreath.org/display/documentation/FireBreath+Home
http://www.firebreath.org/display/documentation/FireBreath+Users
http://www.rawmaterialsoftware.com/juce.php
http://code.google.com/p/nixysa/
http://doc.qt.digia.com/solutions/4/qtbrowserplugin/developingplugins.html

20 2. Related Work

updates, for such application, whenever a new version is available. However, the safe delivery
of software from Internet is in jeopardy, due to the spread of malicious code and the increas-
ingly higher occurrences of phishing attacks that lure users to install fake software [Schiavo,
2010).

In order to minimize the risk of attacks, increase software security, and enhance user’s con-
fidence in applications, many techniques have been developed to protect both users and
applications [Dasgupta et al., 2010]. Among these techniques, Code Signing and Sandboxing
are being used in a wide variety of systems: from desktop applications to mobile OSs there

are very well known usage examples of such methods, like Apple’s 10S and Windows OSs.

In the following sections we will describe the background and the concepts behind Code
Signing and Sandboxing techniques, and we will give some concise examples of their usage.
Since we are developing a web browser plugin, we will also review the current support for

these techniques among all major web browsers.

2.4.1 Code Signing

According to [Schiavo, 2010], Code Signing is an industry-recommended and widely-used
defence against tampering, corruption and malicious infection. This technique can be used
to enhance user’s trust in the origin of a given software application, because users can verify
precisely both the software’s integrity and if it was developed by a known and trustworthy

source.

The Public-key Cryptography (PKC) plays a major roll in the Code Signing technique, be-
cause it provides the means needed to prove the developer’s identity and the integrity of
software packages [Rubin and Jr., 1998]. In this process, a reputable Certificate Author-
ity (CA) issues a Public Key Certificate for the software developer, who will use it to create a
DS of the executable or script he wishes to deploy. Then, when a user fetches that software to
his computer, he will check: (1) if the developer’s Public Key Certicate can be validated by a
trustworthy root CA, and (2) if the hash of the software package matches the DS sent by the
developer. In case, the developer’s identity is unknown or the software package is corrupted,

the user is warned, and he can choose whether or not to proceed using the application.

Software developers can also use self-signed Public Key Certificate issued by a third-party CA.
In such case, it may not be possible to users recognise the developer’s identity as trustworthy,
because none of the user’s root CAs will validate the certificate of the developer as reliable.
Still, software developers can publish on their official website the certificate chain which
validates their identity, so users can validate successfully their identity and theirs software

packages.

2.4. Tampering Detection and Vulnerability Containment 21

In Figure 2.7 there is a generic abstract representation of how Code Signing can be accom-
plished. In the first place, the software developer creates a DS from the software package he
wants to publish, using his private key, and attaches the signature and his Public Key Cer-
tificate to the application — left side of the image. Then, users can download the software

to their computers and check its real identity and integrity using the developer’s Public Key

~

Application

Certificate — right of the image.

o

N
Private Key

Application

Digital Signature
101001110

Public

+ e
Certificate

Create
Digital
Signature

Verify
Digital

N

Digital Signature
101001110

Application

Digital Signature
101001110

/

Identity
or
Integrity

Signature

J

"

Integrity
and

Identity/

Figure 2.7: Abstract Representation of Code Signing

Usually, the above solutions use the Public-key Infrastructure (PKI) to achieve a trustworthy
network among software developers and users, where reliable CAs issue Public Key Certificates
to developers, which later can be recognised by one of the root CAs present in the users’
computers. The GNU Privacy Guard (GPG)?® defines a public exchangeable system of public
keys that can be used to achieve the same goals as the standard PKI, therefore, it can be

used in Code Signing.

Hashing software packages and publishing their result in a legitimate public platform may be
considered another form of Code Signing. This solution can be found in many open-source
and free-software projects, like the Ubuntu3”. Although integrity can be verified, this solution

does not provide any means to check identity.

As we can see, Code Signing promotes users’ confidence in the origin of software packages,
by defining restrict ways to check both identity of developers and integrity in any software

package. Nevertheless, it fails when it comes to protect users against vulnerable software, and

3nttp://www.gnupg.org/
3"https://help.ubuntu.com/community/UbuntuHashes

http://www.gnupg.org/
https://help.ubuntu.com/community/UbuntuHashes

22 2. Related Work

to impose accountability in software developers [Michener and Acar, 2000, Skoularidou and
Spinellis, 2003]. Code Signing does not define any methods to check if a given application is
bug-free or even if it will behave in a malicious manner. This is the reason why Code Signing
must be used as a complement to other techniques such as Sandbozing in order to improve

systems’ security.

Operating Systems

At the present moment, we can find numerous implementations of Code Signing techniques
among OSs, from desktop to mobile, and from paid to free of charge OSs. In fact, there are
several operating systems which impose software developers to sign their applications using a
valid Public Key Certificate. In the next paragraphs we will review the state-of-the-art among

several OSs.

Apple The last software release of the Apple’s desktop OS — Mac OS X 10.8 Mountain Lion
— has a built-in mechanism which controls the origin of software sources named Gatekeeper3®.
By default, this mechanism only allows users to install software that was downloaded from the
App Store or code-signed by a known trusted developer. However, it is possible to loose these
restrictions and install software from unknown sources. In previous versions of the Apple’s
OSs, Code Signing was required to developers who wished to publish their software through

the Apple’s application store®’.

According to Apple’s documentation?”, the user does not
need to give additional permissions®! to the application if the it has its code signed. Features
like Sandbozing also depend on Code Signing. Developing applications for the mobile version
of the Apple OS —the iOS— also requires a valid developer identifier, otherwise users won’t
be able to install applications. Unless they manage to get full root access to the device, to

what is typically called jailbreak.

Microsoft Starting on the Microsoft Windows XP, a new technology called Authenticode™*?
has been used to verify software sources, and also to digitally sign software packages. This
technology can be used in many types of files, like executable (EXFE), ActiveX controls, cabinet
(CAB), and dynamic-link library (DLL)*3. Usually, when a user downloads and tries to install

a new application in his computer, this technology will check the software package integrity

38http://support.apple.com/kb/HT529O
nttp://www.apple.com/osx/apps/app-store.html
Ohttps://developer.apple.com/library/mac/#documentation/Security/Conceptual/
CodeSigningGuide/Introduction/Introduction.html
“http://developer.apple.com/library/mac/#technotes/tn2206/_index.html
42http://msdn.microsoft.com/en—us/library/m5537359%28v:vs.85%29.aspx
43http://msdn.microsoft.com/enfus/library/office/aal40234%28v=office.10%29.aspx

http://support.apple.com/kb/HT5290
http://www.apple.com/osx/apps/app-store.html
https://developer.apple.com/library/mac/#documentation/Security/Conceptual/CodeSigningGuide/Introduction/Introduction.html
https://developer.apple.com/library/mac/#documentation/Security/Conceptual/CodeSigningGuide/Introduction/Introduction.html
http://developer.apple.com/library/mac/#technotes/tn2206/_index.html
http://msdn.microsoft.com/en-us/library/ms537359%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/office/aa140234%28v=office.10%29.aspx

2.4. Tampering Detection and Vulnerability Containment 23

and identity, and warn him if any error occurred during that process. In this operation
the user is asked if he wishes to continue using the software, even if the software origin is
unknown. Microsoft also maintains a mobile operating system called Windows Phone, which
has a native software package for legitimate application acquisition*, where all published

applications must be code-signed by a known developer.

GNU Linux Under the GNU Linuz universe it is difficult to point out exactly the current
state of the art for Code Signing for each one of the available distributions. For instance,
there are distributions using Code Signing to protect users from malicious updates or patches.
Debian*®-based distributions use Code Signing for secure software distribution, where GPG

is the auxiliary tool for such process [Dasgupta et al., 2010].

Android The Android OS maintained by Google is another good example of a mobile
platform which demands all application developers to sign their software. By default, in an
Android system all software must be installed through the Google Play store, where applica-
tions must be code-signed by software developers with a known and trustworthy certificate®.
Still, it is possible to install software from unknown sources, using other locations than Google
Play™".

Java Despite the fact that the Java Virtual Machine (JVM) cannot be considered an OS, it
is a virtualized system which can restrain which Java applications to run and which accesses
to the real system can be performed. Thus, it is possible to use Code Signing to protect a

48 The JVM allows users to run

Java application from tampering and to prove its source
applications without having their code signed, but once their signed the user must have the

Public Key Certificate of the developer in his system.

Web Browsers

Extensions and plugins can enhance the user experience in web browsers, from block-advertising
extensions, to video player plugins, there are several good examples that dramatically change

the web browser standard functionalities. Even so, such third-party components can easily

“http://msdn.microsoft.com/en-us/library/windowsphone/develop/f£402533%28v=vs.
92%29.aspx

45http://wiki.debian.org/SecureApt#Secure_apt_groundwork:_checksums

46http://developer.android.com/tools/publishing/app—signing.html

"http://developer.android.com/tools/publishing/publishing_overview.html#
unknown-sources

48http://docs.oracle.com/javase/tutorial/security/toolsign/index.html

http://msdn.microsoft.com/en-us/library/windowsphone/develop/ff402533%28v=vs.92%29.aspx
http://msdn.microsoft.com/en-us/library/windowsphone/develop/ff402533%28v=vs.92%29.aspx
http://wiki.debian.org/SecureApt#Secure_apt_groundwork:_checksums
http://developer.android.com/tools/publishing/app-signing.html
http://developer.android.com/tools/publishing/publishing_overview.html#unknown-sources
http://developer.android.com/tools/publishing/publishing_overview.html#unknown-sources
http://docs.oracle.com/javase/tutorial/security/toolsign/index.html

24 2. Related Work

obtain sensitive Information from its users, and jeopardize their security due to a defect on
their code. This is why additional security mechanisms must be established in order to pro-
tect the users. The following paragraphs describe the current support for Code Signing in

Google Chrome, Internet Explorer, and Mozilla Firefox.

Google Chrome The Google documentation for the Google Chrome web browser refers
that it is possible to distribute extensions using the CRX*? package format . This format
defines how one developer may create a software package where he can put his Public Key,
the extension signature, and the extension itself"’. Google Chrome does not require to install

extensions from known sources.

Internet Explorer Under Internet Explorer additional web browser core features can be
expanded using ActiveX Controls. As mentioned before, can be code-signed and verified using
the Microsoft Authenticode technology. Depending on the user security definitions of the web
browser, ActiveX Controls without their code-signed or from unknown sources may not be

able to run without user explicit consent.

Mozilla Firefox The current Mozilla documentation®! states that anyone who is developing
an extension or plugin can publish their software packges in a code-signed way. In Firefox there
is also the possibility to develop code-signed JS scripts which can access expanded privileges®?.
These features do not restrict which software can be installed in the web browser, users can
install whichever extension or plugin they wish, even they are from unknown sources, or are

not code-signed.

2.4.2 Application Sandboxing

In the previous section we referred that Code Signing techniques do not protect from open
vulnerabilities in an application, that can be exploited by malicious agents to gain access
to users’ personal data. That is the reason why Code Signing should be a complement to
other techniques like Application Sandboxing. A system that implements a Sandboxr where
applications are ran, confines their execution in a such way that they cannot have greater priv-

ileges than they would have if running outside [Prevelakis and Spinellis, 2001], thus blocking

http://developer.chrome.com/extensions/crx.html
%http://developer.chrome.com/extensions/packaging.html

51https ://developer.mozilla.org/en-US/docs/Signing_an_extension
nttp://www.mozilla.org/projects/security/components/signed-scripts.html

http://developer.chrome.com/extensions/crx.html
http://developer.chrome.com/extensions/packaging.html
https://developer.mozilla.org/en-US/docs/Signing_an_extension
http://www.mozilla.org/projects/security/components/signed-scripts.html

2.4. Tampering Detection and Vulnerability Containment 25

any operation that try to scale permissions, and thus restricting the damage a compromised

application can cause [Goldberg et al., 1996].

Figure 2.8 depicts an abstract representation of a system that implements a Sandboz. Typi-
cally, an application that is developed to be confined within a Sandbor does not have direct
access the real system. In return, it must use an API provided by the system that supplies an
high level access to resources like file system or network. This middle layer between applica-
tions and the physical system is also in charge of controlling any harmful instruction, through
a fine-grained analysis. It is usual in some Sandboxes implementations that developers have to

define a list of permissions the application needs to have in order to execute, like in Android.

Sandboxed System

\

Application 1

Application 2

Application 3

Permission Set

.l!"

T,

N

! oy

Permission Set

w,

API

Real System

’ .!-.‘
la

o o

Permission Set

.,
St

’ _!..‘
La

2

Figure 2.8: Representation of a System Using Sandboxing

The concept of Sandboxing applications is not new, in the version 4.2 of the BSD OS appeared

2353

a system call named chroot”, whose purpose is to restrict the access of applications to a

specific area of the file system.

According to [Prevelakis and Spinellis, 2001], the term Sandbox was first introduced by [Wahbe
et al., 1993], where its authors developed a software approach to implementing fault isolation
within a single address space. There are also other relevant projects which use this concept
to enhance security on OSs, like [Prevelakis and Spinellis, 2001, Goldberg et al., 1996]. In the

5https://developer.apple.com/library/mac/#documentation/Darwin/Reference/
ManPages/man2/chroot.2.html

https://developer.apple.com/library/mac/#documentation/Darwin/Reference/ManPages/man2/chroot.2.html
https://developer.apple.com/library/mac/#documentation/Darwin/Reference/ManPages/man2/chroot.2.html

26 2. Related Work

context of our project, the work [Goldberg et al., 1996] may be one of the most interesting ones,
because they developed an user-level mechanism that monitors an untrusted application and
disallows harmful system calls in order to protect users from attacks targeted to web browsers’

helper applications.

An OS running in a virtual machine can be seen as a sandboxed system: the OS in the
virtualized machine does not have access rights to the real physical hardware, and depending
on the implementation of the virtual machine emulator, there are operations that can be
restrained. Examples of virtual machine emulators are KVM®*, VMware®®, and Oracle VM

VirtualBoz"%, among many others.

Another good example of a system that confines the execution of the programs it runs is the
JVM. Any Java application or applet are executed inside a virtual machine that can control

the application permissions.

The concept of Application Sandboxing refers to any given system where applications run in
a controlled environment, thus protecting users from compromised applications. Since this is
a concept that can be applied for many systems, next we will review the current support for

Application Sandbozxing in OSs and web browsers.

Operating Systems

Modern OSs use sandboxing to protect users from ill-intentioned applications, from desktop
to mobile operating system there are several usage examples of this trend. In the following
paragraphs there is a review of the current native support for Sandbozing in OSs, we did not

focus in other third-party implementations.

Apple Starting in Mac OS X v10.5 Leopard, Apple introduced a sandbox mechanism based
on the BSD sandbox facility. Now a days, if a developer wishes to publish his application
through the Apple Store and take advantage of features like iCloud and Notification Center,

7

he must use the Apple App Sandbox®’. According to the official documentation, the App

Sandbox allows developers to describe which resources they want to use, to what they call

54http://www.linux—kvm.org/page/Main_Page

Shttp://www.vmware.com/virtualization

**nttps://www.virtualbox.org

5"http://developer.apple.com/library/mac/#documentation/Security/Conceptual/
AppSandboxDesignGuide/AboutAppSandbox/AboutAppSandbox.html

http://www.linux-kvm.org/page/Main_Page
http://www.vmware.com/virtualization
https://www.virtualbox.org
http://developer.apple.com/library/mac/#documentation/Security/Conceptual/AppSandboxDesignGuide/AboutAppSandbox/AboutAppSandbox.html
http://developer.apple.com/library/mac/#documentation/Security/Conceptual/AppSandboxDesignGuide/AboutAppSandbox/AboutAppSandbox.html

2.4. Tampering Detection and Vulnerability Containment 27

“entitlements”®. It is possible, however, to use applications that run outside the App Sand-
bor. The Apple’s mobile OS ¢0OS has also available a sandboxed, but in this case it is no

possible to run applications outside its scope®.

Microsoft In recent releases of Windows it is possible to install applications from an official

60

Microsoft application called Windows Store®. Any released application through this store

must declare the permissions it needs to execute, like access to a removable storage, to what

61 TInstalling applications outside of this store is

Microsoft calls App capability declaration
also possible and does not need to perform such declarations. In Windows Phone there
is a technology that restrains the input/output operations of applications named Isolated
Storage?. According to the documentation of the Windows Phone all applications run in a

sandboxed process®.

GNU Linux According to [Dasgupta et al., 2010], Ubuntu 9 uses the sandbox AppArmor
to protect the system. Other techniques like chroot jail can be used to restrict the access to
file system, thus creating a kind of a Sandboz. The SELinux%* is a security enhancement that
can be enabled in several GNU Linux distributions, such as: Fedora, Red Hat, Gentoo. This
“enhancement” provides mechanisms to restrict the execution of programs, and the resources
that each user is able to access. At this moment, we do not know any other implementations

of sandboxes.

Android Applications for Android OSs are built using usually Java. Therefore, they run
in a virtual machine which confines application execution. Each application must also have a
set of permissions that define which system resources it will access. Any access to a resource
that is not listed on the set of permissions is not permitted. The set of permissions is also
used to alert Android users when they are about to install a new application, so they can

decide to proceed with the installation.

*®nttp://developer.apple.com/library/mac/#documentation/General/Conceptual/
MOSXAppProgrammingGuide/Introduction/Introduction.html
5ghttp://developer.apple.com/library/ios/#documentation/Security/Conceptual/
Security_Overview/SecuritySvcs/SecuritySves.html
0nttp://www.windowsstore.com/
61http://msdn.microsoft.com/en—us/library/windows/apps/hh464936.aspx
%2http://msdn.microsoft.com/en-us/library/windowsphone/develop/f£402541%28v=vs.
92%29.aspx
5nttp://msdn.microsoft.com/en-us/library/f£402533%28v=vs.92%29.aspx#bkmk_
securityappsafeguards
%4nttp://selinuxproject.org/page/Main_Page

http://developer.apple.com/library/mac/#documentation/General/Conceptual/MOSXAppProgrammingGuide/Introduction/Introduction.html
http://developer.apple.com/library/mac/#documentation/General/Conceptual/MOSXAppProgrammingGuide/Introduction/Introduction.html
http://developer.apple.com/library/ios/#documentation/Security/Conceptual/Security_Overview/SecuritySvcs/SecuritySvcs.html
http://developer.apple.com/library/ios/#documentation/Security/Conceptual/Security_Overview/SecuritySvcs/SecuritySvcs.html
http://www.windowsstore.com/
http://msdn.microsoft.com/en-us/library/windows/apps/hh464936.aspx
http://msdn.microsoft.com/en-us/library/windowsphone/develop/ff402541%28v=vs.92%29.aspx
http://msdn.microsoft.com/en-us/library/windowsphone/develop/ff402541%28v=vs.92%29.aspx
http://msdn.microsoft.com/en-us/library/ff402533%28v=vs.92%29.aspx#bkmk_securityappsafeguards
http://msdn.microsoft.com/en-us/library/ff402533%28v=vs.92%29.aspx#bkmk_securityappsafeguards
http://selinuxproject.org/page/Main_Page

28 2. Related Work

Web Browsers

As mentioned in Code Signing, current web browsers features can be enhanced using exten-
sions — which typically improve the user experience — and plugins — which usually improve
the capabilities of web applications. In the folowing paragraphs we review the current support

for Sandbozing for web browser plugins.

Google Chrome Asreferred in [Yee et al., 2009], Google Chrome has an integrated Sandbox
that is used to confine the execution of a given type of plugin. The name of this technology
is Native Client and it is intended to prevent side effects in the execution of plugins. At this
moment, only plugins built using the PPAPI API run in this Sandbozx. NPAPI plugins run
outside, thus in a free and no confined environment. For those who are concerned with Flash,

the Google Chrome version of the flash player plugin runs in Native Client5®.

Internet Explorer The Internet Explorer does not confine the execution of ActiveX Con-

trols, but depending on the active security policy it may prevent from executing in the system.

Morzilla Firefox At this moment, all plugins run without restrictions in Firefox. We are

not aware of any method to confine plugin execution in this web browser.

2.5 Summary

As shown in this chapter, there are several projects which purpose is to solve the lack acces-
sibility to SCs from web applications. Some of them propose solutions that are not generic
[Sauveron, 2009], and other ones are paid (for instance Cardboss) and do not provide an in-
sight of their features. This is an interesting field where we could propose a new mechanism

to create such accessibility, in an uniform and clean way between web browsers.

The connection between SCs and applications can be achieved using different kinds of libraries.
As we described before, that are several libraries from low-level to high level complexity that

can be used to get SCs and applications working together.

Creating a plugin requires building a software package which conforms to an API that is
recognised by the web browser. As mentioned in this chapter, there are two main categories
of APIs to build web plugins: NPAPI and ActiveX Controls. In order to abstract the plugin

%nttp://blog.chromium.org/2012/08/the-road-to-safer-more-stable-and.html

http://blog.chromium.org/2012/08/the-road-to-safer-more-stable-and.html

2.5. Summary 29

development process from the details of such technologies and to focus developers’ work in
the features they want to be available in plugins, many frameworks have been being deployed.
These plugin development frameworks hide from developers the complexity of web browsers

libraries, and sometimes offer cross platform support.

Finally, in this chapter we also reviewed to state of the art regarding techniques to protect
users and applications: Code Signing and Application Sandboring. These techniques can give
us the possibility to protect our plugin and their users from the distribution of tampered
or fake versions of it (Code Signing), and to protect users from the execution of malicious
instructions achieved through attacks to an open vulnerability in the plugin (Application
Sandboxing). Therefore, we presented the current support in OSs and web browsers for these
techniques, which made us conclude that it is possible to use Code Signing, but Application

Sandbozxing is only possible in Google Chrome, at the present moment.

30

2. Related Work

Chapter 3

Plugin Development

So far, we reviewed the current solutions for the problem we purpose to tackle, and the
available technologies which might help us developing a web browser plugin to expose Smart
Cards (SCs) to web applications through a JavaScript (JS) Application Programming Inter-
face (API).

As we saw in Section 2.2, there are several available libraries that can be used to create connec-
tions between applications and SCs. In Subsection 3.1.1 we discuss the available technologies

for SC access.

In Section 2.3 we found out that developing a plugin for a web browser requires one to de-
velop a software package which respects to each web browser-specific API. At the present
moment, there are two major libraries: the Netscape Plugin Application Programming Inter-
face (NPAPI) that can be used in all major web browsers besides Internet Explorer; and the
ActiveX Controls that is restricted to Internet Explorer. In Subsection 3.1.2 we present the

strategy that we chose to develop our plugin.

Throughout this chapter we describe how we managed to successfully develop our plugin
using some of the concepts we learnt reviewing the state of the art. In the second section we
discuss and present the JS interface that will be available to web applications. Then, we give
a little glimpse of the Firebreath framework and how it can be used to accomplish our goals.
Some implementation details are also present in this chapter, where we expose the source
code structure of the files and classes of the project. At last, we show how to properly use the
plugin with a common usage scenario, and we present the several platforms where the plugin

was tested.

31

32 3. Plugin Development

3.1 Designing the Solution

The goal of this section is to discuss the most relevant topics of the development of the

mechanism we propose.

The first, and one of the most important choices we had to make in our work, was the
adoption of a library that would expose SCs to our software. In Subsection 3.1.1 we discuss

the available options for SC access.

Secondly, we had to decide which technology would be more suitable for plugin development.
In Subsection 3.1.2 we discuss the available mechanisms for the development of web browser

plugins, and we present our choice.

Finally, in Subsection 3.1.3 there is an open discussion about several implementation topics.

3.1.1 Smart Card Access

At the present moment there are several technologies which enable cryptographic device in
applications. As shown in Section 2.2, we can find several libraries that help developers to
take full advantage of SC capabilities, from operating system (OS) specific APIs to open
standards available in all major OSs. In the following paragraphs we present the reasons
that led us to choose Public-Key Cryptography Standards #11 (PKCS #11), and why we

discarded other libraries that would also allow us access SCs.

The OSs from Apple and Microsoft both have dedicated libraries for cryptographic purposes.
It is through these libraries that application developers can perform operations, like encryption
an decryption, and have their software working together with SCs. The main advantages of
OSs specific libraries are the low complexity implementation details — they provide a high
level abstraction of the hardware — and the update frequency — usually they are updated
more often, which can increase their security and stability. These libraries are well suited
to OS dependent applications, therefore they are not appropriate to our mechanism, where
our effort is to create a uniform mechanism that exposes SCs to web applications. In a such
situation it would require to have different implementations if we would desire to support

several OSs.

A viable alternative to OSs dependent libraries if one wishes to have a cross platform support
is PC/SC. As we discuss earlier in Section 2.2, this library is available in all major SCs and
it is compatible with several SCs. Although PC/SC offers cross platform support, it is a low
level library. Thus, one must know the implementation of the SC he wants to access, in order

to take advantage of its features and contents.

3.1. Designing the Solution 33

The Portuguese Government offers a software library called eID Lib API that can be used to
access the Portuguese Citizenship Card (PCC), and it is available for all major OSs. All of
its features are dedicated to extract the information that is stored inside the SC, like address,
age, or name. However, it does not supply cryptographic methods to be executed in SCs.
Since one of our goals is to develop a mechanism that is able to create Digital Signature (DS),

this library is not suited for our purposes.

Among all the available libraries we discussed, the PKCS #11 standard was the one that
attracted us the most. This standard defines a high level abstraction of SC, and it provides
several functions to inspect the contents of SCs and to perform cryptographic operations like
the creation of DSs using SCs. Furthermore, it is possible to use PKCS #11 in all major OSs,
because its features are not specific to any OS. As we already mentioned, there are available
implementations of this library for all major OSs. The open-source project OpenSC provides
an implementation of the PKCS #11 and it offers support for GNU Linux, Mac OS X, and
Microsoft Windows. The PCC — our usage example — is compatible with this standard, and
its vendor provides one PKCS #11 module for each on the major OSs. Due to these reasons,
the PKCS #11 shows being an appropriate library for applications that are expected to be

used in several OS.

Although MULTICERT actually required the adoption of PKCS #11 for this project, we
would have chosen this standard anyhow, because of its cross-OS availability, its features and
abstraction from the low level SC details. The PKCS #11 API will allow us to develop a
plugin that does not depend on the OS specific features to access SCs, and we can ensure a
better integration with our proof of concept. The adoption of this standard would also enable
our plugin to be compatible with other SCs besides the PCC, because it is an open standard

to which several SCs are compliant.

3.1.2 Plugin Development

As we discussed in Section 2.3, there are several methods to develop a web browser plugin.
Typically, web browsers supply interfaces that developers can use in order to enhance their
core functionalities. In this discussion we found that developing a web browser plugin would
follow one of two general solutions: by the direct use of the web browsers interfaces, or by
the means of a framework. Next we explain why chose a framework instead of the usual web

browsers APIs, and we also described why we adopted FireBreath among the others.

In the first place, we had to decide if we would develop our plugin directly using the available
API in web browsers. As we already mentioned, there two major APIs for the development

of web browser plugins: the ActiveX Controls and the NPAPI. The first one is supported in

34 3. Plugin Development

several web browsers, like Firefox, Google Chrome, Safari, and the second one is specific to
Microsoft Internet Explorer. According to our goals, the plugin that we proposed to developed
must be available for Google Chrome and Internet Explorer. Thus, it must comply to the
NPAPI and ActiveX Controls interfaces. It would also require us to study each one these
interfaces in order to understand how we could develop a plugin that can work in those web

browsers.

During the initial phase of the project we explored other alternatives to develop web browser
plugins. In this step we found several frameworks that hide the details of the web browser
interfaces for plugin development. Such technologies allow developers to focus solely on the
features they want to make available on the plugin, and sometimes they can help creating a
plugin that can be successfully used in several web browsers. Due to these features, we decided
that using a framework would allow us to save the time needed to understand the NPAPI
and ActiveX Controls technologies. Thus, it would enable us to develop NPAPI and ActiveX

plugins with the same source code core for the features we designed to our mechanism.

As we saw on Section 2.3, there are four main frameworks that help developers build web
browsers plugins. The first one that we discarded from this set of frameworks was Nizysa,
because it only has support for NPAPI plugins, it has poor documentation, and the last
release is relatively old(2009). The three remaining libraries are very similar, they all have
support for the major web browsers and OSs, and good documentation. Among these options
we chose FireBreath since it is restricted to the development of web browser plugins, it has
good starting guides, and has no costs — even when the web browser plugin is supposed to
have its source code closed. The Juce would also be a good choice for developing our plugin,

but we only became aware of this framework in an advanced phase of this project.

A full description of the FireBreath framework can be found in Section 3.3.

3.1.3 Implementation

Up to this point we discussed the several alternatives for accessing SCs and develop web
browser plugins. From that discussion we decided that PKCS #11 would give us a good
abstraction and a powerful access to cryptographic devices. We also decided that a framework
would give us the possibility to create plugins for several web browsers with the same source
code for the core features. Now we are going to discuss the major topics we had to face during

the implementation step.

3.1. Designing the Solution 35

Linking with the PKCS #11 module

Linking the web browser plugin to the PKCS #11 module is perhaps the most important
decision we had to make. This module is responsible for enabling SC capabilities in the

plugin, and it has a major influence on the plugin security.

In this decision we had to choose between linking the module either dynamically or statically.
Being statically linked means that the plugin would have the PKCS #11 library attached to
its binary. In this situation the PKCS #11 library does not need to be present in the OS.
Dynamically linked means that the PKCS #11 module would only be attached to the plugin

at runtime, and it must be present in the OS.

Regarding security, the statically linking option shows being more reliable. Mainly because
a malicious agent cannot change the PKCS #11 module without changing the plugin binary,
since the library is a part of the plugin. It is also easier to deploy a statically linked plugin,
because the end user would not need to install additional software, namely a PKCS #11

module, to run the plugin.

In our project we decided to dynamically link the PKCS #11 library to our plugin, only for
testing purposes. Specifically, we chose to load the PKCS #11 library at runtime, where the
plugin waits for the web application developer to insert the location of the module. We are
aware of the security restrictions of our choice. However, in this initial phase of the project
we though that it would be easier to test the plugin with different PKCS #11 modules, and in
different platforms, using dynamic linking. Another advantage of this choice is that interested
users on our mechanism can test it with other PKCS #11 modules besides the ones we initially
thought (OpenSC and the module of the PCC).

In future versions of this project the plugin can still be deployed using dynamic linking, but
additional security mechanisms would be needed. It could be used code signing in order to
web browsers and OSs check if the plugin was tampered. The plugin would be deployed with
a PKCS #11 module (like OpenSC') and it would also check the integrity of the module using
Code Signing. It would also be interesting if web application developers could instruct the
plugin to load a code signed PKCS #11 module. In this situation it would be needed: the
PKCS #11 library, the Public Key Certificate used to sign the library, and the DS of the
library. Using these elements the plugin can check if the module was not tampered (using
the DS) and it can verify if it was developed by a known and trustworthy entity (using the
Public Key Certificate).

36 3. Plugin Development

Access to PKCS #11 objects

The PKCS #11 standard defines a hierarchy of objects, where each one has several attributes.
As we presented on Subsection 2.2.1, the access to the objects — and its attributes — stored in
SCs is performed through templates. One must specify a model of a template that matches
the object he is looking for, in order to get a reference to that object. Once he has got
the object reference, he must specify a model of an attribute template, in order to get the
values from the object he is searching. From this small description we can conclude that the
operation of searching for objects and its values in PKCS #11 is very verbose. So, we decided
to wrap these details from the web applications, by supplying dedicated functions for each
one of the PKCS #11 objects. The main reason that led us chose for this mode of operation
is simplicity, we can expose the same amount and quality of information with less complexity

and source code.

Returning the attributes of each PKCS #11 object

As shown in Appendix A.2, objects in the PKCS #11 standard can have several attributes.
This is maybe one of the reasons why the access to the attributes of objects is performed
using templates, so developers can access only to the information they want. However, in this

project we decided to return all the attributes of each object.

We suspect that web application developers may not always want to get all the available
attributes of a given object. We chose this operation mode only for testing purposes. In
future versions of these plugin it would be interesting if each of the access methods to objects
would have an argument containing a template. This argument could be an array of attributes

defining the values that the developer wants to be delivered.

Handling binary data

The content of some attributes and the result of some operations in PKCS #11 is exposed
using binary data. The result of a digest or the subject of a Public X.509 Public Key Certificate
are a examples of data that is returned in the binary format. In the development of our plugin
we decided that such data must be encoded in a language-independent format, because JS

does not have a primitive way to represent binary data.

We could also encoded such data as strings, but it would produce unexpected results, because

web browsers assume strings to be in the UTFS8 format'.

"Mttp://www.firebreath.org/display/documentation/Supported+JSAPI+types

http://www.firebreath.org/display/documentation/Supported+JSAPI+types

3.1. Designing the Solution 37

So, we decided that the best solution for the representation of binary data would be encoding
it in the Base 64 format. Other formats could be adopted, like hexadecimal. We adopted

Base 64 because it is more efficient than hexadecimal.

Slot events

As referred in the goals of this project, warning we applications whenever a token is inserted
or removed from a slot is a major feature that we wanted in our plugin. In order to accomplish
this goal we used Document Object Model (DOM)-like events.

An alternative to our solution would be using JS callbacks registered on the JS interface of
the plugin. These two approaches are very similar, but the first one is closer to the typical
use of events in the development of web applications, where developers use DOM events to

get information when for instance a user clicks an element of a web page.

A third option to expose these events to web applications would be through methods. In
this situation a web application would invoke a method from the JS API of the plugin and
it would block until an event occurs in a slot. This is a synchronous solution, and is not the

most suited one, because it blocks the ordinary execution flow of web applications.

Since we decided to notify web applications of slot events in an asynchronous way, we had to
make another decision. This time we had to decided if the plugin would be always watching
for slot events, or if the web application developer can instruct it to start and stop listening
for such events. Between these two approaches we chose the second one due to efficiency
reasons, as an additional thread is needed in order to check whenever a token is inserted or

removed.

Creation of Digital Signatures

In the PKCS #11 standard the creation of DSs using a SC needs developers to: (1) login into
the SC, (2) feed the signature mechanism with data, (3) logout from SC.

The first and third steps are the most crucial ones, because: in the first place a Personal
Identification Number (PIN) is needed in order to login; secondly, if the connection with
the SC is not closed one may take advantage of this situation to create DSs without user’s

consent.

So, the first decision we made was to have total control over the connections to the SCs, thus

the plugin must be responsible for prompting the PIN to users, and login and logout the user

38 3. Plugin Development

into/from the SC. This is the only way that we can ensure that neither the web application
learns the PIN of the user (when compared to the situation where the web application is in
charge of this operation), and the connection with the SC is open only during the time needed
to create the DS. Based on these decisions we decided to expose in the JS interface of the
plugin two dedicated functions for digital signing purposes, one specific for the creation of DS
from files, and another one from binary data. With this functions it is possible to specify if
the plugin should ask for a PIN, and the data that is supposed to be signed. This solution
give us the ability to control: (1) PIN prompting; (2) the precise time needed to create the
signature, we now exactly when to login and logout; (3) the data that is supposed to be
signed; (4) the time that the PIN is stored in the computer’s memory, once the user is logged

in we can erase the PIN from the memory.

3.2 API Design

In the development of the mechanism that we propose to enable SC capabilities in web
applications — in a clean and uniform way among web browsers — we tried to create a
consistent, simple, and easy to use JS interface. In that sense, we designed a browser and
platform independent JS API with three different kinds of members: methods, attributes,
and events. Each one of these interfaces will help web applications to: perform operations
using SCs — methods —, get extra information about the plugin or the SC — attributes —,
or even get notifications when a given event occurs — events. In Figure 3.1 there is an overall

JS interface description.

Methods

*Environment ’ ‘/'Inspection ’

A
] :
Cryptographic

o
(]
i

49 Attributes
. =
) ,\ =
Yir
=
lugin| 4
>

s Events

-

Web Browser

Figure 3.1: JS API Interface

3.2. API Design 39

In Appendix A.1 there is a complete API description of the JS interface, where we describe

each method, attribute, and event.

3.2.1 Methods

SC-related features will be available to web applications as methods in the JS API, which
will allow them to get information about SCs, and to accomplish cryptographic operations
such as DS.

All the available methods in the JS interface of the plugin share the following three charac-

teristics:

e Full into one category - There are three types of methods, each type with distinct
functions: one to setup the some plugin properties, one to inspect SCs features, and
another one to perform cryptographic operations. These categories will be explained

later.

e Token-oriented - Being token-oriented means that any operation will be performed with

the concern to a given SC. At API level a SC is referred as a token.

e Possibility to throw exceptions - Since it is not always possible to execute successfully a
method — due either to a wrong input, or an internal error in the function responsible
for such method —, exceptions give the power to notify web applications whenever such

situations occur.

Next, we will describe each method category.

Environment

This category of methods can be used by web applications to setup the environment where
the plugin is running. There are two reason for the existence of this category of methods. The
first reason is related to the PKCS #11 library, every time anyone wishes to use it he must
first initialize it before using any of its functions. Once he finishes using it he must expressly
instruct the PKCS #11 library to finalize, so all existing connections to SCs are closed,
and resources freed up. Secondly, not all web applications would desire to receive warnings
anytime a SC is either inserted or removed into/from the Smart Card Reader (SCR). So, for
this purpose there are two methods which tell the plugin whether to start or stop listening
for events in the SCR.

40 3. Plugin Development

Inspection

Inspection methods give web applications the chance to get additional information from the
SC, like available tokens in the user OS, available private keys, or private key details. Such
information can later be used in methods as the cryptographic ones, which require SC specific

details, like the cryptographic mechanism, or even identifiers for private keys.

In order to get information of any given data — whether about a SC, a public key certificate,

or even a mechanism — one must always do:

1. A search for the available kinds of items he wishes to get more information, such as
SC/token, or a private key. Once the search is complete, the plugin returns a list of
integers, where each element identifies solely one of such item. The name of these kind
of methods follows the convention getAvailableItems, where ITtems is replaced by

the object name to search.

2. An access to the information inherent to the item he is looking for. In return, the
plugin delivers a list containing the data from such item. The naming of these methods

is similar to getItemInformation.

Get Get
Available :> :> Item :> Item Information
> Items > Tems >Informat|0n>

Figure 3.2: The getAvailableltems | getltemInformation Procedure

This scheme, as expressed in Figure 3.2, follows the PKCS #11 model for these kind of
operations. An alternative to this scheme would be returning a map of item’s identifiers to its
informations. This solution could offer a lower performance, because additional information

would have to be returned, even if not needed.

As we described in Subsection 2.2.1, the PKCS #11 standard defines an object model over
the existing kinds of information that can be accessed. Such as: mechanisms, private keys,
hardware features. In this scenario, if one wishes to get information about such items, he
must use two different functions: one to get a reference to the object and another one to
get values from it. In our work we decided to simplify this task, such as so we created an
inspection method for each one of these objects, such as: getPrivateKeyInfo for private
keys, and getX509PublicKeyCertificateInfo for X.509 Public Key Certificate.

The information attached to each item available in the PKCS #11 library can be very exten-
sive, there are items with more than ten fields. Due to this reason, the PKCS #11 standard

3.2. API Design 41

[RSA Laboratories, 2004] defines a template model, in which programmers can limit the fields
they wish to inspect. For simplicity sake, we decided to retrieve a list of all the fields at-
tached to each item. In contrast, we could have used a similar model to the one used by the
PKCS #11 standard, where web application developers could define a list of which fields they

want to get access.

Cryptographic

The last category of methods, but no less important, are the cryptographic ones. These

methods let web applications use the cryptographic features available on SCs.

Currently, the plugin offers two kinds of cryptographic methods: one to create DS, and
another one to create digests. While DS can be used by web applications to check its user’s
identity — in case of authentication — , or to help its users digitally signing a document —
which has the same validity as its physical equivalent. Digests give the possibility to check a

message integrity, whenever ah hash function is not available.

Both kinds of methods — DS and digest creation — have support for processing either files
or bytes of data.

The PKCS #11 standard defines several functions for cryptographic functions, such as: en-
cryption and decryption, Message Authentication Code (MAC)ing, and random number gen-
eration. However, the PCC — our case study — only offers functions for the creation of
DSs and digests [Agéncia para a Moderniza¢ao Administrativa, 2007]. This is why we chose
not to implement any method regarding the remaining cryptographic functions defined in the
PKCS #11 standard.

3.2.2 Attributes

The use of attributes in the JS interface of the plugin can be very useful to expose values,

which do not need to be processed before returning their values to web applications.

Thus, we created three sets of read-only attributes, which web applications can use to get
additional information about the plugin, SCs, and cryptographic mechanisms. The presence
of such attribute values in the JS interface eases the work of web application developers,
thereby avoiding documentation checks, and also helping minimizing copy&past related errors.
Defining the attributes as read-only allowed us to expose values as typical constant values
used in languages like C++. In the next paragraphs there is a description of each set of

attributes.

42 3. Plugin Development

Token-related attributes The PKCS #11 defines in its standard a field which holds the
active flags for a given SC token, such as the presence of a random number generator, or even
if the token is write-protected. Therefore, we decided to expose such flags, so web applications

can have check SC features more easily.

Mechanism-related attributes Each PKCS #11 mechanism has a field to store its char-
acteristics, like if it can be used in encryption or signing functions. The presence of these
flags help web applications find out the best mechanism to use when they wish to create a
DS or a digest.

Plugin-related attributes The intent of these set of attributes is to expose the following

plugin properties: its version, string delimiters, and slot event types.

An alternative way to achieve the same goal without using attributes would be with methods,
where each property would have a getter to its value. This solution would increase the plugin
programming complexity, because it needs more lines of source code to produce the same

effect as attributes.

3.2.3 Events

The interface events allow us to notify web applications about events, just like the ones used
in DOM. In our plugin we used this interface to a callback anytime the state of the SCR
changes, due to either an insertion or removal of a SC token. When this event is fired a
callback in the JS is called, where the token and the event type (insertion / removal) are
identified.

Instead of using events, we could have used directly JS callbacks, where web applications

would register in the plugin a JS method to listen for occurrences in the SCR.

3.3 The Firebreath Framework

Firebreath is a lightweight, but nonetheless powerful framework which enables developers to
build plugins that support all major web browsers and OSs. In this project we used the last
stable release of the Firebreath framework — specifically 1.6 — and it supports the following

web browsers and OSs:

e Windows

3.3. The Firebreath Framework 43

— Internet Explorer 6 and later
— Mozilla Firefox 3.0 and later

— Google Chrome 2 and later

Apple Safari
— Opera

e Mac OS X
— Mozilla Firefox 3.0 and later
— Google Chrome
— Apple Safari 4 and later

e GNU Linux
— Mozilla Firefox 3.0 and later
— Google Chrome

In this section we will overview the Firebreath framework. First we will enumerate its re-
quirements in order to have a fully operational system where Firebreath can be used, Subsec-
tion 3.3.1. Then we will describe the several steps needed to successfully compile and install
a plugin using this framework, and how we managed to automate this tasks, Subsection 3.3.2.
Finally, we will show how the framework can be used to create features that will be available

to web applications, Subsection 3.3.3.

3.3.1 Requirements

The first thing that we must recall about Firebreath is that it is a C++ framework only;
and it does not supply any means to compile, install or test plugins. Therefore, we will need
additional development software like interpreters, compilers, build systems, or even Integrated

Development Environments (IDEs), depending on the system we will compile the plugin.

In all OSs supported by Firebreath — GNU Linuz, Mac OS X, and Windows — Python? must

be installed at least at the plugin creation time. Python is used to run a script which creates

2http://www.python.org

http://www.python.org

44 3. Plugin Development

the base source code structure of the plugin. According to the Firebreath documentation®, it

is recommended to use one of the following Python versions: 2.5, 2.6, or 2.7.

The CMake* is the build system used by Firebreath to structure the plugin compiling defi-
nitions. The recommended CMake version needed to compile the plugin differs among OSs:
2.8 in GNU Linuz, 2.8.8 in Mac OS X, and 2.8.7 in Windows.

Under a GNU Linuz operating system the following software packages must be installed in

order to compile the plugin:

¢ GTK development libraries version 2.0 These libraries are used for drawing sup-

port
e GNU Make®, GCC® These tools are used to compile the plugin

Under Mac OS X operating system the following software packages must be installed in order

to compile the plugin:
e Apple’s XCode’
e XCode’s command line tools

Under Windows operating system the Microsoft Visual Studio® IDE must be installed in

order to compile the plugin.

The Firebreath framework must also be present in the system, it can be downloaded from its

official download page”.

3.3.2 Development Life Cycle of a Firebreath Plugin

The development life cycle of a plugin using the Firebreath framework, from its creation to

its installing, can be divided into four steps, as shown in Figure 3.3.
1. Creation - The goal of this step is to:

e define the plugin properties, such as: name, MIME type, Company Name, De-

scription, among many others;

Shttp://firebreath.com/display/documentation/Creating+a+New+Plugin+Project
‘http://www.cmake.org

Shttp://www.gnu.org/software/make

Shttp://gcc.gnu.org

7https://developer.apple.com/xcode

8http://www.microsoft.com/visualstudio
http://firebreath.com/display/documentation/Download

http://firebreath.com/display/documentation/Creating+a+New+Plugin+Project
http://www.cmake.org
http://www.gnu.org/software/make
http://gcc.gnu.org
https://developer.apple.com/xcode
http://www.microsoft.com/visualstudio
http://firebreath.com/display/documentation/Download

3.3. The Firebreath Framework 45

2. Environment
Preparation

4. Plugin
Installation

1. Plugin
Creation

3. Compilation

Figure 3.3: Firebreath Development Cycle

e generate the base source code structure of the plugin project, which later will be

explained in Section 3.4.

In order to ease this task, the Firebreath framework offers a Python script — named

fbgen.py — which automates the plugin generation.
Obviously, this step is only performed once in the development process of a plugin.
2. Environment Preparation - The goal of this step is to:
e define the plugin project location and the build directory;

e scan the plugin project for source files, so all dependencies are known at compile

time;
e find the plugin properties, such as additional libraries;

e define the build type, it can be: Debub, Release, MinSizeRel, RelWithDebInfo; (this

definition can be set later if the plugin is compiled using an IDE)

th

o fetch external Firebreath libraries dependencies like Boost™", if they are not present

in the environment where the plugin will be compiled;

e generate auxiliary build files, such as: IDE projects, and source files regarding the

plugin core functionality.

Once again, for this task Firebreath offers the following auxiliary scripts for each plat-
form it supports, which will help creating a prepared environment for a successful com-

pilation:

Yhttp://www.boost .org

http://www.boost.org

46 3. Plugin Development

o prep20zz.cmd - a batch script for the Windows platform that generates a Microsoft
Visual Studio compatible build setup;

e prepcodeblocks.sh - a batch script for Uniz like platforms that generates a compat-
ible setup for the IDE Code::Blocks'!;

e prepeclipse.sh - a batch script for the Unix like platforms that generates a com-
patible setup for the IDE Eclipse'?

e prepmac.sh - a batch script for the Mac OS X platform that generates a XCode
compatible build setup;

o prepmake.sh - a batch script for the GNU Linux platform that generates a com-
patible setup with GNU Make and GCC.

The created build environment should never be shared among systems, even among the
same operating system, because all the build definitions — like system paths — are

created according to the system they were created.

This step must be executed when someone is about to compile the plugin project for
the first time, and must be repeated every time someone changes the plugin properties

or definitions, or adds a new source file to the plugin project.

3. Compilation - The compilation step has the purpose of creating a binary compatible
with a NPAPI plugin or an Activer control, or even both, depending on the operating
system it is performed. Next we present the tools for which Firebreath offers support

for compilation:

e GNU Linux - GNU Make build system, or Code::Blocks and Eclipse IDEs
e Mac OS X - XCode IDE or the command line tool zcodebuild
e Windows - Microsoft Visual Studio

The plugin project definitions should never be changed inside IDEs, with the exception

for the build type and the target architecture, when these definitions are available.
The plugin binary is only compatible with the operating system where it was compiled.

This step must be performed every time the source code is changed.

"http://www.codeblocks.org
Phttp://www.eclipse.org

http://www.codeblocks.org
http://www.eclipse.org

3.3. The Firebreath Framework 47

4. Installation - The installation process intents to expose to web browsers - or even

OSs — the newly compiled plugin, and it varies depending on the operating system:

¢ GNU Linux
There are two ways to successfully install the newly created NPAPI plugin, mak-
ing it accessible to web browsers, it can be installed to every user present on the

operating system, or simply just to a single one.

— Install for everyone - copy the created shared object file — the plugin — to
/usr/lib/mozilla/plugins

— Install for a single user - copy the created shared object file — the plugin —
to <USER_HOME>/.mozilla/plugins

¢ Mac OS X
The installation process under a Mac OS X operating system follows the same

philosophy as the one for GNU Linuz, but with different locations:

— Install for everyone - copy the created shared object file — the plugin — to
/Library/Internet Plugins

— Install for a single user - copy the created shared object file — the plugin —
to <User_HOME>/Library/Internet Plugins

¢ Windows
Under a Microsoft Windows operating system the plugin can only be installed for
every user, using the command line tool regsvr32 to create a new entry in the
registry. When a web browser is started it will check the registries for plugins and

it will load the shared object associated to each registry.

The plugin binary works as both a NPAPI plugin and an Activex Control.

After the plugin installation, the web browser where it will be tested must be restarted,

so it can reload the list of shared objects.

If the plugin is under development in GNU Linux or Mac OS X the Firebreath docu-
mentation recommends to place symbolic links to the shared object in the installation
folders, instead of copying it directly to those places. Thus, every time the plugin binary

is created, it is also updated.

48 3. Plugin Development

A Bit of Automation

Firebreath offers several scripts to ease the development life cycle of a plugin. However, one
must always recall which scripts to use, their location, and their parameters, which may

jeopardize the plugin consistency among OSs, and slow down the build process.

In our work we created additional mechanisms to automate the development — from the
environment preparation to the plugin installation —, so anyone who is developing just needs
to know if he wants to prepare the compilation, compile the plugin, or install it. For this
purpose we created a simple batch script for each platform — one compatible with the Win-
dows OSs and another one compatible with Uniz like systems — with identical operations,

and functionalities.

3.3.3 Using the Firebreath Framework

One of the most interesting features of Firebreath is the ease of interacting with JS. Currently
Firebreath exposes four basic types of interfaces to JS: methods, properties, attributes, and
events. In order to create these interfaces, Firebreath offers a C++ class named JSAPIAuto
that must be inherited by at least one of the plugin classes. The JSAPIAuto hides the details
of exposing features to the JS layer, and simplifies the amount of code needed for type casting

between JS and C++, and vice versa.

Next we will present each one of the interfaces, and we will explain how one can expose each

one to web applications.

Methods

A method provides a useful way to enhance the JS capabilities of web applications: it gives

access to procedures that are not available in the regular JS provided by web browsers.

Usually, a method can accept zero or more arguments and it can optionally return a value.
Whenever a method does not explicitly returns a value, the web application will receive a
undefined value, which is the ordinary behaviour of a typical JS function without a return

value.

Creating a new method using the Firebreath framework — which will be available through
JS to web applications — requires registering the method as one member of the JS interface,

and defining its behaviour.

3.3. The Firebreath Framework 49

The first step to create a new method — which will be accessible from the JS interface — is
to define its behaviour. This is identical to any other regular method definition in C++: first
one must to create its signature inside the class in the header file, and then create it in the
source file, as shown in Example 3.1 where it is defined a method named add_internal

which belongs to the class MyPluginAPI and calculates the sum of two integers.

Header File (.h) Source File (.cpp)
class MyPluginAPI : public FB::JSAPIAuto int MyPluginAPI::add_internal (int a, int 2
{ b)
public: {

(...) return a + b;
int add_internal (int a, int b); }
(P

}i
Example 3.1: How to define a new method in Firebreath. Adapted from the Firebreath docu-
mentation

Once the method behaviour is defined it can be exposed to the JS interface using Fire-
breath provided functions to register methods in the plugin JS API. In Example 3.2 there
is an instance of such registration, using the special functions: registerMethod and
make_method. The first parameter of registerMethod defines the method’s accessible
name from JS, in this example it is add. The second parameter is a pointer to a function that
will perform the conversion from the JS values to C++ compatible types, and check the argu-
ment count. Such function can be generated using make_method, which needs one pointer
to the method that will handle the JS request, and another to the object where it belongs —
in the example the method that will handle the request is add_internal and it belongs to
the class MyPluginAPTI. The registration must be placed inside the object constructor for
the JSAPTIAuto derived class.

MyPluginAPI: :MyPluginAPI ()

{
registerMethod ("add", make_method(this, &MyPluginAPI::add_internal));

}

Example 3.2: How to register a new method in Firebreath. Adapted from the Firebreath docu-
mentation

Even tough JS is a dynamic, weakly-typed language, Firebreath ensures strong dynamic typing
from JS (input) to C++ values, for a great majority of types. Firebreath will always try to
match the input values to the ones in the method definition, whenever this operation fails an
exception will be thrown to the web application. At the current stable version of Firebreath

the following types are supported:
e arithmetic, such as: int, long, short, char, double, and size_t;

e boolean;

50 3. Plugin Development

e string;
e container types compatible with the Standard Template Library (STL)?;
e JS objects, such as methods for callback.

Any of the above types can be used as an output to the JS interface, with the exception for
the container types. In this case it is only possible to return lists — std::vector — or

maps — std: :map<std::string,...>.

In the development of our plugin we used these kind of methods to create the functions from
the JS API that will perform operations like: creating DS, and check for SC, among many
others.

Attributes

Attributes can be used to expose values to the JS interface of the plugin. One must use
attributes whenever getting — or setting — a value needs no special logic to handle such

request.

The creation of a new attribute is simple. Firebreath requires only a registration where it must
be defined: the accessible name from the JS interface, the associated value, and optionally
define if it is a read-only attribute. In Example 3.3 there is a registration of two attributes:
a read-writable named readWriteValue with the default string value a string value;
and another one named readOnlyValue with read-only permissions, that holds the value

another string value.

1 MyPluginAPI::MyPluginAPI ()

2 {

3 registerAttribute ("readWriteValue", "a string value"));

4 registerAttribute ("readOnlyValue", "another string value", true);
5 }

Example 3.3: How to register a new attribute in Firebreath. Adapted from the Firebreath

documentation

Once again it is possible to use anyone of the types referred previously in the description of
methods.

We used attributes to expose certain constants to the JS interface, that otherwise would re-
quire web applications to have firsthand knowledge of their values. Example of such constants
are token and mechanism related flags defined by PKCS #11.

YBhnttp://www.cplusplus.com/reference/stl

http://www.cplusplus.com/reference/stl

3.3. The Firebreath Framework 51

Properties

The use of properties in the JS API enables web applications to get — and set — values
from the plugin, in the same way one can access member variables of any given class. This
interface may resemble attributes, but they have different goals. A property must be used
when its content needs to be processed before setting or getting its value. A property can
have either read-write permissions — web applications can read and change the property’s

content — or read-only permissions — it is not allowed to change the property’s value.

The first step in the creation of a new property is to declare the variable which will hold the
value that both web application and plugin will have access to. Then, it is time to create a two
member functions, where one will act as a value getter, and another as a value setter — if it is
a read-write property. Example 3.4 shows the creation of a new property, having its string
value stored in the member variable m_value, with the getter and setter get_value and

set_value, respectively.

Header File (.h) Source File (.cpp)
class MyPluginAPI : public FB::JSAPIAuto std::string MyPluginAPI::get_value ()
{ {
public: return m_value;

(P }
std::string get_value();

void set_value (std::string& val); void MyPluginAPI::set_value(std::string& 2
(...) val)

protected: {
std::string m_value; this.m_value = val;

bi }

Example 3.4: How to define a new property in Firebreath. Adapted from the Firebreath docu-

mentation

At this point the property is just like a regular member variable of any other class, and it
cannot be accessed outside the plugin. Thus, we have to register this property in the plugin JS
interface, in a way similar to the method registration. To this end, Firebreath offers two special
functions for registering properties: registerProperty and make_property. While
registerProperty is in charge of defining the accessible name from the JS interface, and
the function that will perform the conversions from JS values to C++ types; make_method
is used to generate the source code of a such conversion function. Example 3.5 shows how to
register a read-only property, and a read-write property, with the names readOnlyVvalue
and readWriteValue, respectively. The difference between these two properties is the
presence of a setter in their registration — if the function make_property is not provided
with a setter, then the property will be read-only value. The registration must be placed inside

the object constructor for the JSAPTAuto-derived class, just like in a method registration.

Regarding the supported types for properties, it is possible to use any of the types referred
in the description of methods.

52 3. Plugin Development

—

MyPluginAPI: :MyPluginAPI ()

2 {

3 registerProperty ("readOnlyValue", make_property(this, &MyPluginAPI::)
get_readOnlyValue));

4 registerProperty ("readWWriteValue", make_property(this, &MyPluginAPI::2
get_readWriteValue, &MyPluginAPI::set_readWriteValue));

5}

Example 3.5: How to register a new property in Firebreath. Adapted from the Firebreath

documentation

Events

Events give plugins the possibility to warn web applications every time a given occurrence
happens, just like normal DOM events — such as onload and onmousemove — firing
callbacks in the web application JS. Such mechanism allows web applications to notify their

users or even to adapt their interface according to a given event.

In order to create a new event one must declare it — inside the JSAPTAuto derived class
definition — using the Firebreath macro FB_JSAPI_EVENT, respecting the syntax in 3.6.
The macro expects one to identity the following event properties: name — it must be entirely
lower case due to browser differences —, argument count, and argument types. One must be

use arguments in his events anytime additional knowledge about it is required.

FB_JSAPI_EVENT ({name}, {arg count}, ({arg types}))

Example 3.6: Event creation syntax in Firebreath. Adapted from the Firebreath documentation

With the intent to exemplify how such declaration can be successfully achieved, Example 3.7
has the registration of a new event named event, which has two arguments: one integer

and a string.

class MyPluginAPI : public FB::JSAPIAuto
{

1

2

3 public:

4 (G

5 FB_JSAPI_EVENT (event, 2, (int, const std::stringé&));
6 (o)

T}

Example 3.7: How to create a new event in Firebreath. Adapted from the Firebreath documen-

tation

After declaring the new event, all member functions from the JSAPIAuto derived class
can warn web applications about its existence by triggering a special function responsible
for that event. At the time the event is declared — like in Example 3.7 — Firebreath au-

tomatically generates a new function to fire such event, which name follows the template

3.4. Implementation 53

fire_{event_name}. In Example 3.8 there is a function named fire_event firing the
event declared in 3.7, using the values 123 for the first integer argument, and string for

the second string argument.

void MyPluginAPI::fireEvent ()

1
2 {
3 fire_event (123, "string");
4}

Example 3.8: How to fire an event in Firebreath. Adapted from the Firebreath documentation

The plugin that we developed uses these kind of evens to warn web applications every time

a token is either inserted or removed in/from the SC.

3.4 Implementation

The first step in the creation of the plugin was to generate the initial source code structure of
files and classes using the auxiliary scripts supplied by the Firebreath framework, as described
in Section 3.3. In this operation the files presented in Table 3.1 were generated. We decided
to name our plugin as Smart Cards Everywhere since our effort is to create a uniform and

browser-independent mechanisms that exposes SCs to web applications.

The files SmartCardsEveryWhereAPTI (cpp | h) are some of the most important ones
in our project. The behaviour of the class SmartCardsEveryWhereAPT is defined in these
files. This class is responsible for handling all the requests made to the JS interface of the
plugin. In this class we registered all the members of the JS interface (methods, attributes,

and events), and their behaviour as well.

In Figure 3.4 we present the class diagram of our project. For simplicity sake we used packages
to represent C+ namespaces. On the right side and inside a rectangle of this diagram there

is a representation of the classes we developed in our project.

On the left side there are the two main classes inherited by the classes of our project:
SmartCardsEveryWhere and SmartCardsEveryWhereAPI. During the development phase
we decided to create a namespace named utils dedicated to hold auxiliary classes. Within
this namespace we created the class Utilities that has several methods to: dynamic li-

brary management, type conversion, and muter management.

The class SlotEventListener is used to wait for changes in slots attached to a computer.

In order to perform this operation it runs a thread that is constantly checking the status of

54 3. Plugin Development

File Description

PluginConfig.cmake In this file it is possible to define several informations about the
plugin, such as: name, MIMFE type, Description, and Company
name. It is also in this file were we can define if we want to link
our plugin with any of the libraries supplied by Firebreath, like

OpenSSL??.

CMakeLists.txt It is in this file where the configurations for the compilation are
written. Any cross platform library, or file, must be specified in
this file.

Factory.cpp This file contains the class that is responsible for creating the

main plugin object, and for initializing and finalizing the plugin.
SmartCardsEveryWhere (cpp | | These files have the definition of the class SmartCardsEvery-

h) Where, which is the main entry point of the plugin.
SmartCardsEveryWhereAPI These files contain the definition of the class SmartCardsEvery-
(cpp | h) WhereA PI, which will handle all the JS requests. From methods,

to events, this class will process each request to the JS interface
of the plugin.

Mac/projectDef.cmake This file defines additional compile instructions specific to the
Mac OS X OS. Specific libraries of this OS must be referred
here.

Win/projectDef.cmake This file defines additional compile instructions specific to the
Windows OS. Specific libraries of this OS must be referred here.

X11/projectDef.cmake This file defines additional compile instructions specific to GNU

Linux OSs. Specific libraries of this OS must be referred here.

Table 3.1: Initial Source Code Structure. Adapted from the Firebreath documentation?3

SmartCardsEveryWhere

1

Firebreath utils

SmartCardsEverywhere Utilities

PluginCore

I
IEventHandler

FEventType : enum

ISAPIAUtO SmartCardsEverywhereAPI

+ ~IEventHandler()
t fireEvent(...)

\ I

SlotEventListener

Figure 3.4: Class Diagram of the Plugin

the SCRs. The class SmartCardsEveryWhereAPT is notified when a change occurs, so it

can warn web applications accordingly.

The communication between SmartCardsEveryWhereAPI and SlotEventListener is

achieved through the class IEventHandler. This class defines an abstract behaviour of a

3.4. Implementation 59

method that should be fired when a given event occurs. As shown in Example 3.9 the method
is called fireEvent and it has three parameters: the first one identifies the function where
the event occurred, the second indicates the event type, and the third the data associated
to that event. Since SmartCardsEveryWhereAPT inheres TEventHandler, then it must
implement this method. When a request is made to the JS interface for slot events, the class
SlotEventListener is instantiated and a reference of SmartCardsEveryWhereAPT is

passed.

(o0 o)
enum EventType
{
CHECK_RETURN,
TOKEN_INSERTED,
TOKEN_REMOVED
bi
{ooo)
virtual void fireEvent (Utilities::FunctionsList funID, EventType evtID, void % data) = 0;

Example 3.9: Excerpt of the class IEventHandler

In Figure 3.5 there is a representation of the currently file structure of the project. Inside
the folder include we can find the several external headers needed to compile our plugin.
At this phase of the project these headers are all related to the PKCS #11 library. The file
Configurations.h is used to define which headers to included depending on the OS where

the plugin is being compiled.

\‘ SmartCardsEverywhere

.h |Configurations IEventHandIerSIotEventListener DslotEvemListener SmartCardsEveryWhere
.h |SmartCardsEveryWhere SmartCardsEveryWhereAPl SmartCardsEveryWhereAPl Utils
.h Utils DPlugin.cmake DCMakeLists.txt

.h |cryptoki .h |pkecsi1l .h |pkcsiif .h |pkcsiit .h |unix .h |win32

] .
“M_a;: \‘Mu X11

DP’01901D9f-°make Dprojec‘Def.cmake mejechef.cmake

Figure 3.5: File Structure of the Plugin

&)L

-3

&

56 3. Plugin Development

Cross-platform Support

During the development phase we made a great effort to program our plugin with support for
several platforms. Due to this reason we made an extensive use of the preprocessor directives
#if - #else. These directives help us identify the platform where the plugin is being
compiled. With this knowledge we had the ability to chose the most appropriate behaviour
according to the target OS.

In Example 3.10 there is a precise function where we use those directives in order to know
which kind of mutezes should be used (Microsoft Windows or POSIX). This function is
used to create a muter, and it is passed as a reference to the initialization function of the
PKCS #11 library. The PKCS #11 library needs several mutez-related functions when it is
being accessed by a multi-threaded application. For that purpose it needs the following four

kind of functions: create and destroy a mutex, and lock and unlock a mutex.

//creates a mutex object
CK_RV Utilities::myCreateMutex (CK_VOID_PTR_PTR ppMutex)
{
//mutex functions return value
int ret = 0;
#if defined (WIN32) && !defined (UNIX)
*ppMutex = (HANDLE x) CreateMutex (NULL, // default security attributes
FALSE, // initially not owned
NULL) ; // unnamed mutex
if (xppMutex == NULL)
ret = -1;

#else

ret = pthread mutex_init ((pthread _mutex_t) *ppMutex, NULL);
#endif

return (ret == 0)? CKR_OK : CKR_GENERAL_ERROR;
}

Example 3.10: Cross platform support creating mutex

In the source code of our project it is possible to find several instances of #if - #else

preprocessor directives to identify the OS, specifically to:
e choose the appropriate functions for muter management;
e choose the appropriate functions for dynamic linking.

e choose the appropriate header files;

3.5 Plugin Usage

The best way to understand the behaviour and the correct use of our plugin is to present a

short example of how a web application developer can take advantage of the available features.

3.5. Plugin Usage 57

In this section, we show how to load the plugin in a web browser whenever a user connects to
a web application, and we give a little usage example of how one can use the plugin to create
a DS of a file.

The first step to integrate a web application with our plugin is to reference it in the HTML
code of the web application. This reference is accomplished using the HTML tag object,
where its type must be set to application/x+smartcardseverywhere. Example 3.11
has an extract of a web application that is referencing our plugin. In this example we use a
DOM event to get a notification once the plugin is loaded. After referencing the plugin in
the HTML, one should create a JS function to simplify the calls to the plugin, as in Example
3.12. Now, one can perform calls to the plugin simply by using plugin () . <FUNCTION>
instead of document .getElementById('plugin0"') .<FUNCTION>.

1)

2 <body>

3 (ooo)

4 <object id="pluginO" type="application/x-smartcardseverywhere" width="0" height="0">
5 <param name="onload" value="pluginLoaded"/>

6 </object>

7 (co0)

8

9

</body>
(...)

Example 3.11: Loading the Plugin into a Web Application

function pluginoO ()
{
return document.getElementById('plugin0');
}
plugin = plugin0;

Example 3.12: Simplying the Calls to the Plugin

U W N =

At this point, once the web application is loaded into a web browser, the plugin will be
accessible through JS. However, it is not yet ready to perform operations or get informations
from SCs, because one must explicitly instruct the plugin to initialize the PKCS #11 module.
Such operation will conduct the plugin to load and prepare the PKCS #11 module to be used,
as in Example 3.13. Once the plugin is not needed anymore, one may instruct it to release
all resources and close all connections to SCs and the PKCS #11 module, simply by calling
plugin () .finalize ().

As we can see from Example 3.13, the call to the plugin is surrounded by a try-catch
statement. Due to the fact that any call to the PKCS #11 module may not succeed,
the plugin must warn web applications of such situations, and for that purpose it is used

exceptions. The error that raised the exception should be inspected using the function

58 3. Plugin Development

1 try

2 {

3 plugin() .initialize ("path/to/the/pkcsll/module");
4 } catch(e)

5 {

6 var error = plugin().getLastException();

7

}
Example 3.13: Initializing the Plugin

getLastException () of the plugin, because it gives the exact cause of the error and
it gives a better cross-browser support, since Google Chrome does not show the exceptions
thrown by the plugin in the variable of the catch statement. In the exception that is thrown
there is information regarding the function that was called, the id of the error, and an indi-
cation if it is still possible to use the plugin without initializing it. In Example 3.14 there is

an instance of such exception.

1 "Function ID -> 1 ; Function Name -> finalize ; Error ID -> 400 ; Error String -> 2
CKR_CRYPTOKI_NOT_INITIALIZED ; Remains Consistent -> 0"

Example 3.14: Structure of an Exception thrown by the Plugin

Complete Usage Example

Up to this point we introduced how the plugin could be successfully loaded into the web
browser, and properly initialized. Now it is time to expose a usual scenario where a web
application creates a SC from a file. In the following paragraphs we enumerate the steps that

are needed to accomplish this goal.

1. Initialize. As we stated before the goal of this step is to properly load and initialize the
PKCS #11 module, as shown in Example 3.13.

2. Get available tokens. Now that the Cryptoki is initialized, one should get the list of
available cryptographic devices. The method getAvailableTokens can be used for this

operation, because it returns a list of integers, where each element identifies a unique token.

3. Get available X.509 Public Key Certificates At this point we have the list of avail-
able tokens, and we want to get additional information about each one of them. Therefore,
we can use the field subject of a X.509 Public Key Certificate to know the owner of each
device. However, a token can have several X.509 Public Key Certificates, like the PCC. So,

3.5. Plugin Usage 99

we must get the list of available items in order to get additional information about each one.
The method getAvailableX509PublicKeyCertificates can be used in the process
of getting the available X.509 Public Key Certificates. This method has one parameter that
identifies the token where the plugin should look for these items.

4. Get X.509. Public Key Certificate information At this step we have the list of
available X.509 Public Key Certificates for each available token in the computer. The function
getX509PublicKeyCertificateInfo can be used in order to get the information about
each certificate. This function takes two parameters, an integer that identifies the token,
and another integer that identifies the certificate. The return of this function is a list of
strings, where each string identifies the field of the certificate and its value, for instance:
"CKA_ID —-> 0x45".

5. Get available private keys. Now that we now which devices are available as well as
their owners, we must known which private keys are suitable to create a DS, and which mech-
anisms they support. But first we need to get the available private keys, since one device can
have several of these. For such purpose we can use the function getAvailablePrivateKeys,

which receives an integer indicating the token where the plugin should look for private keys.

6. Get private key information. With the list of available private keys for each device
we get in step 5, we can inspect each one for additional informations, such as the sup-
ported mechanisms. The function responsible for that operation is getPrivateKeyInfo,
takes two parameters, and returns the list of fields of the private key. The first parame-
ter identifies the token and the second the private key. The return is similar to the one of
getX509PublicKeyCertificatelInfo.

7. Get mechanism information. If one wishes to get additional information about a
mechanism, he may do so using the function getMechanismInfo. This functions takes one

parameter that identifies the mechanism and returns all the available data regarding it.

8. Sign the file. At this moment all the information that we need to create a DS is
collected: token, private key, and mechanism. Then, we can digitally sign a file using the
method signFile. This method takes five parameters. The first parameter identifies the
token where the DS must be performed. The second identifies the private key. The third
identifies the mechanism that must be used. The fourth indicates if the PIN should be asked
either by the plugin or by the SC. The fifth parameter is a string containing the path to

© 00~ Ui W

I I R R N N N e e e e R S S
DU WNHFH O OO U WwN - O

60 3. Plugin Development

the file that needs to be signed. The result of this method is a string containing a base 64
encoding of the DS.

9. Finalize. Finally, the DS was successfully created and we do not need the plugin any-
more, thus the plugin should release all resources and close the any established connections

with SCs using the method finalize.

Example 3.15 summarizes all the steps we described before. For ease of representation we
removed the try—-catch blocks from the example.

//1. Initialize

plugin() .initialize ("path/to/the/pkcsll/module");

//2. Get available tokens
plugin () .getAvailableTokens () ;

//3. Get availa X.509 Public Key Certificates
plugin () .getAvailableX509PublicKeyCertificates (0);

//4. Get X.509 Public Key Certificate Information
plugin () .getX509PublicKeyCertificateInfo (0, 70);

//5. Get available private keys
plugin () .getAvailablePrivateKeys (0) ;

//6. Get private key information
plugin () .getPrivateKeyInfo (0, 70);

//7. Get mechanism information
plugin () .getMechanismInfo (0, 8);

//8. Sign the file

plugin() .signFile (0,70, 8, false, "/path/to/file");
//9. Finalize

plugin () .finalize();

Example 3.15: Common Steps Towards a Digital Signature Creation

Listen for Slot Events

The slot events give web applications the ability to get notifications anytime a token is either
inserted or removed from a slot. In the following example we describe how a web application

developer can get such notifications. We assume that the plugin is already initialized.

1. Create a function to handle a slot event Web applications will be notified about slot
events through callbacks. So, one must define a JS function to handle the event. This function
should contain two parameters, the first identifies the event type (insertion / removal), and

the second identifies the slot where such event occurred.

3.6. Plugin Experimentation 61

2. Register an event listener in the plugin Once the handle function is defined, it must
be registered in the plugin JS interface. For that purpose it must be used one of the func-
tions: attachEvent or addEventListener. The first function is specific for the Internet
Explorer web browser, and it takes two parameters, the first is the string onslotevent
and the second is the handle function. The second function is addEventListener and it
must be used in the remaining web browsers, it takes three parameters: the first is the string

slotevent, the second the handle function, and the third is false.

3. Instruct the plugin to start listening slot events Now that a handle function is
defined and registered in the plugin, we can instruct the plugin to start listening for slot events
using the function startListeningSlotEvents. This functions takes no arguments and

its purpose is to tell the plugin to catch any SC insertion or removal from a slot.

4. Instruct the plugin to stop Listening slot events Once someone is done listening for
slot events he can use the function stopListeningSlotEvents, which takes no arguments

and tells the plugin to stop all the process of catching and reporting these events.

5. Remove the event listener from the plugin Finally, if the web application developer
wishes to unregister the handle function from the plugin, he can do so using one of the func-
tions: detachEvent or removeEventListener. The first function can only be used in
the Microsoft Internet Explorer, and it has two arguments, the first is the string slotevent
and the second the is the handle function. The second function must be used in the remaining

web browsers and has the same arguments as detachEvent.

In order to exemplify the steps we described in the previous paragraphs, in Example 3.16 it

can be found the JS source code needed to listen for slot events.

3.6 Plugin Experimentation

According to our initial goals, we propose a new mechanism to enable SC-related features in
web applications. For this mechanism we defined that it should be formed by two elements:
a JS API, and a web browser plugin to handle the JS request. Furthermore, we defined that
the plugin should be able to run in Google Chrome and Internet Explorer.

62 3. Plugin Development
1 //1. Create a JavaScript function to handle a slot event
2 function onSlotEvent (eventID, slotID)
3
4 alert ("A slot event occurred.\nSlot ID: "+slotID+"\nEvent ID: "+eventID);
5}
6
7 //2. Register an event listener in the plugin
8 if ($.browser.msie)//Internet Explorer?
9 plugin () .attachEvent ("onslotevent"”, onSlotEvent);
10 else//Other web browsers
11 plugin () .addEventListener ("slotevent", onSlotEvent, false);
12
13 //3. Start listening for slot events
14 plugin() .startListeningSlotEvents () ;
15
16 //4. Stop listening slot events
17 plugin() .stoplListeningSlotEvents () ;
18
19 //5. Remove event listener from the plugin
20 if ($.browser.msie)//Internet Explorer?
21 plugin () .detachEvent ("slotevent",onSlotEvent);
22 else//Other web browsers
23 plugin () .removeEventListener ("slotevent",onSlotEvent) ;

Example 3.16: Enabling Slot Events in a Web Application

Supported Web Browsers and Operating Systems

As we described throughout this chapter our main efforts were to create a browser-independent

mechanism, that could be easily ported between web browsers. In that sense, we tested our

plugin in the following three web browsers that according to a statistic of World Wide Web

Consortium (W3C)?* are the most used:

e Google Chrome;
e Microsoft Internet Explorer;

o Mozilla Firefox.

For each one of these web browsers we were able to install and test our plugin under the

following OSs:

e LUbuntu 12.04;
e Microsoft Windows XP Professional SP3;

e Mac OS X Snow Leopard.

In Section A.3 there are several images exposing our plugin being in the available plugins for

each one of these web browsers.

nttp://www.w3schools.com/browsers/browsers_stats.asp

http://www.w3schools.com/browsers/browsers_stats.asp

3.6. Plugin Experimentation 63

In our work we did not implement any features that are specific for a given platform our web
browser. So, we expect that our plugin may be also compatible with other web browsers sup-

ported by the Firebreath framework, specifically the ones that support the NPAPI interface.

For each platform and web browser where we were succeed installing our plugin we could test
all the plugin features. In these tests the following features showed the same results among

all web browsers and platforms we tested:
e inspect SCs to get the stored information, like X.509 Public Key Certificates;
e perform cryptographic operations, namely DSs and digests;

e notify web applications of changes in slots through DOM-like events.

Supported Smart Cards

The case study of our project was the PCC. As we already describe in other sections, the ven-
dor of this SC — the Portuguese Government — supplies an implementation of the PKCS #11

standard, and this was the implementation we mainly used in our tests.

Using our plugin we were able to test the features of the PCC, specifically creation of DSs

and digests, and check its contents, specifically the available X.509 Public Key Certificates.

At the present moment we expect that our plugin is able to work with other implementations
of the PKCS #11 standard, since all the features we implemented are not specific to PCC.
All the available features and their implementation were designed using the official reference
manual of PKCS #11. Therefore, we expect that our plugin may work with different SCs, be-
sides the PCC. For that purpose, the implementation of OpenSC of the PKCS #11 standard

can enable our plugin to work with the following SCs:
e Estonian electronic identification card;

e German electronic identification card.

3.6.1 Output Examples

In Example 3.17 we can see the result of a DS. In this small example it was used the function
signData to perform the cryptographic operation. The first step in this operation was to
encode the text that was going to be signed in the Base 64 representation. For that purpose
it can be used the function toBase64 available in the JS interface of the plugin. On the
right side of this example there is the created DS. The configuration for this operation was

the following;:

64 3. Plugin Development

Token: 0

Private key: 0x45

Mechanism: 8 (CKM_RIPEMD160_RSA_PKCS)

Prompt pin: false

e Data to sign: Base 64 representation of This is just some random text

JavaScript Instructions Digital Signature

var textToSign = plugin ()
.toBase64 ("This is Jjust
some random

text"); "UpXP+P+1s8+TCTDCtFigC+1sBDglNkcjFuOdAI8e
NOgfw/JRoYFSKi5qKyY2ZFsqrD9sAQBGV38/iMFJb
plugin () .signData (0, xPU0I9D0TU6f4JAInem9I1d9n8gZAXUVeufkn8vedf
0x45, BvaSxvv9st 6H1hHnSZ8w2L8t JyDfoeRkheWv3UKg3
8, 31dEnUng8="
false,
textToSign);

Example 3.17: Output Example of a Digital Signature

The Example 3.18 shows the result of an inspection for additional informations regarding a
X.509 Public Key Certificate. On the left side there is the request that was performed to the
JS interface of the plugin. The function getX509PublicKeyCertificateInfo was used
in this process to get the details of the X.509 Public Key Certificate identified as 0x45 in
the token 0. On the right side there is an extract of the result. The first field of this extract
indicates the label of the certificate, and the second one shows the subject encoded in the
Distinguished Encoding Rules (DER) format.

In order to understand the DER encoded data of the subject of the X.509 Public Key Certifi-
cate, we show in Example 3.19 the result of decoding this data. As we can see, this certificate

is issued to Leonel Jodo Fernandes Braga.

3.6. Plugin Experimentation 65

JavaScript Instructions Extract of the X.509 Public Key
Certificate

[{coo)s
"CKA_LABEL —> 2
CITIZEN AUTHENTICATION CERTIFICATE",
(...)
"CKA_SUBJECT -> 2

2
plugin () MIHcMQswCQYDVQQGEWJIQVDECMBOGALIUECgGWTQ2F2
.getX509PublicKeyCertificatelInfo (0,
0x45) ; 2

ydMO jbyBkZSBDaWRhZMO jbzE jMCEGA1UECwwaQX2

2
V0zZW50aWNhw6£fD0289gZ2G8gQ21kYWTDo28xHDAaBY

2
gNVBASMEONpPZGFkw6NvIFBvenR1Z3XDgnMxGDAND

2
BgNVBAQMD0ZFUk5BTkRFUyBCUkFHQTEVMBMGA1UD

2
EKgwMTEVPTkVMIEpPw4NPMRQWEgYDVQQFEwWtCST2

2
EzMzIxNjkyNjE1MCMGA1UEAWWCTEVP TkVMIEPPwWD

4ANPIEZFUk5BTKkRFUyBCUKFHQQAA",
{ooo)
]

Example 3.18: Ouput Example of a X.509 Public Key Certificate

66 3. Plugin Development

SEQUENCE (8 elem)
SET (1 elem)
SEQUENCE (2 elem)
OBJECT IDENTIFIER 2.5.4.6
PrintableString PT
SET (1 elem)
SEQUENCE (2 elem)
OBJECT IDENTIFIER 2.5.4.10
UTF8String Cartao de Cidadao
SET (1 elem)
SEQUENCE (2 elem)
OBJECT IDENTIFIER2.5.4.11
UTF8String Autenticacao do Cidadao
SET (1 elem)
SEQUENCE (2 elem)
OBJECT IDENTIFIER2.5.4.11
UTF8String Cidadao Portugués
SET (1 elem)
SEQUENCE (2 elem)
OBJECT IDENTIFIER2.5.4.4
UTF8String FERNANDES BRAGA
SET (1 elem)
SEQUENCE (2 elem)
OBJECT IDENTIFIER2.5.4.42
UTF8String LEONEL JOAO
SET (1 elem)
SEQUENCE (2 elem)
OBJECT IDENTIFIER2.5.4.5
PrintableString BI1133216926
SET (1 elem)
SEQUENCE (2 elem)
OBJECT IDENTIFIER2.5.4.3

UTF8String LEONEL JOAO FERNANDES BRAGA

Example 3.19: Subject of a X.509 Public Key Certificate

3.7. Summary 67

3.7 Summary

The process of building a web browser plugin to successfully expose SCs features in web
applications was described in this chapter. We started by presenting the decisions we had to
make in order to design our solution. Then, we presented the design the JS interface that
we though would best serve the needs of web application developers. Among the several
available methods in the JS interface, web application developers can find many ways to
inspect the contents of SCs and create DS. In this step we decided to hide some details
about the PKCS #11 library, for instance, getting information about a private key object
requires only the use of a single function (getPrivateKeyInfo), instead of the usual three
in PKCS #11: C_FinObjectsInit + C_FindObjects + C_GeAttributeValue. The
creation of DS is another good example where we hide the PKCS #11 complexity, in first
place all the connections and sessions to the SC are controlled by the plugin, and the feeding

mechanism of the signing mechanism as well.

As we showed in Sections 3.3 and 3.4, Firebreath made the creation of the JS interface easier,
it gave us the possibility to expose methods, attributes, and events with few lines of code,
and with strong typing from JS values to C++ types, which ensures a correct matching of data

between these two languages, and a more secure execution.

Finally, we were able to compile, deploy and test the plugin among several web browsers and
OSs, with no restrictions, and we were also able to execute all the features in those systems,

as well.

68

3. Plugin Development

Chapter 4

Security Analysis

Up to this point we discussed the available techniques that could be used to access Smart
Cards (SCs) and develop web browser plugins. Then, we used this knowledge to decide from
the available options what should be our mechanisms to implement the web browser plugin
and access SCs. The design details of the JavaScript (JS) interface of the plugin, and its

implementation were also reviewed as well.

Now we are going to perform an exploratory analysis of the security of the plugin. In order to
perform this task we will resort to tools and techniques that can help us identify and address

possible problems.

The first task we performed in this analysis was to check for problems in the plugin source
code using tools for static analysis. In Section 4.1 we present the result of this work, and
discuss the additional analysis that could be performed but we did not have the opportunity

to put in place.

In Section 4.2 we use Attack Trees [Schneier, 1999] to model the several attacks that can be
perpetrated by malicious agents to achieve a certain goal. A discussion of the more relevant

attacks and possible counter-measures is presented as well.

In order to understand the quality of the source code we developed, we analysed its main-
tainability in Section 4.3. In this task we used a model proposed in [Heitlager et al., 2007].
This analysis could give us an insight of the quality of maintainability characteristics, like:
analysability and changeability. From these characteristics we can understand if the source
code is easy to analyse. Auditing of source code can be easier to perform when it is easy to

analyse. Therefore, it would be interesting to assess the maintainability of our project.

69

70 4. Security Analysis

4.1 Source Code Analysis

At the present moment there are several available tools to analyse software in order to identify
problems like memory leaks. These tools can be divided in two main categories: static and
dynamic. Usually, in a static analysis the program is not executed. The tool performing this
analysis checks for problems in the source code of the program. In a dynamic analysis the
program is executed, and usually the problems are detect in behaviour of the program. This
analysis requires that the inputs to the program cover a great majority of the source code, so

every aspect of the program is checked.

Static Analysis

In our project we decided to run tools for static analysis in order to mitigate any problem
in the plugin. So, the first step was to find suitable tools for this purpose. In our search we

discarded all the tools with commercial license, thus we end up choosing:

e CPPCheck! - is a tool for finding bugs in software, and it is very useful to find
problems like: memory leaks, bounds checking, exception safety, check input/output

operations, use of deprecated or unsafe functions.

e Flawfinder? - is a tool that analyses the source code in order to find security weak-

nesses.

From the tools we found to perform static analysis of software, these were the only ones that:
are free; can be applied to C++ programs, and can be used to find problems in the source

code.

The output of these tools helped us find and address one problem regarding an eventual buffer

overflow, and an incorrect use of the function sprintf.

Dynamic Analysis

Unfortunately, due to time restrictions we did not have the time to perform other analysis
besides static. Performing a dynamic analysis in a web browser plugin is more complex than
in a ordinary program. Since the web browser plugin runs in a process of the web browser,
performing a dynamic analysis would require to isolate (and intercept) the plugin from the

web browser.

"http://sourceforge.net/apps/mediawiki/cppcheck/index.php
thtp ://www.dwheeler.com/flawfinder/

http://sourceforge.net/apps/mediawiki/cppcheck/index.php
http://www.dwheeler.com/flawfinder/

4.2. Attack Trees 71

A dynamic analysis would give us a real insight of the plugin behaviour. The results of
such analysis can be used to find the presence of memory leaks, software bugs, and even if
the software meets its requirements. In order to perform such analysis we would create a
third-party program that would be formed by the source code responsible for handling the

JS requests. In this program we could run several types of dynamic analysis like:
o Unit testing
o Fuzz testing

In a fuzz testing technique a program is subjected to unexpected inputs. Usually, these inputs
are automatically generated and are not by any means valid. So, the goal for this test is to
monitor the program according to such inputs and check for problems like memory leaks and
software crashes. For instance, software crashes due to dangling pointer references can be
used by attackers to overwrite arbitrary memory locations [Younan et al., 2004]. Fuzz testing

techniques are typically used to find security flaws in software.

In this scenario, tools for dynamic analysis like Valgrind could be used as well. We may
use this software tool to check for memory leaks in the ordinary execution of the functions

responsible for treating the JS requests.

4.2 Attack Trees

The attack trees provide a way to model threats against computer systems in a formal and
methodical way [Schneier, 1999]. The first element that needs to be identified in this model
is the goal of the attack. This element is going to be the root element of the tree. Then, we
should identify the different ways of achieving that goal. Each different way will be leaf node
of the tree. The Figure 4.1 illustrates an attack tree that identifies some ways that can be

used to open a safe.

In attack trees it is also possible to estimate costs if a given goal is achieved, or calculate how
probable it is to achieve such goal. In order to estimate such values we must attach the each
leaf node of the tree the cost (or probability) of the attack. As we can see in Figure 4.1 the
estimated cheapest cost of attack is $10K.

In the mentioned example it was used cost, but other values could be attached to the nodes as
well. For instance, one may attach to each leaf node of the tree: probabilities, risk categories

(low, moderate, high), possibility (possible, impossible), skills.

An attack tree can be reused, that is, it is possible to use an attack tree as a node of another
one. This is very handy when you have a large system and there are several people analysing

its security, and when there is an attack that can be used in several attack trees of a system.

72 4. Security Analysis

Open Safe
$10K
Pick Lock Learn Combo Cut Open Safe Im?rsotsgrly
$30K $20K $10K $100K
Find Written Get Combo
Combo From Target
$75K $20K
Threaten Blackmail Eavesdrop Bribe
$60K $100K $60K $20K
and
$ = cost of attack -
Listen to Get Target
Conversation to State Combo
$20K $40K

Figure 4.1: Attack Tree - Open Safe. Adapted from [Schneier, 1999]

4.2.1 Modelling Possible Attacks to the Plugin

Throughout this part we will present and discuss the attack trees we created during the
security analysis. These attack trees will expose the several threats that can be perpetrated

to each one of the following goals we identified:
e create digital signature,
e collect user data,

e compromise the plugin.

Create Digital Signature

The cryptographic properties of Digital Signatures (DSs) offer a precise way to provide un-
forgeable proof of identity. As we already discussed, DSs can be used to prove identity in order
to authenticate a user in a service, and to prove the origin of files. From these examples we
can conclude that the access to the mechanisms that create DSs must be very well protected.
An open vulnerability can easily led malicious agents to perform a valid DS using someone
else’s identity. Therefore, if this mechanism is not well protected, stealing user’s identity can

be achieved using our plugin.

Figure 4.2 presents the attack tree we created for the attack goal: create DS. As we can see,
we identified three main threats to this goal: mislead the user, compromise the plugin, learn

pin.

4.2. Attack Trees 73

Impersonate a
trustworthy

web application
Mislead the user to
create a signature R
Instruct the plugin
to sign something

without user's consent

Impersonate a
Compromise Plugin trustworthy
web application

Guess

Create Signature Compromise Plugin

Visually monitor

Leamn PIN the keyboard

Prompt the PIN
to the user

Monitor the
computer memory

Monitor keyboard
when the user
types the PIN

Figure 4.2: Attack Tree - Create Digital Signature

For the first threat we imagined a scenario where an attacker deceives the user into creating
a DS. In this scenario he can trick the user to access a web application that may seem
trustworthy. A better description of this scenario is described in another attack tree. The
attacker can also order the plugin to sign something that the user is not aware of. For instance,
sign binary data is very risky. In order to minimize such risk, our plugin always prompts if

the user wishes to continue with the operation.

An attacker may also attack the plugin implementation in order to get privileged access to
the SC. For instance, replacing the Public-Key Cryptography Standards #11 (PKCS #11)
library may enable an attacker to have full control over the SC. A more detailed discussion

over this attack is detailed in another attack tree.

If an attacker gains access to the Personal Identification Number (PIN) that protects the
private key, he could easily create a DS. However, in our plugin that would not be enough.
In our implementation of the creation of a DS we always ask the user if he wishes to continue
with the operation, and the plugin always prompts the PIN. Web applications do not have
direct access to PKCS #11 library, thus they do not have a way to enter the PIN in order to

create a DS.

74 4. Security Analysis

Collect User Data

Malicious agents may not only be interested in creating DSs: gathering personal and private
data may be desired as well. The Figure 4.3 presents the threats we identified to this attack.
The major risks come from compromising the plugin and lure users to access harmful web

applications. Details of these attacks are presented in another attack trees.

Collect User Data

Impersonate a
Compromise Plugin trustworthy

web application

Figure 4.3: Attack Tree - Collect User Data

Compromise the Plugin

A successful attack to the plugin implementation can compromise not only the plugin itself,

but of all the system. The threats we identified to this goal are shown in Figure 4.4.

Compromise the plugin

Replace a shared

library with Use a vulnerability
an altered one

Invite the user to Install malware
use a tampered which replaces
PKCS #11 library shared libraries

Figure 4.4: Attack Tree - Compromise the Plugin

At the present moment one of the major risks of the plugin is the linking with the PKCS #11
module, and any other shared library. A malicious agent which replaces one of those libraries
can easily have access to all the system. Since we are linking the plugin to PKCS #11 modules
at runtime, this can be easily used to compromise the plugin. One may lure a client to install
and use a tampered PKCS #11 module. In order to prevent such attacks we could link

the plugin statically. To complement this protection we could use Code Signing techniques

4.2. Attack Trees 75

provided by web browsers and operating systems (OSs) to prevent malicious agents from
tampering the plugin. Dynamic linking could be used as well, but additional measures must
be taken. For instance, we could sign the plugin, and load only PKCS #11 modules that are

code signed by known and trustworthy entities.

A vulnerability in the plugin can also be used to gain access to the system. Unfortunately we
did not have the opportunity to perform a more detailed analysis to the plugin source code

and execution.

Impersonate a Trustworthy Web Application

The security of a user can be broke without attacking directly the plugin. Attackers may lure
users to access unreliable web applications in order to steal their identities, access their data,

and even create DSs.

The Figure 4.5 reflects some of attacks that can be made in order to use the plugin as if the

web application were reliable.

Evil twins

Lure users
to visit a
web application

DNS poisoning

IRDP spoofing - route mangling

Figure 4.5: Attack Tree - Impersonate a Trustworthy Web Application

Impersonate a
trustworthy Remote
web application

Man-in-the-middle Local network

From local
to remote

76 4. Security Analysis

The simplest attacks do not require a high level of expertise from the attacker. To perpetrate
such attacks the agent may use social engineering skills to lure users to visit a web application
that may seem trustworthy. These attacks are all related to phishing schemes, and they may
be easy to implement when the connection is not protected. In order to prevent these scenarios
the plugin could enforce secure HTTP connections with known and trustworthy sources. For
instance, if a web application wishes to use the plugin, the connection must be through
HTTPS and it must have a valid and known X.509 Public Key Certificate. Otherwise, the

plugin would simply not handle any request from the JS interface.

Another attack that can be used to achieve the same goal is Man-in-the-middle. If the plugin
enforces a secure connection between client and server in order to handle JS requests, some
sort of these attacks may be prevented. Even if the attacker manages to put himself between
web application and client, he would not have ways to prove to the client and the plugin that
he holds a valid X.509 Public Key Certificate. However, an attack to the connection using a

method like BEAST? can led an attacker to eavesdrop the communication.

Final remarks

The security analysis using attack trees to model goals and threats is far from complete. This
is just an initial step towards a global understanding of the system. The mechanism that
we developed is destined to be used by web-based systems, thus we must ensure security in
the four fronts: web client, data transport, web server, and operating system [Skoularidou
and Spinellis, 2003]. In that sense, we should not only perform an more detailed audit to the
plugin source code and to its execution, but to the surrounding system. From such analysis
we can then understand how the system affects the plugin security, and vice-versa, in order

to create a higher protection for users and web applications

4.3 Maintainability Analysis

The result of measuring the maintainability of software can be used to understand the com-
plexity of a program. As mentioned in [Goldberg et al., 1996, Seacord, 2008], avoid and
identify bugs it is easier in simple and maintainable programs. Due to that reason we decided

to measure the maintainability of the plugin.

At the present moment there are several models that can be used to measure maintainability.
Specifically, the ISO 9126 defines several characteristics that influence maintainability. How-

ever, it does not provide a consensual way to estimate the maintainability using source code

3http://www.schneier.com/blog/archives/2011/09/man—in-the-midd_4.html

http://www.schneier.com/blog/archives/2011/09/man-in-the-midd_4.html

4.3. Maintainability Analysis 7

properties [Heitlager et al., 2007]. In this project we decided the maintainability of our plugin
using the model by SIG [Heitlager et al., 2007]. We chose this model because in this work
its authors created a match between the characteristics of the maintainability defined in the
IS0 9126 and the source code properties. In this model, source code properties are traced
back to the sub-characteristics of the maintainability defined in the ISO 9126 analysability,
changeability, stability, and testability. From these sub-characteristics we can identify the

aspects of the source code that can influence security:

e The analysability indicates how easy or difficult it is to understand the source code.
Therefore, it is easier to find deficiencies and identify the parts that need to be modified

when the source code is not complex.

e The changeability indicates how easy or difficult it is to create modifications in the
source code. It is desired that changes in source code are easy to perform once security

vulnerabilities are found.

e The stability indicates how easy or difficult it is to keep the system in a consistent state

during modification.

e The testability indicates how easy it is to test the program. Software testing is very

important to find problems in programs, thus find security vulnerabilities.

The definitions of the characteristics we presented above were adapted from [Heitlager et al.,
2007].

The first step when analysing the maintainability using the SIG model is to measure several
source code properties. These properties will be measure with respect to specific source code

metrics. The properties and how they are measured are described next:

e Volume - is intended to express the size of the project. Since a project can be
developed using many programming languages, in this model it must be used: Man

Years (MY) via backfiring function points.

e Complexity per unit - is intended to express how complex are source code units. A

unit can be a function, a method. This property is measure using Lines of Code (LOC).

e Duplication - is intended to express the presence of repeated lines of code in the
project. In order to measure this property, it must be counted the number of repeated

blocks of at least six lines of code, discarding comments and blank lines.

e Unit size - is intended to express the average size of the source code units. The source

code metric that is used to measure this property is LOC.

78 4. Security Analysis

e Unit testing - is intended to express how tested the system is. The source code metric

that is used to measure this property is the coverage of the unit tests.

After measuring each one of these source code properties, we can map them onto the char-
acteristics of the maintainability, as show in Table 4.1. For instance, the changeability is
affected by the complexity per unit and the duplication. Each one the source code properties

will be ranked in a scale that varies from 1 to 5, being 1 the worst rank.

Source Code Properties

R~
g
-}
—
2
60
z|3 E
Pl E | 8| 7
[} [} < o (]
Ela| 8 |®|FE
Elglal=z]|=
c| 3| 2| 8| =
-0 |A PP
analysability | x x | x| x
E changeability X | x
© = En
g—g stability X
@ £ | testabilit X X
o g Y
o=
=g
=

Table 4.1: Mapping between the characteristics of the maintainability and source code properties.
Adapted from [Heitlager et al., 2007].

Volume

As we already described, the Volume is the first source code property to measured. In the

first place we counted per language the LOC of the project. The results of this step are show
in Table 4.2.

Plugin LOC
C++ 4653
Sum 4653

Table 4.2: Lines of Code per Language in the Plugin Source Code

The second step is to convert the LOC of each language to MY, and then sum the MY of
each language. In Table 4.3 there is the conversion factor for C++, and the sum of MY of the

plugin.

Finally, it is time to rank this source code property in our plugin. In Table 4.4 we show how
the rank must be evaluated, and we present the decision for our project. As we can see, our
project is assessed as ++, the highest level. This result was expected because this is a small

project.

4.3. Maintainability Analysis 79

Language | Conversion Factors to MY | Plugin
C++ 11458 0.406
Sum 0.406

Table 4.3: Conversion Factors to Man Years, and Man Years per Language of the Plugin Source Code

Rank | Man Years | Plugin MY | Plugin Rank
++ 0-38
+ 8-30
0 30 - 80 0.406 ++
- 80 - 160
— > 160

Table 4.4: Evaluation of the Volume Metric of the Plugin Source Code

Complexity per Unit

The complexity per unit is the second source code property to be measured. The first oper-
ation in this step is to count the cyclomatic complexity of each function of the source code.
Then, we must sum the LOC of each function that fit in each category of the table Table 4.5.
For instance, in the first category must be the sum of the LOC of all functions that have a
cyclomatic complexity lesser than 10. In this process we decided to exclude some functions
that were partially generated automatically. This is why the sum of the LOC is different from
the LOC presented in the Volume.

Cyclomatic Com- | Risk Evaluation Plugin Relative LOC | Plugin Relative LOC
plexity (%)
1-10 simple, without much 1319 80.62
risk
11 - 20 more complex, 167 10.21
moderate risk
21 - 50 complex, high risk 150 9.17
> 50 untestable, very high 0 0
risk

Table 4.5: Categories of Risks in Complexity per Unit

After grouping the LOC through each one of the categories it is time to rank the source code
property: Complexity per Unit. The Table 4.6 exposes the criteria that must be used in
order to assess this source code property. For instance, a project to be ranked as ++ in this
property must have a maximum of 25% of LOC in the moderate category, and 0% in the high

and very high categories. Our plugin is ranked as 0 in this source code property.

Coincidentally the functions with a high LOC also have a high cyclomatic complexity. In
that sense, these functions contribute to a higher percentage of LOC, thus increasing the

percentage of LOC with a high risk.

80 4. Security Analysis

Maximum Relative LOC (%)

Rank Moderate (%) | High (%) | Very High (%) Plugin Rank
++ 25 0 0
+ 30 5 0 0
0 40 10 0
- 50 15 5

Table 4.6: Ranking the Complexity per Unit

Duplication

In order to rank the duplication in our plugin we had to measure the number of repeated
blocks with more than 5 LOC (discarding comments and blank lines). Using this value it
is calculated the percentage of repeated LOC. The Table 4.7 we present the results for our

plugin. As we can see we did not find any repeated block in our source code.

Duplicated Lines 0
% Duplicated Lines | 0.00%

Table 4.7: Repeated Lines of Code in the Plugin Source Code

After counting the repeated blocks the rank for the duplication can be calculated. The table
Table 4.8 exposes the criteria that must be used to assess this property. According to this
model our plugin is ranked as ++ in this property. During the development phase we tried to

reuse all the functions and source code in order to reduce repeated lines of code.

Rank | Duplication | Plugin Duplication | Plugin Rank
++ 0-3%
+ 3-5%
0 5-10% 0.0 ++
- 10 - 20%
—— 20 - 100%

Table 4.8: Ranking the Duplication

Unit Size

The unit size property is used to understand the average size of the functions of a program.

The first step is to identify how many LOC fit in each one of the categories shown in Table 4.9.

The second step is to rank the property. For that purpose we use the criteria exposed in

Table 4.10. This criteria tell us that a program to be ranked in this property as + must have

4.3. Maintainability Analysis 81

Unit Size Risk Evaluation Plugin Relative LOC | Plugin Relative LOC
(%)
0-20 Low 446 27.26
21 - 50 Moderate 480 29.34
51 - 100 High 609 37.22
> 100 Very High 101 06.17

Table 4.9: Categories of Risks in Unit Size

Maximum Relative LOC .
Rank Moderate (%) | High (%) | Very High (%) Plugin Rank
++ 25 0 0
+ 30 5 0 -
0 40 10 0
- 50 15 5

Table 4.10: Ranking the Unit Size

a maximum LOC of 30% in the moderate risk, 5% in the high risk, and 0% in the very high

risk. From this criteria we can conclude that our pluginis ranked as —-—.

Although in the development phase we made a great effort to create small functions, the
verbosity of the PKCS #11 did not always helped. Handling with the PKCS #11 standard
requires the use of several functions to achieve a simple goal like: retrieve the list of available
private keys. We did our bests to reuse source code, but there were several times when such
approach could not be applied. Splitting functions into smaller ones could be an alternative,
but these new functions would not be used in other places. Another reason why we end up
having some functions with a high and very high risk is due to the object inspection. Since
we are returning all the data available to a given object, the functions in charge of that
operation have several lines of code dedicated to define attributes that must be returned.
As we already discussed, the introduction of templates in object inspection is a attractive
scenario that should be implemented in the future, and it help in reducing the LOC per unit

as well.

Coverage

The last source code property to be ranked is the coverage of the unit tests. The first step
in this operation is to calculate the percentage of lines of code covered by the unit tests.
In Table 4.11 there is the result for our project. As we mentioned previously, due to time

restrictions we did the opportunity to exercise the plugin through unit tests.

The Table 4.12 shows the criteria that must be used in order to assess this source code

property. As we can see our plugin has the lowest score: ——. This is obviously a deficiency

82

4. Security Analysis

Lines Covered 0

% Lines Covered | 0.00%

Table 4.11: Lines of Code Covered

in our development, and a field where a additional efforts must be made in order to assure

that the plugin behaves has expected and that runtime flaws are addressed.

Rank | Coverage | Plugin Coverage | Plugin Rank
++ 95 - 100%
+ 80 - 95%
0 60 - 80% 0.0 ——
- 20 - 60%
— 0-20%

Overall

Table 4.12: Ranking the Coverage

Now that all source code properties were properly ranked, we can trace back these properties
to the characteristics of maintainability. This relation between source code properties and the

characteristics of the maintainability are expressed in Table 4.13. This one of the main advan-

tages of the model by SIG: we can trace source code metrics to properties of maintainability

in a pratical and precise way.

ISO 9126
Maintainability

Table 4.13: Overall Results of the Maintainability Analysis

Source Code Properties

R=1
=
)
g
I g
e = g %
]] < o (]
g | & | = o | B
E g | = =2 | 2
o 3 = = =
> | O A P | P
++ | 0| ++ | — | ——
analysability X X X X 0
changeability X X +
stability X | -
testability X X X -

In this final step in order to measure the maintainability we can assess the rank of each

characteristic. For that purpose we can estimate the average of the ranks obtained for each

source code property that affect each characteristic. For instance, the changeability is affected

4.4. Summary 83

by the complexity per unit and duplication. The results for each characteristic is express in
the rightmost column of Table 4.13.

From these results we can enumerate the following conclusions:

e The analysability of the plugin can be improved. In order to accomplish that goal we
should reduce the average size of the functions and implement unit tests. This last
option is one of the must crucial, because it affects many other characteristics of the

maintainability, and it would eventually improve security.

e Eventual changes in the source code of the plugin would be easy to implement. One
of the aspects that influence this characteristic is the absence of duplicated source
code. As we already mentioned when discussing the assessment of complexity per unit,
reducing the average unit size would also reduce the complexity per unit. Therefore,

the changeability would also be improved.

e With the conclusion of this analysis it became more obvious that unit tests need to be

implemented. Their implementation increase the stability of the plugin.

e Finally, implementing unit tests is not enough. Reducing the complexity per unit and
the unit size would allow us to achieve a higher source code coverage, thus increasing

testability as well.

4.4 Summary

As stated in [Schneier, 1999]: “Security is not a product — it’s a process”. In that sense,
the work we performed in the security analysis of the plugin is just a first step towards a full

comprehension of risks and vulnerabilities.

The static analysis of the plugin source code helped us identify the misuse of few functions
and address one case of an eventual buffer overflow. Nevertheless, additional analysis must
be performed in order to complement this work. Dynamic analysis are some instances of
techniques that we did not have the opportunity to implement, but that would offer a major
contribute towards identifying vulnerabilities in the plugin. In those techniques we can include

unit testing, and fuzz testing.

The attack trees played a major roll in identifying possible goals of attacks and threats, in a
methodical and formal way. This analysis allowed us identify the greater risks in the plugin

security, and discuss possible measures that can be taken in a future work to address such

84 4. Security Analysis

problems. As we mentioned, the major risks came from the use of non secure HTTP connec-
tions, and the linking with the PKCS #11 library.

Finally, the maintainability analysis made us realise exactly which source code properties must
be enhanced. For instance, we must decrease the average size of functions and implement
unit tests. The unit size affects analysability, and a high analysability eases eventual audit
tasks to source code. Unit tests affects stability and testability, and a high level of testing

can help identify eventual problems in the plugin execution.

Chapter 5

Conclusion

The absence of a common mechanism which enables Smart Card (SC) features in web ap-
plications has led to the creation of distinct solutions to address such limitations. These
solutions are often similar regarding the type of operations they perform, and sometimes they
lack portability, forcing users to move away from the web browser and operating system (OS)

they are accustomed.

The intent of this project was to solve these limitations through the development of an
uniform accessible mechanism to SCs across web browsers. For this purpose we decided to
create a web browser plugin to: (1) connect the web browser to SCs, and (2) to expose the
SC related features to web applications through a JavaScript (JS) Application Programming
Interface (API).

According to the initial goals, the developed plugin can indeed successfully perform all the
operations defined at the beginning of the project, and thus several SC functionalities are
available to web applications. At this moment, it is possible to retrieve a variety of information
from a SC, such as: Public Key Certificates, supported mechanisms, and available Private
Keys. Regarding cryptographic operations, it is available in the JS of the plugin two kinds of
functions which will be performed by SCs. The first kind of functions enables the creation of a
Digital Signature (DS) from either a file, or a blob of bytes. The second type of cryptographic

functions can be used to create hashes — or digests — from also either files or bytes.

Regarding plugin development, we should emphasize the adoption of the Firebreath framework
as our build platform. Adopting it allowed us to focus solely on building the plugin, therefore
saving time explicitly supporting the platforms NPAPI and Activexr Control, and creating

mechanisms to build the plugin for several OSs.

The plugin security was reviewed, as well. In that phase of the project we tried to identify

vulnerabilities in the source code and in the plugin usage. For that purpose, we resorted to

85

86 5. Conclusion

static analysis tools in order to find problems like buffer overflows, and we used Attack Trees
to create a model of which kind of attacks can be perpetrated. The static analysis revealed
very few warnings with a low risk, which were immediately resolved. After some runs that
analysis did not show evidences of further errors. The Attack Trees helped us realize that the
main category of attacks come from luring users into download malicious software or to use
the plugin in an untrustworthy web application. Some of these attacks can be addressed if

measures like the ones mentioned in the next section are taken.

Future Work

The mechanism that we developed may be a first prototype of an effort towards an unification
of methods to access SC from web applications, but there are several aspects where it must

be improved, either regarding of security, or feature enhancement.

One of the most important steps in future developments of this work could be an extensive
software testing, using unit tests, dynamic analysis tools, and testing frameworks. These
techniques give us the ability to verify if the software complies with its requirements, and

allow us to address any identified vulnerability, thus improving the security of the plugin.

Although we are not aware, at this moment, of any method to directly check a web browser
plugin behaviour using unit tests, there are other methods to achieve the same result. For
instance, we can create a dynamic library from the source code in charge of processing the
JS requests, in order to exercise their internal behaviour using unit tests. Then, the JS API
can be tested using Jasmine!, a framework for testing JS. Besides unit tests, it would be
very important to use other kind of techniques like fuzz testing, which has an essential role

checking software behaviour for random inputs of data.

The use of dynamic analysis tools can give us further insights into the plugin execution. For
instance, Valgrind?® is a powerful tool which can detect memory management and threading
bugs. Once again, fixing an error —in this case what would be a runtime error— can enhance

the plugin security.

SeleniumHQ? is a tool for automated tests in web browsers which can be used in conjunction

with a testing web application for the plugin to check the plugin behaviour.

As discussed in the security analysis of the plugin, the major security risks are related with

the distribution of the plugin. A malicious agent can easily lure users to install a fake plugin

"http://pivotal.github.com/Jjasmine
*http://valgrind.org/
3http://seleniumhqg.org/

http://pivotal.github.com/jasmine
http://valgrind.org/
http://seleniumhq.org/

87

in order to get access to their system. Therefore the use of Code Signing techniques is
certainly one of the major features to implement in future releases. These techniques can be
used to sign the plugin itself and the Public-Key Cryptography Standards #11 (PKCS #11)
modules. As stated in Section 2.4, all major web browsers and OSs have support for this
feature. Firebreath has also available automated mechanisms to create a code-signed ActiveX

Control, which we did not explore.

Open vulnerabilities in software can be exploited by attackers to get access to users’ com-
puters. One may use a software flaw to execute restricted code that otherwise would not be
allowed. Migrating the plugin into a Sandbox could restrict the application permissions, so
malicious code would not have access beyond the allowed area. At this moment, only Google
Chrome has a framework for plugin development using Sandbozing. A complementary project

would be to implement Sandbozring in the remaining web browsers.

Man-in-the-middle attacks can be easily implemented to collect transmitted data between
users and servers, when the connection is not safe. So, enforcing secure HT'TP connections,
even when the user dismisses the web browser warnings for a possibly untrusted server identity,
can address some of those attacks. This solution can solve some of phishing schemes attacks,

as well.

In terms of features, it would be interesting if the plugin could provide an additional module
that could be used to interact with the elD Lib API from the Portuguese Citizenship Card
(PCC). Such interaction would give web applications the ability to access more information
stored in the SC, such as: address, age, parentage, gender. In case this information is exposed
to web applications, additional security measures would be needed, in order to protect the
users’ identity. We can include in those measures the creation of a trust network, where only

web applications with a trustworthy identity could access such information.

As we describe in Subsection 2.2.1, the PKCS #11 standard defines a template-based model
to access objects and object attributes stored inside SCs. In Section 3.1 we explained why we
chose to hide such model from web application developers, and the reason why we decided to
expose all available attributes of each object. However, adopting a template-based model for

the object attributes would be more efficient and concise.

88

5. Conclusion

References

C. Adams and S. Lloyd. Understanding PKI: concepts, standards, and deployment considerations.
Technology series. Addison-Wesley, 2003. ISBN 9780672323911. URL http://books.google.
com/books?id=ERSfUmmthMYC. Cited on pages 1 and 2.

Agéncia para a Modernizagdo Administrativa. Manual técnico do middleware cartao de
cidadao. Technical report, Agéncia para a Modernizacao Administrativa, Julho 2007. URL
http://www.cartaodecidadao.pt/images/stories/manual%20t%E9cnico%20do%
20middleware%20do%20cc_v1%200.pdf. Cited on pages 12, 13 and 41.

Agéncia para a Modernizagdo Administrativa. Autenticacdo com o cartdo de cidadao.
Technical report, Agéncia para a Modernizagdo Administrativa, Dezembro 2008. URL
http://www.cartaodecidadao.pt/images/stories/Manual%20Autenticacao%
20com%20Cartao%20de%20Cidadao_%20v1l.7.pdf. Cited on page 2.

Jean-Daniel Aussel. Smart cards and digital security. In Vladimir Gorodetsky, Igor Kotenko, and
Victor A. Skormin, editors, Computer Network Security, volume 1 of Communications in Computer
and Information Science, pages 42-56. Springer Berlin Heidelberg, 2007. ISBN 978-3-540-73986-9.
URL http://dx.doi.org/10.1007/978-3-540-73986-9_4. Cited on page 1.

A T Chan. WWW + smart card: towards a mobile health care management system. International
Journal of Medical Informatics, 57(2-3):127-137, 2000. URL http://www.ncbi.nlm.nih.gov/
pubmed/10961569. Cited on page 8.

Alvin T. S. Chan. Integrating smart card access to web-based medical information systems. In
Proceedings of the 2003 ACM symposium on Applied computing, SAC ’03, pages 246—250, New York,
NY, USA, 2003. ACM. ISBN 1-58113-624-2. doi: http://doi.acm.org/10.1145/952532.952583. URL
http://doi.acm.org/10.1145/952532.952583. Cited on page 8.

Alvin T. S. Chan, Jiannong Cao, Henry Chan, and Gilbert Young. A web-enabled framework for
smart card applications in health services. Commun. ACM, 44:76-82, September 2001. ISSN 0001-
0782. doi: http://doi.acm.org/10.1145/383694.383710. URL http://doi.acm.org/10.1145/
383694.383710. Cited on page 8.

Dipankar Dasgupta, Sudip Saha, and Aregahegn Negatu. Techniques for Validation and Controlled
Execution of Processes, Codes and Data - A Survey. In Security and Cryptography, pages 77-85,
2010. URL http://ieeexplore.ieee.org/xpl/login. jsp?arnumber=5741635. Cited
on pages 20, 23 and 27.

89

http://books.google.com/books?id=ERSfUmmthMYC
http://books.google.com/books?id=ERSfUmmthMYC
http://www.cartaodecidadao.pt/images/stories/manual%20t%E9cnico%20do%20middleware%20do%20cc_v1%200.pdf
http://www.cartaodecidadao.pt/images/stories/manual%20t%E9cnico%20do%20middleware%20do%20cc_v1%200.pdf
http://www.cartaodecidadao.pt/images/stories/Manual%20Autenticacao%20com%20Cartao%20de%20Cidadao_%20v1.7.pdf
http://www.cartaodecidadao.pt/images/stories/Manual%20Autenticacao%20com%20Cartao%20de%20Cidadao_%20v1.7.pdf
http://dx.doi.org/10.1007/978-3-540-73986-9_4
http://www.ncbi.nlm.nih.gov/pubmed/10961569
http://www.ncbi.nlm.nih.gov/pubmed/10961569
http://doi.acm.org/10.1145/952532.952583
http://doi.acm.org/10.1145/383694.383710
http://doi.acm.org/10.1145/383694.383710
http://ieeexplore.ieee.org/xpl/login.jsp?arnumber=5741635

90 References

Ian Goldberg, David Wagner, Randi Thomas, and Eric Brewer. @A Secure Environment for
Untrusted Helper Applications: Confining the Wily Hacker. In USENIX Security Sympo-
sium, 1996. URL http://static.usenix.org/publications/library/proceedings/
sec96/full_papers/goldberg/goldberg.pdf. Cited on pages 25, 26 and 76.

Ilja Heitlager, Tobias Kuipers, and Joost Visser. A Practical Model for Measuring Maintainability. In
International Conference on the Quality of Information and Communications Technology, pages 30—
39, 2007. doi: 10.1109/QUATIC.2007.8. URL http://ieeexplore.ieee.org/xpl/login.
jsp?arnumber=4335232. Cited on pages 6, 69, 77 and 78.

H K Lu and A M Ali. Making smart cards truly portable. Security Privacy IEEE, 8(2):28-34,
2010. URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=
5416672. Cited on pages 1 and 9.

H Karen Lu, Asad Ali, Kapil Sachdeva, and Ksheerabdhi Krishna. A pragmatic online authentication
framework using smart cards. Online, (¢):84-91, 2011. Cited on page 9.

H.K. Lu, A M. Alj, S. Durand, and L. Castillo. A new secure communication framework for smart
cards. In Consumer Communications and Networking Conference, 2009. CCNC' 2009. 6th IEEE,
pages 1 =5, jan. 2009. doi: 10.1109/CCNC.2009.4784726. Cited on page 9.

John R. Michener and Tolga Acar. Managing System and Active-Content Integrity. IFFEE Com-
puter, 33:108-110, 2000. doi: 10.1109/2.869389. URL http://ieeexplore.ieee.org/xpl/
articleDetails. jsp?arnumber=869389. Cited on page 22.

Vassilis Prevelakis and Diomidis Spinellis. Sandboxing Applications. In USENIX Technical Confer-
ence, pages 119-126, 2001. URL http://static.usenix.org/publications/library/
proceedings/usenix01l/freenix01/full_papers/prevelakis/prevelakis.pdf.
Cited on pages 24 and 25.

W. Rankl and W. Effing. Smart Card Handbook. John Wiley & Sons, 2004. ISBN 9780470856680.
URL http://books.google.pt/books?1d=0185gPhUFx4C. Cited on page 1.

RSA Laboratories. RSA Security Inc. Public-Key Cryptography Standards (PKCS). Technical report,
RSA Laboratories, 2004. URL ftp://ftp.rsasecurity.com/pub/pkcs/pkcs—-11/v2-20/
pkcs—11v2-20.pdf. Cited on pages 11, 13, 14, 41 and 103.

Aviel D. Rubin and Daniel E. Geer Jr. Mobile Code Security. IEEE Internet Computing, 2:30-34, 1998.
doi: 10.1109/4236.735984. URL http://ieeexplore.ieee.org/xpl/articleDetails.
jsp?arnumber=735984. Cited on page 20.

Kapil Sachdeva, H Karen Lu, and Ksheerabdhi Krishna. A Browser-Based Approach to Smart Card
Connectivity. In IEEE Workshop on Web 2.0 Security and Privacy, Oakland, California, 2009.
URL http://w2spconf.com/2009/papers/sdp4d.pdf. Cited on pages 7, 9, 10, 11 and 12.

Damien Sauveron. Multiapplication smart card: Towards an open smart card? Inf. Secur. Tech. Rep.,
14:70-78, May 2009. ISSN 1363-4127. doi: 10.1016/j.istr.2009.06.007. URL http://dl.acm.
org/citation.cfm?id=1595066.1595093. Cited on pages 2, 8 and 28.

http://static.usenix.org/publications/library/proceedings/sec96/full_papers/goldberg/goldberg.pdf
http://static.usenix.org/publications/library/proceedings/sec96/full_papers/goldberg/goldberg.pdf
http://ieeexplore.ieee.org/xpl/login.jsp?arnumber=4335232
http://ieeexplore.ieee.org/xpl/login.jsp?arnumber=4335232
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5416672
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5416672
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=869389
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=869389
http://static.usenix.org/publications/library/proceedings/usenix01/freenix01/full_papers/prevelakis/prevelakis.pdf
http://static.usenix.org/publications/library/proceedings/usenix01/freenix01/full_papers/prevelakis/prevelakis.pdf
http://books.google.pt/books?id=Oi85gPhUFx4C
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-11/v2-20/pkcs-11v2-20.pdf
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-11/v2-20/pkcs-11v2-20.pdf
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=735984
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=735984
http://w2spconf.com/2009/papers/s4p4.pdf
http://dl.acm.org/citation.cfm?id=1595066.1595093
http://dl.acm.org/citation.cfm?id=1595066.1595093

References 91

Jay Schiavo. Code signing for end-user peace of mind. Network Security, 2010:11-13, 2010. doi: 10.
1016/S1353-4858(10)70093-3. URL http://www.sciencedirect.com/science/article/
pP1i/S1353485810700933. Cited on page 20.

B. Schneier. Attack trees - modeling security threats. 1999. URL http://www.schneier.com/
paper—-attacktrees—ddj-ft.html. Cited on pages 6, 69, 71, 72 and 83.

R.C. Seacord. The Cert C Secure Coding Standard. Sei Series in Software Engineering. Addison-Wesley,
2008. ISBN 9780321563217. URL http://books.google.pt/books?1d=61ipFVExKeNOC.
Cited on pages 6 and 76.

George Selimis, Apostolos Fournaris, George Kostopoulos, and Odysseas Koufopavlou. Software
and Hardware Issues in Smart Card Technology. IEEE Communications Surveys & Tutorials, 11:
143-152, 2009. doi: 10.1109/SURV.2009.090310. URL http://ieeexplore.ieee.org/xpl/
login. jsp?arnumber=5208738. Cited on page 1.

Victoria Skoularidou and Diomidis Spinellis. Security architectures for network clients. Information
Management & Computer Security, 11:84-91, 2003. doi: 10.1108/09685220310468664. URL http:
//www.dmst .aueb.gr/dds/pubs/jrnl/2003-IMCS-clisec/html/cli-sec.pdf. Cited
on pages 22 and 76.

Guenther Starnberger, Lorenz Froihofer, and Karl M. Goeschka. A generic proxy for secure smart card-
enabled web applications. In Proceedings of the 10th international conference on Web engineering,
ICWE’10, pages 370-384, Berlin, Heidelberg, 2010. Springer-Verlag. ISBN 3-642-13910-8, 978-3-
642-13910-9. URL http://dl.acm.org/citation.cfm?id=1884110.1884141. Cited on
page 8.

Robert Wahbe, Steven Lucco, and Thomas E. Anderson. Efficient Software-Based Fault Isolation.
Operating Systems Review, 27:203-216, 1993. doi: 10.1145/168619.168635. URL http://crypto.
stanford.edu/csl15501d/cs155-spring07/sfi.pdf. Cited on page 25.

Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley Chen, Robert Muth, Tavis Ormandy, Shiki
Okasaka, Neha Narula, and Nicholas Fullagar. Native Client: A Sandbox for Portable, Untrusted
x86 Native Code. In IEEE Symposium on Security and Privacy, volume 53, pages 79-93, 2009. doi:
10.1109/SP.2009.25. URL http://johmathe.nonutc.fr/ressources/nacl_paper.pdf.
Cited on page 28.

Yves Younan, Wouter Joosen, and Frank Piessens. Code injection in ¢ and c++ : A survey of vulner-
abilities and countermeasures. Technical report, DEPARTEMENT COMPUTERWETENSCHAP-
PEN, KATHOLIEKE UNIVERSITEIT LEUVEN, 2004. URL http://citeseerx.ist.psu.
edu/viewdoc/summary?doi=10.1.1.59.2429. Cited on page 71.

http://www.sciencedirect.com/science/article/pii/S1353485810700933
http://www.sciencedirect.com/science/article/pii/S1353485810700933
http://www.schneier.com/paper-attacktrees-ddj-ft.html
http://www.schneier.com/paper-attacktrees-ddj-ft.html
http://books.google.pt/books?id=6ipFVfxKeN0C
http://ieeexplore.ieee.org/xpl/login.jsp?arnumber=5208738
http://ieeexplore.ieee.org/xpl/login.jsp?arnumber=5208738
http://www.dmst.aueb.gr/dds/pubs/jrnl/2003-IMCS-clisec/html/cli-sec.pdf
http://www.dmst.aueb.gr/dds/pubs/jrnl/2003-IMCS-clisec/html/cli-sec.pdf
http://dl.acm.org/citation.cfm?id=1884110.1884141
http://crypto.stanford.edu/cs155old/cs155-spring07/sfi.pdf
http://crypto.stanford.edu/cs155old/cs155-spring07/sfi.pdf
http://johmathe.nonutc.fr/ressources/nacl_paper.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.59.2429
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.59.2429

92

References

Appendix A

Documentation

Throughout this chapter it is possible to find following documentation that we created during this

project:

Section A.1 has a detailed description of the JS interface of the plugin. In this section we describe

each member of the interface. It is possible to find some output examples of the plugin as well.

Section A.2 shows several tables which aggregate information of each one of the available objects
defined in the PKCS #11 standard.

Section A.3 exposes images showing our plugin installed in several web browsers.

A.1 JavaScript API

In this section we present all the methods, attributes, and events available on the JS API of the plugin.

In order to explain with a level of detail the behaviour of each one of the several members of the JS

interface of the plugin, we decided to included the expected types.

Method(s)
Signature void init (string pkcslllocation)
Category Environment
Description This method must be used in order to load and initialize the PKCS#11 mod-
o ule
nit Returns —
Throws Exception | Yes

Pre Condition

Post Condition

Success: the PKCS#11 module is loaded and ready to use

Parameter(s)

string pkcslllocation

This parameter must have a valid path to the
location of the PKCS#11 module

93

94 A. Documentation
Signature void finalize ()
Category Environment
Description This method must be used once the plugin is not needed anymore
finalize Returns —
Throws Exception | Yes
Pre Condition The plugin must be initialized
Post Condition Success: all the resources are released
Signature void startListeningSlotEvents ()
Category Environment
start Description Instructs the plugin to start listening for slot events
Listening Slot | Returns —

Events Throws Exception | Yes
Pre Condition The plugin must be initialized
Post Condition Success: the plugin is waiting for events in all slots
Signature void stopListeningSlotEvents ()
Category Environment
stop Description Instructs the plugin to stop listening for slot events
Listening Slot | Returns —

Events

Throws Exception

Yes

Pre Condition

The plugin must be initialized and listening for slot events

Post Condition

Success: the plugin stops listening for slot events

get Library

Information

Signature string[] getLibraryInformation ()
Category Inspection

Description Gets information about the PKCS#11 module
Returns —

Throws Exception

Yes

Pre Condition

The plugin must be initialized

Post Condition

Success: information about the PKCS#11 module is retrieved to the web

application
Signature int[] getAvailableTokens ()
Category Inspection
. Description Gets the available tokens
get Available
Tokens Returns Returns an array of integers, where each element identifies exactly a token
Throws Exception | Yes
Pre Condition The plugin must be initialized
Post Condition Success: a list of available tokens is returned to the web application
Signature string[] getTokenInformation (int tokenID)
Category Inspection
Description Gets information about a particular token
get Token Returns Returns an array of strings, where each element has a pair attribute + value,
Information example: label-->abc

Throws Exception

Yes

Pre Condition

The plugin must be initialized and the tokenID must be a valid identifier

Post Condition

Success: a list containing the information about the token is returned

Parameter(s)

int tokenID | Identifies the token where the operation must be performed

A.1. JavaScript API

95

Signature int [] getAvailableMechanisms ()
Category Inspection
. Description Gets the available cryptographic mechanisms supported by the Smart Card
get Available - - -
. Returns Returns an array of integers, where each element identifies exactly one mech-
Mechanisms .
anism
Throws Exception | Yes
Pre Condition The plugin must be initialized
Post Condition Success: a list of available mechanisms is returned
Signature string[] getMechanismInfo (int tokenID, int mechID)
Category Inspection
Description Gets information about a given mechanism supported by a given token
get Returns Returns an array of strings, where each element is a pair attribute + value of
Mechanism the mechanism
Info Throws Exception | Yes

Pre Condition

The plugin must be initialized, and the token and mechanism identifiers must
be valid

Post Condition

Success: information about the mechanism is returned

int tokenID | Identifies the token where the operation must be performed

Parameter(s) - -
int mechID Identifies the mechanism
Signature int[] getAvailablePrivateKeys (int tokenID)
Category Inspection
Description Gets information about the available private keys on given cryptographic
get Available device
Private Keys Returns Returns an array of integers, where each element identifies exactly a private
key
Throws Exception | Yes

Pre Condition

The plugin must be initialized, and the token identifier must be valid

Post Condition

Success: information regarding the available private keys is returned

get Private
Key Info

Parameter(s) int tokenID | Identifies the token where the operation must be performed
Signature string[] getPrivateKeyInfo (int tokenID, int privKeyID
Category Inspection

Description Gets information about a particular private key of a given token

Returns Returns an array of strings, where each element is a pair attribute + value of

the private key

Throws Exception

Yes

Pre Condition

The plugin must be initialized, and the identifiers of the token and private

key must be valid

Post Condition

Success: information about the private key is returned

Parameter(s)

int tokenID Identifies the token where the operation must be per-

formed

int privKeyID | Identifies the private key

96

A. Documentation

get Available
Public Keys

Signature int [] getAvailablePublicKeys (int tokenID)

Category Inspection

Description Gets information about the available public keys on a given cryptographic
device

Returns Returns an array of integers, where each element identifies exactly a public
key

Throws Exception | Yes

Pre Condition

The plugin must be initialized, and the identifiers must be valid

Post Condition

Success: a list containing the available public keys is returned

Parameter (s) int tokenID | Identifies the token where the operation must be performed

Signature string[] getPublicKeyInfo (int tokenID, int pubKeyID)

Category Inspection

Description Gets information about a particular public key of a given token

. Returns Returns an array of strings, where each element is a pair attribute + value of
get Public .
the public key

Key Info

Throws Exception

Yes

Pre Condition

The plugin must be initialized, and the identifiers must be valid

Post Condition

Success: a list containing the details of the public key is returned

int tokenID Identifies the token are the operation must be performed

Parameter(s) - -
int pubKeyID | Identifies the public key
Signature int[] getAvailableX509PublicKeyCertificates (int tokenID)
Category Inspection
get Available Description Gets list of available X.509 Public Key Certificates in a given token
X509 Public Returns Returns an array of integers, where each element identifies exactly one object

Key Throws Exception | Yes
Certificates Pre Condition The plugin must be initialized and the token identifier must be valid
Post Condition Success: a list containing the available elements is returned
Parameter(s) int tokenID | Identifies the token where the operation must be performed
Signature string[] getX509PublicKeyCertificateInfo(int tokenID, int2
certID)
Category Inspection
get X509 — - - - - - -
. Description Gets information about a particular X.509 Public Key Certificate on a given
Public Key . .
cryptographic device
Certificate Returns Returns an array of strings, where each element is a pair attribute + value of
Info

the certificate

Throws Exception

Yes

Pre Condition

The plugin must be initialized and the identifiers must be valid

Post Condition

Success: a list containing the certificate details is returned

Parameter(s)

int tokenID | Identifies the token where the operation must be performed

int certID Identifies the certificate

A.1. JavaScript API

97

get Available
WTLS Public

Signature int [] getAvailableWTLSPublicKeyCertificates (int tokenID)
Category Inspection

Description Gets a list of available WTLS Public Key Certificates

Returns Returns an array of integers, where each element identifies exactly one cer-

Key tificate
Certificates Throws Exception | Yes
Pre Condition The plugin must be initialized and the identifier must be valid
Post Condition Success: a list of available certificates is returned
Parameter(s) int tokenID | Identifies the token where the operation must be performed
Signature string[] getWTLSPublicKeyCertificateInfo (int tokenID, int2
certID)
Category Inspection
get WTLS — - - - - -
. Description Gets information about a particular WTLS Key Certificate on a given cryp-
Public Key . .
tographic device
Certificate Returns Returns an array of strings, where each element is a pair attribute + value of
Info

the certificate

Throws Exception

Yes

Pre Condition

The plugin must be initialized and the identifiers must be valid

Post Condition

Success: a list containing the certificate details is returned

int tokenID | Identifies the token where the operation must be performed

Parameter(s) - -
int certID Identifies the certificate
Signature int [] getAvailablex509AttributeCertificates (int tokenID)
Category Inspection
get Available Description Gets a list of available X.509 attribute Certificates
X509 Returns Returns an array of integers, where each element identifies exactly one cer-

Attribute tificate
Certificates Throws Exception | Yes
Pre Condition The plugin must be initialized and the identifier must be valid
Post Condition Success: a list of available certificates is returned
Parameter(s) int tokenID | Identifies the token where the operation must be performed
Signature string[] getX509AttributeCertificateInfo(int tokenID, int2
certID)
get X509 Categ.or}j' Inspection
Attribute Description Gets information about a particular X.509 Attribute Certificate on a given
cryptographic device
firtiﬁcate Returns Returns an array of strings, where each element is a pair attribute + value of
nfo

the certificate

Throws Exception

Yes

Pre Condition

The plugin must be initialized and the identifiers must be valid

Post Condition

Success: a list containing the certificate details is returned

Parameter(s)

int tokenID | Identifies the token where the operation must be performed

int certID Identifies the certificate

98

A. Documentation

get Available
Data Objects

Signature int [] getAvailableDataObjects (int tokenID)

Category Inspection

Description Gets a list of available data objects on a given cryptographic device

Returns Returns an array of integers where each element identifies exactly one data
object

Throws Exception | Yes

Pre Condition

The plugin must be initialized and the identifier must be valid

Post Condition

Success: a list containing the available data objects is returned

Parameter(s) int tokenID | Identifies the token where the operation must be performed
Signature string[] getDataObjectInfo(int tokenID, int ob3jID)
Category Inspection
Description Gets information about a particular data object on a given cryptographic
device
get Data - - - -
Returns Returns an array of strings, where each element is a pair attribute + value of

Object Info

the data object

Throws Exception

Yes

Pre Condition

The plugin must be initialized and the identifiers must be valid

Post Condition

Success: a list containing the details of the data object is returned

int tokenID | Identifies the token where the operation must be performed

sign Data

Parameter(s) - -
int objID Identifies the data object

Signature string signData (int tokenID, int privKeyID, int mechID, 2
bool prompPin, string data

Category Cryptographic

Description Creates a digital signature of binary data

Returns Returns a Base 64 encoded string containing the digital signature

Throws Exception

Yes

Pre Condition

The plugin must be initialized and the identifiers must be valid.

Post Condition

Success: a digital signature is returned

Parameter(s)

int tokenID Identifies the token where the operation must be per-

formed

int privKeyID | Identifies the private key that must used to create the

digital signature

int mechID Identifies the mechanism that must be used to generate

the digital signature

bool prompPin | True if the plugin must prompt the PIN to the user.
False if the cryptographic device has mechanisms for PIN

prompting

string data A Base 64 encoded string containing the binary data that

is supposed to sign

A.1. JavaScript API

99

sign File

Signature string signFile (int tokenID, int privKeyID, int mechID, 2
bool prompPin, string path2file

Category Cryptographic

Description Creates a digital signature of a file

Returns Returns a Base 64 encoded string containing the digital signature

Throws Exception

Yes

Pre Condition

The plugin must be initialized and the identifiers must be valid. The path

must be valid and point to a file

Post Condition

Success: a digital signature is returned

int tokenID Identifies the token where the operation must be per-

digest Data

formed
Parameter(s) int privKeyID Identifies the private key that must used to create the
digital signature
int mechID Identifies the mechanism that must be used to gen-
erate the digital signature
bool prompPin True if the plugin must prompt the PIN to the user.
False if the cryptographic device has mechanisms for
PIN prompting
string path2file | The path to the file that is supposed to be signed
Signature string digestData (int tokenID, int mechID, string data
Category Cryptographic
Description Creates a digest of binary data
Returns Returns a Base 64 encoded string containing the digest

Throws Exception

Yes

Pre Condition

The plugin must be initialized and the identifiers must be valid

Post Condition

Success: a digest from the binary data is returned

int tokenID | Identifies the token where the operation must be performed

digest File

Parameter(s) int mechID Identifies the mechanism that must be used to generate the
digital signature
string data | A Base 64 encoded string containing the binary data
Signature string digestFile (int tokenID, int mechID, string 2
path2file
Category Cryptographic
Description Creates a digest of a file
Returns Returns a Base 64 encoded string containing the digest

Throws Exception

Yes

Pre Condition

The plugin must be initialized and the identifiers must be valid. The path

must be valid and point to a file

Post Condition

Success: a digest from the file is returned

Parameter(s)

int tokenID Identifies the token where the operation must be per-

formed

int mechID Identifies the mechanism that must be used to gen-

erate the digital signature

string path2file | The path to the file that is supposed to be signed

100 A. Documentation
Signature string toBase64 (string data)
Category Utilities
Description Encodes a string into the Base 64 format
Returns Returns a Base 64 encoded string of the input data
to Base 64

Throws Exception

Yes

Pre Condition

Post Condition

Success: the data is encoded to the base 64 and returned

from Base 64

Parameter(s) string data | the data to encode
Signature string fromBase64 (string data)
Category Utilities

Description Decodes a string in the Base 64 format
Returns Returns a string containing the decoded data

Throws Exception

Yes

Pre Condition

The data must be properly encoded in the Base 64 format

Post Condition

Success: the decoded data is returned

Parameter(s) string data ‘ the base 64 encoded data
Attribute(s)
T .
FIRST_STRING. | R o
SEPARATOR ategory ring Separators
Rean-only | true
T tri
SECOND_ STRING. [—>20 e
Category String Separators
SEPARATOR
Rean-only | true
T tri
THIRD STRING. (> e
SEPARATOR ategory ring Separators
Rean-only | true
MULTIPLE_ Type string
VALUES_ Category String Separators
SEPARATOR Rean-only | true
Type unsigned integer
CKF_ RNG Category Token flags
Rean-only | true
CKF. WRITE. Type unsigned integer
Category Token flags
PROTECTED
Rean-only | true
CKF. LOGIN. Type unsigned integer
Category Token flags
REQUIRED
Rean-only | true
CKF. USER. PIN. gyi)e ;niigri;ed integer
INITIALIZED ATeeO1y | “oken Fags
Rean-only | true
CKF_ RESTORE._ Type unsigned integer
KEY_ NOT. Category Token flags
NEEDED Rean-only | true

A.1. JavaScript API

101

Type unsigned integer
CKF_ CLOCK. ON_ Cat ———
TOKEN ategory oken flags
Rean-only | true
CKF. PROTECTED. | Type unsigned integer
AUTHENTICATION_ | Category Token flags
PATH Rean-only | true
CKF_. DUAL_ Type unsigned integer
CRYPTO._ Category Token flags
OPERATIONS Rean-only | true
CKF. TOKEN. Type unsigned integer
Category Token flags
INITTALIZED
Rean-only | true
CKF_ Type unsigned integer
SECONDARY_ Category Token flags
AUTHENTICATION | Rean-only | true
CKF. USER. PIN. Type unsigned integer
Category Token flags
COUNT. LOW
Rean-only | true
CKF. USER. PIN. ’(Ij‘yi)e ;nls(igri;ed integer
FINAL. TRY ategory oken flags
Rean-only | true
CKF. USER. PIN. '_C[;yi)e ;nliigrfxled integer
LOCKED ategory oken flags
Rean-only | true
CKF_ USER. PIN_ Type unsigned integer
TO. BE_ Category Token flags
CHANGED Rean-only | true
CKF. SO_ PIN. Type unsigned integer
Category Token flags
COUNT. LOW
Rean-only | true
CKF. SO. PIN. gyi)e ;nls{igr;led integer
FINAL. TRY ategory oken flags
Rean-only | true
CKF. SO. PIN. Type unsigned integer
Category Token flags
LOCKED
Rean-only | true
CKF. SO. PIN. TO. Type unsigned integer
Category Token flags
BE_. CHANGED
Rean-only | true
Type unsigned integer
CKF_HW Category Mechanism flags
Rean-only | true
Type unsigned integer
CKF_ ENCRYPT Category Mechanism flags

Rean-only

true

102

A. Documentation

Type unsigned integer
CKF_ DECRYPT Category Mechanism flags
Rean-only | true
Type unsigned integer
CKF_ DIGEST Category Mechanism flags
Rean-only | true
Type unsigned integer
CKF. SIGN Category Mechanism flags
Rean-only | true
CKF. SIGN._ Type unsigned integer
Category Mechanism flags
RECOVER
Rean-only | true
Type unsigned integer
CKF_. VERIFY Category Mechanism flags
Rean-only | true
CKF. VERIFY. Type unsigned integer
Category Mechanism flags
RECOVER
Rean-only | true
Type unsigned integer
CKF_. GENERATE Category Mechanism flags
Rean-only | true
CKF. GENERATE. Type unsigned integer
Category Mechanism flags
KEY_ PAIR
Rean-only | true
Type unsigned integer
CKF. WRAP Category Mechanism flags
Rean-only | true
Type unsigned integer
CKF_. UNWRAP Category Mechanism flags
Rean-only | true
Type unsigned integer
CKF_. DERIVE Category Mechanism flags
Rean-only | true
Type unsigned integer
CKF_ EXTENSION Category Mechanism flags
Rean-only | true
TOKEN. Type unsigned integer
Category Slot Events
INSERTED
Rean-only | true
TOKEN. Type unsigned integer
Category Slot Events
REMOVED
Rean-only | true

Event(s)

A.2. PKCS #11 Objects Reference

103

slot event

Description

This event notifies web applications any time a token is either in-
sert /removed into/from a slot

Internet Explorer

onslotevent

Other web browsers

slotevent

Parameter(s)

int | Identifies the event type. 1 if a token was inserted, 2 otherwise.

int | Identifies the slot where the event happened.

Table A.1: Documentation of the JS Interface of the Plugin

A.2 PKCS #11 Objects Reference

In the following tables we aggregated all the available information defined for each one of
the objects in the PKCS #11 standard. The information shown in these tables is just a
compilation of the data available in the reference manual of PKCS #11 [RSA Laboratories,
2004]. The intellectual property and credits of this information belong to the RSA company.

A. Documentation

"US30} U} 0} JUSIUOD PAPOIUS UM S123[GO JINIIN PUSS 0} SPaau uoneldde ayl usym pasn ag Aew ainguIe SAOHLIN ONIAOONT WO aul Jo anfeA ay L

‘uoiedldde ue Aq 19s ag Aew sanfea ainguie ayl Jo SUON FOV4HTLNI H3ASN HID

*aqealidde Jo a|qe|ieA. JoU S| UOIRWLIOJUI USUM SaINgLIe Paseq-ONOTN MO 10} pasn
99 Aew NOILYIWHOSNI 18V IIVAYNN YO anfeA [e1oads ay.L -ajqissod se 1on4S dd/00 Pue yeSz D4y uim paubife se Aejs o) 1dwaie ue ul auop usaq sey ‘sadAl efep pajeloosse pue ‘sainguije Jo Uondd|es ayL

“Jusl|d 3y} >Q 18s 8q jou Kew anquire m_31_<>|<v_U ayL N_m._.ZDOUIU_ZO._.OZOS_IIV_U

"aNfeA 8y} 19s 0} paunbau st 8dAy Jasn JuaIaIp B eyl 81edlpul 0} NI" 39907 LON HISN HMD 10412 83U UINdJ [|iM SNeARINGUIVISS O "anfeA awi 8y} Ajpow o}

. . - — 2010 HMO
ul pabBo| Jasn ays aq 0} OS ay} auinbai Aew d91A8p By ‘Ul PaBBo] aq 1SN dwN dY) 19S 0} PASN UOISSAS AL 92IASP 3y Ag paniwiad Ji uonouny aNeASINGUNYISS O ayl Buisn 19s aq Aew ainguie INTVYA WMO UL

104

S310N

«» UM poje.edas aue sadA) papoddng ‘(Bioeuermmm) YNV AQ paulep se ‘sadA)-gIN (sjgeiussald) pauoddns Buiesipul buys

Bus 6,22 04

SIdAL ININ VIO

yum pareredas are spoydw payoddns ‘(ioeuermmm) YNYI Aq paulep se ‘spoyiaw Buipoous Jajsuel) uauod pauoddns Buiresipul buns

Buis 6,22 044

SAOHLIW ONIAOONIT VX0

yum paresedas ale sjes Jaldereyd pauoddns ‘(b0 euermmw) s1es wnuagdiiN YNVI Aq paulap se ‘sies Jeydereyd paloddns Buieaipul bums

Buis 6,22 044

S13S ¥VHO WMO

‘loxid Jad uoirewoul a[easAelh 1o 10j02 JO SHQ JO JBguInu By L 9NOTIN MO J3XId ¥3d SLg w0
uoddns 10j00 Jjoo8g Yo JOTOD VMO JOVLYILNI ¥ISN HYO
NS dd/00 98s ‘(A Jenal) s-,Wws, ul Aejdsip au} Jo Lpim au) sI si ‘adAy mﬂmm__n_mwoﬁ_,%m“_“m.ﬁwm m_ﬂ_ﬂu ONOTNTIO SNINNTOD "VHO WY
sAe|dsip pajuaLIo-1a3oeeyd 104 ONOIN MO SMOY HVHO V)0
your sad sjexid ‘|da ONOIN YO NOILNTOSIY WXO
SiXe-A Ul (saxid ul) uopnjosal usalos ONOIN M0 A 13XId W0
Sixe-X Ul (saxid ui) uopnjosal usalos ONOIN M0 X 13XId Wy0
*JapJo uejpua Big ul pauinial S| SN[eA 8YL “J9IUNOJ JIUOIOUOW Y} JO UOISISA JUSLIND BY L Keire a)kg IANTVA WX
"awin Ul Juiod SLOS T8 90UO 1Ses] e 1958l Usad Sey JaIunod sy} Jo anfen ayL 10088 M0 13534 SYH W0 Y3LNNOOD DINOLONOW HMD
-0 Buisn pazieniul S| UsXol 8y} Ji anfeA pauinial A|snoinaid e 0} 19Sal [[IM J9IUNod ay} JO anfeA ay L Joogg Mo LINITNO™ 13S3d WO

XXSSWWYYAAWNAAAA ‘rewiod
'9T Yibus| Jo Buis 1e)oereyd e se awli Jusund

[9T]4vHO MO

INTVA VMO

MO0TO HMO

Buiuesiy

adA] ereq

aInquny

3YNLY3S aH MO

SaINquUNY

(edfy) ainyea aremp.reH

3¥NLY34 AH MO

IdAL IHNLYIS MH WYO

Buiueay

adA] ereq

sa1nqluUNyY

S$alngliy uowwod

I™NLY3S MH OMO

SSVT10 103r90 X0

uoniuyap ssejo

Table A.2: Hardware Feature Objects in PKCS # 11

105

A.2. PKCS #11 Objects Reference

195 94 10U Aew SINGLE JdAL WSINVHOIN W0 auL|

S910N
108[qo wisiueyoaw jo adky ay L 3dAL WSINVHOIW MO IdAL WSINVHOIN VMO

WSINYHOIN OMO

uoiiuysp sse|g

Table A.3: Mechanism Objects in PKCS # 11

A. Documentation

106

“BUISMO.] Ul SI13SN ISISSe 0} papusiul SI 3INque 138vT YMD UL

‘pajajep aq Ued 103[qo |qelIpowun Ue Jey) 9sed sy 84 jou Aew o Aew 3| *Ajuo-peal si3103[go Ue Jou J0 JBYIaYM SaulWIaiep anguire 31gvIdIAON VMO aUl Jo anfeA ayL

*US0} BY} 0} pajednuayIne usag sey Jasn 8y} [un 103[qo ay) Sseode Jou Aew Jasn e ‘JNYL MO St anquire JLVAINd YMD dul usym

*103[g0 uoISSas € 0 198[0o UBY0) B SI3193[q0 By} JayIBYM Saluap! aINguUIe NIMOL WM auL

(-1anamoy ‘198[qo ue BuiAdod Jo ssao0.d ayy ur pabueyd aq ued saingLie 31gVI4IAOIN WM PUe ‘FLVAIMd WMO ‘NIMOL VMO dyl) ‘pareaid si193(qo ays Jaye payipow aq ued ainquie 73avT X0 ayl Auo

S910N
‘(fidwia ynejap) 193fqo sy Jo uonduosaa Bus 6222044 T3avT v
"INYL D st inejeq - -
PaipoL aq Ue2 198(0 1 INYL O Sl) 318VIHIGON V>0
199[qo 8y} Jo seInqLITe JBY10 JO SenfeA ay) uo puadap Aew pue ‘oy1dads -usxo) Si anfeA Jneeq
“18lqo aygnd e s1 308100 4 ISTVH MO 7100889 X0 EINZ\EERY
1308[qo areAd e s1398[00 J INYL MO
'3STV4 MO st inejea
108[qo uoissas e si303[qo Ji 35TV MO Jjoosgg o NINOL VYO
1108[qo U0} € S1393[00 J1 ANYL MO
Buiueay adA | ereq a1nquNY
anfea
sa1nquNY

V.1va OMO

SSV10 103r90 MO

- eweloebews

uoniuyap sse|n

ts in PKCS # 11

Storage Objec

Table A .4

107

A.2. PKCS #11 Objects Reference

{(eep)jo02zs ‘erep ‘INTVA WHO}
‘{1-(uoneaiidde)joazis ‘uonedlidde ‘NOILYOIddY YXO}
{1-(loqe))j0021s ‘jocie] “TIAVT WHO}
{(enn)j00z1s ‘anuyg ‘NINOL WHO}
‘{(ssep)joezis ‘sse|o® 'SSY1D WHO}

} = [leveidwe) 31NAIFLLY O

INYLTHO = ani 10088 MO

‘.erep ojdwes, = [leyep 3LAG MO

t,uoneaydde uy, = [Juoneaiidde ¥vHI841N MO

1 Joelqo ejep v, = [llogel ¥vHO84LN MO

'VLVA OMO = SSep SSY10 103080 MO

are|dwsa) a|dwes

"anfeA ejep ay} sayorew

1anuap! 103fqo eyep ay) Jeyr Buunsul jo sueaw e apioid Jou seop 140)dAID "anfeA 198lqo erep ays Jo adAl sy areolpul 0y Aem ajqepuedxe pue juspuadapul uoneoldde ue sepinoid singue @I”LO3CA0 WM BYL

*J9AaMOY 193[qo erep € 0}

ssa00e sey uonealidde renoned e Ajuo ey Buninsus Jo suesw e apinoid Jou seop o1dAID “afieuew Asyy $109(qo erep ay) Jo diysieumo aresipul o) suoiedldde oy suesw e sapiroid ainguie NOILLYIINddY WO ayL

S9]0N
(Adwsa ynejep) 198(qo ayj Jo anfeA Keure o1kg ER7)
(Adwa ynejap) adAy 10algo eyep ayy Buesipul Jaynuapt 193(qo ay jo Buiposus-y3a Keuily akg al Lo3rg0 Wio
(Adwsa ynejep) 193lqo ayy sebeuew jeyy uonedlidde sy jo uonduosaq Buns 6222044 NOILYOINddY W0
‘(fidwsa ynejap) 108fqo ayy jo uonduoseq Buns 6222044 738V W0

“3NYL O stinejea
payipow 8q ued 303[q0 J INHL MO

Joogg Mo

378VI4IAOW VX0

193100 BU JO SAINGLITE U0 JO SaNfeA Ay} o puadap Aew pue ‘oy1oads -Uaxol si anjeA Jnejea

19800 ognd e s1109100)1 ISV MO 10089 0 ALVARYd VYO
1108qo aeand e s1198[00 J1 INYL MO
"3STV4 NO sl inejea
"}93[qo uoissas e s1393[qo 1 ISV MO 70088 X0 NI}OL VMO
1198[q0 B0} B S1 3980 J1 INYL™ MO
Buiuesy adA L ereq aInquUNy
aneA
salnqlny

V1va OMO

SSV10 103rdo MO

uoniuyap sse|n

Table A.5: Data Objects in PKCS # 11

A. Documentation

108

‘red Aayjeressusn) O e Aq uayol ay) uo paresauab AjreulbLio alem sieawre.red urewop
AU} Jo anfeA au) i Ajuo pue Ji INYL™ XD anfeA ay sey ainqie TvO0T VMO duL

S9]0N
JNYL MD 0118s aingune TyD0T YMD SH pey yaiym siajewered urewop Jo Adod e se |ed 108lqoAdoD D e yum pajead -
Keiresausn O e yum (Usxol ay) uo “a'1) Ajjedo| paressuab - 70099 MO V00T VMO
Jaye a1em sieiwesed urewop i Aluo ANYL MO
‘9je.auab 0} pash aq ued sigjaLered urewwop ay A3 Jo adAL IdALAIN MO IdALAIN WO
‘(Aidwia yneyjep) 108lqo 8y Jo uonduosag Buis 6.22044 73avT w0
"INYL MO stinejea — -
payIpoLL 8q Ued 19310 Jl INHL D oREET R 318VIHIQON ¥XD
19900 8y} Jo seINquIIe Jayio JO SanfeA ay) uo puadap Aew pue ‘oidads -Usxol sI anfeA Jneeq
“13(qo angnd e s1309(00 § ISTV4 MO Jjoogg Mo ALVAIED WO
10900 areaud e s1199(qo J INYL MO
"3STv4 MO stinejeq
1030 uoISSas € 1399[00 Jl ISTVH MO Jjoo8gg Mo NIMOL VMO
1198[qo US30} € S1 19300 J1 INYLMD
Bujueapy adA] ereq 21nquNY
anfeA
salnqllly

SYILINVYVYd NIVINOT OMO

SSY10 103r€0 MO

uonlulap sse|d

Table A.6: Domain Parameters Objects in PKCS # 11

109

A.2. PKCS #11 Objects Reference

‘IS4 D synegaq Aey ay yum (3dA10ap Jo ubis) asn yaes 1oy Nid ayi Aiddns 0y sey Jasn ayy ‘INyL MO M

Joo8g Mo

JLVOILNIHLNY SAVMIY MO

‘JLNAIYLLY MO Jo 8z1s ay) Aq papiAIp aingLie ay} Jo Juauodwiod uaTanfeAIn Ay} st Aelre ayj Ul SaINGLITe JO Jaquunu auy | "pareald uaaq Apealfe
sey 193[o ay §i se arejdwa) siy) Jaye paydde si arejdwsal palddns sasn Auy Ao Buiddeim siyy Buisn paddeimun sAsy Aue 01 Ajdde o3 arejdwa) sinquie ayL sy Buiddeim Jo4

¥ld 3LNEIELLY YO

FLVIdNIL dVEMNN VO

"3SV4 YO stinejeq

‘INYL MO 0118S A3LSNHL VMO sey ey Aoy Buiddeim e yum paddesm aq Ajuo ued A3 ays Ji INHL MO 10088 >0 AILSNAL HLIM dVEM IO
INYL D 0119S AINgUIe I18YVLOVHLXT VXD auy) pey Jansu sey Ao)1 INYL MO Joogg Mo 318VLOVELXT HIAIN WO
INYL MO 03 18S aNquie JAILISNIS WM aui pey sheme sey £ox i INHL MO 10089 Mo JAILISNIS SAVMTV WMO
paddeim aq ueo pue sjqeloenxs st A8)l INHL MO 70099 X0 F1GVLOVHLXT WO
(shay Jayio deimun o} pasn aq ued ‘““a'1) Buiddesmun spoddns Ay y INYL MDD 100899 MO dVIMNN VYD
ainreubis ay wo.y paIanodal aq Ued elep ay) aseym sainreubis suoddns £s J INHL MO 700899 MO HIN0DIH NOIS VIO
elep ay 0} xipuadde ue si ainjeubis ay) alaym sainyeubis suoddns A8 Jl INYL MO Jjoogg Mo NOIS WY

uondAi10sp suoddns A8 J INYL MO 100849 Y0 1dA¥D3a VYO

BAISUBS S A3X Jl INYL MO 70089 Y0 JAILISNIS WO

(Adws ynejep) swreu 193(gns ayedyad Jo Buipodus-y3aq Keire a1hg 103ranNs w0

‘AdAL NSINVHOIW MO
10 9z1S 8yl Aq papIAp ainquie 8y} Jo jusuodwiod usTeNneAIN Byl SI Aele 8yl ul SWSIUBYISW JO Jaquinu ayl ‘A8 SIY} YIm pasn aq 0} pamojle Swisiueydsw Jo s

dld IdAL WSINVHOIW MO

SIWSINVHOIN a3IMOTIV WM

‘[eLaYew As oy} Spelausb 0} Pasn WSILEYISW S} JO JaLup|

IdAL WSINVHOIW YO

ISINVHOIN “"NID ™ AIX VMO

INYL XD 0319s anquie TYO0T WYHO SH Pey ydiym A3y e Jo Adod e se |[ed 108[q0AdoD ™D e yim pajeald -

Ired IredAs)iareIsuR9 D 10 Aayerelauas O e yum (Uaxol ays uo “a'1) Ajedo] paresaual - 10088 Mo IVO0T WO
uaya sem sy J1 Ajuo INYL™ MO
(3STVAXO UNejap) BUO SIL) WL PRALISP 84 Ued SAS JBUI0 Ji “3'1) uoieALap Aoy spoddns Ao Jt INYL MO Jjoogg Mo INEIA VIO
(fidwa yrreyap) Aox aup Joy arep pu3 31va MO 3Lva aNa W0
(fdws ynejop) Ao ayy Joj arep LeIS 31va MO 31V LYVIS WMO
(Aidwa ynejep) Ay 1o} Jaynuapl Aoy Reure a1hg arwio
Ko} Jo adAL IdAL AN MO IdAL AN VMO
“(Aydwsa yneyep) 103fqo ays jo uonduosaq Buis 6222044 J38VT WO
3NYL O st inejea - ~
AT UED EE N AT Joogg Mo 31GVISIAON YO
*199[qo 8y} Jo seINqLITe JaYI0 JO SanfeA ay) uo puadap Aew pue ‘al19ads -UusX0] SI anfeA Jnejeq
‘108/qo oyignd e s1108lqo 4 3STv4 MO 70089 0 JLVAId WO
'193(qo arenud e s1399[00 J INYL MO
ESNZRRER LT
"103[qo uoIssas e 130800 Jt ISTV4 MO 700849 Y0 NIMOL MO
‘108[qo U0} e 1319300 J ANHL MO
Buiueay adA] eleq aNquUNY
anfeA
se1InquUIyY

A ALVYAIYD OMO

SSVY10 103rdo MO

uoniuyep ssejo

te Key Objects in PKCS # 11 (1 of 2)

Priva

Table A.7

A. Documentation

110

'3STIV4 MO 01188 SI LYOILNIHLNY SAVMIY WXO Usym ajednuayine-al o) spew si idwisie ue ji ‘pajosye

8¢ Jou | uoresado oiydesbo1dA10 dAnve du) INg ‘aIZITVILINITLON NOILLYHIHO ¥MO wimai m uio7™0 Aex aup Buisn sjfed wouy pauinial aq o) NI" 39907 LON HISN™ UMD Ul INsal [Im INHL MO 0119s s!
ALVOLLNTHLNY SAVMIY W) Uaym ajeonuatne-ai 0} Bumiwo Jo BuiieS "usxol sy Wwody 1o Jasn sy sBoj osfe siy) pue a3»O0T Nid ¥MO 8Sed Si) ul suunjas uiBo ™0 pax0| aq 0} Nid ays asned Aew sidwane
uoieanuayIne-al pajre) pajeadal JOASMOY ‘BUIeS Y} Urewal [|IM 1e)s UOISSas 8y} Sased 9sau) JO Y1oq uj "pajfed usaq jou pey uifo] D Ji Se Joineyaq e ul Jnsal uorresado aiydefoidAi1o ayy Buinunuos pue Aoy ayy
asn 0) uoissiwiad paluap sem Jasn ayy eyl sueaw uifo7 D wouy 1OFHHOINI NId ¥MO anfea uinal v *(**reuiqubis ™o ‘ubiS™ D Aq *69) pale|dwod uaaq Ajjnjssadansun 1o A|inysseaans sey uoiesado aiydeiBoydAio
ay) [hun sise| Jeyl alels pajednuayine ue ui A3y aAIoe ay) SI9S SiU) pue pajednuayine Ajnjssaoons sem Iasn ayl O YN suinjal ulbo1™ D § AaX aAioe ay) Jo siuawalinbai abesn ayy Aq uanib Amaidwi st adAy sasn
femoe ays ‘e siyy up (uubis D Jaye *Ba) pareniul usaq sey Aoy ay) Buisn uonelado olydeifoidAio e saie ARrelpawiwi DI4103dS” LXILNOD NXD 03 19s adA L1asn yum uibo7 D Bulied Ag S1nd20 uopednuayine-ay

INYLHO 0Se st FLYAIM WHO Udym INHL MO 01 18s 8q Ajuo Aew angupe siyL 1dAiosp Jo ubis
se yons uoljesado olydesboidAio e suesw aseo siyy ul ,asn, Aoy ajeAud e Jo asn yoes 1o} (NId B apiAcid 0} Josn 8y} 9210} '9'l) UoliedlUSYINe -a1 8210} 0} Pasn aq ued ainqupe J1YIILNIHLNY SAVMIY YMO ayL

Aoy Jo adA) reyy Buiquasap uonoas ayy Ul aje) angune ay) ul £y ateaud Jo adAl yoes oy paiyidads S| are
953} SAINGUITE YOI A “US30) 3y} SPISING IXalureld Ul pafeanal aq Jouued Aoy ajeald ay) o SeINGUIe Urelad uay) ‘ISTVH YO S aInguie 319V.LOVHLIXI WXO aul Ji Jo ‘INHL MO St ainguie IALLISNIS VMO aul Ji

*U80) 8U) U0 PaIo)s aq osfe Aax algnd pue a1edliniad auy ey palinbai jou si 1 pue ‘BoydAID
Aq padioyua Jou SI SIY) ‘1onemoH “Aey algnd pue ayesyiad Buipuodsaliod ay) Joj soy) se awes ay) aq [|im Aay areAud e Joy Jsynuapl Ao pue awreu 193(gns ayi feyy Ajiqesadoueiul Jo Sisaselul Y} Ul papuaiul SI i

S910N

te Key Objects in PKCS # 11 (2 of 2)

Priva

Table A.8

111

A.2. PKCS #11 Objects Reference

‘FLNGIALLY MO Jo 821S ayy Aq papiAip aingLie ay) Jo Jusuodwiod uaanfeAIn ays st Aeire ayy ul
senque Jo Jequinu ayL “paddesm aq jouued yorew jou op feyy sAsy Aoy Buiddeim siyy Buisn paddeim sAax Aue isurefe yorew o) arejdwa) ainguire ayL “skey Buiddeim to4

Yld “3LNGIFLLY MO

LV IdNTL dVEM WHO

"INYL MO 0118S AILSNYL HLIM dVEM VMO Uim sk deim 0} pasn aq ued A Buiddesm ay L “pareaid sem)i Jeyy uonedljdde ays Joj paisnii aq ued AoX ayL 710088 M0 a3aLsNYL w0
(Ao Jayio dem 03 pasn aq ued “a°1) Buiddesm suoddns A8 1 INYL MO 7100899 M0 dVEM WO
ainjeubls ay) WoJj pasanodal si elep ayj aleym uonedyLaA suoddns Aoy i INHL MO Jj0089 M0 YINODIY ALIMIA WO
eyep ay) 0} xipuadde e s ainjeubis sy a1aym uoireaylaA suoddns A8 Jl INYL MO 70088 MO AIGAN WO
uondAious suoddns A8 J INYL MO 710088 MO LdAYONT VYO
(Adwa ynejop) awreu 198lqns A3 ays Jo Buipodsus-y3a Kelre alkg 123rans w0

‘AdAL WSINVHOIW YO
0 8zIs By} AQ PBPIAIP BINGLIE BY) JO JUBLOdWOD USTNRAIN BY} S| Aelle U} Ul SWSIUBYIDW JO JaGInU YL *A8Y SIU} YIM Pasn 8q O} Pamojje SWSIUeydawW Jo Isi| v

dld” IdAL” WSINVHOIW 3D

SWSINVHOIW a3IMOTIV VMO

‘JeLiarew 23 ay a1eIausb 0} pasn WSIURYIBLW U} JO JaLIUap|

IdAL” NSINVHOIW MO

WSINVHOIIN "NI9~ A3 WMO

JNYL MO 0118S anquire T¥O0T WYMO SH Pey yaiym Asy e Jo £Adoo e se |fed 108[q0oAdoD O e yim pajesio -

[[e9 IredAayeresauas) D o Aayeresauas O e yim (uaxol ay) uo “*a°1) Ajeso| paresauab - Jo009g9 MO IVO0T WD
oY sem Aox Ji Aluo INYL MO
(3STV4 D UNeJap) BUO SI) WLy PAALIBP 37 Ued SASY JBI0 JI “a°1) uomeALap Aoy spoddns Ao) 4 INYL™ MO Joogg Mo ENEEGRe)
(Adwi ynejap) Aox ayy Joj arep puz 31va o ENN N« NERYeo}
(fidwis ynejap) Ao3 ayy Joj arep LelS 3ALva Mo 3LVA LAVLS WO
(fidwia ynejop) Aoy 1o saynuap! Ao feire a¥hg arw;o
Ko J0 adAL AdAL AN MO AdAL AN WO
“(fadws ynejep) 108(qo aup Jo uonduoseq Buins 622044 RECNAR)
“INYL MO st neyea ~ -
AR R B D N SIS 10089 Mo 378VI4IAON YYD
.gum._ao By} JO sainglie 18ylo Jo sanfeA ayj uo _ucmn_m_u Aew pue ‘o) 109ds -Ua)0] S| anfeA jjnejeq
“8lqo aignd e s1198fqo J 3STV4 MO 10089 Mo JLVAIM WO
1108(qo arenud e 1309140 J INYL MO
‘34 YO stinejea
1930 uoISsas e s1309[qo J1 ISV MO Jjoo8g Mo NIMOL WHO
1108[qo B0} B §1308[00 1 INAL MO
Buiuesiy adA | ereg aINqLNY
ERIEIN
saInqluny

AN OIgNd OMO

SSV10 103rdo 3O

uopIulep Sse|

Public Key Objects in PKCS # 11 (1 of 2)

Table A.9

A. Documentation

112

d3IA003Y AdIYIA VMO uoreipndeyguou
AdIYIA YMO uoeipndayuou
dVdM WX JUENENGRVELE]
EINNER) ENEEN 7Y

HIAN0DTY AJIMIAN WO uBISTYO ‘UBISHBDARY
AdIY3N WO ubBISTHO ‘uBISHaDASY

1dAHONT MO

juswuaydiougerep

sAay 211qnd 10} sa1nquire 1301dAId Bulpuodsaliod

A3y o11gnd 60X Ul SAa)

£av enc vz 10 Riluddpial

*U@X0) U} UO Palols 3 0S[e AaX ayeAld pue 91edyiad ay eyl paiinbal jou si)l pue ‘siy)
9910Jud Jou s30p 1401dAID ‘IaAaMOH *AaX areAld pue arealad Bulpuodseliod ay) 1o} aSoy) Se awres au} aq [IIm A3 angnd e 1oy Jaynuapl Aoy pue aweu 13[gns sy} Jeyy Anjiceladousiul Jo S)saslul 8y} Ul papuaiul Si)

S910N

Table A.10: Public Key Objects in PKCS # 11 (2 of 2)

113

A.2. PKCS #11 Objects Reference

‘JLNAIMLLY MO Jo 8zis 8y} Aq papiap ainquite syl Jo Jusuodwod usTanfeAln ay) st Aetse sy} ul SeINqLITe JO Jaquinu 8y | "pateald usaq Apealre
sey 108[qo ay Ji se erejdwan siys Jaye paydde si arejdwsa) payddns Jasn Auy “Aex Buiddeim siyy Buisn paddeimun shex Aue o) Aidde o3 ayejdwial ainquire ay | “sAe Buiddeim Jo

Yld FLNAIYLLY MO

LV IdNIL dVEMNN YO

JLNGINLLY YD Jo 8zis ay1 Aq papiaIp aingue ay Jo Jusuodwod usTanfeAn ay) si Aeire ayy
Ul sanque Jo Jaquinu ay L “paddeim aq jouued yazew jou op ey) skey| ‘Ao Buiddeim siyy Buisn paddeim skey Aue 1surebe yorew oy arejdwa) anquire ayL "sAey Buiddeim to4

dld "3LNGIMLLY MO

ALY IdNIL dVEM WIO

INYL MO 0119S AILSNUL HLIM dVHM YXO Uim sAay dem o) pasn aq ued Aoy Buiddeim ay L Joogg Mo Q3LSNYL WD
"INYL IO 01198 ILSNYL VMO Sey Jeys Aoy buiddesm e yum paddem aq Ajuo :mom_ M._V_,\MEVH_Q mﬂmm@um 70088 50 GILSNALHLM dVaM VIO
N9y Aoy Reire a1kg ANTYA NOIHD VMO

INYL O 0119S aINgUie 318VLOVHLXT WM Yl pey Janau sey A Ji INYL MO Joogg Mo 318VLOVHLXT YIAIN VIO

INYL XD 03 18s ainquie JAILISNIS VMO ayi pey shempe sey Ay Ji INYL MO 7100849 Y0 JALLISNIS SAVM TV VX0

paddem aq ued pue s|qeioenxs s Aoy)l INYL MO J0089g M0 379VLOVHLXT WO

(s/e Jayio desmun 03 pasn aq ued ') Buiddesmun spoddns A3 Jl INYL MO Joogg Mo dVIMNN WD

(sAey Jayio deim 03 pasn aq ued *a'1) Buiddeim spoddns Aoy J1 INYL MO Jjoogg Mo dVIM YYD

®elep ay) 0} xipuadde ue si ainreubis ay) a1aym (Sapod uonednuayine Jo “a'1) uonedlaA suoddns Asy Jl INYL MO 70099 MO AJIMIA WO
eyep ay) 01 xipuadde ue si ainjeubis sy aieym (sapod uoneanuayine a°1) saunjeubis spoddns Aoy i INHL MO J00899 MO NOIS™YMO
uondAioap suoddns 48X Jt INYL MO 700849 MO 1dA¥O3d WO

uondAous spoddns Ao)t INYL MO Joogg Mo LdAYONT WXO

(3Sv4 30 nejap) aAsuss s1193[00 Jl INYL MO J00849 Y0 IAILISNIS WO

"IdAL WSINVHOIN MO
J0 9z1s ay) Aq papIAIp ainquie 8yl Jo jusuodwod usTeaNEAIN Yyl SI Aeire ayl ul Swisiueydaw Jo Jaquinu ayl ‘A8 SIYl YIm pasn aq 0] pamoje swisiueydsw Jo 1Sl v

Yld IdAL WSINVHOIW MO

SWSINVHOIW d3IMOTIV MO

‘JeLiaew As) ay) apelaush 0} pasn WsiUBYIBL U} JO JaHUSP|

IdAL” WSINVHOIW O

WSINVHOIW “NI9 A3 WD

INYL XD 0119 aNgUIe TYO0T YHO SH Pey yaiym Ao e Jo Adoo e se |[ed 193lqoAdoD O & yum pajeald -

Ireo uredAayerelauas) D 1o Aayaressus O e yum (Usxo) ayi uo “a°1) Ajfeao| paressuab - 10099 MO IVO0T WO
aye sem Aoy Ji Aluo INYL MO
(3S1v4 D)neyap) auo SIY) Wolj PAALIBP aq Ued SASY Jaylo Ji “a'1) uoeAuap Aey suoddns Asy y ANYL MO Joo09g MO ENEECRYe]
(fdwi yneyap) Ay ayy oy ajep pu3l 31va Mo 31va aN3 WMO
(fdws yneyap) Ao ayy Joj aep LelS 31va Mo 3LVA LUVIS WMO
(Adwsa ynejep) Aoy 1oy Jaynuapl Aoy Aeire a1hg arwo
Ko Jo adAL IdAL AN MO IdAL AIN WO
“(fdwsa ynejep) 108(qo ays jo uonduosaq Buis 622044 J3gv1 w0
‘INYL MO st inejea — -
R W ST W SIS 710088 X0 318VIHIGON VMO
Aum.—ao 3} JO saIngliire 1sylo JO sanfeA syl uo Ucmnmu Aew pue ,oc_umnm -Ua)0] SI anfeA jjnejeq
710088 Mo JLYAIMd WD
‘108[qo areAnd e s1308(o J INYL MO
ESZERERLETN]
"198[qo uoISSas e s1308(00 Jt ISV MO 700849 M0 NIMOL WO
1193[qo ua0) e S1199[q0 J1 INYL MO
Buiueay adA] ereq a1nquUNY
anjeA
sainguny
AN LIOIS OMO SSV10 103rd0 MO

uon!

1§9p Sse|D

s103[qO A8y 181983

Table A.11: Secret Key Objects in PKCS # 11 (1 of 2)

A. Documentation

114

109[qo A8 19199s 8y} Jo adA) A3 ay1 yum pareroosse (g3 “H'9) apow
pue Jaydio Jnejep ayy Buisn ‘sa1hq (00X0) IINU Jo ¥20]q ajuls e jo uondA1aus ue Jo salkqg aaiys 1suly 8y Buiel Aq 193(go A8 By Wwouy paALIBP SI AINGLITE SIY) JO aNfeA 8y} ‘uoniuLap 199(qo ayy o) payidads asIMIBYI0 SSajuN

anfeA-ou Buikiddns Ag ‘@inquire ayy Aosisep 0) pasn ag Aew aneAINGUIVISS O ‘BNEASINGUIVISD O
Buisn ainquire Jayio Aue ax swn Aue Je anfea ay) Aienb ued uoneoydde ayyl ‘Anua (ybus| 0) anfea-ou e se arejdwal ayy ul anquie ay) buikiddns uoeaydde auyy Aq pejuensid aq Aew ADM 8y Jo uonessusb ayl

‘os[e paAasaid are saIngLe ay) a1aym
desmun pue deim £33 Jo sasodind ayy oy ainquie Jaylo Aue axi| pareal) aq 0} aiNguUie 8yl SMojfe pue ey ou seop Aem siy arejdwa) ay) ul anqgupe ayy buimojly) aioubl pinoys I uayl ainguie ayy uoddns jou seop
Arelql U JI *AITYANI INTVA ILNGIMLLY HMD e suinjal Areuq) ay) Jo 8q 0))1 Sajenofed Areiqi 8y feym yarew isnw ji ‘papoddns Ji ‘uayl (Aressadau Jansu ing pamoje) arejdwia) uoneoydde ayy ul payddns si enfeae j|

“(3STIVA YO 01198 S| LAAHONT VMO Udym "3'1) uappiq.oj
sI Aoy auy Joj uonesado uondAious ay) Ji uane palddns aq |feys 3 "PaALIBP 10 pareald si 193(qo Aoy ay) moy Jo ssajprebal Al ayl Aq panddns skempe siI ainquire ayl Jo anfeA ay) payoddns Ji Ing reuondo s ainguie ayL

‘9|qissod Inq (parejnofed aq Ajisea ued Ayjiqeqoad ay) A@xun St SIUL “INTVA MOIHD WHMD SWes ay) aney ued sA8X Juaapip om L ‘ssauanbiun-uon -
‘anfen A8y ayy Jo ured Aue ureigo o3 ajgesn aq Jou pinoys INTIVA MOIHD WM -
‘feanuapl 8q pinoys anquie siy} Jo anfea ay) feanuapl AjeaiydesfodAid are yeyy sAay om) 1o -

:sanuadoid

‘swiyiobe
ADM 10} sadAy Aoy oyoads Jo suoniuyap 193lgo 0) Jajey "dnyoeq woly a10)sal 10 Anua Aoy fenuew Jaye 2ayd A A B Se pue ‘paseys S| A3y awes ay) aleym swalsAs Jaylo jsurefe sAa) dLIBWIWAS }9aU9-SS0ID
0) pasn aq 0) papualul a1e AayL "oy ay) Jo wnsxdayd Jo ‘uudiebuly e oy serelado ‘saihq € yibus| ‘Aeire 914q adA) Jo ‘TNTVA MOIHD VXD Pajfed aq 03 s193[qo Aoy dulewwAs 1oy ainquie (ADM) anfeA 329yd Aoy ayL

*£93 Jo adA) yey) BuigLIOSap LONIAS BU) Ul B|ce} dINGLINe By} Ul A3y 19199 Jo adA) yoes 10) paiioads S|
o.1e 90U} SAINGLITE LIIY M "USX0) 8Y) SPISING Ixejure|d Ul pafeanal aq Jouued Ay 19109S 8y} JO SaINLIe UleLad Usy) ‘IS4 MO SI ainguie 31aV.LOVHLIXT WYMO 8y Ji 1o ‘INYL MO St anguie IAILISNIS VIO aup Ji

S910N

Secret Key Objects in PKCS # 11 (2 of 2)

Table A.12

115

A.2. PKCS #11 Objects Reference

91edly111a2 Jo adAL

IdAL ILVOIHILHID MO

IdAL ILVOIHILYID VMO

“(fdwsa yneyep) 198(go ayy jo uonduasag

Buiis 6,220

73avT WO

‘INYL MO st inejad

N (G 50 1 SIS Jjoo8gg Mo 37aVI4IAON VYO

193[qo 8} JO S8INqLIE JBYI0 JO SaNfeA 8yl uo puadep Aew pue ‘aiy12ads -Usxo} sI anfeA ynejeq

"193(go oyignd e s1199(go Jl ISV MO Joogg Mo EIVZASE Rt}
1193(qo arenud e s1199(00 1 INYL MO

"3STv4 3D stinejed B B

308[qo uoIssas e s1198[qo Jl ISTVH MO 700899 30 NINOL VMO
1108[qo U3l e S1108(q0 Jl INYL MO

Buiueapy adA] eleq saINquUNY

(fdwsa yneyap) “Jaquinu [euds aredlyLdd ay) o Buipodus-y3a Keny akg YIGWNNN TIVIYIS VYO
(Adwsa ynejep) Juaiaip are Bulpodsus pue XejuAs T'NSY 8yl asnedsaq — -
S91RIYILBI BOS X OMD Ul paureluod aingupe ¥INSSI WM dy) wouy Jounsip St SIyL Pl 18nss| S,91eaiiad ainguie ay) jo Buipoous-y3aq feuy kg d3NSSI OV W0 1430 ¥LLY 605 X OMO
“JusJaIp are BuIpodUS pue XejuAs T B} asnesaq Saredyad _
— _ wasslp IPOSUS pue XejuAs T°NSY au} G Soreoyn feuy a1kg YANMO VMO
605 X OMO Ul paurejuod ainquie 1O3CENS WMO @Yl woy Jounsip si SiyL "pjy 108fqns s,ereoyied ainquie ay) jo Buipoous-y3a
AN oMan
dwe Jnejep) Ao 21gnd Jenssi ay Jo ysey T- Keure o _ Z _
(Aidws ynejop) Ao 1941 JO ysey T-vHS g TR MR TGS
PENEEOEN
(fidws nejep) Aex agnd 198fgns ay Jo ysey - Keure o (i _
(fidwa ynejep) As3 dand 308[ans ayp Jo usey T-vHS g ISR L MR GE)
paurelqo aq ued a1edalad 939|dwod sy aeym TN ayl seAb ainquie siyl Adwa jou J| Buws 6,224 4N WO SILM OMO
9182111139 8Y) JO BuIPodUS-STLM Keure a1hg INTVA WD
(Adwsa ynejep) Jenssi 81ealnIad ay) Jo (2dA) Jaynusp|) bulpodus-STLM Keure o1hg ERISS R
109[gns a1ea}1I99 AU Jo (9dA) Jaynuap|) BuIPOdUS-STLM Keire a¥hg 123raNs w0
— NIVWOd
Jed payl = € ‘Jojesado = g ‘Jainjoejnuew = T ‘(aNfeA Jnejep) payoadsun = @ :urewop ANNJas ene s = —
Avred payy = € “on 2 ‘4aimoey T ‘(anfen nejap) pay: 0 :urewop Ay dain enep ONOTIN 3O ALIMNO3S daIN YAYE YD
FENES)
dwa ynejep) Aoy algnd Jenssi sy Jo ysey T- Keure o _ Z _
(Aidwa ynejop) Ao 19U JO ysey T-vHS g 8N4 H3NSSI 40 HSYH WSO
A OInand
Adwa ynejep) Aoy a1gnd 108lgns auy) Jo ysey T- Keure o - (i _
(A nejap) Ao aqnd 199lq Ui JO ysey T-vHS 2] 10308NS 40 HSYH W30
(fidwia ynejop) paureIco aq ued a1ealiliad 939jdwod auy) aiyM TN au SaAIB anguie siyl Adwsa ou 4| Buuns 6.22044) 605 X MO
alealyad ay) Jo Buiposus-y3g Kelre a1hg ANTVA WO
(Adwa ynejop) Jaquinu [eLas a1eayIad auy Jo Bulpoous-y3a Keire a)hg HIGWNN TVIYES WD
(Adwa Jnejop) awreu Janss| a1eaILBD aY} Jo Bulpodus-¥3q Keure a1hg RERSS o)
(Adws yneyep) red Aoy arealrd/algnd 1oy taynuapl Aoy Aelre a1kg arwio
aureu 10afqns a1eayniad ay Jo Buipoous-y3a Keure a1hg 1030aNS vX0
Buiueapy adAL ereqg aNquUNY _ _
3dAL J1VOIdILE3O MO
anfeA
sa1ngly
(fidw Jjrejop) @7eay1IRD BU) 40} BFep pu3 alva Mo 31va AN3 VMO
(fidwsa ynejep) 8720Y1IB0 BU) IO} BTep LEIS 3LVYA MO 31VA LYVLS WIO
winsX93y9 Keire kg INTVYA HOIHO WHO
Amnus Jeyio = € ‘Auoyine =z “1asn a0l = T ‘(9nfeA Jnejep) paiivadsun = 21 Y} Jo uoezLoBaeD ONOTN MO AHO93ALYD FLVOIILEID MO
‘paealo sem 1 ey uoiredlidde sy Joj palsn.) 8q Ued 810 By L Jj0089g MO a3aLsNyL w30

S9Ny uowwod

JLVOI4ILY3D OMD

SSVY10 103rd0o VMO

uoniuyep sse|o

Certificate Objects in PKCS # 11 (1 of 3)

Table A.13

A. Documentation

116

"pajeaud si 199[qo ay} Jelye payipow aq Aew sanguIe SIAAL HLLY YXO Pue YIGWNN TVINIS VYO “HINSSI OV VX0 aul Auo

S1091q0 210D INGUNE 60GX

*JANSSI AU} JO S1eINIBD aUY) o) BuIydIeas uaym pue Aay atenld e Yim a1ealad e a1eja.i0 0} djge 3 0} d|ge|iere si TN ay} Ajuo uaym

huenodw Ajrenonred ase AsyL “Jenssi ay) pue 198fqns ays Jo sAey dignd ayy Jo saysey ayy 8101s 0] Pasn afe saINqUIe AIM OITaNd JANSSI 40 HSYH WD Pue A3 2I1and 103AraNS 40 HSYH WD 8yl

*SJUSWUOJIAUS
BJIqow Ul pasn ualo SI 37eald 339|dwod Ay Jo pealsul THN e Jo afelolS Jasi a1edyIad By} JO Peajsul punoj g Ued aJedyiliad ay) aldaym THN a3y} Jo abelols 1oj uoddns ay) sajqeud ainqguie THN VMO Byl

[S7.LM] ur punoy ag ued sanguie INTYA™ WHO Pue ‘YINSSI VXD ‘LOICENS™ VXD au) o} Buipoous sy

‘pareald usaq sey 193[go sy Jaye palypow g Aew anguie YINSSI™ VMO aul Aluo

s109lqo
aredyiad Ay olgnd STLM

‘urewiop AINJas daliN BABL B UIM S1edliLiad B Sajeloosse ainguie NIVINOd ALIMND3S ddIN VAVE WXO auL

*JaNSSI 8y} Jo 81eolILB2 3y 1o} Buiyoress usym pue Aoy sreAld e yim s1edlsd e 91e[a.1i02 01 s|ge 3 01 s|de|feAe S| TN ay1 AJuo uaym
huelodw Ajreinoned are Ay L “sanssi ayy pue 193lgns ay) Jo sAsx dand ay) Jo Saysey By B101S 0) PasN ale saNgLIe AIN OINENd HIANSSI 40 HSYH VMO Pue AN OI1gNd LO3rENS 40 HSVH VX0 auL

‘SjuswuoliAue

9|lqow ul pasn uslo Si a1edyiiad ma_QEOU 8y} Jo pesisul 14N e Jo abeiols ‘Jl@S) 91edyilad |yl JO pesjsul punoj aq ued a1edyiuad ayl alsym TN 8|yl Jo abelols lo} 1oddns ay) se|geus anNgue THN WM 8yl

‘MoydA1D Agq paalojus aq jou
1aynuap! 83 8y} ‘SaTRIYINEd 60X O} SUOISUSIXS € UOISISA 3L} Uim Teu 810N (TZrTO4Y) RN paoueyul Aoenlid pue /# SOM Uim Ax

SIy) ybBnouyfe ‘uoisualxe a1edliliad e Yons ul Ialijuspl A8 aul 0] [eanuapl 8q anfeA Al WM aUi eyl papusiul SI)| ‘91ed|1lad ayl ul palLed ag Aew
fedwod Joj are saInque YIGWNN VINIS VXD Pue ¥3INSSI MO auL

Aidwa Jaynuapl Ao ay) anea| Aew uoiedydde ue ‘reinonsed ul 10afgns USAIB e 10} Jaiuap! £33 ay} Jo SsauaNbiuN 8} USAS 10 ‘UOIRIO0SSE SIY) 82104Ud JoU Sa0p Po1dAID ‘19ASMOH *(US0) SWes auy) ul
pa.01s aq |[e Tey) pauinbal Jou si 3 ybnoyl) sAe areald pue dlgnd Bulpuodsa.iod auy o) 8SOY) Se SwWes auy) a4 |[IM SJedl1LSd B o} Jaynuapl Ao pue sweu 193[qns sy} yeyl Aljigesado.siul Jo SISelsiul Y} Ul papuaiul Si 1|

(‘AunBiquwre Aue Burdonpoul INOYIM anfeA Al WM awes ay) aAey Aew s)aa[gns juaiayip 1o} sAay Teyl a|qissod si 3l ‘Iauapl Se |[om Se swreu
109lqns Aq paysinbuisip ase sAax auy) 82UIS) *(Jou IO USY0) SWes ay) Ul Palols Jayeym) 19algns auwres ayy Aq piay sured Aex-arennid/Asy -olgnd ajdiynw BuiysinBunsip Jo suesw e se papusiul SI ainguie dl” WM ayL

‘pareald s1103[qo sy Jaie payipow aq Aew sainguire HIANNN IVIYES VMO PUe *dINSSI WX ‘al” WHD 8yl Aluo

saINguUNY 199[q0 S1BINILSD 605X

“(Aue J) spjaly Ja)e jou, pue ,810§9q jou, PAPOUS S,8JedNId 8}
yorew Jeyl sanfeA 0} Way) 19s 0} ajgisuodsal s| uonedydde ayy Juasaid usyan ‘wayl o} Buiueaw feroads Aue yoene jou ssop poldAID ‘Aluo 8aualsal 1oj ate sanguite 31vA ANT WMO pue J1vad 1¥VIS WMO 9yl

‘aNquie INTYA VMO $1091G0 312011180 BU} JO YSeY L-YHS U} JO SBIAG 891U} 1513 94} BuBie) AQ S1E0LIHS0 SU} WO} PAALSP SI BINGLHE SIY} JO aNIEA 8L :INTVA MOIHO VMO

By} pue 8)nquie AjLoyine aNquUpyelese)uUoWIL0D 8y} uo bulpuadap Amus Jayjo, 10 Ajoyine, A1068jed yum pexlew aq (M 4a0 SeIedyIaD|Nidsn au} Ul o 40 SSJedyiaDPalsNI} 8y} Ul 9Jedyiad v - Josn
uso}, Alofa1ed yim paxsew aq [IIMm 4aO Saledliad 8y} Ul 81edl8d v “Sajedliiliad ay) Jo uoneziobsred sy 01 dew o) pasn aq Jayiehol (m seInguite a3LSNHL VMO Pue AMODILVYD FLVOIHILEID VMO 8yl

‘pajeald s| J0alqo ue Joye payipow a4 jou Aew angune siy| “(Amus Jayjo,) 81eolias Ajijua-pus Jayjo ue Jo
‘(fwouyine,) axeoyuad v e ‘(Jash uaxo),) usxol ay) uo s|qejieAe si Aoy areAld Buipuodseliod syl yalym Ioj 81edliad Jasn B S| 91edljiliad palols € Ji 81edipul 01 pash si alnquile AHO9ILYD JLVIIHILEID WD 8yl

‘PaIPOW 8q JOUURD SBJIILIaD Pa)sSNI] ‘OS S,us0} 8y} Aq Jo uonealdde uonezijeniul usXo)} e Aq 19s aq jsnw | “uonesidde ue Ag INYL MO 03 19S 89 Jouued anNquRe ILSNYL WMD aul

L oo S TL7VV
areayuad Aoy alignd 605X -

-sadf apaunian Biumonor aln suinddns ued K1 10 LIOISIAA S

‘pareald s119a(qo ue Jaye payipou aq jou Aew ainquie IdAL FLVOIHILEID VMO UL

$108lq0 |areayIa)d

S9]0N
"91eoly11Ia0 8y} Jo Bulpoous-y3g Keuy ahg IANTVA VIO
(dwa ymesop) o 1430 ULLY 605 X OMO
*Jl@s) aredyed ayy Buisred pue Buiyole) INOYIM SIS SINqLe senaiied e o) yoreas o} suonedldde oy Ayunioddo ue sieyo pialy Reny a1Ag S3AdAL HL11V WO
SIY} ‘Juasald uayAn “81edliiad ay) ul paureiuod sadAl amnguire ayl 0) Buipuodsaliod senfeA Jaynuspl 193qo Jo aousanbas e Jo Buipoous-y3g

Certificate Objects in PKCS # 11 (2 of 3)

Table A.14

117

A.2. PKCS #11 Objects Reference

{(ere011192)J092IS ‘a1 ‘INTVYA VMO}
{(1oumo)j09zIS ‘18UMO "HINMO V)O}
{1-(I0e1)j09zis ‘ace] 138V T VXO}
{(enn)j0szis ‘anirp ‘NIMOL WX}
{(edA11120)j0021s ‘2dA 111897 ‘AL ILVOIHILHID WNO}
‘{(ssep)j0azis ‘ssejow ‘'SSY10 VMO}
} = [ereldwar 3LNGIYLLY MO
3NYL MO = ann 10089 MO
{7} = [lereoynad 31A8 MO
'} = [lloumo 31 A8 XD
1.108[qo arealNIRd BINqUIe uv, = [Jlge] YYHO84LN MO
1M30 YLLY 605 X OMO = 8dAL180 IJAL ILVOIHILHIAD MO
2LYOIHILYID OMO = SSBJP SSY10 L03rdo MO

S108[q0 81edNIdD SINCUIE 60G X

{(ereoyiIa0)j002IS ‘910N ‘FINTVA WM}
{(0algns)joazis algns ‘103raNS” WHO}
{1-(I9qre1)j09zis ‘foce] 138V YXO}
{(ann)j08zis ‘anupg ‘NINOL WMO}
{(edA11182)j0021s ‘8dA11189% ‘JAAL FLVOIHILYFD WMO}
{(sselo)j09zIs ‘sselOR ‘SSYID WMO}

} = [leredwal ILNGIYLLY MO

3NYL MO = ann 10089 MO

'} = [loveoyiiao 318 MO

{} = hoalans 31A9 M0

£,103[qo ejeoyued v, = [llegel YyHO841N MO

'STLM OMD = 8dA11180 IdAL ILYOIHILHTAD MO

3LYOIHILYID OMO = SSBJP SSV10 L03rdo MO

s109lgo
ayeoyiiad A3y ongnd STLM

{(ereoyn1a2)4092Is ‘arRIYIBD ‘INTVA WHO}
{(p1yoazis ‘pi ‘al” w0}
{(0algns)joazis algns ‘103raNS” WHO}
{T-(I9re1)j09zis ‘foce] 13V T YMO}
{(ann)j08zis ‘anupg ‘NINOL WHMO}
{(edA11182)j0021s ‘8dA11189% ‘JAAL FLVOIHILYFD WMO}
{(ssejo)j09zIs ‘sselOR ‘SSYID WMO}

} = [ereidwa) 31NGIFLLY SO

3NYL MO = 9nn 10089 MO

'} = [loveoyiad 318 MO

feet} = [Ip3LAg MO

{7} = [hoalans 31A8 30

,309[qo ejeoyed v, = [llege] YYHO84LN MO

'60S X OMO = 9dA 1180 IJAL ILVOIHILYTD MO

'3LVOIHILYIO OMO = SSe|9 SSY10 103080 MO

SaINqURY 193[q0 8yedyniad 605X

sare|dwa] ajdwes

Table A.15: Certificate Objects in PKCS # 11 (3 of 3)

118 A. Documentation

A.3 Plugin Installed in Several Platforms

The following images show our plugin (SmartCardsEveryWhere) being listed as one of the
available plugins in each one of the web browsers: Google Chrome, Mozilla Firefox, and

Microsoft Internet Explorer. We present an image for each supported OS as well.

Google Chrome

[/ # agin A

& c & ‘@ chrome://plugins

c 4% ‘@ chrome://chrome i'."z‘ (W)
Chromium About
Histor .
y. Chromium
Extensions A web browser built for speed, simplicity, and security
Settings
| Get help with using Chremium | | Report an issue |
Help
Version 20.0.1132.47 Ubuntu 12.04 (144678)
Smart Cards Everywhere
Name: Smart Cards Everywhere
Version:
Location: /home/fleoneljbraga/Desktop/Thesis/trunk/source/buildout/build/bin/SmartCardsEverywhere/npSmartCardsEverywhere.so
Type: NPAPI
Disable
MIME types: MIME type Descripkion File ex|
application/x-smartcardseverywhere This plugin exposes to web applications smart cards through a JavaScript API
Disable - Always allowed

Figure A.1: Plugin Installed in the LUbuntu version of Google Chrome

A.3. Plugin Installed in Several Platforms 119

000 5 Plug-ins ® N

&« C #f® | [chrome://plugins

&/ Qs x_

« >C AN ID chrome://chrome

Chrome About

History e Coogle Chrome

Extensions A web browser built for speed, simplicity, and security
Settings | Get help with using Chrome | | Report an issue

Help Version 22.0.1229.94

Google Chrome is up to date,

ryw . H ere 1.0.0.
This plugin exposes to web applications smart cards through a JavaScript APl
Name: Smart Cards Everywhere
Description: This plugin exposes to web applications smart cards through a JavaScript APl
warsion: SmartCardsEverywhere 1.0.0.0
Location: JUsersfleoneljbraga/Library/Internet Plug-
Ins /SmartCardsEverywhere. plugin
Tyoe: MPAPI
Disable
MIME types: MIME type Description File
extensions
apeplicationx- This plugin exposes to web applications smart cards through a JavaScript
smartcardseverywhere AP|
Disable [Always allowed

Figure A.2: Plugin Installed in the Mac OS X version of Google Chrome

120

A. Documentation

f & P A |
~ = C A [chrome://plugins
Smart Cards Everywhere - Wersion: 1.0.0.0
This plugin exposes b web applications smart cards thraugh a JavaScripk APT
Marne: Smart Cards Everywhere
Description: This plugin exposes to web applications smart cards through a JavaScript APT
Wersion: 1.0.0.0
Laocation: CHiDocuments and SettingsiiMr-BravoiDesktopl Thesisitrunk source’ buildout | build| binl SmartCardsEverywhereiDebugi npSmartCardsE verywhere dll
Type: MNPAPT
Lisable
MIME bvpes: MIME bype Dezcription File extensions
applicationx-smartcardsevarywhere Smart Cards Ewerywhere
Disable (] Always allowed?
& Help x -
~ = C A [chromei/fchroms
Chrome About
Histary @ Google Chrome
Extariie & webh browser built for speed, simplicity, and security
Settings | Get hielp with using Chrome | | Report an issue
1 Wersion 22.0.1229.94 m

Figure A.3: Plugin Installed in the Microsoft Windows version of Google Chrome

A.3. Plugin Installed in Several Platforms 121

Mozilla Firefox

@ About Plugins - Mozilla Firefox
File Edit View History Bookmarks Tools Help

{i About Plugins

43 I@ about:plugins

Enabled plugins

Find more information about browser plugins at mozilla.org.

Find updates for installed plugins at mozilla.com/plugincheck.
Help for installing plugins is available from plugindoc.mozdev.org.

Smart Cards Everywhere

File: npSmartCardsEverywhere.so
Version: 1.0.0.0

MIME Type Description
application/x-smartcardseverywhere fThis plugin exposes to web applications smart cards through a JavaScript API

@ About Mozilla Firefox -+ x

Firefox

16.0.1
Mozilla Firefox For Ubuntu
canonical - 1.0

Firefox is designed by Mozilla, a global community working together

to keep the Web open, public and accessible to all.

Sound interesting? Get involved!

Licensing Information End-User Rights Privacy Policy

Firefox and the Firefox logos are trademarks of the Mozilla Foundation.

Figure A.4: Plugin Installed in LUbuntu version of Mozilla Firefox

122 A. Documentation

oV ala

) O About Plugins

J i3 About Plugins u + l

'\j | &0 about:plugins W, | Ig] Ii] Ic_” Iij Iij IEJ IEE]

Smart Cards Everywhere

File: SmartCardsEverywhere.plugin
Version: SmartCardsEverywhere 1.0.0.0
This plugin exposes to web applications smart cards through a JavaScript AP

MIME Type Description

application, x- This plugin exposes to web applications smart cards
smartcardseverywhere through a JavaScript API

_

Firefox

16.0.2

Firefox is up to date
You are currently on the release update channel.
Firefox is designed by Mozilla, a global community

working together to keep the Web open, public and
accessible to all.

Sound interesting? Get involved!

Licensing Information End-User Rights Privacy Policy

Firefox and the Firefox logos are trademarks of the Mozilla Foundation.

Figure A.5: Plugin Installed in the Mac OS X version of Mozilla Firefox

A.3. Plugin Installed in Several Platforms 123

'E% About Plugins - Mozilla Firefox

Eile Edit Mjew History Bookmarks Tools Help

:: About Plugins | et

L (- tﬁf about:plugins

x|
Firefox

16.0.1
Firefox is up ko date

‘fou are currently on the release update channel,

Firefox is designed by Mozilla, a global community working
together to keep the Weh open, public and accessible to all.

Sound inkeresting? Get involved!

Licensing Information End-Lser Rights Privacy Policy

Firefoo and the Firefor logos are tradermarks of the Mozilla Foundation,

Smart Cards Everywhere

File: npSmartCardsEverywhere, dl
Version: 1.0.0.0
This plugin exposes ko web applications smart cards through a JavaScript APT

MIME Type Description

application/x-smartcardseverywhere mart Cards Everywhere

Figure A.6: Plugin Installed in the Microsoft Windows version of Mozilla Firefox

124 A. Documentation
.
Microsoft Internet Explorer
Entretenimento, Celebridades, Misica, Cinema, Desports, Jogos, Vide! INETES
[\ hetpsipt msn. comfocideiefurt =l B 42l | [2 tive searen [2]-]
Fle Edi Wiew Favorkes Tools Help
Manage Add-ons x|
Wiew and manage your Internet Explorer add-ons
Add-on Types MName | Application = | Publisher | Status | Twpe ;I
@ Toolhars and Extensions = Shockwave Flash Chject Internet Explorer Adobe Systemns Incorporated Enabled Active) Contral
- Search Providers {Not verified) MULTICERT - DI-UM
=l b rralarstrre LI
Shiowr:
|AH add-ans j 4

This plugin exposes to web applications smart cards through a JavaScript APL
(MNot verified) MULTICERT - DI-UNM

Wersion: 1.0.0.0

File: date:
Mare infarmation

Find more toolars and extensions...
Learn more about toolbars and extensions

Type: Activex Control
Search for this add-on via default search provider

Disable
Close:

Figure A.7: Plugin Installed in Microsoft Internet Explorer

A.3. Plugin Installed in Several Platforms 125

	Introduction
	Motivation
	Goals
	Contribution
	Dissertation Outline

	Related Work
	Web Browser Access to Smart Cards
	Smart Card Access Libraries
	A Short Introduction to PKCS #11

	Developing a Web Browser Plugin
	Tampering Detection and Vulnerability Containment
	Code Signing
	Application Sandboxing

	Summary

	Plugin Development
	Designing the Solution
	Smart Card Access
	Plugin Development
	Implementation

	API Design
	Methods
	Attributes
	Events

	The Firebreath Framework
	Requirements
	Development Life Cycle of a Firebreath Plugin
	Using the Firebreath Framework

	Implementation
	Plugin Usage
	Plugin Experimentation
	Output Examples

	Summary

	Security Analysis
	Source Code Analysis
	Attack Trees
	Modelling Possible Attacks to the Plugin

	Maintainability Analysis
	Summary

	Conclusion
	Documentation
	JavaScript API
	PKCS #11 Objects Reference
	Plugin Installed in Several Platforms

