
Universidade do Minho
Escola de Engenharia

Leonel João Fernandes Braga

Web Browser Access to CryptographicHardware

Outubro de 2012

Universidade do Minho
Escola de Engenharia

Leonel João Fernandes Braga

Web Browser Access to CryptographicHarware

Outubro de 2012

Tese de Mestrado
Mestrado em Engenharia Informática

Trabalho realizado sob orientação deDoutor Vítor Francisco Fonte
Supervisão na empresa deEngenheiro Renato Portela

Acknowledgments

I could not conclude this work without acknowledge all the support, time, and understanding

of all the people who have been around me during this phase and during my journey of life.

I am sure that without them everything would be much more difficult, and the success would

be harder to achieve.

First of all, I want to thank to my supervisor Professor Victor Fonte for being so helpful and

supportive. His guidance certainly improved my work and my knowledge as well. I want also

to thank to Engenheiro Renato Portela from MULTICERT for enlightening me when I was

more doubtful.

A special thanks to MULTICERT for letting me enrol in this project: it made me grow

professionally and enhanced my knowledge.

I want also to thank the Firebreath community for clarifying all the doubts I had. Congrat-

ulations for your great work as well.

In this context, there is one person to whom I could not be more grateful: Pedro, thank

you for your help and patience, even when I had lots of questions. I am also grateful for the

discussions I had with Pedro and Ulisses: they gave me lots of ideas of how I could improve my

work. I want to thank Vasco for introducing me to jQuery and for providing his experience

building beautiful websites. Thanks for your friendship as well.

A humble and sincere thanks to Joana’s Family for giving me a second home.

A special and kindly thanks to my family, to whom I will always be in debt and grateful for

all the opportunities and support they gave me in each step of my life. Thank you, my little

sister Joana for your help.

At last, but not least, I wish to express my gratitude to Joana for kindly supporting me with

her sympathy in every moment.

iii

iv

Abstract

Web Browser Access to Cryptographic Hardware

Cryptographic hardware such as Smart Cards (SCs) is being deployed globally in an in-

creasingly broader spectrum of information services, credit and debit banking cards being a

pervasive example of this trend. At the national level, the Portuguese Citizenship Card (PCC)

is a high profile example of this technology, allowing users to do online authentication at the

government Internet-based services. Despite this increasingly common scenario, web browsers

— expect those from the Mozilla Foundation — still have limitations when accessing cryp-

tographic hardware due to the absence of a standard — or at least uniform — mechanism

accessible to the programming logic embeddable in web pages.

In this project we propose a new mechanism to address such limitations, which will expose

SCs to web applications in a clean and uniform way among web browsers. This mechanism

is formed by two main elements: a web browser plugin, and a JavaScript (JS) Application

Programming Interface (API). The plugin will be in charge of connecting the web browser to

the SC. The JS API, accessible through the web browser plugin, will expose the SC features

to web applications.

With the conclusion of this project we managed to successfully create a web browser plugin

which allows web applications to access SC related features, such as the creation of Digital

Signature (DS). In our tests we were able to use and check all the features of the plugin

across several web browsers (Google Chrome, Internet Explorer, and Firefox) and operating

systems (OSs) (Ubuntu, OS X, Windows). The security analysis that we performed helped

us identify the likelihood of possible attacks which could led malicious agents to gain access

to the users’ computers, or get their personal and sensitive data.

Keywords: Web Browser Plugin, Cryptography, Smart Card, Public-Key Cryptography

Standards, PKCS#11, Web Applications

v

vi

Resumo

Acesso a Hardware Criptográfico via Web Browser

O hardware criptográfico, como é o caso dos Smart Cards (SCs), tem vindo a ser utilizado num

espectro cada vez mais amplo de serviços de informação, sendo os cartões de crédito e de débito

um exemplo desta tendência. A ńıvel nacional, o Cartão de Cidadão constitui um exemplo

notável de aplicação desta tecnologia, permitindo aos utilizadores efetuar a sua autenticação

online em serviços do governo presentes na Internet. Apesar destes cenários serem cada vez

mais comuns, os browsers web — à excepção daqueles provenientes da Fundação Mozilla

— possuem limitações no acesso ao hardware criptográfico, devido à inexistência de um

mecanismo padrão — ou pelo menos uniforme — dispońıvel para a programação de aplicação

web.

Neste projecto, propõe-se um novo mecanismo para resolver as limitações citadas, através de

uma exposição dos SCs a aplicações web de uma forma clara e uniforme entre os browsers

web . Este mecanismo é composto por dois elementos principais: um plugin para o browser

web e uma Application Programming Interface (API) em JavaScript (JS). A ligação entre

o browser web e o SC é estabelecida pelo plugin mencionado. A interface em JS, acesśıvel

através do plugin do browser web , expõe as caracteŕısticas do SC às aplicações web.

Neste projecto desenvolveu-se com sucesso um plugin para browsers web que permite o acesso

das aplicações web às funcionalidades do SC, como a criação de uma Assinatura Digital. Nos

testes desenvolvidos, foi posśıvel utilizar e verificar todas as funcionalidades do plugin em

vários browsers web (Google Chrome, Internet Explorer, and Firefox) e sistemas operativos

(Ubuntu, OS X, Windows). A análise de segurança realizada permitiu identificar a possibili-

dade de existência de locais de ataque que agentes maliciosos podem potencialmente utilizar

para aceder aos computadores dos utilizadores, ou obter os seus dados pessoais.

Keywords: Web Browser Plugin, Criptofrafia, Smart Card, Public-Key Cryptography Stan-

dards, PKCS#11, Aplicações Web

vii

viii

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Goals . 3

1.3 Contribution . 5

1.4 Dissertation Outline . 6

2 Related Work 7

2.1 Web Browser Access to Smart Cards . 7

2.2 Smart Card Access Libraries . 10

2.2.1 A Short Introduction to PKCS #11 . 12

2.3 Developing a Web Browser Plugin . 17

2.4 Tampering Detection and Vulnerability Containment 19

2.4.1 Code Signing . 20

2.4.2 Application Sandboxing . 24

2.5 Summary . 28

3 Plugin Development 31

3.1 Designing the Solution . 32

3.1.1 Smart Card Access . 32

3.1.2 Plugin Development . 33

3.1.3 Implementation . 34

3.2 API Design . 38

3.2.1 Methods . 39

3.2.2 Attributes . 41

3.2.3 Events . 42

3.3 The Firebreath Framework . 42

3.3.1 Requirements . 43

3.3.2 Development Life Cycle of a Firebreath Plugin 44

3.3.3 Using the Firebreath Framework . 48

ix

x

3.4 Implementation . 53

3.5 Plugin Usage . 56

3.6 Plugin Experimentation . 61

3.6.1 Output Examples . 63

3.7 Summary . 67

4 Security Analysis 69

4.1 Source Code Analysis . 70

4.2 Attack Trees . 71

4.2.1 Modelling Possible Attacks to the Plugin 72

4.3 Maintainability Analysis . 76

4.4 Summary . 83

5 Conclusion 85

A Documentation 93

A.1 JavaScript API . 93

A.2 PKCS #11 Objects Reference . 103

A.3 Plugin Installed in Several Platforms . 118

List of Figures

1.1 Mechanism Overall Structure . 4

2.1 Availablele Libraries for SC Access . 10

2.2 General Cryptoki Model . 13

2.3 Read Only Session States in PKCS #11 . 13

2.4 Read Write Session States in PKCS #11 . 14

2.5 Objects Hierarchy in PKCS #11 . 14

2.6 Available Techniques for Developing a Web Browser Plugin 19

2.7 Abstract Representation of Code Signing . 21

2.8 Representation of a System Using Sandboxing 25

3.1 JS API Interface . 38

3.2 The getAvailableItems / getItemInformation Procedure 40

3.3 Firebreath Development Cycle . 45

3.4 Class Diagram of the Plugin . 54

3.5 File Structure of the Plugin . 55

4.1 Attack Tree - Open Safe . 72

4.2 Attack Tree - Create Digital Signature . 73

4.3 Attack Tree - Collect User Data . 74

4.4 Attack Tree - Compromise the Plugin . 74

4.5 Attack Tree - Impersonate a Trustworthy Web Application 75

A.1 Plugin Installed in the LUbuntu version of Google Chrome 118

A.2 Plugin Installed in the Mac OS X version of Google Chrome 119

A.3 Plugin Installed in the Microsoft Windows version of Google Chrome 120

A.4 Plugin Installed in LUbuntu version of Mozilla Firefox 121

A.5 Plugin Installed in the Mac OS X version of Mozilla Firefox 122

A.6 Plugin Installed in the Microsoft Windows version of Mozilla Firefox 123

A.7 Plugin Installed in Microsoft Internet Explorer 124

xi

xii List of Figures

List of Tables

3.1 Initial Source Code Structure . 54

4.1 Mapping between the characteristics of the maintainability and source code

properties . 78

4.2 Lines of Code per Language in the Plugin Source Code 78

4.3 Conversion Factors to Man Years, and Man Years per Language of the Plugin

Source Code . 79

4.4 Evaluation of the Volume Metric of the Plugin Source Code 79

4.5 Categories of Risks in Complexity per Unit . 79

4.6 Ranking the Complexity per Unit . 80

4.7 Repeated Lines of Code in the Plugin Source Code 80

4.8 Ranking the Duplication . 80

4.9 Categories of Risks in Unit Size . 81

4.10 Ranking the Unit Size . 81

4.11 Lines of Code Covered . 82

4.12 Ranking the Coverage . 82

4.13 Overall Results of the Maintainability Analysis 82

A.1 Documentation of the JS Interface of the Plugin 103

A.2 Hardware Feature Objects in PKCS # 11 . 104

A.3 Mechanism Objects in PKCS # 11 . 105

A.4 Storage Objects in PKCS # 11 . 106

A.5 Data Objects in PKCS # 11 . 107

A.6 Domain Parameters Objects in PKCS # 11 . 108

A.7 Private Key Objects in PKCS # 11 (1 of 2) . 109

A.8 Private Key Objects in PKCS # 11 (2 of 2) . 110

A.9 Public Key Objects in PKCS # 11 (1 of 2) . 111

A.10 Public Key Objects in PKCS # 11 (2 of 2) . 112

A.11 Secret Key Objects in PKCS # 11 (1 of 2) . 113

A.12 Secret Key Objects in PKCS # 11 (2 of 2) . 114

xiii

xiv List of Tables

A.13 Certificate Objects in PKCS # 11 (1 of 3) . 115

A.14 Certificate Objects in PKCS # 11 (2 of 3) . 116

A.15 Certificate Objects in PKCS # 11 (3 of 3) . 117

List of Examples

2.1 Definition of a PKCS #11 Object Template . 15

2.2 Definition of a PKCS #11 Attribute Template 16

2.3 Initializing the Cryptoki . 17

2.4 Getting Information about a Token in Cryptoki 18

3.1 How to define a new method in Firebreath . 49

3.2 How to register a new method in Firebreath . 49

3.3 How to register a new attribute in Firebreath . 50

3.4 How to define a new property in Firebreath . 51

3.5 How to register a new property in Firebreath . 52

3.6 Event creation syntax in Firebreath . 52

3.7 How to create a new event in Firebreath . 52

3.8 How to fire an event in Firebreath . 53

3.9 Excerpt of the class IEventHandler . 55

3.10 Cross platform support creating mutex . 56

3.11 Loading the Plugin into a Web Application . 57

3.12 Simplying the Calls to the Plugin . 57

3.13 Initializing the Plugin . 58

3.14 Structure of an Exception thrown by the Plugin 58

3.15 Common Steps Towards a Digital Signature Creation 60

3.16 Enabling Slot Events in a Web Application . 62

3.17 Output Example of a Digital Signature . 64

3.18 Ouput Example of a X.509 Public Key Certificate 65

3.19 Subject of a X.509 Public Key Certificate . 66

xv

xvi List of Examples

Acronyms

APDU Application Protocol Data Unit

API Application Programming Interface

CA Certificate Authority

CDSA Common Data Security Architecture

CSSM Common Security Services Manager

DS Digital Signature

DOM Document Object Model

DER Distinguished Encoding Rules

GPG GNU Privacy Guard

IDE Integrated Development Environment

JS JavaScript

JVM Java Virtual Machine

JCWS Java Card Web Servlet

LOC Lines of Code

MAC Message Authentication Code

MY Man Years

NPAPI Netscape Plugin Application Programming Interface

NaCl Native Client

xvii

xviii List of Examples

OS operating system

PPAPI Pepper Plugin API

PIN Personal Identification Number

PCC Portuguese Citizenship Card

PKC Public-key Cryptography

PKI Public-key Infrastructure

PKCS #11 Public-Key Cryptography Standards #11

SC Smart Card

SCR Smart Card Reader

STL Standard Template Library

SSL Secure Sockets Layer

TLS Transport Layer Security

W3C World Wide Web Consortium

Chapter 1

Introduction

Cryptographic hardware such as Smart Cards (SCs) are present in several services of our

everyday life, such as public transportation and telecommunications. These small devices

allow us to carry our personal information in a portable and secure way.

A typical SC has an integrated circuit, embedded in the card body, capable of transmit,

store and process data [Rankl and Effing, 2004]. In its design we can identity three layers,

from hardware to software, which can control the access to the data, protecting it against

manipulation and unauthorized access [Selimis et al., 2009, Rankl and Effing, 2004]. At the

bottommost layer is the hardware, transparent to users, with the following parts: a microcon-

troller, RAM, ROM, EEPROM, a Coprocessor, and input/output interfaces. The operating

system (OS) is in the middle and manages the resources. The topmost layer corresponds to

the Smart Card applications [Selimis et al., 2009].

The tamper-resistant properties of SCs make them an ideal device to use in Public-key Cryp-

tography (PKC). SCs can safely store either public key certificates and private keys, and they

have built-in cryptographic algorithms to encrypt and decrypt data, and even to create Digital

Signatures (DSs) [Adams and Lloyd, 2003]. The multifactor entity identification is also one

of the major advantages of using SCs in PKC. A multifactor identification scheme requires

users to have a valid public key certificate stored inside a SC — the what-you-have factor

— and this user must know the Personal Identification Number (PIN) needed to unlock the

SC — the what-you-know-factor. This scheme can identify — with a high level of assurance

— users of a given system, addressing some identity theft attacks related to password-based

authentication [Aussel, 2007, Lu and Ali, 2010].

Thus, the adoption of SCs is a natural step in many services to enhance the overall system’s

security. In Health Care a SC can be used to safely store patients’ records. Mobile commu-

nications corporations use SCs to identify its clients, every time they use their cell phone or

1

2 1. Introduction

their USB modem for wireless Internet. Some online services, such as e-Government or home

banking, are also using SCs to protect the end-user identity credentials [Sauveron, 2009].

At the national level, the Portuguese Citizenship Card (PCC) is a high profile example of this

technology. Currently, each Portuguese citizen owning one of these SCs can authenticate at

online e-Government services digitally signing files, using both the authentication and signing

certificates present in this device [Agência para a Modernização Administrativa, 2008]. This

operation has the same legal value as a hand-written signature due to the cryptographic

properties of a DS [Adams and Lloyd, 2003]:

• authentication, it is possible to identify precisely who created the signature;

• integrity, any alteration to the document violates the signature;

• non-repudiation, the signer cannot deny the signature.

1.1 Motivation

Smart cards are being globally deployed in an increasingly broader spectrum of information

services. However, web browsers still have limitations when accessing SCs due to the absence

of a common standard — or at least an uniform — mechanism accessible to the programming

logic embeddable in web pages.

The Public-Key Cryptography Standards #11 (PKCS #11)1, also known as Cryptoki, is a de

facto standard created by the RSA Laboratories2 which defines a uniform and cross-platform

Application Programming Interface (API) to SC. This standard specifies in an object-based

approach a high level mechanism to either inspect the cryptographic contents, or to perform

cryptographic operations on SCs, among many other functions.

Usually the vendors of SCs compliant with this standard, supply a module that can be

used by software developers to connect applications with the cryptographic device. Besides

the modules deployed by software vendors, there is a community-driven open-source project

named OpenSC 3 that supplies libraries and utilities to work with SCs. This software is

available for all platforms and has support for many SCs, such as the Portuguese and Estonian

Citizenship Cards4. Among all the utilities and libraries there is also a PKCS #11 module

that can be used in all major OSs to access SC.

1http://www.rsa.com/rsalabs/node.asp?id=2133
2http://www.rsa.com/
3http://www.opensc-project.org/opensc
4http://www.opensc-project.org/opensc/wiki/SupportedHardware

http://www.rsa.com/rsalabs/node.asp?id=2133
http://www.rsa.com/
http://www.opensc-project.org/opensc
http://www.opensc-project.org/opensc/wiki/SupportedHardware

1.2. Goals 3

In order to access SCs, web application developers have been deploying custom software —

like Java Applets and ActiveX Controls — that take advantage of the SC. Usually these

solutions lack portability, forcing users to work with a particular — often unfamiliar — web

browser and OS in order to successfully access each particular service, and thus compromising

the cross-platform compatibility of a web application.

The absence of a standard mechanism to access SC forces web application users to resort to

distinct software packages, according to which specific SC and web application they use. This

situation can increase the probability of a security breach, because there are several software

packages being use. An attacker can take advantage of a vulnerability in a plugin, either

by exploiting a flaw in its construction or either by using a known flaw in the technology it

was built — like ActiveX controls. The opportunity for phishing schemes may also increase.

Attackers can lure users to install ill-intentioned plugins similar to the ones they use on a

trustworthy web application, in order to get local, private, important and personal data from

users.

1.2 Goals

The main goal of this project is to create a mechanism which connects web applications and

Smart Cards. The focus of our work is to expose SCs to web applications in a clean and

uniform way, among OSs and web browsers.

The mechanism that we propose introduces two new connectivity layers between web appli-

cations and SCs in web browsers. The first layer of this mechanism is a plugin which enables

a web browser with SC connectivity capabilities. These Smart Card capabilities will then be

exposed by the plugin to web applications through a JavaScript (JS) API — the second layer.

Figure 1.1 describes at a high level view how this mechanism must work. In order to a web

application access a SC, its clients must have installed on the web browser this new plugin.

The client side of the web application will perform JS requests to the plugin in order to

communicate with the SC. The plugin will interact with the SC using a Smart Card access

library.

As mentioned before, the major goal for this project is to develop a clean and uniform mech-

anism that exposes SCs to web applications. To accomplish this goal we will develop a

web browser plugin that acts as frontend to the available features in SCs. We intent that

this mechanism can be easily ported to several web browsers, and that its functionalities

be browser-independent. In particular, due to MULTICERT requirements — a stakeholder

4 1. Introduction

Figure 1.1: Mechanism Overall Structure

of this project — the plugin must be compatible with the following web browsers: Google

Chrome5, Microsoft Internet Explorer6.

The mechanism should enable a web application to:

• inspect if there is a SC present in the computer;

• get notifications anytime a SC is inserted or removed from the computer;

• get information about SCs, public-key certificates and available mechanisms on the SC;

• create DSs either of data or files.

We will use the PKCS #11 standard as the SC access library, because it can be found in all

major OSs — which can be very usefull to build a cross-platform plugin — and MULTICERT7

requires it.

The PCC will be the proof of concept of this work due to the following reasons:

• any Portuguese citizen has easy access to one of this devices, which makes it easier to

test the plugin with a SC that is being broadly used in Portugal;

• the Portuguese Government supplies a PKCS #11 module and this SC is supported by

OpenSC ;

• among its features, the capability of digitally sign documents, or any other kind of data

is something that will be interesting to provide.

5https://www.google.com/intl/en/chrome/browser
6http://windows.microsoft.com/en-us/internet-explorer/products/ie/home
7https://www.multicert.com/home

https://www.google.com/intl/en/chrome/browser
http://windows.microsoft.com/en-us/internet-explorer/products/ie/home
https://www.multicert.com/home

1.3. Contribution 5

The final task of this project is to perform a exploratory security analysis of the plugin. With

this analysis we intent to:

• find weaken spots that can be exploited by attackers in order to access or manipulate

the user data present in his SC or even in his computer;

• argue which measures can be put in place in order to address the problems we may

found;

1.3 Contribution

In this project we successfully developed a web browser plugin that exposes to web applications

SCs through a JS API. At this point the plugin is able to:

• list the available devices, as well as theirs details;

• get a list of available cryptographic mechanisms;

• get available private and public keys, as well as their details;

• get available public key certificates, as well as their details;

• fire an event to the web application whenever a device is either inserted or removed;

• create DSs;

• create digests.

In our tests we used the PCC and the PKCS #11 module supplied by the Portuguese Gov-

ernment, but we expect that any Smart Card providing a p11 module will be compatible with

the plugin, as well as any other SC supported by OpenSC.

The plugin was successfully tested under the following platforms and web browsers:

Google Chrome Microsoft Windows XP Professional SP3, Mac OS X Snow Leopard, LUbuntu

12.04

Mozilla Firefox Microsoft Windows XP Professional SP3, Mac OS X Snow Leopard, LUbuntu

12.04

Microsoft Internet Explorer Microsoft Windows XP Professional SP3

6 1. Introduction

We expect that any other browser which supports the Netscape Plugin Application Pro-

gramming Interface (NPAPI) architecture will also support our plugin, because we did not

implement web browser specific features.

In this project we also briefly analysed the plugin security. In this analysis we used static

tools to inspect the source code in order to find problems like buffer overflows. We used

Attack Trees [Schneier, 1999] to create a model of what kind of goals an attacker may want

to achieve attacking the plugin. These models helped us discuss the attacks that can be

performed against each goal, and this devising/propose strategies intended to mitigate the

related risks. For each attack we identified which counter-measures to address such attack,

or, at least, reduce the vulnerability to an admissible level. Finally, we also measure the code

maintainability using the model by SIG [Heitlager et al., 2007], because it is easier to analyse

a source code for security vulnerabilities when it is easy to maintain it [Seacord, 2008].

1.4 Dissertation Outline

In the next lines we a describe the document’s structure, where the reader can find the major

topics of each chapter:

Chapter 2 covers the current mechanisms to access SCs and develop web browser plugins,

and to protect both users and applications. We also review in this chapter the related

work.

Chapter 3 describes the development of the plugin, from its design to its implementation

and usage. There is also a Firebreath glimpse of how one can use this framework to

create a web browser plugin.

Chapter 4 presents a security analysis of the plugin. In this chapter we show what tools we

used to check the plugin security, and we discuss their results.

Chapter 5 covers the project final remarks, where we discuss the fulfillment of our original

goals. We finalize this chapter and conclude this document with what we think must

be the guidelines for future releases of the mechanism we proposed.

Appendix A presents the documentation of the JS interface of the plugin, and a set of

tables containing the available data for each one of the PKCS #11 objects.

Chapter 2

Related Work

Reviewing the current available solutions for a problem is a first step towards a successful

work: it allow us to learn with what others did (with their mistakes and achievements) and

to identify which improvements can be made in order to build a better and distinct solution.

In this chapter we present some relevant projects and technologies, from industry to academics

and online communities, that tried to enhance the Smart Card (SC) capabilities in web

applications, and operating systems (OSs). Then, we discuss the current techniques to access

SCs through applications, and present the available methods to develop web brower plugins.

The last section of this chapter introduces some concepts about the current techniques to

protect users and applications from malicious agents, such as Code Signing and Application

Sandboxing.

2.1 Web Browser Access to Smart Cards

Smart Cards are being applied to many services due to their portability and security. Never-

theless, web browsers still have some limitations in working with them. They do not provide

to web applications any mechanism that exposes SCs functionalities. This has caused many

web applications to develop their own software, in order to communicate with SCs. All

these non-standard solutions follow the exact same pattern, where developers publish either

Java Applets1, or web browser plugins using the NPAPI 2 Application Programming Inter-

face (API) for Netscape-based browsers, or ActiveX for Microsoft Internet Explorer [Sachdeva

et al., 2009].

1http://www.developer.com/java/other/article.php/3587361/Java-Applet-for-
Signing-with-a-Smart-Card.htm

2https://wiki.mozilla.org/NPAPI

7

http://www.developer.com/java/other/article.php/3587361/Java-Applet-for-Signing-with-a-Smart-Card.htm
http://www.developer.com/java/other/article.php/3587361/Java-Applet-for-Signing-with-a-Smart-Card.htm
https://wiki.mozilla.org/NPAPI

8 2. Related Work

The only web browser which currently allows web applications to make use of cryptographic

hardware is the Mozilla Firefox. The Mozilla JavaScript Crypto Library3 library provides

methods that allow web pages to access cryptographic related services, such as: handling SC

events — smart card insertion and smart card removal; authenticate users and sign text with

the certificates stored in a SC. This cryptographic library is a specific Mozilla extension, and

it cannot be adopted in other web browsers, because it is not a web browser plugin but a

specific feature of Mozilla web browsers.

In the official development website of the Google Chrome web browser we can find in the

project’s roadmap the ticket “Investigate the possibility of supporting digital signing with

PKI”4, where users and developers discuss the introduction of mechanisms to support the

creation of Digital Signature (DS) using SCs. In this discussion there are several topics

regarding the solutions developers have been using in their web applications to access SCs,

but there is not a definitive in order to address this issue. The last comments in this discussion

lead us to conclude that the Google Chrome developers are waiting for World Wide Web

Consortium (W3C) to address this issue in a project that we will explain later in this section.

In healthcare industry there are several projects whose main goal is to develop a system where

SC holding patient’s records can communicate with web applications using web browsers. In

[Chan et al., 2001], its authors used the Java Card5 and Java Card Web Servlet (JCWS)

technologies to deploy a SC applet which is stored within the card and can be loaded into the

web browser. This is an attractive solution does not required to download and install new

software. However, this is a specific solution to a specific problem that cannot be generally

adopted to other types of SCs. It also requires the use of Java-compliant SC6. Java Card

technology was invented in 1996, and it enables applications developed in the Java Card

language (a subset of the Java programming language) to run on SCs [Sauveron, 2009]. In

a similar work [Chan, 2000, 2003] an application was developed to provide access to SCs

through an HTTP based interface protocol. This applications runs inside the SC, and can

be seen as a web server which handles HTTP requests from the web browser. This solution

shows low performance, because there are many operations executed inside the SC, which has

low processing power.

The approach brought by [Starnberger et al., 2010] tries to standardize the access to cryp-

tographic devices. For this purpose, the authors developed an application which plays the

role of a proxy, enabling access from arbitrary web applications to arbitrary SCs. In this

project they also defined strict policies regarding access to SCs, in order to protect them from

malicious web applications. Once again users must install third-party software to perform the

3https://developer.mozilla.org/en/JavaScript_crypto#Signing_text
4http://code.google.com/p/chromium/issues/detail?id=73226
5http://www.oracle.com/technetwork/java/javacard/overview/index.html
6http://www.oracle.com/technetwork/java/javacard/overview/index.html

https://developer.mozilla.org/en/JavaScript_crypto#Signing_text
http://code.google.com/p/chromium/issues/detail?id=73226
http://www.oracle.com/technetwork/java/javacard/overview/index.html
http://www.oracle.com/technetwork/java/javacard/overview/index.html

2.1. Web Browser Access to Smart Cards 9

desired cryptographic operations. Thus, not requiring a new piece of software for each web

application.

The product SConnect7 by Gemalto8 and referenced in [Sachdeva et al., 2009, Lu et al., 2011]

is similar to the work that we intended to develop in this dissertation. The solution they

propose is also plugin-based, and web applications can access SCs through JavaScript (JS).

Besides connectivity, security was also a major concern of its developers. For instance, a web

application which wants to communicate with a SC must have a valid credential. This solution

was integrated in a wider web framework targeted to governments called Coesys eGo9. The

SConnect is a closed and paid solution, thus we are not able to test its features and its OS

support, SCs, and web browsers.

Cardboss10, a paid product of Comet Way11, also seems to provide a plugin-based approach

with a corresponding JS API. At this time, they are only providing versions of their plugin

to Microsoft Windows OSs.

PKI-Facille12 is another solution from industry developed by SmartCon13, which also seems

to follow an identical approach to Cardboss and Sconnect. The (lack of) information available

in its homepage is not sufficient to conclude if it is free, and to fully understand its technical

features.

In the field of USB Smart Cards there are some relevant projects intended to making SC

truly portable among operating systems and web applications. [Lu and Ali, 2010, Lu et al.,

2009] contributed with a framework in which users can use their USB Smart Cards through

a web browser. This framework is composed of an application which is stored inside the card

and loaded into the host operating system. The application is responsible for establishing the

communications between users, web browsers and web applications. The authentication to

web applications is the only operation provided by this framework. Regarding OS support,

this framework was successfully tested in Microsoft Windows. If specific drivers — like HID

and MSD — are installed on the OS, this framework can be easily used in GNU Linux and

Mac OS X without additional software.

A number of online communities are also concerned with the current solutions. The W3C,

developer of web standards, recently created the project Web Identity Working Group Char-

ter14. One of the deliverables of this project is a Cryptographic API. However, it is not

explicit if this API will offer support for SCs.

7http://www.sconnect.com/News/index.html
8http://www.gemalto.com/
9http://www.gemalto.com/public_sector/solutions/coesys_egov2_0_version3.html

10https://cardboss.cometway.com/
11http://www.cometway.com/
12http://www.smartcon.com.br/cms4/archives/16
13http://www.smartcon.com.br/
14http://www.w3.org/2011/08/webidentity-charter.html

http://www.sconnect.com/News/index.html
http://www.gemalto.com/
http://www.gemalto.com/public_sector/solutions/coesys_egov2_0_version3.html
https://cardboss.cometway.com/
http://www.cometway.com/
http://www.smartcon.com.br/cms4/archives/16
http://www.smartcon.com.br/
http://www.w3.org/2011/08/webidentity-charter.html

10 2. Related Work

2.2 Smart Card Access Libraries

Enabling smart card functionalities in applications can be achieved by several means. One

can use the available and native cryptographic libraries in operating systems, making the

application restricted to a specific host. Low level interfaces can be used to achieve interop-

erability among OSs, but they require an extensive knowledge of the SC middleware. Figure

2.1 has a generic description of how the different layers are connected among the OSs.

Microsoft
CryptoAPI

Apple
CSSM PKCS #11

PC/SC
CT-API

Device Drivers

High Level
Libraries

Middleware

Smart Card
Reader
Drivers

Hardware

Figure 2.1: Availablele Libraries for SC Access

As shown in Figure 2.1, the drivers of the Smart Card Reader (SCR) are responsible for

connecting SCs to OSs. It is expected that they conform to a common middleware standard,

like PC/SC 15 or CT-API.16 These standards facilitate the development of applications which

support SCs, and the integration of SCs, SCRs, and OSs.

PC/SC is the de facto standard for smart card access and is available for several OSs: Mi-

crosoft Windows, Mac OS X and GNU Linux. This standard ensures that SC, SCRs, and

computers made by different manufacturers work together. [Sachdeva et al., 2009] use this

standard as the communication layer between their plugin and the SCs.

An application that uses PC/SC as the library for accessing SCs is more generic in practice.

It will support all SCs which conform to this standard (most of them are), and it will not

depend on the host specific libraries. However, the development is harder because it is a low

15http://www.pcscworkgroup.com/
16http://www.linuxnet.com/documentation/files/ctapi.html

http://www.pcscworkgroup.com/
http://www.linuxnet.com/documentation/files/ctapi.html

2.2. Smart Card Access Libraries 11

level API. The communication between applications and SCs is possible using Application

Protocol Data Units (APDUs), which can be seen as data packets which carry instructions

or information, from or into the SC. Although this library gives the ability to communicate

with several kinds of SCs, one must always know the behaviour, and the available functions

and informations of each SC he specifically wishes to support.

Operating systems also offer support for SC access. There are cryptographic libraries in OSs

which, among other features, offer dedicated functions to access SCs. These libraries provide

a better abstraction of cryptographic functions and SCs, which make the development easier.

Microsoft OSs offer the Cryptographic API (CryptoAPI)17 library. This library is designed

to hide the details of cryptographic functionalities, providing applications with “pluggable”

cryptography. For each SC there is a corresponding Cryptographic Service Provider (CSP)

which does the mapping between cryptographic functions — exposed through CryptoAPI —

and the low-level commands — accessible through the Win32 SC APIs18.

In AppleOSs — Mac OS X and iOS — we can find dedicated libraries for cryptographic pur-

poses. The first one of these libraries is Cryptographic Services19, and it supplies the following

features: encryption and decryption, key management, strong random number generation,

secure communition using Secure Sockets Layer (SSL) and Transport Layer Security (TLS),

and secure storage using Apple’s specific features like FileVault20 and iOS File Protection21.

Another library is Common Security Services Manager (CSSM)22, which is Apple’s implemen-

tation of Common Data Security Architecture (CDSA)23. Through this library it is possible

to access SC related mechanisms. Starting on Mac OS X v10.7, CSSM is considered depre-

cated and it should only be used when standard Cryptographic Services do not supply the

desired features.

The Public-Key Cryptography Standards #11 (PKCS #11)24 — also know as Cryptoki —

developed by RSA Laboratories25 is an API for cryptographic hardware access. Like Cryp-

toAPI and CSSM, PKCS #11 also isolates applications from the cryptographic hardware.

This de facto standard is available in Mac OS X, Microsoft Windows and all GNU Linux dis-

tributions, and it is supported by many SC vendors [Sachdeva et al., 2009, RSA Laboratories,

2004].

17http://msdn.microsoft.com/en-us/library/ms953432.aspx
18http://technet.microsoft.com/en-us/library/dd277376.aspx
19https://developer.apple.com/library/mac/#documentation/security/Conceptual/

cryptoservices/Introduction/Introduction.html
20http://support.apple.com/kb/HT4790
21http://images.apple.com/ipad/business/docs/iOS_Security_May12.pdf
22https://developer.apple.com/library/mac/#documentation/security/Conceptual/

cryptoservices/CDSA/CDSA.html
23http://www.opengroup.org/security/cdsa.htm
24http://www.rsa.com/rsalabs/node.asp?id=2133
25http://www.rsa.com/

http://msdn.microsoft.com/en-us/library/ms953432.aspx
http://technet.microsoft.com/en-us/library/dd277376.aspx
https://developer.apple.com/library/mac/#documentation/security/Conceptual/cryptoservices/Introduction/Introduction.html
https://developer.apple.com/library/mac/#documentation/security/Conceptual/cryptoservices/Introduction/Introduction.html
http://support.apple.com/kb/HT4790
http://images.apple.com/ipad/business/docs/iOS_Security_May12.pdf
https://developer.apple.com/library/mac/#documentation/security/Conceptual/cryptoservices/CDSA/CDSA.html
https://developer.apple.com/library/mac/#documentation/security/Conceptual/cryptoservices/CDSA/CDSA.html
http://www.opengroup.org/security/cdsa.htm
http://www.rsa.com/rsalabs/node.asp?id=2133
http://www.rsa.com/

12 2. Related Work

The operating system specific libraries are the best option when one needs to deploy a native

application, when compared to PKCS #11. They are updated more often — enhancing the

overall system security — and they provide better application integration. [Sachdeva et al.,

2009] However, such solution is not portable to different operating systems.

The Portuguese Citizenship Card (PCC) vendor provides an additional library to communi-

cate with its SC, which is called eID Lib API, in addition to a PKCS #11 module. In this

library we can find several methods to extract information from the SC, but it is not suited

to perform cryptographic operations, such as the creation of DS. This module is available as

a C++ dynamic library for all major OSs, but there are wrappers for Java and C.# [Agência

para a Modernização Administrativa, 2007].

2.2.1 A Short Introduction to PKCS #11

The PKCS #11 standard defines an API for SC interaction: from inspection operations to

cryptographic functions, there are many methods developers can use to take full advantage

of SCs. Usually, we can find implementations of this standard in C, but it can be used in

C++ applications, and it is even possible to find wrappers for many other languages, Java26 for

example. The main advantages of PKCS #11 is the device-independence and object-oriented

approach that isolate the development of applications from the details of the cryptographic

devices.

In Figure 2.2 there is a general description of how Cryptoki manages to connect SCs to

applications. Cryptoki provides an interface to the cryptographic devices attached to the

computer, through the concept of “slots”. A slot is a device that may contain a “token”. A

token is a cryptographic device— like a SC —that can be present in the slot. A convenient

feature of PKCS #11 is the fact that software emulated tokens can be seen by applications

as a regular physical token, due to the logical view Cryptoki provides of slots and tokens.

Moreover, Cryptoki handles the connections from applications to SC, and if the library is

initialized correctly, it can handle requests from a threaded application without problems.

From this point on, we must always recall the concepts of slot and token. A token represents

a cryptographic device, and a slot represents a device where tokens are inserted, like a SCR.

Visibility

The access to objects and functions in the PKCS #11 API is restrained, because it depends

on the permissions of the session that is established with the SC. We can define an established

26http://docs.oracle.com/javase/1.5.0/docs/guide/security/p11guide.html

http://docs.oracle.com/javase/1.5.0/docs/guide/security/p11guide.html

2.2. Smart Card Access Libraries 13

Other Security Layers Other Security Layers

Application 1 Application k

Cryptoki Cryptoki

Device Contention / Synchronization

Slot 1 Slot n

Token 1
(Device 1)

Token n
(Device n)

Figure 2.2: General Cryptoki Model. Adapted from [RSA Laboratories, 2004]

session as the moment when an application instructs the PKCS #11 library it she will start

using SC features — such as the creation of DS — or access the stored data — as it is the

case of data of private keys. Some permissions are strictly related to the type of SC user that

is connected to the device. In Cryptoki the following users are available: normal user and

security officer user. The PCC does not provides a Personal Identification Number (PIN) for

a security officer user [Agência para a Modernização Administrativa, 2007]. The creation of

a DS is, for instance, a function that requires a user to be logged in with the SC.

In Figures 2.3 and 2.4 we overview the states in read/only and read write/sessions. As shown

in those figures, there are some functions that just authenticated users can perform.

R/O
Public

Session

R/O
User

Functions

Open
Session

Open
Session

Close Session /
Device Removed

Close Session /
Device Removed

Login User Logout

Figure 2.3: Read Only Session States in PKCS #11. Adapted from [RSA Laboratories, 2004]

PKCS #11 Objects

A PKCS #11 compliant SC can store several different kinds of information, like Public Key

Certificates and informations of cryptographic mechanisms. In order to better understand

14 2. Related Work

R/W
SO

Functions

R/W
Public

Session

Open
Session

Open Session

Login SO Logout

Close Session /
Device Removed

Close Session /
Device Removed

R/W
User

Functions

Open
Session

Close Session /
Device Removed

Login User Logout

Figure 2.4: Read Write Session States in PKCS #11. Adapted from [RSA Laboratories, 2004]

the relation between objects and their type, the official PKCS #11 specification [RSA Labo-

ratories, 2004] defines a hierarchy shown in Figure 2.5. In addition to storing values, objects

can be used to perform operations, like in the creation of DS, where a reference to a private

key must be specified in order for the SC to known what key to use.

Storage

Mechanism
Hardware
Feature

Domain
Parameters

Key CertificateData

Object

Figure 2.5: Objects Hierarchy in PKCS #11. Adapted from [RSA Laboratories, 2004]

As we can see from Figure 2.5, there are three main types of objects: storage, hardware

feature, and mechanism. A storage object can be used to store keys (public keys, private keys,

and secret keys), certificates (X.509 Public Key Certificates, WTLS Public Key Certificates,

2.2. Smart Card Access Libraries 15

and X.509 Attribute Certificates), and other informations like data and domain parameters.

The other two main types hold informations regarding the physical characteristics of the

SC, like user interface features (Hardware Feature), and supported cryptographic mechanism

(Mechanism).

The objects in the PKCS #11 standard are composed by attributes which are responsible

for storing meaningful values. An attribute has always a type, but it may not have its value

defined, for instance: in an object holding a X.509 Public Key Certificate we can find the

attribute CKA Subject which stores a Distinguished Encoding Rules (DER) encoded array

of bytes containing the certificate subject. Besides storing data, attributes may also be used

to differentiate objects: for instance, in a hardware feature object, the value of the attribute

CK HD FEATURE influences the hardware feature (clock, monotonic counter, user interface)

to which the object is referring to.

In order to use, inspect, or manipulate objects, the PKCS #11 standard offers several func-

tions for that purpose. We can find dedicated functions to search for objects, get attributes

from objects, and even manipulating them (create, copy, and modify). The process of finding

objects requires that developers specify a template which matches the properties they want

to find in that object. Example 2.1 shows a template for a private key object, with an id

0x45.

1 //the object class that we want to find
2 CK_OBJECT_CLASS keyClass = CKO_PRIVATE_KEY;
3 //the key id
4 CK_BYTE keyID = 0x45;
5
6 //the template which represents a private key object
7 CK_ATTRIBUTE p11ClassTemplate[] =
8 {
9 { CKA_CLASS, &keyClass, sizeof(keyClass) },

10 { CKA_ID , &keyID , sizeof(CK_BYTE) }
11 };

Example 2.1: Definition of a PKCS #11 Object Template

The PKCS #11 API is very flexible: whenever a developer wishes to access only a given part

of an object he can specify exactly which attributes he wants to be retrieved from the SC.

For that purpose, he must specify a template containing the attributes, like in Example 2.2,

where it is defined a template to retrieve label, key type, id, start date, end date, and subject

of what could be a Public Key Certificate.

In Section A.2 there is a full description for each one of the available objects in the PKCS #11

standard.

16 2. Related Work

1 CK_ATTRIBUTE template[] = {
2 {CKA_LABEL , NULL_PTR , 0 },
3 {CKA_KEY_TYPE , NULL_PTR , 0 },
4 {CKA_ID , NULL_PTR , 0 },
5 {CKA_START_DATE , NULL_PTR , 0 },
6 {CKA_END_DATE , NULL_PTR , 0 },
7 {CKA_SUBJECT , NULL_PTR , 0 }
8 };

Example 2.2: Definition of a PKCS #11 Attribute Template

PKCS #11 Functions

The PKCS #11 standard defines several categories of functions to inspect information in

SCs and to instruct SCs to perform operations, like creating DSs and encrypting data. The

categories we present next are some of the most important:

• General Purpose - The functions in this category are mainly used to initialize or

finalize accesses to a PKCS #11 module.

• Slot and Token Management - The functions in this category have the goal to get

information from the slots attached to the computer and from the tokens inserted in

such slots.

• Session Management - The functions in this category are used to start or finalize

connections with SCs.

• Object Management- The functions in this category can be used to search and

search and get objects from SCs, as weel as getting informations from objects stored in

SCs.

• Message Digest - The functions in this category are used to create digests of data.

• Signing and MACing - The functions in this category are mainly used to create DS

of data.

Using a PKCS #11 module in any given application requires one to first initialize the library.

In this initialization process, the PKCS #11 will allocate any needed resources and prepare

the system for SC connections. In Example 2.3 we show the usual steps one must take to

initialize a Cryptoki module. First, if the application performs multi-threaded access to the

PKCS #11 library, the structure CK_C_INITIALIZE_ARGS must be initialized with pointers

to functions for mutex management. Then, an entry point for the Cryptoki library must be

obtained using C_GetFunctionList. Finally, it is time to initialize the PKCS #11 using

C_Initialize and the structure CK_C_INI_ARGS as its parameter. If the application is

single threaded, the parameter can be NULL. Once an application is done using the PKCS #11

2.3. Developing a Web Browser Plugin 17

1 CK_C_INITIALIZE_ARGS args;
2
3 args.CreateMutex = (...) //pointer to a function that creates a mutex
4 args.DestroyMutex = (...) //pointer to a function that destroys a mutex
5 args.LockMutex = (...) //pointer to a function that locks a mutex
6 args.UnlockMutex = (...) //pointer to a function that unlocks a mutex
7
8 //Loading all the functions from the library
9 rv = (*pC_GetFunctionList) (&pkcs11Functions);

10
11 //Initializing the pkcs11 Library
12 rv = (*pkcs11Functions->C_Initialize) (&args);

Example 2.3: Initializing the Cryptoki

module it should call the function C_Finalize(NULL) to close all connections to SCs and

deallocate resources.

Since Cryptoki provides a high level abstraction of SCs, as well as their operations and data,

the access to the information inside SCs always follows the same pattern. Typically, the

first step in this process is to verify the number of available items present in the SC. In the

following step it should be allocated enough space to accommodate the list of available items.

Finally, it is possible to iterate through that list and access the information about each item.

In Example 2.4 we show how to iterate through the information of all the tokens inserted in

the computer. The first call to the function C_GetSlotList with the second parameter as

NULL indicates that we want to be retrieved in count the number of available slots with

a token present. This process can be applied to many different items, such like mechanisms

and PKCS #11 objects —in these cases one must use the specific functions for mechanisms

and PKCS #11 objects.

2.3 Developing a Web Browser Plugin

The development of a plugin is strictly tied to the web browser where it will be installed.

Currently, we can differentiate Netscape-based web browsers from Internet Explorer. Among

the first type of web browsers (i.e., Mozilla Firefox, Google Chrome, Safari, Opera) one can

use Netscape Plugin Application Programming Interface (NPAPI)27 as the development API.

Intuitively we may think that, if one writes a plugin using NPAPI, it will run in all Netscape-

based web browsers. However, if this plugin uses libraries specific to a given web browser, it

will not be possible to integrate it with the others. The same reasoning can be applied to the

relation between the plugin and the OSs, of course. One plugin that uses libraries specific

from a OS is going to be platform-specific.

27https://developer.mozilla.org/en/Gecko_Plugin_API_Reference

https://developer.mozilla.org/en/Gecko_Plugin_API_Reference

18 2. Related Work

1 CK_ULONG count;
2 CK_SLOT_ID_PTR pSlotList;
3 CK_RV rv;
4 CK_TOKEN_INFO info;
5
6 //getting the count of slots which have tokens
7 rv = (*pkcs11Functions->C_GetSlotList) (CK_TRUE, NULL, &count);
8 assert(rv==CKR_OK);
9

10 //creating enough space in order to store the list of slots
11 pSlotList = (CK_SLOT_ID_PTR) malloc(sizeof(CK_SLOT_ID) * count);
12
13 //getting the slot list
14 rv = (*pkcs11Functions->C_GetSlotList) (CK_TRUE, pSlotList, &count);
15 assert(rv==CKR_OK);
16
17 //getting the information from the Library
18 for(int i=0; i < count; i++)
19 {
20 rv = (*pkcs11Functions->C_GetTokenInfo) (pSlotList[i], &info);
21 assert(rv==CKR_OK);
22
23 processData(info);
24 }

Example 2.4: Getting Information about a Token in Cryptoki

Google Chrome provides also other APIs for plugin development like Native Client (NaCl)28

and the Pepper Plugin API (PPAPI). NaCl provides a mechanism for safely execute platform-

independent untrusted native code in a web browser. PPAPI is a branch of the NPAPI,

which is stated by Google to address the portability and performance issues. Since the

development of plugins using this mechanism is restricted to certain libraries provided by

Google Chrome, it is possible to isolate malicious software from the rest of the system. Trusted

code can perform privileged operations outside this mechanism, while untrusted code cannot.

In Google Chrome, NPAPI plugins run outside of this mechanism29. This mechanism is called

Sandboxing and it will be explained in Section 2.4.

Internet Explorer only supports Microsoft specific APIs, namelly ActiveX Controls30. An

ActiveX Control can be seen as a library that can be used in Microsoft applications to enhance

their base features. These controls have unrestricted access to the OS, and they can be

developed in C, C++, and Visual Basic.

In Figure 2.6 we summarize the different types of plugin development interfaces that some

web browsers support.

As we can see, developing a generic plugin that can be easily integrated with all web browsers

is hard: it depends on the available plugin mechanisms and libraries in each web browser. For

28https://developers.google.com/native-client/
29http://www.chromium.org/nativeclient/getting-started/getting-started-

background-and-basics
30http://msdn.microsoft.com/en-us/library/aa751968(v=vs.85).aspx

https://developers.google.com/native-client/
http://www.chromium.org/nativeclient/getting-started/getting-started-background-and-basics
http://www.chromium.org/nativeclient/getting-started/getting-started-background-and-basics
http://msdn.microsoft.com/en-us/library/aa751968(v=vs.85).aspx

2.4. Tampering Detection and Vulnerability Containment 19

W
e

b
 B

ro
w

s
e

r

Google Chrome

Mozilla Firefox

Internet Explorer

Safari

Native Client

ActiveX Controls

NPAPI

Figure 2.6: Available Techniques for Developing a Web Browser Plugin

that reason, several frameworks have been developed to ease the creation the web browser

plugins:

• FireBreath31 - can be used to create a web browser plugin that can run in several OS

and has interfaces for the two main development APIs: NPAPI and ActiveX Controls.

Relevant aspects: extensive documentation; the support for web browsers and OSs is

well known; vast community; regular updates; good working examples32; with no costs.

• Juce33 - is well suited for the development of software for different platforms, including

web browser plugins. Relevant aspects: regular updates; cross platform and cross web

browser support; good source code documentation but it lacks “getting started” guides;

closed source applications require the payment of a fee;

• Nixysa34 - can be used to generate source code for exposing plugin features to the

NPAPI API. Relevant aspects: very poor documentation; the last release is relatively

old (2009); and the cross platform support is not known; only supports NPAPI.

• QtBrowserPlugin35 - is a solution for web browser plugin development. Relevant

aspects: closed source applications require the payment of a fee; good documentation;

cross browser and cross platform support.

2.4 Tampering Detection and Vulnerability Containment

Internet growth has helped software developers deploying applications more easily. Now,

anyone can download an application directly from a software producer, and receive software

31http://www.firebreath.org/display/documentation/FireBreath+Home
32http://www.firebreath.org/display/documentation/FireBreath+Users
33http://www.rawmaterialsoftware.com/juce.php
34http://code.google.com/p/nixysa/
35http://doc.qt.digia.com/solutions/4/qtbrowserplugin/developingplugins.html

http://www.firebreath.org/display/documentation/FireBreath+Home
http://www.firebreath.org/display/documentation/FireBreath+Users
http://www.rawmaterialsoftware.com/juce.php
http://code.google.com/p/nixysa/
http://doc.qt.digia.com/solutions/4/qtbrowserplugin/developingplugins.html

20 2. Related Work

updates, for such application, whenever a new version is available. However, the safe delivery

of software from Internet is in jeopardy, due to the spread of malicious code and the increas-

ingly higher occurrences of phishing attacks that lure users to install fake software [Schiavo,

2010].

In order to minimize the risk of attacks, increase software security, and enhance user’s con-

fidence in applications, many techniques have been developed to protect both users and

applications [Dasgupta et al., 2010]. Among these techniques, Code Signing and Sandboxing

are being used in a wide variety of systems: from desktop applications to mobile OSs there

are very well known usage examples of such methods, like Apple’s IOS and Windows OSs.

In the following sections we will describe the background and the concepts behind Code

Signing and Sandboxing techniques, and we will give some concise examples of their usage.

Since we are developing a web browser plugin, we will also review the current support for

these techniques among all major web browsers.

2.4.1 Code Signing

According to [Schiavo, 2010], Code Signing is an industry-recommended and widely-used

defence against tampering, corruption and malicious infection. This technique can be used

to enhance user’s trust in the origin of a given software application, because users can verify

precisely both the software’s integrity and if it was developed by a known and trustworthy

source.

The Public-key Cryptography (PKC) plays a major roll in the Code Signing technique, be-

cause it provides the means needed to prove the developer’s identity and the integrity of

software packages [Rubin and Jr., 1998]. In this process, a reputable Certificate Author-

ity (CA) issues a Public Key Certificate for the software developer, who will use it to create a

DS of the executable or script he wishes to deploy. Then, when a user fetches that software to

his computer, he will check: (1) if the developer’s Public Key Certicate can be validated by a

trustworthy root CA, and (2) if the hash of the software package matches the DS sent by the

developer. In case, the developer’s identity is unknown or the software package is corrupted,

the user is warned, and he can choose whether or not to proceed using the application.

Software developers can also use self-signed Public Key Certificate issued by a third-party CA.

In such case, it may not be possible to users recognise the developer’s identity as trustworthy,

because none of the user’s root CAs will validate the certificate of the developer as reliable.

Still, software developers can publish on their official website the certificate chain which

validates their identity, so users can validate successfully their identity and theirs software

packages.

2.4. Tampering Detection and Vulnerability Containment 21

In Figure 2.7 there is a generic abstract representation of how Code Signing can be accom-

plished. In the first place, the software developer creates a DS from the software package he

wants to publish, using his private key, and attaches the signature and his Public Key Cer-

tificate to the application — left side of the image. Then, users can download the software

to their computers and check its real identity and integrity using the developer’s Public Key

Certificate — right of the image.

Verify
Digital

Signature

Application

Digital Signature
101001110

Public
Key

Certificate

Digital Signature
101001110

Create
Digital

Signature

Application

Application

Digital Signature
101001110

Private Key

Integrity
and
Identity

Identity
o r
Integrity

Figure 2.7: Abstract Representation of Code Signing

Usually, the above solutions use the Public-key Infrastructure (PKI) to achieve a trustworthy

network among software developers and users, where reliable CAs issue Public Key Certificates

to developers, which later can be recognised by one of the root CAs present in the users’

computers. The GNU Privacy Guard (GPG)36 defines a public exchangeable system of public

keys that can be used to achieve the same goals as the standard PKI, therefore, it can be

used in Code Signing.

Hashing software packages and publishing their result in a legitimate public platform may be

considered another form of Code Signing. This solution can be found in many open-source

and free-software projects, like the Ubuntu37. Although integrity can be verified, this solution

does not provide any means to check identity.

As we can see, Code Signing promotes users’ confidence in the origin of software packages,

by defining restrict ways to check both identity of developers and integrity in any software

package. Nevertheless, it fails when it comes to protect users against vulnerable software, and

36http://www.gnupg.org/
37https://help.ubuntu.com/community/UbuntuHashes

http://www.gnupg.org/
https://help.ubuntu.com/community/UbuntuHashes

22 2. Related Work

to impose accountability in software developers [Michener and Acar, 2000, Skoularidou and

Spinellis, 2003]. Code Signing does not define any methods to check if a given application is

bug-free or even if it will behave in a malicious manner. This is the reason why Code Signing

must be used as a complement to other techniques such as Sandboxing in order to improve

systems’ security.

Operating Systems

At the present moment, we can find numerous implementations of Code Signing techniques

among OSs, from desktop to mobile, and from paid to free of charge OSs. In fact, there are

several operating systems which impose software developers to sign their applications using a

valid Public Key Certificate. In the next paragraphs we will review the state-of-the-art among

several OSs.

Apple The last software release of the Apple’s desktop OS — Mac OS X 10.8 Mountain Lion

— has a built-in mechanism which controls the origin of software sources named Gatekeeper38.

By default, this mechanism only allows users to install software that was downloaded from the

App Store or code-signed by a known trusted developer. However, it is possible to loose these

restrictions and install software from unknown sources. In previous versions of the Apple’s

OSs, Code Signing was required to developers who wished to publish their software through

the Apple’s application store39. According to Apple’s documentation40, the user does not

need to give additional permissions41 to the application if the it has its code signed. Features

like Sandboxing also depend on Code Signing. Developing applications for the mobile version

of the Apple OS —the iOS— also requires a valid developer identifier, otherwise users won’t

be able to install applications. Unless they manage to get full root access to the device, to

what is typically called jailbreak.

Microsoft Starting on the Microsoft Windows XP, a new technology called Authenticode42

has been used to verify software sources, and also to digitally sign software packages. This

technology can be used in many types of files, like executable (EXE), ActiveX controls, cabinet

(CAB), and dynamic-link library (DLL)43. Usually, when a user downloads and tries to install

a new application in his computer, this technology will check the software package integrity

38http://support.apple.com/kb/HT5290
39http://www.apple.com/osx/apps/app-store.html
40https://developer.apple.com/library/mac/#documentation/Security/Conceptual/

CodeSigningGuide/Introduction/Introduction.html
41http://developer.apple.com/library/mac/#technotes/tn2206/_index.html
42http://msdn.microsoft.com/en-us/library/ms537359%28v=vs.85%29.aspx
43http://msdn.microsoft.com/en-us/library/office/aa140234%28v=office.10%29.aspx

http://support.apple.com/kb/HT5290
http://www.apple.com/osx/apps/app-store.html
https://developer.apple.com/library/mac/#documentation/Security/Conceptual/CodeSigningGuide/Introduction/Introduction.html
https://developer.apple.com/library/mac/#documentation/Security/Conceptual/CodeSigningGuide/Introduction/Introduction.html
http://developer.apple.com/library/mac/#technotes/tn2206/_index.html
http://msdn.microsoft.com/en-us/library/ms537359%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/office/aa140234%28v=office.10%29.aspx

2.4. Tampering Detection and Vulnerability Containment 23

and identity, and warn him if any error occurred during that process. In this operation

the user is asked if he wishes to continue using the software, even if the software origin is

unknown. Microsoft also maintains a mobile operating system called Windows Phone, which

has a native software package for legitimate application acquisition44, where all published

applications must be code-signed by a known developer.

GNU Linux Under the GNU Linux universe it is difficult to point out exactly the current

state of the art for Code Signing for each one of the available distributions. For instance,

there are distributions using Code Signing to protect users from malicious updates or patches.

Debian45-based distributions use Code Signing for secure software distribution, where GPG

is the auxiliary tool for such process [Dasgupta et al., 2010].

Android The Android OS maintained by Google is another good example of a mobile

platform which demands all application developers to sign their software. By default, in an

Android system all software must be installed through the Google Play store, where applica-

tions must be code-signed by software developers with a known and trustworthy certificate46.

Still, it is possible to install software from unknown sources, using other locations than Google

Play47.

Java Despite the fact that the Java Virtual Machine (JVM) cannot be considered an OS, it

is a virtualized system which can restrain which Java applications to run and which accesses

to the real system can be performed. Thus, it is possible to use Code Signing to protect a

Java application from tampering and to prove its source48. The JVM allows users to run

applications without having their code signed, but once their signed the user must have the

Public Key Certificate of the developer in his system.

Web Browsers

Extensions and plugins can enhance the user experience in web browsers, from block-advertising

extensions, to video player plugins, there are several good examples that dramatically change

the web browser standard functionalities. Even so, such third-party components can easily

44http://msdn.microsoft.com/en-us/library/windowsphone/develop/ff402533%28v=vs.
92%29.aspx

45http://wiki.debian.org/SecureApt#Secure_apt_groundwork:_checksums
46http://developer.android.com/tools/publishing/app-signing.html
47http://developer.android.com/tools/publishing/publishing_overview.html#

unknown-sources
48http://docs.oracle.com/javase/tutorial/security/toolsign/index.html

http://msdn.microsoft.com/en-us/library/windowsphone/develop/ff402533%28v=vs.92%29.aspx
http://msdn.microsoft.com/en-us/library/windowsphone/develop/ff402533%28v=vs.92%29.aspx
http://wiki.debian.org/SecureApt#Secure_apt_groundwork:_checksums
http://developer.android.com/tools/publishing/app-signing.html
http://developer.android.com/tools/publishing/publishing_overview.html#unknown-sources
http://developer.android.com/tools/publishing/publishing_overview.html#unknown-sources
http://docs.oracle.com/javase/tutorial/security/toolsign/index.html

24 2. Related Work

obtain sensitive Information from its users, and jeopardize their security due to a defect on

their code. This is why additional security mechanisms must be established in order to pro-

tect the users. The following paragraphs describe the current support for Code Signing in

Google Chrome, Internet Explorer, and Mozilla Firefox.

Google Chrome The Google documentation for the Google Chrome web browser refers

that it is possible to distribute extensions using the CRX 49 package format . This format

defines how one developer may create a software package where he can put his Public Key,

the extension signature, and the extension itself50. Google Chrome does not require to install

extensions from known sources.

Internet Explorer Under Internet Explorer additional web browser core features can be

expanded using ActiveX Controls. As mentioned before, can be code-signed and verified using

the Microsoft Authenticode technology. Depending on the user security definitions of the web

browser, ActiveX Controls without their code-signed or from unknown sources may not be

able to run without user explicit consent.

Mozilla Firefox The current Mozilla documentation51 states that anyone who is developing

an extension or plugin can publish their software packges in a code-signed way. In Firefox there

is also the possibility to develop code-signed JS scripts which can access expanded privileges52.

These features do not restrict which software can be installed in the web browser, users can

install whichever extension or plugin they wish, even they are from unknown sources, or are

not code-signed.

2.4.2 Application Sandboxing

In the previous section we referred that Code Signing techniques do not protect from open

vulnerabilities in an application, that can be exploited by malicious agents to gain access

to users’ personal data. That is the reason why Code Signing should be a complement to

other techniques like Application Sandboxing. A system that implements a Sandbox where

applications are ran, confines their execution in a such way that they cannot have greater priv-

ileges than they would have if running outside [Prevelakis and Spinellis, 2001], thus blocking

49http://developer.chrome.com/extensions/crx.html
50http://developer.chrome.com/extensions/packaging.html
51https://developer.mozilla.org/en-US/docs/Signing_an_extension
52http://www.mozilla.org/projects/security/components/signed-scripts.html

http://developer.chrome.com/extensions/crx.html
http://developer.chrome.com/extensions/packaging.html
https://developer.mozilla.org/en-US/docs/Signing_an_extension
http://www.mozilla.org/projects/security/components/signed-scripts.html

2.4. Tampering Detection and Vulnerability Containment 25

any operation that try to scale permissions, and thus restricting the damage a compromised

application can cause [Goldberg et al., 1996].

Figure 2.8 depicts an abstract representation of a system that implements a Sandbox. Typi-

cally, an application that is developed to be confined within a Sandbox does not have direct

access the real system. In return, it must use an API provided by the system that supplies an

high level access to resources like file system or network. This middle layer between applica-

tions and the physical system is also in charge of controlling any harmful instruction, through

a fine-grained analysis. It is usual in some Sandboxes implementations that developers have to

define a list of permissions the application needs to have in order to execute, like in Android.

Sandboxed System

API

Application 1

Permission Set

Application 2

Permission Set

Application 3

Permission Set

Real System

File System Network Graphics

Figure 2.8: Representation of a System Using Sandboxing

The concept of Sandboxing applications is not new, in the version 4.2 of the BSD OS appeared

a system call named chroot53, whose purpose is to restrict the access of applications to a

specific area of the file system.

According to [Prevelakis and Spinellis, 2001], the term Sandbox was first introduced by [Wahbe

et al., 1993], where its authors developed a software approach to implementing fault isolation

within a single address space. There are also other relevant projects which use this concept

to enhance security on OSs, like [Prevelakis and Spinellis, 2001, Goldberg et al., 1996]. In the

53https://developer.apple.com/library/mac/#documentation/Darwin/Reference/
ManPages/man2/chroot.2.html

https://developer.apple.com/library/mac/#documentation/Darwin/Reference/ManPages/man2/chroot.2.html
https://developer.apple.com/library/mac/#documentation/Darwin/Reference/ManPages/man2/chroot.2.html

26 2. Related Work

context of our project, the work [Goldberg et al., 1996] may be one of the most interesting ones,

because they developed an user-level mechanism that monitors an untrusted application and

disallows harmful system calls in order to protect users from attacks targeted to web browsers’

helper applications.

An OS running in a virtual machine can be seen as a sandboxed system: the OS in the

virtualized machine does not have access rights to the real physical hardware, and depending

on the implementation of the virtual machine emulator, there are operations that can be

restrained. Examples of virtual machine emulators are KVM 54, VMware55, and Oracle VM

VirtualBox 56, among many others.

Another good example of a system that confines the execution of the programs it runs is the

JVM. Any Java application or applet are executed inside a virtual machine that can control

the application permissions.

The concept of Application Sandboxing refers to any given system where applications run in

a controlled environment, thus protecting users from compromised applications. Since this is

a concept that can be applied for many systems, next we will review the current support for

Application Sandboxing in OSs and web browsers.

Operating Systems

Modern OSs use sandboxing to protect users from ill-intentioned applications, from desktop

to mobile operating system there are several usage examples of this trend. In the following

paragraphs there is a review of the current native support for Sandboxing in OSs, we did not

focus in other third-party implementations.

Apple Starting in Mac OS X v10.5 Leopard, Apple introduced a sandbox mechanism based

on the BSD sandbox facility. Now a days, if a developer wishes to publish his application

through the Apple Store and take advantage of features like iCloud and Notification Center,

he must use the Apple App Sandbox 57. According to the official documentation, the App

Sandbox allows developers to describe which resources they want to use, to what they call

54http://www.linux-kvm.org/page/Main_Page
55http://www.vmware.com/virtualization
56https://www.virtualbox.org
57http://developer.apple.com/library/mac/#documentation/Security/Conceptual/

AppSandboxDesignGuide/AboutAppSandbox/AboutAppSandbox.html

http://www.linux-kvm.org/page/Main_Page
http://www.vmware.com/virtualization
https://www.virtualbox.org
http://developer.apple.com/library/mac/#documentation/Security/Conceptual/AppSandboxDesignGuide/AboutAppSandbox/AboutAppSandbox.html
http://developer.apple.com/library/mac/#documentation/Security/Conceptual/AppSandboxDesignGuide/AboutAppSandbox/AboutAppSandbox.html

2.4. Tampering Detection and Vulnerability Containment 27

“entitlements”58. It is possible, however, to use applications that run outside the App Sand-

box. The Apple’s mobile OS iOS has also available a sandboxed, but in this case it is no

possible to run applications outside its scope59.

Microsoft In recent releases of Windows it is possible to install applications from an official

Microsoft application called Windows Store60. Any released application through this store

must declare the permissions it needs to execute, like access to a removable storage, to what

Microsoft calls App capability declaration61. Installing applications outside of this store is

also possible and does not need to perform such declarations. In Windows Phone there

is a technology that restrains the input/output operations of applications named Isolated

Storage62. According to the documentation of the Windows Phone all applications run in a

sandboxed process63.

GNU Linux According to [Dasgupta et al., 2010], Ubuntu 9 uses the sandbox AppArmor

to protect the system. Other techniques like chroot jail can be used to restrict the access to

file system, thus creating a kind of a Sandbox. The SELinux64 is a security enhancement that

can be enabled in several GNU Linux distributions, such as: Fedora, Red Hat, Gentoo. This

“enhancement” provides mechanisms to restrict the execution of programs, and the resources

that each user is able to access. At this moment, we do not know any other implementations

of sandboxes.

Android Applications for Android OSs are built using usually Java. Therefore, they run

in a virtual machine which confines application execution. Each application must also have a

set of permissions that define which system resources it will access. Any access to a resource

that is not listed on the set of permissions is not permitted. The set of permissions is also

used to alert Android users when they are about to install a new application, so they can

decide to proceed with the installation.

58http://developer.apple.com/library/mac/#documentation/General/Conceptual/
MOSXAppProgrammingGuide/Introduction/Introduction.html

59http://developer.apple.com/library/ios/#documentation/Security/Conceptual/
Security_Overview/SecuritySvcs/SecuritySvcs.html

60http://www.windowsstore.com/
61http://msdn.microsoft.com/en-us/library/windows/apps/hh464936.aspx
62http://msdn.microsoft.com/en-us/library/windowsphone/develop/ff402541%28v=vs.

92%29.aspx
63http://msdn.microsoft.com/en-us/library/ff402533%28v=vs.92%29.aspx#bkmk_

securityappsafeguards
64http://selinuxproject.org/page/Main_Page

http://developer.apple.com/library/mac/#documentation/General/Conceptual/MOSXAppProgrammingGuide/Introduction/Introduction.html
http://developer.apple.com/library/mac/#documentation/General/Conceptual/MOSXAppProgrammingGuide/Introduction/Introduction.html
http://developer.apple.com/library/ios/#documentation/Security/Conceptual/Security_Overview/SecuritySvcs/SecuritySvcs.html
http://developer.apple.com/library/ios/#documentation/Security/Conceptual/Security_Overview/SecuritySvcs/SecuritySvcs.html
http://www.windowsstore.com/
http://msdn.microsoft.com/en-us/library/windows/apps/hh464936.aspx
http://msdn.microsoft.com/en-us/library/windowsphone/develop/ff402541%28v=vs.92%29.aspx
http://msdn.microsoft.com/en-us/library/windowsphone/develop/ff402541%28v=vs.92%29.aspx
http://msdn.microsoft.com/en-us/library/ff402533%28v=vs.92%29.aspx#bkmk_securityappsafeguards
http://msdn.microsoft.com/en-us/library/ff402533%28v=vs.92%29.aspx#bkmk_securityappsafeguards
http://selinuxproject.org/page/Main_Page

28 2. Related Work

Web Browsers

As mentioned in Code Signing, current web browsers features can be enhanced using exten-

sions — which typically improve the user experience — and plugins — which usually improve

the capabilities of web applications. In the folowing paragraphs we review the current support

for Sandboxing for web browser plugins.

Google Chrome As referred in [Yee et al., 2009], Google Chrome has an integrated Sandbox

that is used to confine the execution of a given type of plugin. The name of this technology

is Native Client and it is intended to prevent side effects in the execution of plugins. At this

moment, only plugins built using the PPAPI API run in this Sandbox. NPAPI plugins run

outside, thus in a free and no confined environment. For those who are concerned with Flash,

the Google Chrome version of the flash player plugin runs in Native Client65.

Internet Explorer The Internet Explorer does not confine the execution of ActiveX Con-

trols, but depending on the active security policy it may prevent from executing in the system.

Mozilla Firefox At this moment, all plugins run without restrictions in Firefox. We are

not aware of any method to confine plugin execution in this web browser.

2.5 Summary

As shown in this chapter, there are several projects which purpose is to solve the lack acces-

sibility to SCs from web applications. Some of them propose solutions that are not generic

[Sauveron, 2009], and other ones are paid (for instance Cardboss) and do not provide an in-

sight of their features. This is an interesting field where we could propose a new mechanism

to create such accessibility, in an uniform and clean way between web browsers.

The connection between SCs and applications can be achieved using different kinds of libraries.

As we described before, that are several libraries from low-level to high level complexity that

can be used to get SCs and applications working together.

Creating a plugin requires building a software package which conforms to an API that is

recognised by the web browser. As mentioned in this chapter, there are two main categories

of APIs to build web plugins: NPAPI and ActiveX Controls. In order to abstract the plugin

65http://blog.chromium.org/2012/08/the-road-to-safer-more-stable-and.html

http://blog.chromium.org/2012/08/the-road-to-safer-more-stable-and.html

2.5. Summary 29

development process from the details of such technologies and to focus developers’ work in

the features they want to be available in plugins, many frameworks have been being deployed.

These plugin development frameworks hide from developers the complexity of web browsers

libraries, and sometimes offer cross platform support.

Finally, in this chapter we also reviewed to state of the art regarding techniques to protect

users and applications: Code Signing and Application Sandboxing. These techniques can give

us the possibility to protect our plugin and their users from the distribution of tampered

or fake versions of it (Code Signing), and to protect users from the execution of malicious

instructions achieved through attacks to an open vulnerability in the plugin (Application

Sandboxing). Therefore, we presented the current support in OSs and web browsers for these

techniques, which made us conclude that it is possible to use Code Signing, but Application

Sandboxing is only possible in Google Chrome, at the present moment.

30 2. Related Work

Chapter 3

Plugin Development

So far, we reviewed the current solutions for the problem we purpose to tackle, and the

available technologies which might help us developing a web browser plugin to expose Smart

Cards (SCs) to web applications through a JavaScript (JS) Application Programming Inter-

face (API).

As we saw in Section 2.2, there are several available libraries that can be used to create connec-

tions between applications and SCs. In Subsection 3.1.1 we discuss the available technologies

for SC access.

In Section 2.3 we found out that developing a plugin for a web browser requires one to de-

velop a software package which respects to each web browser-specific API. At the present

moment, there are two major libraries: the Netscape Plugin Application Programming Inter-

face (NPAPI) that can be used in all major web browsers besides Internet Explorer; and the

ActiveX Controls that is restricted to Internet Explorer. In Subsection 3.1.2 we present the

strategy that we chose to develop our plugin.

Throughout this chapter we describe how we managed to successfully develop our plugin

using some of the concepts we learnt reviewing the state of the art. In the second section we

discuss and present the JS interface that will be available to web applications. Then, we give

a little glimpse of the Firebreath framework and how it can be used to accomplish our goals.

Some implementation details are also present in this chapter, where we expose the source

code structure of the files and classes of the project. At last, we show how to properly use the

plugin with a common usage scenario, and we present the several platforms where the plugin

was tested.

31

32 3. Plugin Development

3.1 Designing the Solution

The goal of this section is to discuss the most relevant topics of the development of the

mechanism we propose.

The first, and one of the most important choices we had to make in our work, was the

adoption of a library that would expose SCs to our software. In Subsection 3.1.1 we discuss

the available options for SC access.

Secondly, we had to decide which technology would be more suitable for plugin development.

In Subsection 3.1.2 we discuss the available mechanisms for the development of web browser

plugins, and we present our choice.

Finally, in Subsection 3.1.3 there is an open discussion about several implementation topics.

3.1.1 Smart Card Access

At the present moment there are several technologies which enable cryptographic device in

applications. As shown in Section 2.2, we can find several libraries that help developers to

take full advantage of SC capabilities, from operating system (OS) specific APIs to open

standards available in all major OSs. In the following paragraphs we present the reasons

that led us to choose Public-Key Cryptography Standards #11 (PKCS #11), and why we

discarded other libraries that would also allow us access SCs.

The OSs from Apple and Microsoft both have dedicated libraries for cryptographic purposes.

It is through these libraries that application developers can perform operations, like encryption

an decryption, and have their software working together with SCs. The main advantages of

OSs specific libraries are the low complexity implementation details — they provide a high

level abstraction of the hardware — and the update frequency — usually they are updated

more often, which can increase their security and stability. These libraries are well suited

to OS dependent applications, therefore they are not appropriate to our mechanism, where

our effort is to create a uniform mechanism that exposes SCs to web applications. In a such

situation it would require to have different implementations if we would desire to support

several OSs.

A viable alternative to OSs dependent libraries if one wishes to have a cross platform support

is PC/SC. As we discuss earlier in Section 2.2, this library is available in all major SCs and

it is compatible with several SCs. Although PC/SC offers cross platform support, it is a low

level library. Thus, one must know the implementation of the SC he wants to access, in order

to take advantage of its features and contents.

3.1. Designing the Solution 33

The Portuguese Government offers a software library called eID Lib API that can be used to

access the Portuguese Citizenship Card (PCC), and it is available for all major OSs. All of

its features are dedicated to extract the information that is stored inside the SC, like address,

age, or name. However, it does not supply cryptographic methods to be executed in SCs.

Since one of our goals is to develop a mechanism that is able to create Digital Signature (DS),

this library is not suited for our purposes.

Among all the available libraries we discussed, the PKCS #11 standard was the one that

attracted us the most. This standard defines a high level abstraction of SC, and it provides

several functions to inspect the contents of SCs and to perform cryptographic operations like

the creation of DSs using SCs. Furthermore, it is possible to use PKCS #11 in all major OSs,

because its features are not specific to any OS. As we already mentioned, there are available

implementations of this library for all major OSs. The open-source project OpenSC provides

an implementation of the PKCS #11 and it offers support for GNU Linux, Mac OS X, and

Microsoft Windows. The PCC — our usage example — is compatible with this standard, and

its vendor provides one PKCS #11 module for each on the major OSs. Due to these reasons,

the PKCS #11 shows being an appropriate library for applications that are expected to be

used in several OS.

Although MULTICERT actually required the adoption of PKCS #11 for this project, we

would have chosen this standard anyhow, because of its cross-OS availability, its features and

abstraction from the low level SC details. The PKCS #11 API will allow us to develop a

plugin that does not depend on the OS specific features to access SCs, and we can ensure a

better integration with our proof of concept. The adoption of this standard would also enable

our plugin to be compatible with other SCs besides the PCC, because it is an open standard

to which several SCs are compliant.

3.1.2 Plugin Development

As we discussed in Section 2.3, there are several methods to develop a web browser plugin.

Typically, web browsers supply interfaces that developers can use in order to enhance their

core functionalities. In this discussion we found that developing a web browser plugin would

follow one of two general solutions: by the direct use of the web browsers interfaces, or by

the means of a framework. Next we explain why chose a framework instead of the usual web

browsers APIs, and we also described why we adopted FireBreath among the others.

In the first place, we had to decide if we would develop our plugin directly using the available

API in web browsers. As we already mentioned, there two major APIs for the development

of web browser plugins: the ActiveX Controls and the NPAPI. The first one is supported in

34 3. Plugin Development

several web browsers, like Firefox, Google Chrome, Safari, and the second one is specific to

Microsoft Internet Explorer. According to our goals, the plugin that we proposed to developed

must be available for Google Chrome and Internet Explorer. Thus, it must comply to the

NPAPI and ActiveX Controls interfaces. It would also require us to study each one these

interfaces in order to understand how we could develop a plugin that can work in those web

browsers.

During the initial phase of the project we explored other alternatives to develop web browser

plugins. In this step we found several frameworks that hide the details of the web browser

interfaces for plugin development. Such technologies allow developers to focus solely on the

features they want to make available on the plugin, and sometimes they can help creating a

plugin that can be successfully used in several web browsers. Due to these features, we decided

that using a framework would allow us to save the time needed to understand the NPAPI

and ActiveX Controls technologies. Thus, it would enable us to develop NPAPI and ActiveX

plugins with the same source code core for the features we designed to our mechanism.

As we saw on Section 2.3, there are four main frameworks that help developers build web

browsers plugins. The first one that we discarded from this set of frameworks was Nixysa,

because it only has support for NPAPI plugins, it has poor documentation, and the last

release is relatively old(2009). The three remaining libraries are very similar, they all have

support for the major web browsers and OSs, and good documentation. Among these options

we chose FireBreath since it is restricted to the development of web browser plugins, it has

good starting guides, and has no costs — even when the web browser plugin is supposed to

have its source code closed. The Juce would also be a good choice for developing our plugin,

but we only became aware of this framework in an advanced phase of this project.

A full description of the FireBreath framework can be found in Section 3.3.

3.1.3 Implementation

Up to this point we discussed the several alternatives for accessing SCs and develop web

browser plugins. From that discussion we decided that PKCS #11 would give us a good

abstraction and a powerful access to cryptographic devices. We also decided that a framework

would give us the possibility to create plugins for several web browsers with the same source

code for the core features. Now we are going to discuss the major topics we had to face during

the implementation step.

3.1. Designing the Solution 35

Linking with the PKCS #11 module

Linking the web browser plugin to the PKCS #11 module is perhaps the most important

decision we had to make. This module is responsible for enabling SC capabilities in the

plugin, and it has a major influence on the plugin security.

In this decision we had to choose between linking the module either dynamically or statically.

Being statically linked means that the plugin would have the PKCS #11 library attached to

its binary. In this situation the PKCS #11 library does not need to be present in the OS.

Dynamically linked means that the PKCS #11 module would only be attached to the plugin

at runtime, and it must be present in the OS.

Regarding security, the statically linking option shows being more reliable. Mainly because

a malicious agent cannot change the PKCS #11 module without changing the plugin binary,

since the library is a part of the plugin. It is also easier to deploy a statically linked plugin,

because the end user would not need to install additional software, namely a PKCS #11

module, to run the plugin.

In our project we decided to dynamically link the PKCS #11 library to our plugin, only for

testing purposes. Specifically, we chose to load the PKCS #11 library at runtime, where the

plugin waits for the web application developer to insert the location of the module. We are

aware of the security restrictions of our choice. However, in this initial phase of the project

we though that it would be easier to test the plugin with different PKCS #11 modules, and in

different platforms, using dynamic linking. Another advantage of this choice is that interested

users on our mechanism can test it with other PKCS #11 modules besides the ones we initially

thought (OpenSC and the module of the PCC).

In future versions of this project the plugin can still be deployed using dynamic linking, but

additional security mechanisms would be needed. It could be used code signing in order to

web browsers and OSs check if the plugin was tampered. The plugin would be deployed with

a PKCS #11 module (like OpenSC) and it would also check the integrity of the module using

Code Signing. It would also be interesting if web application developers could instruct the

plugin to load a code signed PKCS #11 module. In this situation it would be needed: the

PKCS #11 library, the Public Key Certificate used to sign the library, and the DS of the

library. Using these elements the plugin can check if the module was not tampered (using

the DS) and it can verify if it was developed by a known and trustworthy entity (using the

Public Key Certificate).

36 3. Plugin Development

Access to PKCS #11 objects

The PKCS #11 standard defines a hierarchy of objects, where each one has several attributes.

As we presented on Subsection 2.2.1, the access to the objects — and its attributes — stored in

SCs is performed through templates. One must specify a model of a template that matches

the object he is looking for, in order to get a reference to that object. Once he has got

the object reference, he must specify a model of an attribute template, in order to get the

values from the object he is searching. From this small description we can conclude that the

operation of searching for objects and its values in PKCS #11 is very verbose. So, we decided

to wrap these details from the web applications, by supplying dedicated functions for each

one of the PKCS #11 objects. The main reason that led us chose for this mode of operation

is simplicity, we can expose the same amount and quality of information with less complexity

and source code.

Returning the attributes of each PKCS #11 object

As shown in Appendix A.2, objects in the PKCS #11 standard can have several attributes.

This is maybe one of the reasons why the access to the attributes of objects is performed

using templates, so developers can access only to the information they want. However, in this

project we decided to return all the attributes of each object.

We suspect that web application developers may not always want to get all the available

attributes of a given object. We chose this operation mode only for testing purposes. In

future versions of these plugin it would be interesting if each of the access methods to objects

would have an argument containing a template. This argument could be an array of attributes

defining the values that the developer wants to be delivered.

Handling binary data

The content of some attributes and the result of some operations in PKCS #11 is exposed

using binary data. The result of a digest or the subject of a Public X.509 Public Key Certificate

are a examples of data that is returned in the binary format. In the development of our plugin

we decided that such data must be encoded in a language-independent format, because JS

does not have a primitive way to represent binary data.

We could also encoded such data as strings, but it would produce unexpected results, because

web browsers assume strings to be in the UTF8 format1.

1http://www.firebreath.org/display/documentation/Supported+JSAPI+types

http://www.firebreath.org/display/documentation/Supported+JSAPI+types

3.1. Designing the Solution 37

So, we decided that the best solution for the representation of binary data would be encoding

it in the Base 64 format. Other formats could be adopted, like hexadecimal. We adopted

Base 64 because it is more efficient than hexadecimal.

Slot events

As referred in the goals of this project, warning we applications whenever a token is inserted

or removed from a slot is a major feature that we wanted in our plugin. In order to accomplish

this goal we used Document Object Model (DOM)-like events.

An alternative to our solution would be using JS callbacks registered on the JS interface of

the plugin. These two approaches are very similar, but the first one is closer to the typical

use of events in the development of web applications, where developers use DOM events to

get information when for instance a user clicks an element of a web page.

A third option to expose these events to web applications would be through methods. In

this situation a web application would invoke a method from the JS API of the plugin and

it would block until an event occurs in a slot. This is a synchronous solution, and is not the

most suited one, because it blocks the ordinary execution flow of web applications.

Since we decided to notify web applications of slot events in an asynchronous way, we had to

make another decision. This time we had to decided if the plugin would be always watching

for slot events, or if the web application developer can instruct it to start and stop listening

for such events. Between these two approaches we chose the second one due to efficiency

reasons, as an additional thread is needed in order to check whenever a token is inserted or

removed.

Creation of Digital Signatures

In the PKCS #11 standard the creation of DSs using a SC needs developers to: (1) login into

the SC, (2) feed the signature mechanism with data, (3) logout from SC.

The first and third steps are the most crucial ones, because: in the first place a Personal

Identification Number (PIN) is needed in order to login; secondly, if the connection with

the SC is not closed one may take advantage of this situation to create DSs without user’s

consent.

So, the first decision we made was to have total control over the connections to the SCs, thus

the plugin must be responsible for prompting the PIN to users, and login and logout the user

38 3. Plugin Development

into/from the SC. This is the only way that we can ensure that neither the web application

learns the PIN of the user (when compared to the situation where the web application is in

charge of this operation), and the connection with the SC is open only during the time needed

to create the DS. Based on these decisions we decided to expose in the JS interface of the

plugin two dedicated functions for digital signing purposes, one specific for the creation of DS

from files, and another one from binary data. With this functions it is possible to specify if

the plugin should ask for a PIN, and the data that is supposed to be signed. This solution

give us the ability to control: (1) PIN prompting; (2) the precise time needed to create the

signature, we now exactly when to login and logout; (3) the data that is supposed to be

signed; (4) the time that the PIN is stored in the computer’s memory, once the user is logged

in we can erase the PIN from the memory.

3.2 API Design

In the development of the mechanism that we propose to enable SC capabilities in web

applications — in a clean and uniform way among web browsers — we tried to create a

consistent, simple, and easy to use JS interface. In that sense, we designed a browser and

platform independent JS API with three different kinds of members: methods, attributes,

and events. Each one of these interfaces will help web applications to: perform operations

using SCs — methods —, get extra information about the plugin or the SC — attributes —,

or even get notifications when a given event occurs — events. In Figure 3.1 there is an overall

JS interface description.

Methods

Environment Inspection Cryptographic

Attr ibutes

EventsJ
a

v
a

S
c

ri
p

t
In

te
rf

a
c

e

Web Browser

Plugin

Figure 3.1: JS API Interface

3.2. API Design 39

In Appendix A.1 there is a complete API description of the JS interface, where we describe

each method, attribute, and event.

3.2.1 Methods

SC-related features will be available to web applications as methods in the JS API, which

will allow them to get information about SCs, and to accomplish cryptographic operations

such as DS.

All the available methods in the JS interface of the plugin share the following three charac-

teristics:

• Fall into one category - There are three types of methods, each type with distinct

functions: one to setup the some plugin properties, one to inspect SCs features, and

another one to perform cryptographic operations. These categories will be explained

later.

• Token-oriented - Being token-oriented means that any operation will be performed with

the concern to a given SC. At API level a SC is referred as a token.

• Possibility to throw exceptions - Since it is not always possible to execute successfully a

method — due either to a wrong input, or an internal error in the function responsible

for such method —, exceptions give the power to notify web applications whenever such

situations occur.

Next, we will describe each method category.

Environment

This category of methods can be used by web applications to setup the environment where

the plugin is running. There are two reason for the existence of this category of methods. The

first reason is related to the PKCS #11 library, every time anyone wishes to use it he must

first initialize it before using any of its functions. Once he finishes using it he must expressly

instruct the PKCS #11 library to finalize, so all existing connections to SCs are closed,

and resources freed up. Secondly, not all web applications would desire to receive warnings

anytime a SC is either inserted or removed into/from the Smart Card Reader (SCR). So, for

this purpose there are two methods which tell the plugin whether to start or stop listening

for events in the SCR.

40 3. Plugin Development

Inspection

Inspection methods give web applications the chance to get additional information from the

SC, like available tokens in the user OS, available private keys, or private key details. Such

information can later be used in methods as the cryptographic ones, which require SC specific

details, like the cryptographic mechanism, or even identifiers for private keys.

In order to get information of any given data — whether about a SC, a public key certificate,

or even a mechanism — one must always do:

1. A search for the available kinds of items he wishes to get more information, such as

SC/token, or a private key. Once the search is complete, the plugin returns a list of

integers, where each element identifies solely one of such item. The name of these kind

of methods follows the convention getAvailableItems, where Items is replaced by

the object name to search.

2. An access to the information inherent to the item he is looking for. In return, the

plugin delivers a list containing the data from such item. The naming of these methods

is similar to getItemInformation.

G e t
Available

I t ems I tems

G e t
I t e m

Informat ion
I tem Informat ion

Figure 3.2: The getAvailableItems / getItemInformation Procedure

This scheme, as expressed in Figure 3.2, follows the PKCS #11 model for these kind of

operations. An alternative to this scheme would be returning a map of item’s identifiers to its

informations. This solution could offer a lower performance, because additional information

would have to be returned, even if not needed.

As we described in Subsection 2.2.1, the PKCS #11 standard defines an object model over

the existing kinds of information that can be accessed. Such as: mechanisms, private keys,

hardware features. In this scenario, if one wishes to get information about such items, he

must use two different functions: one to get a reference to the object and another one to

get values from it. In our work we decided to simplify this task, such as so we created an

inspection method for each one of these objects, such as: getPrivateKeyInfo for private

keys, and getX509PublicKeyCertificateInfo for X.509 Public Key Certificate.

The information attached to each item available in the PKCS #11 library can be very exten-

sive, there are items with more than ten fields. Due to this reason, the PKCS #11 standard

3.2. API Design 41

[RSA Laboratories, 2004] defines a template model, in which programmers can limit the fields

they wish to inspect. For simplicity sake, we decided to retrieve a list of all the fields at-

tached to each item. In contrast, we could have used a similar model to the one used by the

PKCS #11 standard, where web application developers could define a list of which fields they

want to get access.

Cryptographic

The last category of methods, but no less important, are the cryptographic ones. These

methods let web applications use the cryptographic features available on SCs.

Currently, the plugin offers two kinds of cryptographic methods: one to create DS, and

another one to create digests. While DS can be used by web applications to check its user’s

identity — in case of authentication — , or to help its users digitally signing a document —

which has the same validity as its physical equivalent. Digests give the possibility to check a

message integrity, whenever ah hash function is not available.

Both kinds of methods — DS and digest creation — have support for processing either files

or bytes of data.

The PKCS #11 standard defines several functions for cryptographic functions, such as: en-

cryption and decryption, Message Authentication Code (MAC)ing, and random number gen-

eration. However, the PCC — our case study — only offers functions for the creation of

DSs and digests [Agência para a Modernização Administrativa, 2007]. This is why we chose

not to implement any method regarding the remaining cryptographic functions defined in the

PKCS #11 standard.

3.2.2 Attributes

The use of attributes in the JS interface of the plugin can be very useful to expose values,

which do not need to be processed before returning their values to web applications.

Thus, we created three sets of read-only attributes, which web applications can use to get

additional information about the plugin, SCs, and cryptographic mechanisms. The presence

of such attribute values in the JS interface eases the work of web application developers,

thereby avoiding documentation checks, and also helping minimizing copy&past related errors.

Defining the attributes as read-only allowed us to expose values as typical constant values

used in languages like C++. In the next paragraphs there is a description of each set of

attributes.

42 3. Plugin Development

Token-related attributes The PKCS #11 defines in its standard a field which holds the

active flags for a given SC token, such as the presence of a random number generator, or even

if the token is write-protected. Therefore, we decided to expose such flags, so web applications

can have check SC features more easily.

Mechanism-related attributes Each PKCS #11 mechanism has a field to store its char-

acteristics, like if it can be used in encryption or signing functions. The presence of these

flags help web applications find out the best mechanism to use when they wish to create a

DS or a digest.

Plugin-related attributes The intent of these set of attributes is to expose the following

plugin properties: its version, string delimiters, and slot event types.

An alternative way to achieve the same goal without using attributes would be with methods,

where each property would have a getter to its value. This solution would increase the plugin

programming complexity, because it needs more lines of source code to produce the same

effect as attributes.

3.2.3 Events

The interface events allow us to notify web applications about events, just like the ones used

in DOM. In our plugin we used this interface to a callback anytime the state of the SCR

changes, due to either an insertion or removal of a SC token. When this event is fired a

callback in the JS is called, where the token and the event type (insertion / removal) are

identified.

Instead of using events, we could have used directly JS callbacks, where web applications

would register in the plugin a JS method to listen for occurrences in the SCR.

3.3 The Firebreath Framework

Firebreath is a lightweight, but nonetheless powerful framework which enables developers to

build plugins that support all major web browsers and OSs. In this project we used the last

stable release of the Firebreath framework — specifically 1.6 — and it supports the following

web browsers and OSs:

• Windows

3.3. The Firebreath Framework 43

– Internet Explorer 6 and later

– Mozilla Firefox 3.0 and later

– Google Chrome 2 and later

– Apple Safari

– Opera

• Mac OS X

– Mozilla Firefox 3.0 and later

– Google Chrome

– Apple Safari 4 and later

• GNU Linux

– Mozilla Firefox 3.0 and later

– Google Chrome

In this section we will overview the Firebreath framework. First we will enumerate its re-

quirements in order to have a fully operational system where Firebreath can be used, Subsec-

tion 3.3.1. Then we will describe the several steps needed to successfully compile and install

a plugin using this framework, and how we managed to automate this tasks, Subsection 3.3.2.

Finally, we will show how the framework can be used to create features that will be available

to web applications, Subsection 3.3.3.

3.3.1 Requirements

The first thing that we must recall about Firebreath is that it is a C++ framework only;

and it does not supply any means to compile, install or test plugins. Therefore, we will need

additional development software like interpreters, compilers, build systems, or even Integrated

Development Environments (IDEs), depending on the system we will compile the plugin.

In all OSs supported by Firebreath — GNU Linux, Mac OS X, and Windows — Python2 must

be installed at least at the plugin creation time. Python is used to run a script which creates

2http://www.python.org

http://www.python.org

44 3. Plugin Development

the base source code structure of the plugin. According to the Firebreath documentation3, it

is recommended to use one of the following Python versions: 2.5, 2.6, or 2.7.

The CMake4 is the build system used by Firebreath to structure the plugin compiling defi-

nitions. The recommended CMake version needed to compile the plugin differs among OSs:

2.8 in GNU Linux, 2.8.8 in Mac OS X, and 2.8.7 in Windows.

Under a GNU Linux operating system the following software packages must be installed in

order to compile the plugin:

• GTK development libraries version 2.0 These libraries are used for drawing sup-

port

• GNU Make5, GCC6 These tools are used to compile the plugin

Under Mac OS X operating system the following software packages must be installed in order

to compile the plugin:

• Apple’s XCode7

• XCode’s command line tools

Under Windows operating system the Microsoft Visual Studio8 IDE must be installed in

order to compile the plugin.

The Firebreath framework must also be present in the system, it can be downloaded from its

official download page9.

3.3.2 Development Life Cycle of a Firebreath Plugin

The development life cycle of a plugin using the Firebreath framework, from its creation to

its installing, can be divided into four steps, as shown in Figure 3.3.

1. Creation - The goal of this step is to:

• define the plugin properties, such as: name, MIME type, Company Name, De-

scription, among many others;

3http://firebreath.com/display/documentation/Creating+a+New+Plugin+Project
4http://www.cmake.org
5http://www.gnu.org/software/make
6http://gcc.gnu.org
7https://developer.apple.com/xcode
8http://www.microsoft.com/visualstudio
9http://firebreath.com/display/documentation/Download

http://firebreath.com/display/documentation/Creating+a+New+Plugin+Project
http://www.cmake.org
http://www.gnu.org/software/make
http://gcc.gnu.org
https://developer.apple.com/xcode
http://www.microsoft.com/visualstudio
http://firebreath.com/display/documentation/Download

3.3. The Firebreath Framework 45

1. Plugin
Creation

2. Environment

Preparat ion

3. Compilation

4. Plugin
Instal lat ion

Figure 3.3: Firebreath Development Cycle

• generate the base source code structure of the plugin project, which later will be

explained in Section 3.4.

In order to ease this task, the Firebreath framework offers a Python script — named

fbgen.py — which automates the plugin generation.

Obviously, this step is only performed once in the development process of a plugin.

2. Environment Preparation - The goal of this step is to:

• define the plugin project location and the build directory;

• scan the plugin project for source files, so all dependencies are known at compile

time;

• find the plugin properties, such as additional libraries;

• define the build type, it can be: Debub, Release, MinSizeRel, RelWithDebInfo; (this

definition can be set later if the plugin is compiled using an IDE)

• fetch external Firebreath libraries dependencies like Boost10, if they are not present

in the environment where the plugin will be compiled;

• generate auxiliary build files, such as: IDE projects, and source files regarding the

plugin core functionality.

Once again, for this task Firebreath offers the following auxiliary scripts for each plat-

form it supports, which will help creating a prepared environment for a successful com-

pilation:

10http://www.boost.org

http://www.boost.org

46 3. Plugin Development

• prep20xx.cmd - a batch script for the Windows platform that generates a Microsoft

Visual Studio compatible build setup;

• prepcodeblocks.sh - a batch script for Unix like platforms that generates a compat-

ible setup for the IDE Code::Blocks11;

• prepeclipse.sh - a batch script for the Unix like platforms that generates a com-

patible setup for the IDE Eclipse12

• prepmac.sh - a batch script for the Mac OS X platform that generates a XCode

compatible build setup;

• prepmake.sh - a batch script for the GNU Linux platform that generates a com-

patible setup with GNU Make and GCC.

The created build environment should never be shared among systems, even among the

same operating system, because all the build definitions — like system paths — are

created according to the system they were created.

This step must be executed when someone is about to compile the plugin project for

the first time, and must be repeated every time someone changes the plugin properties

or definitions, or adds a new source file to the plugin project.

3. Compilation - The compilation step has the purpose of creating a binary compatible

with a NPAPI plugin or an Activex control, or even both, depending on the operating

system it is performed. Next we present the tools for which Firebreath offers support

for compilation:

• GNU Linux - GNU Make build system, or Code::Blocks and Eclipse IDEs

• Mac OS X - XCode IDE or the command line tool xcodebuild

• Windows - Microsoft Visual Studio

The plugin project definitions should never be changed inside IDEs, with the exception

for the build type and the target architecture, when these definitions are available.

The plugin binary is only compatible with the operating system where it was compiled.

This step must be performed every time the source code is changed.

11http://www.codeblocks.org
12http://www.eclipse.org

http://www.codeblocks.org
http://www.eclipse.org

3.3. The Firebreath Framework 47

4. Installation - The installation process intents to expose to web browsers - or even

OSs — the newly compiled plugin, and it varies depending on the operating system:

• GNU Linux

There are two ways to successfully install the newly created NPAPI plugin, mak-

ing it accessible to web browsers, it can be installed to every user present on the

operating system, or simply just to a single one.

– Install for everyone - copy the created shared object file — the plugin — to

/usr/lib/mozilla/plugins

– Install for a single user - copy the created shared object file — the plugin —

to <USER_HOME>/.mozilla/plugins

• Mac OS X

The installation process under a Mac OS X operating system follows the same

philosophy as the one for GNU Linux, but with different locations:

– Install for everyone - copy the created shared object file — the plugin — to

/Library/Internet Plugins

– Install for a single user - copy the created shared object file — the plugin —

to <User_HOME>/Library/Internet Plugins

• Windows

Under a Microsoft Windows operating system the plugin can only be installed for

every user, using the command line tool regsvr32 to create a new entry in the

registry. When a web browser is started it will check the registries for plugins and

it will load the shared object associated to each registry.

The plugin binary works as both a NPAPI plugin and an Activex Control.

After the plugin installation, the web browser where it will be tested must be restarted,

so it can reload the list of shared objects.

If the plugin is under development in GNU Linux or Mac OS X the Firebreath docu-

mentation recommends to place symbolic links to the shared object in the installation

folders, instead of copying it directly to those places. Thus, every time the plugin binary

is created, it is also updated.

48 3. Plugin Development

A Bit of Automation

Firebreath offers several scripts to ease the development life cycle of a plugin. However, one

must always recall which scripts to use, their location, and their parameters, which may

jeopardize the plugin consistency among OSs, and slow down the build process.

In our work we created additional mechanisms to automate the development — from the

environment preparation to the plugin installation —, so anyone who is developing just needs

to know if he wants to prepare the compilation, compile the plugin, or install it. For this

purpose we created a simple batch script for each platform — one compatible with the Win-

dows OSs and another one compatible with Unix like systems — with identical operations,

and functionalities.

3.3.3 Using the Firebreath Framework

One of the most interesting features of Firebreath is the ease of interacting with JS. Currently

Firebreath exposes four basic types of interfaces to JS: methods, properties, attributes, and

events. In order to create these interfaces, Firebreath offers a C++ class named JSAPIAuto

that must be inherited by at least one of the plugin classes. The JSAPIAuto hides the details

of exposing features to the JS layer, and simplifies the amount of code needed for type casting

between JS and C++, and vice versa.

Next we will present each one of the interfaces, and we will explain how one can expose each

one to web applications.

Methods

A method provides a useful way to enhance the JS capabilities of web applications: it gives

access to procedures that are not available in the regular JS provided by web browsers.

Usually, a method can accept zero or more arguments and it can optionally return a value.

Whenever a method does not explicitly returns a value, the web application will receive a

undefined value, which is the ordinary behaviour of a typical JS function without a return

value.

Creating a new method using the Firebreath framework — which will be available through

JS to web applications — requires registering the method as one member of the JS interface,

and defining its behaviour.

3.3. The Firebreath Framework 49

The first step to create a new method — which will be accessible from the JS interface — is

to define its behaviour. This is identical to any other regular method definition in C++: first

one must to create its signature inside the class in the header file, and then create it in the

source file, as shown in Example 3.1 where it is defined a method named add_internal

which belongs to the class MyPluginAPI and calculates the sum of two integers.

Header File (.h)

class MyPluginAPI : public FB::JSAPIAuto
{

public:
(...)
int add_internal(int a, int b);

(...)
};

Source File (.cpp)

int MyPluginAPI::add_internal(int a, int '
b)

{
return a + b;

}

Example 3.1: How to define a new method in Firebreath. Adapted from the Firebreath docu-
mentation13

Once the method behaviour is defined it can be exposed to the JS interface using Fire-

breath provided functions to register methods in the plugin JS API. In Example 3.2 there

is an instance of such registration, using the special functions: registerMethod and

make_method. The first parameter of registerMethod defines the method’s accessible

name from JS, in this example it is add. The second parameter is a pointer to a function that

will perform the conversion from the JS values to C++ compatible types, and check the argu-

ment count. Such function can be generated using make_method, which needs one pointer

to the method that will handle the JS request, and another to the object where it belongs —

in the example the method that will handle the request is add_internal and it belongs to

the class MyPluginAPI. The registration must be placed inside the object constructor for

the JSAPIAuto derived class.

1 MyPluginAPI::MyPluginAPI()
2 {
3 registerMethod("add", make_method(this, &MyPluginAPI::add_internal));
4 }

Example 3.2: How to register a new method in Firebreath. Adapted from the Firebreath docu-
mentation14

Even tough JS is a dynamic, weakly-typed language, Firebreath ensures strong dynamic typing

from JS (input) to C++ values, for a great majority of types. Firebreath will always try to

match the input values to the ones in the method definition, whenever this operation fails an

exception will be thrown to the web application. At the current stable version of Firebreath

the following types are supported:

• arithmetic, such as: int, long, short, char, double, and size_t;

• boolean;

50 3. Plugin Development

• string;

• container types compatible with the Standard Template Library (STL)15;

• JS objects, such as methods for callback.

Any of the above types can be used as an output to the JS interface, with the exception for

the container types. In this case it is only possible to return lists — std::vector — or

maps — std::map<std::string,...>.

In the development of our plugin we used these kind of methods to create the functions from

the JS API that will perform operations like: creating DS, and check for SC, among many

others.

Attributes

Attributes can be used to expose values to the JS interface of the plugin. One must use

attributes whenever getting — or setting — a value needs no special logic to handle such

request.

The creation of a new attribute is simple. Firebreath requires only a registration where it must

be defined: the accessible name from the JS interface, the associated value, and optionally

define if it is a read-only attribute. In Example 3.3 there is a registration of two attributes:

a read-writable named readWriteValue with the default string value a string value;

and another one named readOnlyValue with read-only permissions, that holds the value

another string value.

1 MyPluginAPI::MyPluginAPI()
2 {
3 registerAttribute("readWriteValue", "a string value"));
4 registerAttribute("readOnlyValue", "another string value", true);
5 }

Example 3.3: How to register a new attribute in Firebreath. Adapted from the Firebreath
documentation16

Once again it is possible to use anyone of the types referred previously in the description of

methods.

We used attributes to expose certain constants to the JS interface, that otherwise would re-

quire web applications to have firsthand knowledge of their values. Example of such constants

are token and mechanism related flags defined by PKCS #11.

15http://www.cplusplus.com/reference/stl

http://www.cplusplus.com/reference/stl

3.3. The Firebreath Framework 51

Properties

The use of properties in the JS API enables web applications to get — and set — values

from the plugin, in the same way one can access member variables of any given class. This

interface may resemble attributes, but they have different goals. A property must be used

when its content needs to be processed before setting or getting its value. A property can

have either read-write permissions — web applications can read and change the property’s

content — or read-only permissions — it is not allowed to change the property’s value.

The first step in the creation of a new property is to declare the variable which will hold the

value that both web application and plugin will have access to. Then, it is time to create a two

member functions, where one will act as a value getter, and another as a value setter — if it is

a read-write property. Example 3.4 shows the creation of a new property, having its string

value stored in the member variable m_value, with the getter and setter get_value and

set_value, respectively.

Header File (.h)

class MyPluginAPI : public FB::JSAPIAuto
{

public:
(...)
std::string get_value();
void set_value(std::string& val);
(...)

protected:
std::string m_value;

};

Source File (.cpp)

std::string MyPluginAPI::get_value()
{

return m_value;
}

void MyPluginAPI::set_value(std::string& '
val)

{
this.m_value = val;

}

Example 3.4: How to define a new property in Firebreath. Adapted from the Firebreath docu-
mentation17

At this point the property is just like a regular member variable of any other class, and it

cannot be accessed outside the plugin. Thus, we have to register this property in the plugin JS

interface, in a way similar to the method registration. To this end, Firebreath offers two special

functions for registering properties: registerProperty and make_property. While

registerProperty is in charge of defining the accessible name from the JS interface, and

the function that will perform the conversions from JS values to C++ types; make_method

is used to generate the source code of a such conversion function. Example 3.5 shows how to

register a read-only property, and a read-write property, with the names readOnlyValue

and readWriteValue, respectively. The difference between these two properties is the

presence of a setter in their registration — if the function make_property is not provided

with a setter, then the property will be read-only value. The registration must be placed inside

the object constructor for the JSAPIAuto-derived class, just like in a method registration.

Regarding the supported types for properties, it is possible to use any of the types referred

in the description of methods.

52 3. Plugin Development

1 MyPluginAPI::MyPluginAPI()
2 {
3 registerProperty("readOnlyValue", make_property(this, &MyPluginAPI::'

get_readOnlyValue));
4 registerProperty("readWriteValue", make_property(this, &MyPluginAPI::'

get_readWriteValue, &MyPluginAPI::set_readWriteValue));
5 }

Example 3.5: How to register a new property in Firebreath. Adapted from the Firebreath
documentation18

Events

Events give plugins the possibility to warn web applications every time a given occurrence

happens, just like normal DOM events — such as onload and onmousemove — firing

callbacks in the web application JS. Such mechanism allows web applications to notify their

users or even to adapt their interface according to a given event.

In order to create a new event one must declare it — inside the JSAPIAuto derived class

definition — using the Firebreath macro FB_JSAPI_EVENT, respecting the syntax in 3.6.

The macro expects one to identity the following event properties: name — it must be entirely

lower case due to browser differences —, argument count, and argument types. One must be

use arguments in his events anytime additional knowledge about it is required.

FB_JSAPI_EVENT({name}, {arg count}, ({arg types}))

Example 3.6: Event creation syntax in Firebreath. Adapted from the Firebreath documentation19

With the intent to exemplify how such declaration can be successfully achieved, Example 3.7

has the registration of a new event named event, which has two arguments: one integer

and a string.

1 class MyPluginAPI : public FB::JSAPIAuto
2 {
3 public:
4 (...)
5 FB_JSAPI_EVENT(event, 2, (int, const std::string&));
6 (...)
7 };

Example 3.7: How to create a new event in Firebreath. Adapted from the Firebreath documen-
tation20

After declaring the new event, all member functions from the JSAPIAuto derived class

can warn web applications about its existence by triggering a special function responsible

for that event. At the time the event is declared — like in Example 3.7 — Firebreath au-

tomatically generates a new function to fire such event, which name follows the template

3.4. Implementation 53

fire_{event_name}. In Example 3.8 there is a function named fire_event firing the

event declared in 3.7, using the values 123 for the first integer argument, and string for

the second string argument.

1 void MyPluginAPI::fireEvent()
2 {
3 fire_event(123,"string");
4 }

Example 3.8: How to fire an event in Firebreath. Adapted from the Firebreath documentation21

The plugin that we developed uses these kind of evens to warn web applications every time

a token is either inserted or removed in/from the SC.

3.4 Implementation

The first step in the creation of the plugin was to generate the initial source code structure of

files and classes using the auxiliary scripts supplied by the Firebreath framework, as described

in Section 3.3. In this operation the files presented in Table 3.1 were generated. We decided

to name our plugin as Smart Cards Everywhere since our effort is to create a uniform and

browser-independent mechanisms that exposes SCs to web applications.

The files SmartCardsEveryWhereAPI(cpp | h) are some of the most important ones

in our project. The behaviour of the class SmartCardsEveryWhereAPI is defined in these

files. This class is responsible for handling all the requests made to the JS interface of the

plugin. In this class we registered all the members of the JS interface (methods, attributes,

and events), and their behaviour as well.

In Figure 3.4 we present the class diagram of our project. For simplicity sake we used packages

to represent C++ namespaces. On the right side and inside a rectangle of this diagram there

is a representation of the classes we developed in our project.

On the left side there are the two main classes inherited by the classes of our project:

SmartCardsEveryWhere and SmartCardsEveryWhereAPI. During the development phase

we decided to create a namespace named utils dedicated to hold auxiliary classes. Within

this namespace we created the class Utilities that has several methods to: dynamic li-

brary management, type conversion, and mutex management.

The class SlotEventListener is used to wait for changes in slots attached to a computer.

In order to perform this operation it runs a thread that is constantly checking the status of

54 3. Plugin Development

File Description
PluginConfig.cmake In this file it is possible to define several informations about the

plugin, such as: name, MIME type, Description, and Company
name. It is also in this file were we can define if we want to link
our plugin with any of the libraries supplied by Firebreath, like
OpenSSL22.

CMakeLists.txt It is in this file where the configurations for the compilation are
written. Any cross platform library, or file, must be specified in
this file.

Factory.cpp This file contains the class that is responsible for creating the
main plugin object, and for initializing and finalizing the plugin.

SmartCardsEveryWhere (cpp ∣
h)

These files have the definition of the class SmartCardsEvery-
Where, which is the main entry point of the plugin.

SmartCardsEveryWhereAPI
(cpp ∣ h)

These files contain the definition of the class SmartCardsEvery-
WhereAPI, which will handle all the JS requests. From methods,
to events, this class will process each request to the JS interface
of the plugin.

Mac/projectDef.cmake This file defines additional compile instructions specific to the
Mac OS X OS. Specific libraries of this OS must be referred
here.

Win/projectDef.cmake This file defines additional compile instructions specific to the
Windows OS. Specific libraries of this OS must be referred here.

X11/projectDef.cmake This file defines additional compile instructions specific to GNU
Linux OSs. Specific libraries of this OS must be referred here.

Table 3.1: Initial Source Code Structure. Adapted from the Firebreath documentation23

Firebreath

SmartCardsEveryWhere

IEventHandler

+EventType : enum

+ ~IEventHandler()
+ fireEvent(...)

SmartCardsEverywhere

SmartCardsEverywhereAPI

uti ls

Uti l i t ies

SlotEventListener

PluginCore

JSAPIAuto

Figure 3.4: Class Diagram of the Plugin

the SCRs. The class SmartCardsEveryWhereAPI is notified when a change occurs, so it

can warn web applications accordingly.

The communication between SmartCardsEveryWhereAPI and SlotEventListener is

achieved through the class IEventHandler. This class defines an abstract behaviour of a

3.4. Implementation 55

method that should be fired when a given event occurs. As shown in Example 3.9 the method

is called fireEvent and it has three parameters: the first one identifies the function where

the event occurred, the second indicates the event type, and the third the data associated

to that event. Since SmartCardsEveryWhereAPI inheres IEventHandler, then it must

implement this method. When a request is made to the JS interface for slot events, the class

SlotEventListener is instantiated and a reference of SmartCardsEveryWhereAPI is

passed.

(...)
enum EventType
{

CHECK_RETURN,
TOKEN_INSERTED,
TOKEN_REMOVED

};
(...)
virtual void fireEvent(Utilities::FunctionsList funID, EventType evtID, void * data) = 0;

Example 3.9: Excerpt of the class IEventHandler

In Figure 3.5 there is a representation of the currently file structure of the project. Inside

the folder include we can find the several external headers needed to compile our plugin.

At this phase of the project these headers are all related to the PKCS #11 library. The file

Configurations.h is used to define which headers to included depending on the OS where

the plugin is being compiled.

SmartCardsEverywhere

. h Configurations . h IEventHandler .cpp SlotEventListener . h SlotEventListener

. h SmartCardsEveryWhere .cpp SmartCardsEveryWhereAPI . h SmartCardsEveryWhereAPI .cpp

. h Uti ls Plugin.cmake CMakeLists.txt

include

X 1 1M a c W i n

. h cryptoki . h pkcs11 . h pkcs11f . h pkcs11t . h unix . h w i n 3 2

projectDef.cmake projectDef.cmake projectDef.cmake

.cpp SmartCardsEveryWhere

Uti ls

Figure 3.5: File Structure of the Plugin

56 3. Plugin Development

Cross-platform Support

During the development phase we made a great effort to program our plugin with support for

several platforms. Due to this reason we made an extensive use of the preprocessor directives

#if - #else. These directives help us identify the platform where the plugin is being

compiled. With this knowledge we had the ability to chose the most appropriate behaviour

according to the target OS.

In Example 3.10 there is a precise function where we use those directives in order to know

which kind of mutexes should be used (Microsoft Windows or POSIX). This function is

used to create a mutex, and it is passed as a reference to the initialization function of the

PKCS #11 library. The PKCS #11 library needs several mutex -related functions when it is

being accessed by a multi-threaded application. For that purpose it needs the following four

kind of functions: create and destroy a mutex, and lock and unlock a mutex.

//creates a mutex object
CK_RV Utilities::myCreateMutex(CK_VOID_PTR_PTR ppMutex)
{

//mutex functions return value
int ret = 0;

#if defined(WIN32) && !defined(UNIX)

*ppMutex = (HANDLE *) CreateMutex(NULL, // default security attributes
FALSE, // initially not owned
NULL); // unnamed mutex

if(*ppMutex == NULL)
ret = -1;

#else
ret = pthread_mutex_init((pthread_mutex_t *) *ppMutex, NULL);

#endif
return (ret == 0)? CKR_OK : CKR_GENERAL_ERROR;

}

Example 3.10: Cross platform support creating mutex

In the source code of our project it is possible to find several instances of #if - #else

preprocessor directives to identify the OS, specifically to:

• choose the appropriate functions for mutex management;

• choose the appropriate functions for dynamic linking.

• choose the appropriate header files;

3.5 Plugin Usage

The best way to understand the behaviour and the correct use of our plugin is to present a

short example of how a web application developer can take advantage of the available features.

3.5. Plugin Usage 57

In this section, we show how to load the plugin in a web browser whenever a user connects to

a web application, and we give a little usage example of how one can use the plugin to create

a DS of a file.

The first step to integrate a web application with our plugin is to reference it in the HTML

code of the web application. This reference is accomplished using the HTML tag object,

where its type must be set to application/x+smartcardseverywhere. Example 3.11

has an extract of a web application that is referencing our plugin. In this example we use a

DOM event to get a notification once the plugin is loaded. After referencing the plugin in

the HTML, one should create a JS function to simplify the calls to the plugin, as in Example

3.12. Now, one can perform calls to the plugin simply by using plugin().<FUNCTION>

instead of document.getElementById('plugin0').<FUNCTION>.

1 (...)
2 <body>
3 (...)
4 <object id="plugin0" type="application/x-smartcardseverywhere" width="0" height="0">
5 <param name="onload" value="pluginLoaded"/>
6 </object>
7 (...)
8 </body>
9 (...)

Example 3.11: Loading the Plugin into a Web Application

1 function plugin0()
2 {
3 return document.getElementById('plugin0');
4 }
5 plugin = plugin0;

Example 3.12: Simplying the Calls to the Plugin

At this point, once the web application is loaded into a web browser, the plugin will be

accessible through JS. However, it is not yet ready to perform operations or get informations

from SCs, because one must explicitly instruct the plugin to initialize the PKCS #11 module.

Such operation will conduct the plugin to load and prepare the PKCS #11 module to be used,

as in Example 3.13. Once the plugin is not needed anymore, one may instruct it to release

all resources and close all connections to SCs and the PKCS #11 module, simply by calling

plugin().finalize().

As we can see from Example 3.13, the call to the plugin is surrounded by a try-catch

statement. Due to the fact that any call to the PKCS #11 module may not succeed,

the plugin must warn web applications of such situations, and for that purpose it is used

exceptions. The error that raised the exception should be inspected using the function

58 3. Plugin Development

1 try
2 {
3 plugin().initialize("path/to/the/pkcs11/module");
4 } catch(e)
5 {
6 var error = plugin().getLastException();
7 }

Example 3.13: Initializing the Plugin

getLastException() of the plugin, because it gives the exact cause of the error and

it gives a better cross-browser support, since Google Chrome does not show the exceptions

thrown by the plugin in the variable of the catch statement. In the exception that is thrown

there is information regarding the function that was called, the id of the error, and an indi-

cation if it is still possible to use the plugin without initializing it. In Example 3.14 there is

an instance of such exception.

1 "Function ID -> 1 ; Function Name -> finalize ; Error ID -> 400 ; Error String -> '
CKR_CRYPTOKI_NOT_INITIALIZED ; Remains Consistent -> 0"

Example 3.14: Structure of an Exception thrown by the Plugin

Complete Usage Example

Up to this point we introduced how the plugin could be successfully loaded into the web

browser, and properly initialized. Now it is time to expose a usual scenario where a web

application creates a SC from a file. In the following paragraphs we enumerate the steps that

are needed to accomplish this goal.

1. Initialize. As we stated before the goal of this step is to properly load and initialize the

PKCS #11 module, as shown in Example 3.13.

2. Get available tokens. Now that the Cryptoki is initialized, one should get the list of

available cryptographic devices. The method getAvailableTokens can be used for this

operation, because it returns a list of integers, where each element identifies a unique token.

3. Get available X.509 Public Key Certificates At this point we have the list of avail-

able tokens, and we want to get additional information about each one of them. Therefore,

we can use the field subject of a X.509 Public Key Certificate to know the owner of each

device. However, a token can have several X.509 Public Key Certificates, like the PCC. So,

3.5. Plugin Usage 59

we must get the list of available items in order to get additional information about each one.

The method getAvailableX509PublicKeyCertificates can be used in the process

of getting the available X.509 Public Key Certificates. This method has one parameter that

identifies the token where the plugin should look for these items.

4. Get X.509. Public Key Certificate information At this step we have the list of

available X.509 Public Key Certificates for each available token in the computer. The function

getX509PublicKeyCertificateInfo can be used in order to get the information about

each certificate. This function takes two parameters, an integer that identifies the token,

and another integer that identifies the certificate. The return of this function is a list of

strings, where each string identifies the field of the certificate and its value, for instance:

"CKA_ID -> 0x45".

5. Get available private keys. Now that we now which devices are available as well as

their owners, we must known which private keys are suitable to create a DS, and which mech-

anisms they support. But first we need to get the available private keys, since one device can

have several of these. For such purpose we can use the function getAvailablePrivateKeys,

which receives an integer indicating the token where the plugin should look for private keys.

6. Get private key information. With the list of available private keys for each device

we get in step 5, we can inspect each one for additional informations, such as the sup-

ported mechanisms. The function responsible for that operation is getPrivateKeyInfo,

takes two parameters, and returns the list of fields of the private key. The first parame-

ter identifies the token and the second the private key. The return is similar to the one of

getX509PublicKeyCertificateInfo.

7. Get mechanism information. If one wishes to get additional information about a

mechanism, he may do so using the function getMechanismInfo. This functions takes one

parameter that identifies the mechanism and returns all the available data regarding it.

8. Sign the file. At this moment all the information that we need to create a DS is

collected: token, private key, and mechanism. Then, we can digitally sign a file using the

method signFile. This method takes five parameters. The first parameter identifies the

token where the DS must be performed. The second identifies the private key. The third

identifies the mechanism that must be used. The fourth indicates if the PIN should be asked

either by the plugin or by the SC. The fifth parameter is a string containing the path to

60 3. Plugin Development

the file that needs to be signed. The result of this method is a string containing a base 64

encoding of the DS.

9. Finalize. Finally, the DS was successfully created and we do not need the plugin any-

more, thus the plugin should release all resources and close the any established connections

with SCs using the method finalize.

Example 3.15 summarizes all the steps we described before. For ease of representation we

removed the try-catch blocks from the example.

1 //1. Initialize
2 plugin().initialize("path/to/the/pkcs11/module");
3
4 //2. Get available tokens
5 plugin().getAvailableTokens();
6
7 //3. Get availa X.509 Public Key Certificates
8 plugin().getAvailableX509PublicKeyCertificates(0);
9

10 //4. Get X.509 Public Key Certificate Information
11 plugin().getX509PublicKeyCertificateInfo(0,70);
12
13 //5. Get available private keys
14 plugin().getAvailablePrivateKeys(0);
15
16 //6. Get private key information
17 plugin().getPrivateKeyInfo(0,70);
18
19 //7. Get mechanism information
20 plugin().getMechanismInfo(0,8);
21
22 //8. Sign the file
23 plugin().signFile(0,70,8,false,"/path/to/file");
24
25 //9. Finalize
26 plugin().finalize();

Example 3.15: Common Steps Towards a Digital Signature Creation

Listen for Slot Events

The slot events give web applications the ability to get notifications anytime a token is either

inserted or removed from a slot. In the following example we describe how a web application

developer can get such notifications. We assume that the plugin is already initialized.

1. Create a function to handle a slot event Web applications will be notified about slot

events through callbacks. So, one must define a JS function to handle the event. This function

should contain two parameters, the first identifies the event type (insertion / removal), and

the second identifies the slot where such event occurred.

3.6. Plugin Experimentation 61

2. Register an event listener in the plugin Once the handle function is defined, it must

be registered in the plugin JS interface. For that purpose it must be used one of the func-

tions: attachEvent or addEventListener. The first function is specific for the Internet

Explorer web browser, and it takes two parameters, the first is the string onslotevent

and the second is the handle function. The second function is addEventListener and it

must be used in the remaining web browsers, it takes three parameters: the first is the string

slotevent, the second the handle function, and the third is false.

3. Instruct the plugin to start listening slot events Now that a handle function is

defined and registered in the plugin, we can instruct the plugin to start listening for slot events

using the function startListeningSlotEvents. This functions takes no arguments and

its purpose is to tell the plugin to catch any SC insertion or removal from a slot.

4. Instruct the plugin to stop Listening slot events Once someone is done listening for

slot events he can use the function stopListeningSlotEvents, which takes no arguments

and tells the plugin to stop all the process of catching and reporting these events.

5. Remove the event listener from the plugin Finally, if the web application developer

wishes to unregister the handle function from the plugin, he can do so using one of the func-

tions: detachEvent or removeEventListener. The first function can only be used in

the Microsoft Internet Explorer, and it has two arguments, the first is the string slotevent

and the second the is the handle function. The second function must be used in the remaining

web browsers and has the same arguments as detachEvent.

In order to exemplify the steps we described in the previous paragraphs, in Example 3.16 it

can be found the JS source code needed to listen for slot events.

3.6 Plugin Experimentation

According to our initial goals, we propose a new mechanism to enable SC-related features in

web applications. For this mechanism we defined that it should be formed by two elements:

a JS API, and a web browser plugin to handle the JS request. Furthermore, we defined that

the plugin should be able to run in Google Chrome and Internet Explorer.

62 3. Plugin Development

1 //1. Create a JavaScript function to handle a slot event
2 function onSlotEvent(eventID, slotID)
3 {
4 alert("A slot event occurred.\nSlot ID: "+slotID+"\nEvent ID: "+eventID);
5 }
6
7 //2. Register an event listener in the plugin
8 if($.browser.msie)//Internet Explorer?
9 plugin().attachEvent("onslotevent", onSlotEvent);

10 else//Other web browsers
11 plugin().addEventListener("slotevent", onSlotEvent, false);
12
13 //3. Start listening for slot events
14 plugin().startListeningSlotEvents();
15
16 //4. Stop listening slot events
17 plugin().stopListeningSlotEvents();
18
19 //5. Remove event listener from the plugin
20 if($.browser.msie)//Internet Explorer?
21 plugin().detachEvent("slotevent",onSlotEvent);
22 else//Other web browsers
23 plugin().removeEventListener("slotevent",onSlotEvent);

Example 3.16: Enabling Slot Events in a Web Application

Supported Web Browsers and Operating Systems

As we described throughout this chapter our main efforts were to create a browser-independent

mechanism, that could be easily ported between web browsers. In that sense, we tested our

plugin in the following three web browsers that according to a statistic of World Wide Web

Consortium (W3C)24 are the most used:

• Google Chrome;

• Microsoft Internet Explorer;

• Mozilla Firefox.

For each one of these web browsers we were able to install and test our plugin under the

following OSs:

• LUbuntu 12.04;

• Microsoft Windows XP Professional SP3;

• Mac OS X Snow Leopard.

In Section A.3 there are several images exposing our plugin being in the available plugins for

each one of these web browsers.

24http://www.w3schools.com/browsers/browsers_stats.asp

http://www.w3schools.com/browsers/browsers_stats.asp

3.6. Plugin Experimentation 63

In our work we did not implement any features that are specific for a given platform our web

browser. So, we expect that our plugin may be also compatible with other web browsers sup-

ported by the Firebreath framework, specifically the ones that support the NPAPI interface.

For each platform and web browser where we were succeed installing our plugin we could test

all the plugin features. In these tests the following features showed the same results among

all web browsers and platforms we tested:

• inspect SCs to get the stored information, like X.509 Public Key Certificates;

• perform cryptographic operations, namely DSs and digests;

• notify web applications of changes in slots through DOM-like events.

Supported Smart Cards

The case study of our project was the PCC. As we already describe in other sections, the ven-

dor of this SC — the Portuguese Government — supplies an implementation of the PKCS #11

standard, and this was the implementation we mainly used in our tests.

Using our plugin we were able to test the features of the PCC, specifically creation of DSs

and digests, and check its contents, specifically the available X.509 Public Key Certificates.

At the present moment we expect that our plugin is able to work with other implementations

of the PKCS #11 standard, since all the features we implemented are not specific to PCC.

All the available features and their implementation were designed using the official reference

manual of PKCS #11. Therefore, we expect that our plugin may work with different SCs, be-

sides the PCC. For that purpose, the implementation of OpenSC of the PKCS #11 standard

can enable our plugin to work with the following SCs:

• Estonian electronic identification card;

• German electronic identification card.

3.6.1 Output Examples

In Example 3.17 we can see the result of a DS. In this small example it was used the function

signData to perform the cryptographic operation. The first step in this operation was to

encode the text that was going to be signed in the Base 64 representation. For that purpose

it can be used the function toBase64 available in the JS interface of the plugin. On the

right side of this example there is the created DS. The configuration for this operation was

the following:

64 3. Plugin Development

• Token: 0

• Private key: 0x45

• Mechanism: 8 (CKM_RIPEMD160_RSA_PKCS)

• Prompt pin: false

• Data to sign: Base 64 representation of This is just some random text

JavaScript Instructions

var textToSign = plugin()
.toBase64("This is just

some random
text");

plugin().signData(0,
0x45,
8,
false,
textToSign);

Digital Signature

"UpXP+P+is8+TCTDCtFiqC+lsBDglNkcjFu0dAI8e
NOgfw/JRoYFSKi5qKyY2ZFsqrD9sAQBGV38/iMFJb
xPUo9D0TU6f4JAInem9Ild9n8gZAXUVeufkn8vedf
BvaSxvv9st6HlhHnSZ8w2L8tJyDfoeRkheWv3UKq3
j1dEnUn8="

Example 3.17: Output Example of a Digital Signature

The Example 3.18 shows the result of an inspection for additional informations regarding a

X.509 Public Key Certificate. On the left side there is the request that was performed to the

JS interface of the plugin. The function getX509PublicKeyCertificateInfo was used

in this process to get the details of the X.509 Public Key Certificate identified as 0x45 in

the token 0. On the right side there is an extract of the result. The first field of this extract

indicates the label of the certificate, and the second one shows the subject encoded in the

Distinguished Encoding Rules (DER) format.

In order to understand the DER encoded data of the subject of the X.509 Public Key Certifi-

cate, we show in Example 3.19 the result of decoding this data. As we can see, this certificate

is issued to Leonel João Fernandes Braga.

3.6. Plugin Experimentation 65

JavaScript Instructions

plugin()
.getX509PublicKeyCertificateInfo(0,

0x45);

Extract of the X.509 Public Key
Certificate

[(...),
"CKA_LABEL -> '

CITIZEN AUTHENTICATION CERTIFICATE",
(...)
"CKA_SUBJECT -> '

'
MIHcMQswCQYDVQQGEwJQVDEcMBoGA1UECgwTQ2F'

'
ydMOjbyBkZSBDaWRhZMOjbzEjMCEGA1UECwwaQX'

'
V0ZW50aWNhw6fDo28gZG8gQ2lkYWTDo28xHDAaB'

'
gNVBAsME0NpZGFkw6NvIFBvcnR1Z3XDqnMxGDAW'

'
BgNVBAQMD0ZFUk5BTkRFUyBCUkFHQTEVMBMGA1U'

'
EKgwMTEVPTkVMIEpPw4NPMRQwEgYDVQQFEwtCST'

'
EzMzIxNjkyNjElMCMGA1UEAwwcTEVPTkVMIEpPw'

4NPIEZFUk5BTkRFUyBCUkFHQQAA",
(...)
]

Example 3.18: Ouput Example of a X.509 Public Key Certificate

66 3. Plugin Development

SEQUENCE(8 elem)
SET(1 elem)

SEQUENCE(2 elem)
OBJECT IDENTIFIER 2.5.4.6
PrintableString PT

SET(1 elem)
SEQUENCE(2 elem)

OBJECT IDENTIFIER 2.5.4.10
UTF8String Cartão de Cidadão

SET(1 elem)
SEQUENCE(2 elem)

OBJECT IDENTIFIER2.5.4.11
UTF8String Autenticação do Cidadão

SET(1 elem)
SEQUENCE(2 elem)

OBJECT IDENTIFIER2.5.4.11
UTF8String Cidadão Português

SET(1 elem)
SEQUENCE(2 elem)

OBJECT IDENTIFIER2.5.4.4
UTF8String FERNANDES BRAGA

SET(1 elem)
SEQUENCE(2 elem)

OBJECT IDENTIFIER2.5.4.42

UTF8String LEONEL JOÃO
SET(1 elem)

SEQUENCE(2 elem)
OBJECT IDENTIFIER2.5.4.5
PrintableString BI133216926

SET(1 elem)
SEQUENCE(2 elem)

OBJECT IDENTIFIER2.5.4.3

UTF8String LEONEL JOÃO FERNANDES BRAGA

Example 3.19: Subject of a X.509 Public Key Certificate

3.7. Summary 67

3.7 Summary

The process of building a web browser plugin to successfully expose SCs features in web

applications was described in this chapter. We started by presenting the decisions we had to

make in order to design our solution. Then, we presented the design the JS interface that

we though would best serve the needs of web application developers. Among the several

available methods in the JS interface, web application developers can find many ways to

inspect the contents of SCs and create DS. In this step we decided to hide some details

about the PKCS #11 library, for instance, getting information about a private key object

requires only the use of a single function (getPrivateKeyInfo), instead of the usual three

in PKCS #11: C_FinObjectsInit + C_FindObjects + C_GeAttributeValue. The

creation of DS is another good example where we hide the PKCS #11 complexity, in first

place all the connections and sessions to the SC are controlled by the plugin, and the feeding

mechanism of the signing mechanism as well.

As we showed in Sections 3.3 and 3.4, Firebreath made the creation of the JS interface easier,

it gave us the possibility to expose methods, attributes, and events with few lines of code,

and with strong typing from JS values to C++ types, which ensures a correct matching of data

between these two languages, and a more secure execution.

Finally, we were able to compile, deploy and test the plugin among several web browsers and

OSs, with no restrictions, and we were also able to execute all the features in those systems,

as well.

68 3. Plugin Development

Chapter 4

Security Analysis

Up to this point we discussed the available techniques that could be used to access Smart

Cards (SCs) and develop web browser plugins. Then, we used this knowledge to decide from

the available options what should be our mechanisms to implement the web browser plugin

and access SCs. The design details of the JavaScript (JS) interface of the plugin, and its

implementation were also reviewed as well.

Now we are going to perform an exploratory analysis of the security of the plugin. In order to

perform this task we will resort to tools and techniques that can help us identify and address

possible problems.

The first task we performed in this analysis was to check for problems in the plugin source

code using tools for static analysis. In Section 4.1 we present the result of this work, and

discuss the additional analysis that could be performed but we did not have the opportunity

to put in place.

In Section 4.2 we use Attack Trees [Schneier, 1999] to model the several attacks that can be

perpetrated by malicious agents to achieve a certain goal. A discussion of the more relevant

attacks and possible counter-measures is presented as well.

In order to understand the quality of the source code we developed, we analysed its main-

tainability in Section 4.3. In this task we used a model proposed in [Heitlager et al., 2007].

This analysis could give us an insight of the quality of maintainability characteristics, like:

analysability and changeability. From these characteristics we can understand if the source

code is easy to analyse. Auditing of source code can be easier to perform when it is easy to

analyse. Therefore, it would be interesting to assess the maintainability of our project.

69

70 4. Security Analysis

4.1 Source Code Analysis

At the present moment there are several available tools to analyse software in order to identify

problems like memory leaks. These tools can be divided in two main categories: static and

dynamic. Usually, in a static analysis the program is not executed. The tool performing this

analysis checks for problems in the source code of the program. In a dynamic analysis the

program is executed, and usually the problems are detect in behaviour of the program. This

analysis requires that the inputs to the program cover a great majority of the source code, so

every aspect of the program is checked.

Static Analysis

In our project we decided to run tools for static analysis in order to mitigate any problem

in the plugin. So, the first step was to find suitable tools for this purpose. In our search we

discarded all the tools with commercial license, thus we end up choosing:

• CPPCheck1 - is a tool for finding bugs in software, and it is very useful to find

problems like: memory leaks, bounds checking, exception safety, check input/output

operations, use of deprecated or unsafe functions.

• Flawfinder2 - is a tool that analyses the source code in order to find security weak-

nesses.

From the tools we found to perform static analysis of software, these were the only ones that:

are free; can be applied to C++ programs, and can be used to find problems in the source

code.

The output of these tools helped us find and address one problem regarding an eventual buffer

overflow, and an incorrect use of the function sprintf.

Dynamic Analysis

Unfortunately, due to time restrictions we did not have the time to perform other analysis

besides static. Performing a dynamic analysis in a web browser plugin is more complex than

in a ordinary program. Since the web browser plugin runs in a process of the web browser,

performing a dynamic analysis would require to isolate (and intercept) the plugin from the

web browser.

1http://sourceforge.net/apps/mediawiki/cppcheck/index.php
2http://www.dwheeler.com/flawfinder/

http://sourceforge.net/apps/mediawiki/cppcheck/index.php
http://www.dwheeler.com/flawfinder/

4.2. Attack Trees 71

A dynamic analysis would give us a real insight of the plugin behaviour. The results of

such analysis can be used to find the presence of memory leaks, software bugs, and even if

the software meets its requirements. In order to perform such analysis we would create a

third-party program that would be formed by the source code responsible for handling the

JS requests. In this program we could run several types of dynamic analysis like:

• Unit testing

• Fuzz testing

In a fuzz testing technique a program is subjected to unexpected inputs. Usually, these inputs

are automatically generated and are not by any means valid. So, the goal for this test is to

monitor the program according to such inputs and check for problems like memory leaks and

software crashes. For instance, software crashes due to dangling pointer references can be

used by attackers to overwrite arbitrary memory locations [Younan et al., 2004]. Fuzz testing

techniques are typically used to find security flaws in software.

In this scenario, tools for dynamic analysis like Valgrind could be used as well. We may

use this software tool to check for memory leaks in the ordinary execution of the functions

responsible for treating the JS requests.

4.2 Attack Trees

The attack trees provide a way to model threats against computer systems in a formal and

methodical way [Schneier, 1999]. The first element that needs to be identified in this model

is the goal of the attack. This element is going to be the root element of the tree. Then, we

should identify the different ways of achieving that goal. Each different way will be leaf node

of the tree. The Figure 4.1 illustrates an attack tree that identifies some ways that can be

used to open a safe.

In attack trees it is also possible to estimate costs if a given goal is achieved, or calculate how

probable it is to achieve such goal. In order to estimate such values we must attach the each

leaf node of the tree the cost (or probability) of the attack. As we can see in Figure 4.1 the

estimated cheapest cost of attack is $10K.

In the mentioned example it was used cost, but other values could be attached to the nodes as

well. For instance, one may attach to each leaf node of the tree: probabilities, risk categories

(low, moderate, high), possibility (possible, impossible), skills.

An attack tree can be reused, that is, it is possible to use an attack tree as a node of another

one. This is very handy when you have a large system and there are several people analysing

its security, and when there is an attack that can be used in several attack trees of a system.

72 4. Security Analysis

Open Safe
$10K

Pick Lock
$30K

Learn Combo
$20K

Cut Open Safe
$10K

Install
Improperly

$100K

Find Written
Combo
$75K

Get Combo
From Target

$20K

Threaten
$60K

Blackmail
$100K

Eavesdrop
$60K

Bribe
$20K

Listen to
Conversation

$20K

Get Target
to State Combo

$40K

and
$ = cost of attack

Figure 4.1: Attack Tree - Open Safe. Adapted from [Schneier, 1999]

4.2.1 Modelling Possible Attacks to the Plugin

Throughout this part we will present and discuss the attack trees we created during the

security analysis. These attack trees will expose the several threats that can be perpetrated

to each one of the following goals we identified:

• create digital signature,

• collect user data,

• compromise the plugin.

Create Digital Signature

The cryptographic properties of Digital Signatures (DSs) offer a precise way to provide un-

forgeable proof of identity. As we already discussed, DSs can be used to prove identity in order

to authenticate a user in a service, and to prove the origin of files. From these examples we

can conclude that the access to the mechanisms that create DSs must be very well protected.

An open vulnerability can easily led malicious agents to perform a valid DS using someone

else’s identity. Therefore, if this mechanism is not well protected, stealing user’s identity can

be achieved using our plugin.

Figure 4.2 presents the attack tree we created for the attack goal: create DS. As we can see,

we identified three main threats to this goal: mislead the user, compromise the plugin, learn

pin.

4.2. Attack Trees 73

Create Signature

Learn PIN

Mislead the user to
create a signature

Compromise Plugin

Impersonate a
trustworthy

web application

Instruct the plugin
to sign something

without user's consent

Prompt the PIN
to the user

Monitor keyboard
when the user
types the PIN

Guess

Visually monitor
the keyboard

Monitor the
computer memory

Impersonate a
trustworthy

web application

Compromise Plugin

Figure 4.2: Attack Tree - Create Digital Signature

For the first threat we imagined a scenario where an attacker deceives the user into creating

a DS. In this scenario he can trick the user to access a web application that may seem

trustworthy. A better description of this scenario is described in another attack tree. The

attacker can also order the plugin to sign something that the user is not aware of. For instance,

sign binary data is very risky. In order to minimize such risk, our plugin always prompts if

the user wishes to continue with the operation.

An attacker may also attack the plugin implementation in order to get privileged access to

the SC. For instance, replacing the Public-Key Cryptography Standards #11 (PKCS #11)

library may enable an attacker to have full control over the SC. A more detailed discussion

over this attack is detailed in another attack tree.

If an attacker gains access to the Personal Identification Number (PIN) that protects the

private key, he could easily create a DS. However, in our plugin that would not be enough.

In our implementation of the creation of a DS we always ask the user if he wishes to continue

with the operation, and the plugin always prompts the PIN. Web applications do not have

direct access to PKCS #11 library, thus they do not have a way to enter the PIN in order to

create a DS.

74 4. Security Analysis

Collect User Data

Malicious agents may not only be interested in creating DSs: gathering personal and private

data may be desired as well. The Figure 4.3 presents the threats we identified to this attack.

The major risks come from compromising the plugin and lure users to access harmful web

applications. Details of these attacks are presented in another attack trees.

Collect User Data

Impersonate a
trustworthy

web application
Compromise Plugin

Figure 4.3: Attack Tree - Collect User Data

Compromise the Plugin

A successful attack to the plugin implementation can compromise not only the plugin itself,

but of all the system. The threats we identified to this goal are shown in Figure 4.4.

Compromise the plugin

Replace a shared
library with

an altered one

Invite the user to
use a tampered

 PKCS #11 library

Install malware
which replaces
shared libraries

Use a vulnerability

Figure 4.4: Attack Tree - Compromise the Plugin

At the present moment one of the major risks of the plugin is the linking with the PKCS #11

module, and any other shared library. A malicious agent which replaces one of those libraries

can easily have access to all the system. Since we are linking the plugin to PKCS #11 modules

at runtime, this can be easily used to compromise the plugin. One may lure a client to install

and use a tampered PKCS #11 module. In order to prevent such attacks we could link

the plugin statically. To complement this protection we could use Code Signing techniques

4.2. Attack Trees 75

provided by web browsers and operating systems (OSs) to prevent malicious agents from

tampering the plugin. Dynamic linking could be used as well, but additional measures must

be taken. For instance, we could sign the plugin, and load only PKCS #11 modules that are

code signed by known and trustworthy entities.

A vulnerability in the plugin can also be used to gain access to the system. Unfortunately we

did not have the opportunity to perform a more detailed analysis to the plugin source code

and execution.

Impersonate a Trustworthy Web Application

The security of a user can be broke without attacking directly the plugin. Attackers may lure

users to access unreliable web applications in order to steal their identities, access their data,

and even create DSs.

The Figure 4.5 reflects some of attacks that can be made in order to use the plugin as if the

web application were reliable.

Impersonate a
trustworthy

web application

Man-in-the-middle

Lure users
to visit a

web application

Local network

From local
to remote

Remote

ARP poisoning

DNS spoofing

STP mangling

Port stealing

IP address spoofing

ARP poisoning

DNS spoofing

DHCP spoofing

ICMP redirection

IRDP spoofing - route mangling

DNS poisoning

Traffic tunneling

Route mangling

Phishing

Spear Phishing

Clone Phishing

Whaling

Evil twins

Figure 4.5: Attack Tree - Impersonate a Trustworthy Web Application

76 4. Security Analysis

The simplest attacks do not require a high level of expertise from the attacker. To perpetrate

such attacks the agent may use social engineering skills to lure users to visit a web application

that may seem trustworthy. These attacks are all related to phishing schemes, and they may

be easy to implement when the connection is not protected. In order to prevent these scenarios

the plugin could enforce secure HTTP connections with known and trustworthy sources. For

instance, if a web application wishes to use the plugin, the connection must be through

HTTPS and it must have a valid and known X.509 Public Key Certificate. Otherwise, the

plugin would simply not handle any request from the JS interface.

Another attack that can be used to achieve the same goal is Man-in-the-middle. If the plugin

enforces a secure connection between client and server in order to handle JS requests, some

sort of these attacks may be prevented. Even if the attacker manages to put himself between

web application and client, he would not have ways to prove to the client and the plugin that

he holds a valid X.509 Public Key Certificate. However, an attack to the connection using a

method like BEAST 3 can led an attacker to eavesdrop the communication.

Final remarks

The security analysis using attack trees to model goals and threats is far from complete. This

is just an initial step towards a global understanding of the system. The mechanism that

we developed is destined to be used by web-based systems, thus we must ensure security in

the four fronts: web client, data transport, web server, and operating system [Skoularidou

and Spinellis, 2003]. In that sense, we should not only perform an more detailed audit to the

plugin source code and to its execution, but to the surrounding system. From such analysis

we can then understand how the system affects the plugin security, and vice-versa, in order

to create a higher protection for users and web applications

4.3 Maintainability Analysis

The result of measuring the maintainability of software can be used to understand the com-

plexity of a program. As mentioned in [Goldberg et al., 1996, Seacord, 2008], avoid and

identify bugs it is easier in simple and maintainable programs. Due to that reason we decided

to measure the maintainability of the plugin.

At the present moment there are several models that can be used to measure maintainability.

Specifically, the ISO 9126 defines several characteristics that influence maintainability. How-

ever, it does not provide a consensual way to estimate the maintainability using source code

3http://www.schneier.com/blog/archives/2011/09/man-in-the-midd_4.html

http://www.schneier.com/blog/archives/2011/09/man-in-the-midd_4.html

4.3. Maintainability Analysis 77

properties [Heitlager et al., 2007]. In this project we decided the maintainability of our plugin

using the model by SIG [Heitlager et al., 2007]. We chose this model because in this work

its authors created a match between the characteristics of the maintainability defined in the

ISO 9126 and the source code properties. In this model, source code properties are traced

back to the sub-characteristics of the maintainability defined in the ISO 9126 : analysability,

changeability, stability, and testability. From these sub-characteristics we can identify the

aspects of the source code that can influence security:

• The analysability indicates how easy or difficult it is to understand the source code.

Therefore, it is easier to find deficiencies and identify the parts that need to be modified

when the source code is not complex.

• The changeability indicates how easy or difficult it is to create modifications in the

source code. It is desired that changes in source code are easy to perform once security

vulnerabilities are found.

• The stability indicates how easy or difficult it is to keep the system in a consistent state

during modification.

• The testability indicates how easy it is to test the program. Software testing is very

important to find problems in programs, thus find security vulnerabilities.

The definitions of the characteristics we presented above were adapted from [Heitlager et al.,

2007].

The first step when analysing the maintainability using the SIG model is to measure several

source code properties. These properties will be measure with respect to specific source code

metrics. The properties and how they are measured are described next:

• Volume - is intended to express the size of the project. Since a project can be

developed using many programming languages, in this model it must be used: Man

Years (MY) via backfiring function points.

• Complexity per unit - is intended to express how complex are source code units. A

unit can be a function, a method. This property is measure using Lines of Code (LOC).

• Duplication - is intended to express the presence of repeated lines of code in the

project. In order to measure this property, it must be counted the number of repeated

blocks of at least six lines of code, discarding comments and blank lines.

• Unit size - is intended to express the average size of the source code units. The source

code metric that is used to measure this property is LOC.

78 4. Security Analysis

• Unit testing - is intended to express how tested the system is. The source code metric

that is used to measure this property is the coverage of the unit tests.

After measuring each one of these source code properties, we can map them onto the char-

acteristics of the maintainability, as show in Table 4.1. For instance, the changeability is

affected by the complexity per unit and the duplication. Each one the source code properties

will be ranked in a scale that varies from 1 to 5, being 1 the worst rank.

Source Code Properties

V
o
lu

m
e

C
o
m

p
le

x
it

y
p

er
U

n
it

D
u
p
li
ca

ti
o
n

U
n
it

S
iz

e

U
n
it

T
es

ti
n
g

IS
O

9
1
2
6

M
a
in

ta
in

a
b

il
it

y

analysability x x x x
changeability x x
stability x
testability x x

Table 4.1: Mapping between the characteristics of the maintainability and source code properties.
Adapted from [Heitlager et al., 2007].

Volume

As we already described, the Volume is the first source code property to measured. In the

first place we counted per language the LOC of the project. The results of this step are show

in Table 4.2.

Plugin LOC

C++ 4653

Sum 4653

Table 4.2: Lines of Code per Language in the Plugin Source Code

The second step is to convert the LOC of each language to MY, and then sum the MY of

each language. In Table 4.3 there is the conversion factor for C++, and the sum of MY of the

plugin.

Finally, it is time to rank this source code property in our plugin. In Table 4.4 we show how

the rank must be evaluated, and we present the decision for our project. As we can see, our

project is assessed as ++, the highest level. This result was expected because this is a small

project.

4.3. Maintainability Analysis 79

Language Conversion Factors to MY Plugin

C++ 11458 0.406

Sum 0.406

Table 4.3: Conversion Factors to Man Years, and Man Years per Language of the Plugin Source Code

Rank Man Years Plugin MY Plugin Rank

++ 0 - 8

0.406 ++
+ 8 - 30
0 30 - 80
- 80 - 160
−− > 160

Table 4.4: Evaluation of the Volume Metric of the Plugin Source Code

Complexity per Unit

The complexity per unit is the second source code property to be measured. The first oper-

ation in this step is to count the cyclomatic complexity of each function of the source code.

Then, we must sum the LOC of each function that fit in each category of the table Table 4.5.

For instance, in the first category must be the sum of the LOC of all functions that have a

cyclomatic complexity lesser than 10. In this process we decided to exclude some functions

that were partially generated automatically. This is why the sum of the LOC is different from

the LOC presented in the Volume.

Cyclomatic Com-
plexity

Risk Evaluation Plugin Relative LOC Plugin Relative LOC
(%)

1 - 10 simple, without much
risk

1319 80.62

11 - 20 more complex,
moderate risk

167 10.21

21 - 50 complex, high risk 150 9.17

> 50 untestable, very high
risk

0 0

Table 4.5: Categories of Risks in Complexity per Unit

After grouping the LOC through each one of the categories it is time to rank the source code

property: Complexity per Unit. The Table 4.6 exposes the criteria that must be used in

order to assess this source code property. For instance, a project to be ranked as ++ in this

property must have a maximum of 25% of LOC in the moderate category, and 0% in the high

and very high categories. Our plugin is ranked as 0 in this source code property.

Coincidentally the functions with a high LOC also have a high cyclomatic complexity. In

that sense, these functions contribute to a higher percentage of LOC, thus increasing the

percentage of LOC with a high risk.

80 4. Security Analysis

Rank
Maximum Relative LOC (%)

Plugin Rank
Moderate (%) High (%) Very High (%)

0
++ 25 0 0
+ 30 5 0
0 40 10 0
- 50 15 5
−− - - -

Table 4.6: Ranking the Complexity per Unit

Duplication

In order to rank the duplication in our plugin we had to measure the number of repeated

blocks with more than 5 LOC (discarding comments and blank lines). Using this value it

is calculated the percentage of repeated LOC. The Table 4.7 we present the results for our

plugin. As we can see we did not find any repeated block in our source code.

Duplicated Lines 0

% Duplicated Lines 0.00%

Table 4.7: Repeated Lines of Code in the Plugin Source Code

After counting the repeated blocks the rank for the duplication can be calculated. The table

Table 4.8 exposes the criteria that must be used to assess this property. According to this

model our plugin is ranked as ++ in this property. During the development phase we tried to

reuse all the functions and source code in order to reduce repeated lines of code.

Rank Duplication Plugin Duplication Plugin Rank

++ 0 - 3%

0.0 ++
+ 3 - 5%
0 5 - 10%
- 10 - 20%
−− 20 - 100%

Table 4.8: Ranking the Duplication

Unit Size

The unit size property is used to understand the average size of the functions of a program.

The first step is to identify how many LOC fit in each one of the categories shown in Table 4.9.

The second step is to rank the property. For that purpose we use the criteria exposed in

Table 4.10. This criteria tell us that a program to be ranked in this property as + must have

4.3. Maintainability Analysis 81

Unit Size Risk Evaluation Plugin Relative LOC Plugin Relative LOC
(%)

0 - 20 Low 446 27.26

21 - 50 Moderate 480 29.34

51 - 100 High 609 37.22

> 100 Very High 101 06.17

Table 4.9: Categories of Risks in Unit Size

Rank
Maximum Relative LOC

Plugin Rank
Moderate (%) High (%) Very High (%)

–
++ 25 0 0
+ 30 5 0
0 40 10 0
- 50 15 5
−− - - -

Table 4.10: Ranking the Unit Size

a maximum LOC of 30% in the moderate risk, 5% in the high risk, and 0% in the very high

risk. From this criteria we can conclude that our pluginis ranked as −−.

Although in the development phase we made a great effort to create small functions, the

verbosity of the PKCS #11 did not always helped. Handling with the PKCS #11 standard

requires the use of several functions to achieve a simple goal like: retrieve the list of available

private keys. We did our bests to reuse source code, but there were several times when such

approach could not be applied. Splitting functions into smaller ones could be an alternative,

but these new functions would not be used in other places. Another reason why we end up

having some functions with a high and very high risk is due to the object inspection. Since

we are returning all the data available to a given object, the functions in charge of that

operation have several lines of code dedicated to define attributes that must be returned.

As we already discussed, the introduction of templates in object inspection is a attractive

scenario that should be implemented in the future, and it help in reducing the LOC per unit

as well.

Coverage

The last source code property to be ranked is the coverage of the unit tests. The first step

in this operation is to calculate the percentage of lines of code covered by the unit tests.

In Table 4.11 there is the result for our project. As we mentioned previously, due to time

restrictions we did the opportunity to exercise the plugin through unit tests.

The Table 4.12 shows the criteria that must be used in order to assess this source code

property. As we can see our plugin has the lowest score: −−. This is obviously a deficiency

82 4. Security Analysis

Lines Covered 0

% Lines Covered 0.00%

Table 4.11: Lines of Code Covered

in our development, and a field where a additional efforts must be made in order to assure

that the plugin behaves has expected and that runtime flaws are addressed.

Rank Coverage Plugin Coverage Plugin Rank

++ 95 - 100%

0.0 −−

+ 80 - 95%
0 60 - 80%
- 20 - 60%
−− 0 - 20%

Table 4.12: Ranking the Coverage

Overall

Now that all source code properties were properly ranked, we can trace back these properties

to the characteristics of maintainability. This relation between source code properties and the

characteristics of the maintainability are expressed in Table 4.13. This one of the main advan-

tages of the model by SIG : we can trace source code metrics to properties of maintainability

in a pratical and precise way.

Source Code Properties

V
o
lu

m
e

C
o
m

p
le

x
it

y
p

er
U

n
it

D
u
p
li
ca

ti
o
n

U
n
it

S
iz

e

U
n
it

T
es

ti
n
g

++ 0 ++ −− −−

IS
O

9
1
2
6

M
a
in

ta
in

a
b

il
it

y

analysability x x x x 0
changeability x x +
stability x −−

testability x x x -

Table 4.13: Overall Results of the Maintainability Analysis

In this final step in order to measure the maintainability we can assess the rank of each

characteristic. For that purpose we can estimate the average of the ranks obtained for each

source code property that affect each characteristic. For instance, the changeability is affected

4.4. Summary 83

by the complexity per unit and duplication. The results for each characteristic is express in

the rightmost column of Table 4.13.

From these results we can enumerate the following conclusions:

• The analysability of the plugin can be improved. In order to accomplish that goal we

should reduce the average size of the functions and implement unit tests. This last

option is one of the must crucial, because it affects many other characteristics of the

maintainability, and it would eventually improve security.

• Eventual changes in the source code of the plugin would be easy to implement. One

of the aspects that influence this characteristic is the absence of duplicated source

code. As we already mentioned when discussing the assessment of complexity per unit,

reducing the average unit size would also reduce the complexity per unit. Therefore,

the changeability would also be improved.

• With the conclusion of this analysis it became more obvious that unit tests need to be

implemented. Their implementation increase the stability of the plugin.

• Finally, implementing unit tests is not enough. Reducing the complexity per unit and

the unit size would allow us to achieve a higher source code coverage, thus increasing

testability as well.

4.4 Summary

As stated in [Schneier, 1999]: “Security is not a product — it’s a process”. In that sense,

the work we performed in the security analysis of the plugin is just a first step towards a full

comprehension of risks and vulnerabilities.

The static analysis of the plugin source code helped us identify the misuse of few functions

and address one case of an eventual buffer overflow. Nevertheless, additional analysis must

be performed in order to complement this work. Dynamic analysis are some instances of

techniques that we did not have the opportunity to implement, but that would offer a major

contribute towards identifying vulnerabilities in the plugin. In those techniques we can include

unit testing, and fuzz testing.

The attack trees played a major roll in identifying possible goals of attacks and threats, in a

methodical and formal way. This analysis allowed us identify the greater risks in the plugin

security, and discuss possible measures that can be taken in a future work to address such

84 4. Security Analysis

problems. As we mentioned, the major risks came from the use of non secure HTTP connec-

tions, and the linking with the PKCS #11 library.

Finally, the maintainability analysis made us realise exactly which source code properties must

be enhanced. For instance, we must decrease the average size of functions and implement

unit tests. The unit size affects analysability, and a high analysability eases eventual audit

tasks to source code. Unit tests affects stability and testability, and a high level of testing

can help identify eventual problems in the plugin execution.

Chapter 5

Conclusion

The absence of a common mechanism which enables Smart Card (SC) features in web ap-

plications has led to the creation of distinct solutions to address such limitations. These

solutions are often similar regarding the type of operations they perform, and sometimes they

lack portability, forcing users to move away from the web browser and operating system (OS)

they are accustomed.

The intent of this project was to solve these limitations through the development of an

uniform accessible mechanism to SCs across web browsers. For this purpose we decided to

create a web browser plugin to: (1) connect the web browser to SCs, and (2) to expose the

SC related features to web applications through a JavaScript (JS) Application Programming

Interface (API).

According to the initial goals, the developed plugin can indeed successfully perform all the

operations defined at the beginning of the project, and thus several SC functionalities are

available to web applications. At this moment, it is possible to retrieve a variety of information

from a SC, such as: Public Key Certificates, supported mechanisms, and available Private

Keys. Regarding cryptographic operations, it is available in the JS of the plugin two kinds of

functions which will be performed by SCs. The first kind of functions enables the creation of a

Digital Signature (DS) from either a file, or a blob of bytes. The second type of cryptographic

functions can be used to create hashes — or digests — from also either files or bytes.

Regarding plugin development, we should emphasize the adoption of the Firebreath framework

as our build platform. Adopting it allowed us to focus solely on building the plugin, therefore

saving time explicitly supporting the platforms NPAPI and Activex Control, and creating

mechanisms to build the plugin for several OSs.

The plugin security was reviewed, as well. In that phase of the project we tried to identify

vulnerabilities in the source code and in the plugin usage. For that purpose, we resorted to

85

86 5. Conclusion

static analysis tools in order to find problems like buffer overflows, and we used Attack Trees

to create a model of which kind of attacks can be perpetrated. The static analysis revealed

very few warnings with a low risk, which were immediately resolved. After some runs that

analysis did not show evidences of further errors. The Attack Trees helped us realize that the

main category of attacks come from luring users into download malicious software or to use

the plugin in an untrustworthy web application. Some of these attacks can be addressed if

measures like the ones mentioned in the next section are taken.

Future Work

The mechanism that we developed may be a first prototype of an effort towards an unification

of methods to access SC from web applications, but there are several aspects where it must

be improved, either regarding of security, or feature enhancement.

One of the most important steps in future developments of this work could be an extensive

software testing, using unit tests, dynamic analysis tools, and testing frameworks. These

techniques give us the ability to verify if the software complies with its requirements, and

allow us to address any identified vulnerability, thus improving the security of the plugin.

Although we are not aware, at this moment, of any method to directly check a web browser

plugin behaviour using unit tests, there are other methods to achieve the same result. For

instance, we can create a dynamic library from the source code in charge of processing the

JS requests, in order to exercise their internal behaviour using unit tests. Then, the JS API

can be tested using Jasmine1, a framework for testing JS. Besides unit tests, it would be

very important to use other kind of techniques like fuzz testing, which has an essential role

checking software behaviour for random inputs of data.

The use of dynamic analysis tools can give us further insights into the plugin execution. For

instance, Valgrind2 is a powerful tool which can detect memory management and threading

bugs. Once again, fixing an error —in this case what would be a runtime error— can enhance

the plugin security.

SeleniumHQ3 is a tool for automated tests in web browsers which can be used in conjunction

with a testing web application for the plugin to check the plugin behaviour.

As discussed in the security analysis of the plugin, the major security risks are related with

the distribution of the plugin. A malicious agent can easily lure users to install a fake plugin

1http://pivotal.github.com/jasmine
2http://valgrind.org/
3http://seleniumhq.org/

http://pivotal.github.com/jasmine
http://valgrind.org/
http://seleniumhq.org/

87

in order to get access to their system. Therefore the use of Code Signing techniques is

certainly one of the major features to implement in future releases. These techniques can be

used to sign the plugin itself and the Public-Key Cryptography Standards #11 (PKCS #11)

modules. As stated in Section 2.4, all major web browsers and OSs have support for this

feature. Firebreath has also available automated mechanisms to create a code-signed ActiveX

Control, which we did not explore.

Open vulnerabilities in software can be exploited by attackers to get access to users’ com-

puters. One may use a software flaw to execute restricted code that otherwise would not be

allowed. Migrating the plugin into a Sandbox could restrict the application permissions, so

malicious code would not have access beyond the allowed area. At this moment, only Google

Chrome has a framework for plugin development using Sandboxing. A complementary project

would be to implement Sandboxing in the remaining web browsers.

Man-in-the-middle attacks can be easily implemented to collect transmitted data between

users and servers, when the connection is not safe. So, enforcing secure HTTP connections,

even when the user dismisses the web browser warnings for a possibly untrusted server identity,

can address some of those attacks. This solution can solve some of phishing schemes attacks,

as well.

In terms of features, it would be interesting if the plugin could provide an additional module

that could be used to interact with the eID Lib API from the Portuguese Citizenship Card

(PCC). Such interaction would give web applications the ability to access more information

stored in the SC, such as: address, age, parentage, gender. In case this information is exposed

to web applications, additional security measures would be needed, in order to protect the

users’ identity. We can include in those measures the creation of a trust network, where only

web applications with a trustworthy identity could access such information.

As we describe in Subsection 2.2.1, the PKCS #11 standard defines a template-based model

to access objects and object attributes stored inside SCs. In Section 3.1 we explained why we

chose to hide such model from web application developers, and the reason why we decided to

expose all available attributes of each object. However, adopting a template-based model for

the object attributes would be more efficient and concise.

88 5. Conclusion

References

C. Adams and S. Lloyd. Understanding PKI: concepts, standards, and deployment considerations.

Technology series. Addison-Wesley, 2003. ISBN 9780672323911. URL http://books.google.

com/books?id=ERSfUmmthMYC. Cited on pages 1 and 2.

Agência para a Modernização Administrativa. Manual técnico do middleware cartão de

cidadão. Technical report, Agência para a Modernização Administrativa, Julho 2007. URL

http://www.cartaodecidadao.pt/images/stories/manual%20t%E9cnico%20do%

20middleware%20do%20cc_v1%200.pdf. Cited on pages 12, 13 and 41.

Agência para a Modernização Administrativa. Autenticação com o cartão de cidadão.

Technical report, Agência para a Modernização Administrativa, Dezembro 2008. URL

http://www.cartaodecidadao.pt/images/stories/Manual%20Autenticacao%

20com%20Cartao%20de%20Cidadao_%20v1.7.pdf. Cited on page 2.

Jean-Daniel Aussel. Smart cards and digital security. In Vladimir Gorodetsky, Igor Kotenko, and

Victor A. Skormin, editors, Computer Network Security, volume 1 of Communications in Computer

and Information Science, pages 42–56. Springer Berlin Heidelberg, 2007. ISBN 978-3-540-73986-9.

URL http://dx.doi.org/10.1007/978-3-540-73986-9_4. Cited on page 1.

A T Chan. WWW + smart card: towards a mobile health care management system. International

Journal of Medical Informatics, 57(2-3):127–137, 2000. URL http://www.ncbi.nlm.nih.gov/

pubmed/10961569. Cited on page 8.

Alvin T. S. Chan. Integrating smart card access to web-based medical information systems. In

Proceedings of the 2003 ACM symposium on Applied computing, SAC ’03, pages 246–250, New York,

NY, USA, 2003. ACM. ISBN 1-58113-624-2. doi: http://doi.acm.org/10.1145/952532.952583. URL

http://doi.acm.org/10.1145/952532.952583. Cited on page 8.

Alvin T. S. Chan, Jiannong Cao, Henry Chan, and Gilbert Young. A web-enabled framework for

smart card applications in health services. Commun. ACM, 44:76–82, September 2001. ISSN 0001-

0782. doi: http://doi.acm.org/10.1145/383694.383710. URL http://doi.acm.org/10.1145/

383694.383710. Cited on page 8.

Dipankar Dasgupta, Sudip Saha, and Aregahegn Negatu. Techniques for Validation and Controlled

Execution of Processes, Codes and Data - A Survey. In Security and Cryptography, pages 77–85,

2010. URL http://ieeexplore.ieee.org/xpl/login.jsp?arnumber=5741635. Cited

on pages 20, 23 and 27.

89

http://books.google.com/books?id=ERSfUmmthMYC
http://books.google.com/books?id=ERSfUmmthMYC
http://www.cartaodecidadao.pt/images/stories/manual%20t%E9cnico%20do%20middleware%20do%20cc_v1%200.pdf
http://www.cartaodecidadao.pt/images/stories/manual%20t%E9cnico%20do%20middleware%20do%20cc_v1%200.pdf
http://www.cartaodecidadao.pt/images/stories/Manual%20Autenticacao%20com%20Cartao%20de%20Cidadao_%20v1.7.pdf
http://www.cartaodecidadao.pt/images/stories/Manual%20Autenticacao%20com%20Cartao%20de%20Cidadao_%20v1.7.pdf
http://dx.doi.org/10.1007/978-3-540-73986-9_4
http://www.ncbi.nlm.nih.gov/pubmed/10961569
http://www.ncbi.nlm.nih.gov/pubmed/10961569
http://doi.acm.org/10.1145/952532.952583
http://doi.acm.org/10.1145/383694.383710
http://doi.acm.org/10.1145/383694.383710
http://ieeexplore.ieee.org/xpl/login.jsp?arnumber=5741635

90 References

Ian Goldberg, David Wagner, Randi Thomas, and Eric Brewer. A Secure Environment for

Untrusted Helper Applications: Confining the Wily Hacker. In USENIX Security Sympo-

sium, 1996. URL http://static.usenix.org/publications/library/proceedings/

sec96/full_papers/goldberg/goldberg.pdf. Cited on pages 25, 26 and 76.

Ilja Heitlager, Tobias Kuipers, and Joost Visser. A Practical Model for Measuring Maintainability. In

International Conference on the Quality of Information and Communications Technology, pages 30–

39, 2007. doi: 10.1109/QUATIC.2007.8. URL http://ieeexplore.ieee.org/xpl/login.

jsp?arnumber=4335232. Cited on pages 6, 69, 77 and 78.

H K Lu and A M Ali. Making smart cards truly portable. Security Privacy IEEE, 8(2):28–34,

2010. URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=

5416672. Cited on pages 1 and 9.

H Karen Lu, Asad Ali, Kapil Sachdeva, and Ksheerabdhi Krishna. A pragmatic online authentication

framework using smart cards. Online, (c):84–91, 2011. Cited on page 9.

H.K. Lu, A.M. Ali, S. Durand, and L. Castillo. A new secure communication framework for smart

cards. In Consumer Communications and Networking Conference, 2009. CCNC 2009. 6th IEEE,

pages 1 –5, jan. 2009. doi: 10.1109/CCNC.2009.4784726. Cited on page 9.

John R. Michener and Tolga Acar. Managing System and Active-Content Integrity. IEEE Com-

puter, 33:108–110, 2000. doi: 10.1109/2.869389. URL http://ieeexplore.ieee.org/xpl/

articleDetails.jsp?arnumber=869389. Cited on page 22.

Vassilis Prevelakis and Diomidis Spinellis. Sandboxing Applications. In USENIX Technical Confer-

ence, pages 119–126, 2001. URL http://static.usenix.org/publications/library/

proceedings/usenix01/freenix01/full_papers/prevelakis/prevelakis.pdf.

Cited on pages 24 and 25.

W. Rankl and W. Effing. Smart Card Handbook. John Wiley & Sons, 2004. ISBN 9780470856680.

URL http://books.google.pt/books?id=Oi85gPhUFx4C. Cited on page 1.

RSA Laboratories. RSA Security Inc. Public-Key Cryptography Standards (PKCS). Technical report,

RSA Laboratories, 2004. URL ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-11/v2-20/

pkcs-11v2-20.pdf. Cited on pages 11, 13, 14, 41 and 103.

Aviel D. Rubin and Daniel E. Geer Jr. Mobile Code Security. IEEE Internet Computing, 2:30–34, 1998.

doi: 10.1109/4236.735984. URL http://ieeexplore.ieee.org/xpl/articleDetails.

jsp?arnumber=735984. Cited on page 20.

Kapil Sachdeva, H Karen Lu, and Ksheerabdhi Krishna. A Browser-Based Approach to Smart Card

Connectivity. In IEEE Workshop on Web 2.0 Security and Privacy, Oakland, California, 2009.

URL http://w2spconf.com/2009/papers/s4p4.pdf. Cited on pages 7, 9, 10, 11 and 12.

Damien Sauveron. Multiapplication smart card: Towards an open smart card? Inf. Secur. Tech. Rep.,

14:70–78, May 2009. ISSN 1363-4127. doi: 10.1016/j.istr.2009.06.007. URL http://dl.acm.

org/citation.cfm?id=1595066.1595093. Cited on pages 2, 8 and 28.

http://static.usenix.org/publications/library/proceedings/sec96/full_papers/goldberg/goldberg.pdf
http://static.usenix.org/publications/library/proceedings/sec96/full_papers/goldberg/goldberg.pdf
http://ieeexplore.ieee.org/xpl/login.jsp?arnumber=4335232
http://ieeexplore.ieee.org/xpl/login.jsp?arnumber=4335232
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5416672
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5416672
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=869389
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=869389
http://static.usenix.org/publications/library/proceedings/usenix01/freenix01/full_papers/prevelakis/prevelakis.pdf
http://static.usenix.org/publications/library/proceedings/usenix01/freenix01/full_papers/prevelakis/prevelakis.pdf
http://books.google.pt/books?id=Oi85gPhUFx4C
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-11/v2-20/pkcs-11v2-20.pdf
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-11/v2-20/pkcs-11v2-20.pdf
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=735984
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=735984
http://w2spconf.com/2009/papers/s4p4.pdf
http://dl.acm.org/citation.cfm?id=1595066.1595093
http://dl.acm.org/citation.cfm?id=1595066.1595093

References 91

Jay Schiavo. Code signing for end-user peace of mind. Network Security, 2010:11–13, 2010. doi: 10.

1016/S1353-4858(10)70093-3. URL http://www.sciencedirect.com/science/article/

pii/S1353485810700933. Cited on page 20.

B. Schneier. Attack trees - modeling security threats. 1999. URL http://www.schneier.com/

paper-attacktrees-ddj-ft.html. Cited on pages 6, 69, 71, 72 and 83.

R.C. Seacord. The Cert C Secure Coding Standard. Sei Series in Software Engineering. Addison-Wesley,

2008. ISBN 9780321563217. URL http://books.google.pt/books?id=6ipFVfxKeN0C.

Cited on pages 6 and 76.

George Selimis, Apostolos Fournaris, George Kostopoulos, and Odysseas Koufopavlou. Software

and Hardware Issues in Smart Card Technology. IEEE Communications Surveys & Tutorials, 11:

143–152, 2009. doi: 10.1109/SURV.2009.090310. URL http://ieeexplore.ieee.org/xpl/

login.jsp?arnumber=5208738. Cited on page 1.

Victoria Skoularidou and Diomidis Spinellis. Security architectures for network clients. Information

Management & Computer Security, 11:84–91, 2003. doi: 10.1108/09685220310468664. URL http:

//www.dmst.aueb.gr/dds/pubs/jrnl/2003-IMCS-clisec/html/cli-sec.pdf. Cited

on pages 22 and 76.

Guenther Starnberger, Lorenz Froihofer, and Karl M. Goeschka. A generic proxy for secure smart card-

enabled web applications. In Proceedings of the 10th international conference on Web engineering,

ICWE’10, pages 370–384, Berlin, Heidelberg, 2010. Springer-Verlag. ISBN 3-642-13910-8, 978-3-

642-13910-9. URL http://dl.acm.org/citation.cfm?id=1884110.1884141. Cited on

page 8.

Robert Wahbe, Steven Lucco, and Thomas E. Anderson. Efficient Software-Based Fault Isolation.

Operating Systems Review, 27:203–216, 1993. doi: 10.1145/168619.168635. URL http://crypto.

stanford.edu/cs155old/cs155-spring07/sfi.pdf. Cited on page 25.

Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley Chen, Robert Muth, Tavis Ormandy, Shiki

Okasaka, Neha Narula, and Nicholas Fullagar. Native Client: A Sandbox for Portable, Untrusted

x86 Native Code. In IEEE Symposium on Security and Privacy, volume 53, pages 79–93, 2009. doi:

10.1109/SP.2009.25. URL http://johmathe.nonutc.fr/ressources/nacl_paper.pdf.

Cited on page 28.

Yves Younan, Wouter Joosen, and Frank Piessens. Code injection in c and c++ : A survey of vulner-

abilities and countermeasures. Technical report, DEPARTEMENT COMPUTERWETENSCHAP-

PEN, KATHOLIEKE UNIVERSITEIT LEUVEN, 2004. URL http://citeseerx.ist.psu.

edu/viewdoc/summary?doi=10.1.1.59.2429. Cited on page 71.

http://www.sciencedirect.com/science/article/pii/S1353485810700933
http://www.sciencedirect.com/science/article/pii/S1353485810700933
http://www.schneier.com/paper-attacktrees-ddj-ft.html
http://www.schneier.com/paper-attacktrees-ddj-ft.html
http://books.google.pt/books?id=6ipFVfxKeN0C
http://ieeexplore.ieee.org/xpl/login.jsp?arnumber=5208738
http://ieeexplore.ieee.org/xpl/login.jsp?arnumber=5208738
http://www.dmst.aueb.gr/dds/pubs/jrnl/2003-IMCS-clisec/html/cli-sec.pdf
http://www.dmst.aueb.gr/dds/pubs/jrnl/2003-IMCS-clisec/html/cli-sec.pdf
http://dl.acm.org/citation.cfm?id=1884110.1884141
http://crypto.stanford.edu/cs155old/cs155-spring07/sfi.pdf
http://crypto.stanford.edu/cs155old/cs155-spring07/sfi.pdf
http://johmathe.nonutc.fr/ressources/nacl_paper.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.59.2429
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.59.2429

92 References

Appendix A

Documentation

Throughout this chapter it is possible to find following documentation that we created during this

project:

Section A.1 has a detailed description of the JS interface of the plugin. In this section we describe

each member of the interface. It is possible to find some output examples of the plugin as well.

Section A.2 shows several tables which aggregate information of each one of the available objects

defined in the PKCS #11 standard.

Section A.3 exposes images showing our plugin installed in several web browsers.

A.1 JavaScript API

In this section we present all the methods, attributes, and events available on the JS API of the plugin.

In order to explain with a level of detail the behaviour of each one of the several members of the JS

interface of the plugin, we decided to included the expected types.

Method(s)

init

Signature void init(string pkcs11location)

Category Environment

Description This method must be used in order to load and initialize the PKCS#11 mod-

ule

Returns —

Throws Exception Yes

Pre Condition —

Post Condition Success: the PKCS#11 module is loaded and ready to use

Parameter(s) string pkcs11location This parameter must have a valid path to the

location of the PKCS#11 module

93

94 A. Documentation

finalize

Signature void finalize()

Category Environment

Description This method must be used once the plugin is not needed anymore

Returns —

Throws Exception Yes

Pre Condition The plugin must be initialized

Post Condition Success: all the resources are released

start

Listening Slot

Events

Signature void startListeningSlotEvents()

Category Environment

Description Instructs the plugin to start listening for slot events

Returns —

Throws Exception Yes

Pre Condition The plugin must be initialized

Post Condition Success: the plugin is waiting for events in all slots

stop

Listening Slot

Events

Signature void stopListeningSlotEvents()

Category Environment

Description Instructs the plugin to stop listening for slot events

Returns —

Throws Exception Yes

Pre Condition The plugin must be initialized and listening for slot events

Post Condition Success: the plugin stops listening for slot events

get Library

Information

Signature string[] getLibraryInformation()

Category Inspection

Description Gets information about the PKCS#11 module

Returns —

Throws Exception Yes

Pre Condition The plugin must be initialized

Post Condition Success: information about the PKCS#11 module is retrieved to the web

application

get Available

Tokens

Signature int[] getAvailableTokens()

Category Inspection

Description Gets the available tokens

Returns Returns an array of integers, where each element identifies exactly a token

Throws Exception Yes

Pre Condition The plugin must be initialized

Post Condition Success: a list of available tokens is returned to the web application

get Token

Information

Signature string[] getTokenInformation(int tokenID)

Category Inspection

Description Gets information about a particular token

Returns Returns an array of strings, where each element has a pair attribute + value,

example: label-->abc

Throws Exception Yes

Pre Condition The plugin must be initialized and the tokenID must be a valid identifier

Post Condition Success: a list containing the information about the token is returned

Parameter(s) int tokenID Identifies the token where the operation must be performed

A.1. JavaScript API 95

get Available

Mechanisms

Signature int[] getAvailableMechanisms()

Category Inspection

Description Gets the available cryptographic mechanisms supported by the Smart Card

Returns Returns an array of integers, where each element identifies exactly one mech-

anism

Throws Exception Yes

Pre Condition The plugin must be initialized

Post Condition Success: a list of available mechanisms is returned

get

Mechanism

Info

Signature string[] getMechanismInfo(int tokenID, int mechID)

Category Inspection

Description Gets information about a given mechanism supported by a given token

Returns Returns an array of strings, where each element is a pair attribute + value of

the mechanism

Throws Exception Yes

Pre Condition The plugin must be initialized, and the token and mechanism identifiers must

be valid

Post Condition Success: information about the mechanism is returned

Parameter(s)
int tokenID Identifies the token where the operation must be performed

int mechID Identifies the mechanism

get Available

Private Keys

Signature int[] getAvailablePrivateKeys(int tokenID)

Category Inspection

Description Gets information about the available private keys on given cryptographic

device

Returns Returns an array of integers, where each element identifies exactly a private

key

Throws Exception Yes

Pre Condition The plugin must be initialized, and the token identifier must be valid

Post Condition Success: information regarding the available private keys is returned

Parameter(s) int tokenID Identifies the token where the operation must be performed

get Private

Key Info

Signature string[] getPrivateKeyInfo(int tokenID, int privKeyID

Category Inspection

Description Gets information about a particular private key of a given token

Returns Returns an array of strings, where each element is a pair attribute + value of

the private key

Throws Exception Yes

Pre Condition The plugin must be initialized, and the identifiers of the token and private

key must be valid

Post Condition Success: information about the private key is returned

Parameter(s)
int tokenID Identifies the token where the operation must be per-

formed

int privKeyID Identifies the private key

96 A. Documentation

get Available

Public Keys

Signature int[] getAvailablePublicKeys(int tokenID)

Category Inspection

Description Gets information about the available public keys on a given cryptographic

device

Returns Returns an array of integers, where each element identifies exactly a public

key

Throws Exception Yes

Pre Condition The plugin must be initialized, and the identifiers must be valid

Post Condition Success: a list containing the available public keys is returned

Parameter(s) int tokenID Identifies the token where the operation must be performed

get Public

Key Info

Signature string[] getPublicKeyInfo(int tokenID, int pubKeyID)

Category Inspection

Description Gets information about a particular public key of a given token

Returns Returns an array of strings, where each element is a pair attribute + value of

the public key

Throws Exception Yes

Pre Condition The plugin must be initialized, and the identifiers must be valid

Post Condition Success: a list containing the details of the public key is returned

Parameter(s)
int tokenID Identifies the token are the operation must be performed

int pubKeyID Identifies the public key

get Available

X509 Public

Key

Certificates

Signature int[] getAvailableX509PublicKeyCertificates(int tokenID)

Category Inspection

Description Gets list of available X.509 Public Key Certificates in a given token

Returns Returns an array of integers, where each element identifies exactly one object

Throws Exception Yes

Pre Condition The plugin must be initialized and the token identifier must be valid

Post Condition Success: a list containing the available elements is returned

Parameter(s) int tokenID Identifies the token where the operation must be performed

get X509

Public Key

Certificate

Info

Signature string[] getX509PublicKeyCertificateInfo(int tokenID, int'

certID)

Category Inspection

Description Gets information about a particular X.509 Public Key Certificate on a given

cryptographic device

Returns Returns an array of strings, where each element is a pair attribute + value of

the certificate

Throws Exception Yes

Pre Condition The plugin must be initialized and the identifiers must be valid

Post Condition Success: a list containing the certificate details is returned

Parameter(s)
int tokenID Identifies the token where the operation must be performed

int certID Identifies the certificate

A.1. JavaScript API 97

get Available

WTLS Public

Key

Certificates

Signature int[] getAvailableWTLSPublicKeyCertificates(int tokenID)

Category Inspection

Description Gets a list of available WTLS Public Key Certificates

Returns Returns an array of integers, where each element identifies exactly one cer-

tificate

Throws Exception Yes

Pre Condition The plugin must be initialized and the identifier must be valid

Post Condition Success: a list of available certificates is returned

Parameter(s) int tokenID Identifies the token where the operation must be performed

get WTLS

Public Key

Certificate

Info

Signature string[] getWTLSPublicKeyCertificateInfo(int tokenID, int'

certID)

Category Inspection

Description Gets information about a particular WTLS Key Certificate on a given cryp-

tographic device

Returns Returns an array of strings, where each element is a pair attribute + value of

the certificate

Throws Exception Yes

Pre Condition The plugin must be initialized and the identifiers must be valid

Post Condition Success: a list containing the certificate details is returned

Parameter(s)
int tokenID Identifies the token where the operation must be performed

int certID Identifies the certificate

get Available

X509

Attribute

Certificates

Signature int[] getAvailableX509AttributeCertificates(int tokenID)

Category Inspection

Description Gets a list of available X.509 attribute Certificates

Returns Returns an array of integers, where each element identifies exactly one cer-

tificate

Throws Exception Yes

Pre Condition The plugin must be initialized and the identifier must be valid

Post Condition Success: a list of available certificates is returned

Parameter(s) int tokenID Identifies the token where the operation must be performed

get X509

Attribute

Certificate

Info

Signature string[] getX509AttributeCertificateInfo(int tokenID, int'

certID)

Category Inspection

Description Gets information about a particular X.509 Attribute Certificate on a given

cryptographic device

Returns Returns an array of strings, where each element is a pair attribute + value of

the certificate

Throws Exception Yes

Pre Condition The plugin must be initialized and the identifiers must be valid

Post Condition Success: a list containing the certificate details is returned

Parameter(s)
int tokenID Identifies the token where the operation must be performed

int certID Identifies the certificate

98 A. Documentation

get Available

Data Objects

Signature int[] getAvailableDataObjects(int tokenID)

Category Inspection

Description Gets a list of available data objects on a given cryptographic device

Returns Returns an array of integers where each element identifies exactly one data

object

Throws Exception Yes

Pre Condition The plugin must be initialized and the identifier must be valid

Post Condition Success: a list containing the available data objects is returned

Parameter(s) int tokenID Identifies the token where the operation must be performed

get Data

Object Info

Signature string[] getDataObjectInfo(int tokenID, int objID)

Category Inspection

Description Gets information about a particular data object on a given cryptographic

device

Returns Returns an array of strings, where each element is a pair attribute + value of

the data object

Throws Exception Yes

Pre Condition The plugin must be initialized and the identifiers must be valid

Post Condition Success: a list containing the details of the data object is returned

Parameter(s)
int tokenID Identifies the token where the operation must be performed

int objID Identifies the data object

sign Data

Signature string signData(int tokenID, int privKeyID, int mechID, '

bool prompPin, string data

Category Cryptographic

Description Creates a digital signature of binary data

Returns Returns a Base 64 encoded string containing the digital signature

Throws Exception Yes

Pre Condition The plugin must be initialized and the identifiers must be valid.

Post Condition Success: a digital signature is returned

Parameter(s)

int tokenID Identifies the token where the operation must be per-

formed

int privKeyID Identifies the private key that must used to create the

digital signature

int mechID Identifies the mechanism that must be used to generate

the digital signature

bool prompPin True if the plugin must prompt the PIN to the user.

False if the cryptographic device has mechanisms for PIN

prompting

string data A Base 64 encoded string containing the binary data that

is supposed to sign

A.1. JavaScript API 99

sign File

Signature string signFile(int tokenID, int privKeyID, int mechID, '

bool prompPin, string path2file

Category Cryptographic

Description Creates a digital signature of a file

Returns Returns a Base 64 encoded string containing the digital signature

Throws Exception Yes

Pre Condition The plugin must be initialized and the identifiers must be valid. The path

must be valid and point to a file

Post Condition Success: a digital signature is returned

Parameter(s)

int tokenID Identifies the token where the operation must be per-

formed

int privKeyID Identifies the private key that must used to create the

digital signature

int mechID Identifies the mechanism that must be used to gen-

erate the digital signature

bool prompPin True if the plugin must prompt the PIN to the user.

False if the cryptographic device has mechanisms for

PIN prompting

string path2file The path to the file that is supposed to be signed

digest Data

Signature string digestData(int tokenID, int mechID, string data

Category Cryptographic

Description Creates a digest of binary data

Returns Returns a Base 64 encoded string containing the digest

Throws Exception Yes

Pre Condition The plugin must be initialized and the identifiers must be valid

Post Condition Success: a digest from the binary data is returned

Parameter(s)

int tokenID Identifies the token where the operation must be performed

int mechID Identifies the mechanism that must be used to generate the

digital signature

string data A Base 64 encoded string containing the binary data

digest File

Signature string digestFile(int tokenID, int mechID, string '

path2file

Category Cryptographic

Description Creates a digest of a file

Returns Returns a Base 64 encoded string containing the digest

Throws Exception Yes

Pre Condition The plugin must be initialized and the identifiers must be valid. The path

must be valid and point to a file

Post Condition Success: a digest from the file is returned

Parameter(s)

int tokenID Identifies the token where the operation must be per-

formed

int mechID Identifies the mechanism that must be used to gen-

erate the digital signature

string path2file The path to the file that is supposed to be signed

100 A. Documentation

to Base 64

Signature string toBase64(string data)

Category Utilities

Description Encodes a string into the Base 64 format

Returns Returns a Base 64 encoded string of the input data

Throws Exception Yes

Pre Condition —

Post Condition Success: the data is encoded to the base 64 and returned

Parameter(s) string data the data to encode

from Base 64

Signature string fromBase64(string data)

Category Utilities

Description Decodes a string in the Base 64 format

Returns Returns a string containing the decoded data

Throws Exception Yes

Pre Condition The data must be properly encoded in the Base 64 format

Post Condition Success: the decoded data is returned

Parameter(s) string data the base 64 encoded data

Attribute(s)

FIRST STRING

SEPARATOR

Type string

Category String Separators

Rean-only true

SECOND STRING

SEPARATOR

Type string

Category String Separators

Rean-only true

THIRD STRING

SEPARATOR

Type string

Category String Separators

Rean-only true

MULTIPLE

VALUES

SEPARATOR

Type string

Category String Separators

Rean-only true

CKF RNG

Type unsigned integer

Category Token flags

Rean-only true

CKF WRITE

PROTECTED

Type unsigned integer

Category Token flags

Rean-only true

CKF LOGIN

REQUIRED

Type unsigned integer

Category Token flags

Rean-only true

CKF USER PIN

INITIALIZED

Type unsigned integer

Category Token flags

Rean-only true

CKF RESTORE

KEY NOT

NEEDED

Type unsigned integer

Category Token flags

Rean-only true

A.1. JavaScript API 101

CKF CLOCK ON

TOKEN

Type unsigned integer

Category Token flags

Rean-only true

CKF PROTECTED

AUTHENTICATION

PATH

Type unsigned integer

Category Token flags

Rean-only true

CKF DUAL

CRYPTO

OPERATIONS

Type unsigned integer

Category Token flags

Rean-only true

CKF TOKEN

INITIALIZED

Type unsigned integer

Category Token flags

Rean-only true

CKF

SECONDARY

AUTHENTICATION

Type unsigned integer

Category Token flags

Rean-only true

CKF USER PIN

COUNT LOW

Type unsigned integer

Category Token flags

Rean-only true

CKF USER PIN

FINAL TRY

Type unsigned integer

Category Token flags

Rean-only true

CKF USER PIN

LOCKED

Type unsigned integer

Category Token flags

Rean-only true

CKF USER PIN

TO BE

CHANGED

Type unsigned integer

Category Token flags

Rean-only true

CKF SO PIN

COUNT LOW

Type unsigned integer

Category Token flags

Rean-only true

CKF SO PIN

FINAL TRY

Type unsigned integer

Category Token flags

Rean-only true

CKF SO PIN

LOCKED

Type unsigned integer

Category Token flags

Rean-only true

CKF SO PIN TO

BE CHANGED

Type unsigned integer

Category Token flags

Rean-only true

CKF HW

Type unsigned integer

Category Mechanism flags

Rean-only true

CKF ENCRYPT

Type unsigned integer

Category Mechanism flags

Rean-only true

102 A. Documentation

CKF DECRYPT

Type unsigned integer

Category Mechanism flags

Rean-only true

CKF DIGEST

Type unsigned integer

Category Mechanism flags

Rean-only true

CKF SIGN

Type unsigned integer

Category Mechanism flags

Rean-only true

CKF SIGN

RECOVER

Type unsigned integer

Category Mechanism flags

Rean-only true

CKF VERIFY

Type unsigned integer

Category Mechanism flags

Rean-only true

CKF VERIFY

RECOVER

Type unsigned integer

Category Mechanism flags

Rean-only true

CKF GENERATE

Type unsigned integer

Category Mechanism flags

Rean-only true

CKF GENERATE

KEY PAIR

Type unsigned integer

Category Mechanism flags

Rean-only true

CKF WRAP

Type unsigned integer

Category Mechanism flags

Rean-only true

CKF UNWRAP

Type unsigned integer

Category Mechanism flags

Rean-only true

CKF DERIVE

Type unsigned integer

Category Mechanism flags

Rean-only true

CKF EXTENSION

Type unsigned integer

Category Mechanism flags

Rean-only true

TOKEN

INSERTED

Type unsigned integer

Category Slot Events

Rean-only true

TOKEN

REMOVED

Type unsigned integer

Category Slot Events

Rean-only true

Event(s)

A.2. PKCS #11 Objects Reference 103

slot event

Description This event notifies web applications any time a token is either in-

sert/removed into/from a slot

Internet Explorer onslotevent

Other web browsers slotevent

Parameter(s)
int Identifies the event type. 1 if a token was inserted, 2 otherwise.

int Identifies the slot where the event happened.

Table A.1: Documentation of the JS Interface of the Plugin

A.2 PKCS #11 Objects Reference

In the following tables we aggregated all the available information defined for each one of

the objects in the PKCS #11 standard. The information shown in these tables is just a

compilation of the data available in the reference manual of PKCS #11 [RSA Laboratories,

2004]. The intellectual property and credits of this information belong to the RSA company.

104 A. Documentation

C
K

A
_
H

W
_
F

E
A

T
U

R
E

_
T

Y
P

E
C

K
_
H

D
_
F

E
A

T
U

R
E

H
a
rd

w
a
re

 F
e
a
tu

re
 (

ty
p
e
)

A
tt

ri
b

u
te

D
a
ta

 T
y
p

e
M

e
a
n

in
g

C
K

H
_
C

L
O

C
K

C
K

A
_
V

A
L
U

E
C

K
_
C

H
A

R
[1

6
]

C
u
rr

e
n
t

ti
m

e
 a

s
 a

 c
h
a
ra

c
te

r
s
tr

in
g
 o

f
le

n
g
th

 1
6
.

F
o
rm

a
t:

 Y
Y

Y
Y

M
M

D
D

h
h
m

m
s
s
xx

C
K

A
_
R

E
S

E
T

_
O

N
_
IN

IT
C

K
_
B

B
O

O
L

T
h
e
 v

a
lu

e
 o

f
th

e
 c

o
u
n
te

r
w

ill
 r

e
s
e
t

to
 a

 p
re

v
io

u
s
ly

 r
e
tu

rn
e
d
 v

a
lu

e
 i
f

th
e
 t

o
k
e
n
 i
s
 i
n
it
ia

liz
e
d
 u

s
in

g
 C

_
In

it
ia

liz
e
T

o
k
e
n
.

C
K

A
_
H

A
S

_
R

E
S

E
T

C
K

_
B

B
O

O
L

T
h
e
 v

a
lu

e
 o

f
th

e
 c

o
u
n
te

r
h
a
s
 b

e
e
n
 r

e
s
e
t

a
t

le
a
s
t

o
n
c
e
 a

t
s
o
m

e
 p

o
in

t
in

 t
im

e
.

C
K

A
_
V

A
L
U

E
B

y
te

 a
rr

a
y

T
h
e
 c

u
rr

e
n
t

v
e
rs

io
n
 o

f
th

e
 m

o
n
o
to

n
ic

 c
o
u
n
te

r.
 T

h
e
 v

a
lu

e
 i
s
 r

e
tu

rn
e
d
 i
n
 b

ig
 e

n
d
ia

n
 o

rd
e
r.

C
K

A
_
P

IX
E

L
_
X

C
K

_
U

L
O

N
G

S
c
re

e
n
 r

e
s
o
lu

ti
o
n
 (

in
 p

ix
e
ls

)
in

 X
-a

xi
s

C
K

A
_
P

IX
E

L
_
Y

C
K

_
U

L
O

N
G

S
c
re

e
n
 r

e
s
o
lu

ti
o
n
 (

in
 p

ix
e
ls

)
in

 Y
-a

xi
s

C
K

A
_
R

E
S

O
L
U

T
IO

N
C

K
_
U

L
O

N
G

D
P

I,
 p

ix
e
ls

 p
e
r

in
c
h

C
K

A
_
C

H
A

R
_
R

O
W

S
C

K
_
U

L
O

N
G

F
o
r

c
h
a
ra

c
te

r-
o
ri
e
n
te

d
 d

is
p
la

y
s

C
K

A
_
C

H
A

R
_
C

O
L
U

M
N

S
C

K
_
U

L
O

N
G

F
o
r

c
h
a
ra

c
te

r-
o
ri
e
n
te

d
 d

is
p
la

y
s

If
 d

is
p
la

y
 i
s
 o

f
p
ro

p
o
rt

io
n
a
l-
fo

n
t

ty
p
e
,

th
is

 i
s
 t

h
e
 w

id
th

 o
f

th
e
 d

is
p
la

y
 i
n
 “

e
m

”-
s
 (

le
tt

e
r

“M
”)

,
s
e
e
 C

C
/P

P
 S

tr
u
c
t.

C
K

A
_
C

O
L
O

R
C

K
_
B

B
O

O
L

C
o
lo

r
s
u
p
p
o
rt

C
K

A
_
B

IT
S

_
P

E
R

_
P

IX
E

L
C

K
_
U

L
O

N
G

T
h
e
 n

u
m

b
e
r

o
f

b
it
s
 o

f
c
o
lo

r
o
r

g
ra

y
s
c
a
le

 i
n
fo

rm
a
ti
o
n
 p

e
r

p
ix

e
l.

C
K

A
_
C

H
A

R
_
S

E
T

S
R

F
C

 2
2
7
9
 s

tr
in

g
S

tr
in

g
in

d
ic

a
ti
n
g

s
u
p
p
o
rt

e
d

c
h
a
ra

c
te

r
s
e
ts

,
a
s

d
e
fi
n
e
d

b
y

IA
N

A
M

IB
e
n
u
m

s
e
ts

(w
w

w
.i
a
n
a
.o

rg
).

S
u
p
p
o
rt

e
d

c
h
a
ra

c
te

r
s
e
ts

a
re

s
e
p
a
ra

te
d

w
it
h

“;
”.

C
K

A
_
E

N
C

O
D

IN
G

_
M

E
T

H
O

D
S

R
F

C
 2

2
7
9
 s

tr
in

g
S

tr
in

g
in

d
ic

a
ti
n
g

s
u
p
p
o
rt

e
d

c
o
n
te

n
t

tr
a
n
s
fe

r
e
n
c
o
d
in

g
m

e
th

o
d
s
,

a
s

d
e
fi
n
e
d

b
y

IA
N

A
(w

w
w

.i
a
n
a
.o

rg
).

S
u
p
p
o
rt

e
d

m
e
th

o
d
s

a
re

s
e
p
a
ra

te
d

w
it
h

“;
”

C
K

A
_
M

IM
E

_
T

Y
P

E
S

R
F

C
 2

2
7
9
 s

tr
in

g
S

tr
in

g
 i
n
d
ic

a
ti
n
g
 s

u
p
p
o
rt

e
d
 (

p
re

s
e
n
ta

b
le

)
M

IM
E

-t
y
p
e
s
,

a
s
 d

e
fi
n
e
d
 b

y
 I
A

N
A

 (
w

w
w

.i
a
n
a
.o

rg
).

 S
u
p
p
o
rt

e
d
 t

y
p
e
s
 a

re
 s

e
p
a
ra

te
d
 w

it
h
 “

;”

C
K

H
_
C

L
O

C
K

C
K

H
_
M

O
N

O
T

O
N

IC
_
C

O
U

N
T

E
R

T
h
e

C
K

A
_
V

A
L
U

E
a
tt

ri
b
u
te

m
a
y

b
e

s
e
t

u
s
in

g
th

e
C

_
S

e
tA

tt
ri
b
u
te

V
a
lu

e
fu

n
c
ti
o
n

if
p
e
rm

it
te

d
b
y

th
e

d
e
v
ic

e
.

T
h
e

s
e
s
s
io

n
u
s
e
d

to
s
e
t

th
e

ti
m

e
m

u
s
t

b
e

lo
g
g
e
d

in
.

T
h
e

d
e
v
ic

e
m

a
y

re
q
u
ir
e

th
e

S
O

to
b
e

th
e

u
s
e
r

lo
g
g
e
d

in

to
 m

o
d
if
y
 t

h
e
 t

im
e
 v

a
lu

e
.

C
_
S

e
tA

tt
ri
b
u
te

V
a
lu

e
 w

ill
 r

e
tu

rn
 t

h
e
 e

rr
o
r

C
K

R
_
U

S
E

R
_
N

O
T

_
L
O

G
G

E
D

_
IN

 t
o
 i
n
d
ic

a
te

 t
h
a
t

a
 d

if
fe

re
n
t

u
s
e
r

ty
p
e
 i
s
 r

e
q
u
ir
e
d
 t

o
 s

e
t

th
e
 v

a
lu

e
.

T
h
e
 C

K
A

_
V

A
L
U

E
 a

tt
ri
b
u
te

 m
a
y
 n

o
t

b
e
 s

e
t

b
y
 t

h
e
 c

lie
n
t.

C
K

H
_
U

S
E

R
_
IN

T
E

R
F

A
C

E

T
h
e

s
e
le

c
ti
o
n

o
f

a
tt

ri
b
u
te

s
,

a
n
d

a
s
s
o
c
ia

te
d

d
a
ta

ty
p
e
s
,

h
a
s

b
e
e
n

d
o
n
e

in
a
n

a
tt

e
m

p
t

to
s
ta

y
a
s

a
lig

n
e
d

w
it
h

R
F

C
2
5
3
4

a
n
d

C
C

/P
P

S
tr

u
c
t

a
s

p
o
s
s
ib

le
.

T
h
e

s
p
e
c
ia

l
v
a
lu

e
C

K
_
U

N
A

V
A

IL
A

B
L
E

_
IN

F
O

R
M

A
T

IO
N

m
a
y

b
e

u
s
e
d
 f

o
r

C
K

_
U

L
O

N
G

-b
a
s
e
d
 a

tt
ri
b
u
te

s
 w

h
e
n
 i
n
fo

rm
a
ti
o
n
 i
s
 n

o
t

a
v
a
ila

b
le

 o
r

a
p
p
lic

a
b
le

.

N
o
n
e
 o

f
th

e
 a

tt
ri
b
u
te

 v
a
lu

e
s
 m

a
y
 b

e
 s

e
t

b
y
 a

n
 a

p
p
lic

a
ti
o
n
.

T
h
e
 v

a
lu

e
 o

f
th

e
 C

K
A

_
E

N
C

O
D

IN
G

_
M

E
T

H
O

D
S

 a
tt

ri
b
u
te

 m
a
y
 b

e
 u

s
e
d
 w

h
e
n
 t

h
e
 a

p
p
lic

a
ti
o
n
 n

e
e
d
s
 t

o
 s

e
n
d
 M

IM
E

 o
b
je

c
ts

 w
it
h
 e

n
c
o
d
e
d
 c

o
n
te

n
t

to
 t

h
e
 t

o
k
e
n
.

A
tt

ri
b

u
te

s

C
K

_
H

D
_
F

E
A

T
U

R
E

C
K

H
_
M

O
N

O
T

O
N

IC
_
C

O
U

N
T

E
R

C
K

H
_
U

S
E

R
_
IN

T
E

R
F

A
C

E

N
o

te
s

H
a

rd
w

a
re

 F
e

a
tu

re
 O

b
je

c
ts

C
la

s
s
 d

e
fi

n
it

io
n

C
K

_
O

B
J
E

C
T

_
C

L
A

S
S

C
K

O
_
H

W
_
F

E
A

T
U

R
E

C
o

m
m

o
n

 A
tt

ri
b

u
te

s
A

tt
ri

b
u

te
s

D
a
ta

 T
y
p

e
M

e
a
n

in
g

Table A.2: Hardware Feature Objects in PKCS # 11

A.2. PKCS #11 Objects Reference 105

C
K

_
O

B
J
E

C
T

_
C

L
A

S
S

A
tt

ri
b

u
te

D
a
ta

 T
y
p

e
M

e
a
n

in
g

C
K

A
_
M

E
C

H
A

N
IS

M
_
T

Y
P

E
C

K
_
M

E
C

H
A

N
IS

M
_
T

Y
P

E
T

h
e
 t

y
p
e
 o

f
m

e
c
h
a
n
is

m
 o

b
je

c
t

T
h
e
 C

K
A

_
M

E
C

H
A

N
IS

M
_
T

Y
P

E
 a

tt
ri
b
u
te

 m
a
y
 n

o
t

b
e
 s

e
t.

.

M
e

c
h

a
n

is
m

 o
b

je
c

ts
C

la
s
s
 d

e
fi

n
it

io
n

C
K

O
_
M

E
C

H
A

N
IS

M

A
tt

ri
b

u
te

s
V

a
lu

e

N
o

te
s

Table A.3: Mechanism Objects in PKCS # 11

106 A. Documentation

C
K

_
O

B
J
E

C
T

_
C

L
A

S
S

A
tt

ri
b

u
te

D
a
ta

 T
y
p

e
M

e
a
n

in
g

C
K

A
_
T

O
K

E
N

C
K

_
B

B
O

O
L

C
K

_
T

R
U

E
 i
f

o
b
je

c
t

is
 a

 t
o
k
e
n
 o

b
je

c
t;

C
K

_
F

A
L
S

E
 i
f

o
b
je

c
t

is
 a

 s
e
s
s
io

n
 o

b
je

c
t.

D
e
fa

u
lt
 i
s
 C

K
_
F

A
L
S

E
.

C
K

A
_
P

R
IV

A
T

E
C

K
_
B

B
O

O
L

C
K

_
T

R
U

E
 i
f

o
b
je

c
t

is
 a

 p
ri
v
a
te

 o
b
je

c
t;

C
K

_
F

A
L
S

E
 i
f

o
b
je

c
t

is
 a

 p
u
b
lic

 o
b
je

c
t.

D
e
fa

u
lt
 v

a
lu

e
 i
s
 t

o
k
e
n
-

s
p
e
c
if
ic

,
a
n
d
 m

a
y
 d

e
p
e
n
d
 o

n
 t

h
e
 v

a
lu

e
s
 o

f
o
th

e
r

a
tt

ri
b
u
te

s
 o

f
th

e
 o

b
je

c
t.

C
K

A
_
M

O
D

IF
IA

B
L
E

C
K

_
B

B
O

O
L

C
K

_
T

R
U

E
 i
f

o
b
je

c
t

c
a
n
 b

e
 m

o
d
if
ie

d

D
e
fa

u
lt
 i
s
 C

K
_
T

R
U

E
.

C
K

A
_
L
A

B
E

L
R

F
C

2
2
7
9
 s

tr
in

g
D

e
s
c
ri
p
ti
o
n
 o

f
th

e
 o

b
je

c
t

(d
e
fa

u
lt
 e

m
p
ty

).

O
n
ly

 t
h
e
 C

K
A

_
L
A

B
E

L
 a

tt
ri
b
u
te

 c
a
n
 b

e
 m

o
d
if
ie

d
 a

ft
e
r

th
e
 o

b
je

c
t

is
 c

re
a
te

d
.

(T
h
e
 C

K
A

_
T

O
K

E
N

,
C

K
A

_
P

R
IV

A
T

E
,

a
n
d
 C

K
A

_
M

O
D

IF
IA

B
L
E

 a
tt

ri
b
u
te

s
 c

a
n
 b

e
 c

h
a
n
g
e
d
 i
n
 t

h
e
 p

ro
c
e
s
s
 o

f
c
o
p
y
in

g
 a

n
 o

b
je

c
t,

 h
o
w

e
v
e
r.

)

T
h
e
 C

K
A

_
T

O
K

E
N

 a
tt

ri
b
u
te

 i
d
e
n
ti
fi
e
s
 w

h
e
th

e
r

th
e
 o

b
je

c
t

is
 a

 t
o
k
e
n
 o

b
je

c
t

o
r

a
 s

e
s
s
io

n
 o

b
je

c
t.

W
h
e
n
 t

h
e
 C

K
A

_
P

R
IV

A
T

E
 a

tt
ri
b
u
te

 i
s
 C

K
_
T

R
U

E
,

a
 u

s
e
r

m
a
y
 n

o
t

a
c
c
e
s
s
 t

h
e
 o

b
je

c
t

u
n
ti
l
th

e
 u

s
e
r

h
a
s
 b

e
e
n
 a

u
th

e
n
ti
c
a
te

d
 t

o
 t

h
e
 t

o
k
e
n
.

T
h
e
 v

a
lu

e
 o

f
th

e
 C

K
A

_
M

O
D

IF
IA

B
L
E

 a
tt

ri
b
u
te

 d
e
te

rm
in

e
s
 w

h
e
th

e
r

o
r

n
o
t

a
n
 o

b
je

c
t

is
 r

e
a
d
-o

n
ly

.
It
 m

a
y
 o

r
m

a
y
 n

o
t

b
e
 t

h
e
 c

a
s
e
 t

h
a
t

a
n
 u

n
m

o
d
if
ia

b
le

 o
b
je

c
t

c
a
n
 b

e
 d

e
le

te
d
.

T
h
e
 C

K
A

_
L
A

B
E

L
 a

tt
ri
b
u
te

 i
s
 i
n
te

n
d
e
d
 t

o
 a

s
s
is

t
u
s
e
rs

 i
n
 b

ro
w

s
in

g
.S

to
ra

g
e

 O
b

je
c

ts

C
la

s
s
 d

e
fi

n
it

io
n

C
K

O
_
D

A
T

A

A
tt

ri
b

u
te

s

V
a
lu

e

N
o

te
s

Table A.4: Storage Objects in PKCS # 11

A.2. PKCS #11 Objects Reference 107

C
K

_
O

B
J
E

C
T

_
C

L
A

S
S

A
tt

ri
b

u
te

D
a
ta

 T
y
p

e
M

e
a
n

in
g

C
K

A
_
T

O
K

E
N

C
K

_
B

B
O

O
L

C
K

_
T

R
U

E
 i
f

o
b
je

c
t

is
 a

 t
o
k
e
n
 o

b
je

c
t;

C
K

_
F

A
L
S

E
 i
f

o
b
je

c
t

is
 a

 s
e
s
s
io

n
 o

b
je

c
t.

D
e
fa

u
lt
 i
s
 C

K
_
F

A
L
S

E
.

C
K

A
_
P

R
IV

A
T

E
C

K
_
B

B
O

O
L

C
K

_
T

R
U

E
 i
f

o
b
je

c
t

is
 a

 p
ri
v
a
te

 o
b
je

c
t;

C
K

_
F

A
L
S

E
 i
f

o
b
je

c
t

is
 a

 p
u
b
lic

 o
b
je

c
t.

D
e
fa

u
lt
 v

a
lu

e
 i
s
 t

o
k
e
n
-

s
p
e
c
if
ic

,
a
n
d
 m

a
y
 d

e
p
e
n
d
 o

n
 t

h
e
 v

a
lu

e
s
 o

f
o
th

e
r

a
tt

ri
b
u
te

s
 o

f
th

e
 o

b
je

c
t.

C
K

A
_
M

O
D

IF
IA

B
L
E

C
K

_
B

B
O

O
L

C
K

_
T

R
U

E
 i
f

o
b
je

c
t

c
a
n
 b

e
 m

o
d
if
ie

d

D
e
fa

u
lt
 i
s
 C

K
_
T

R
U

E
.

C
K

A
_
L
A

B
E

L
R

F
C

2
2
7
9
 s

tr
in

g
D

e
s
c
ri
p
ti
o
n
 o

f
th

e
 o

b
je

c
t

(d
e
fa

u
lt
 e

m
p
ty

).

C
K

A
_
A

P
P

L
IC

A
T

IO
N

R
F

C
2
2
7
9
 s

tr
in

g
D

e
s
c
ri
p
ti
o
n
 o

f
th

e
 a

p
p
lic

a
ti
o
n
 t

h
a
t

m
a
n
a
g
e
s
 t

h
e
 o

b
je

c
t

(d
e
fa

u
lt
 e

m
p
ty

)

C
K

A
_
O

B
J
E

C
T

_
ID

B
y
te

 A
rr

a
y

D
E

R
-e

n
c
o
d
in

g
 o

f
th

e
 o

b
je

c
t

id
e
n
ti
fi
e
r

in
d
ic

a
ti
n
g
 t

h
e
 d

a
ta

 o
b
je

c
t

ty
p
e
 (

d
e
fa

u
lt
 e

m
p
ty

)

C
K

A
_
V

A
L
U

E
B

y
te

 a
rr

a
y

V
a
lu

e
 o

f
th

e
 o

b
je

c
t

(d
e
fa

u
lt
 e

m
p
ty

)

S
a
m

p
le

 t
e
m

p
la

te

T
h
e

C
K

A
_
A

P
P

L
IC

A
T

IO
N

a
tt

ri
b
u
te

p
ro

v
id

e
s

a
m

e
a
n
s

fo
r

a
p
p
lic

a
ti
o
n
s

to
in

d
ic

a
te

o
w

n
e
rs

h
ip

o
f

th
e

d
a
ta

o
b
je

c
ts

th
e
y

m
a
n
a
g
e
.

C
ry

p
to

k
i
d
o
e
s

n
o
t

p
ro

v
id

e
a

m
e
a
n
s

o
f

e
n
s
u
ri
n
g

th
a
t

o
n
ly

a
p
a
rt

ic
u
la

r
a
p
p
lic

a
ti
o
n

h
a
s

a
c
c
e
s
s

to
 a

 d
a
ta

 o
b
je

c
t,

 h
o
w

e
v
e
r.

T
h
e

C
K

A
_
O

B
J
E

C
T

_
ID

a
tt

ri
b
u
te

p
ro

v
id

e
s

a
n

a
p
p
lic

a
ti
o
n

in
d
e
p
e
n
d
e
n
t

a
n
d

e
xp

a
n
d
a
b
le

w
a
y

to
in

d
ic

a
te

th
e

ty
p
e

o
f

th
e

d
a
ta

o
b
je

c
t

v
a
lu

e
.

C
ry

p
to

k
i

d
o
e
s

n
o
t

p
ro

v
id

e
a

m
e
a
n
s

o
f

in
s
u
ri
n
g

th
a
t

th
e

d
a
ta

o
b
je

c
t

id
e
n
ti
fi
e
r

m
a
tc

h
e
s
 t

h
e
 d

a
ta

 v
a
lu

e
.

C
K

_
O

B
J
E

C
T

_
C

L
A

S
S

 c
la

s
s
 =

 C
K

O
_
D

A
T

A
;

C
K

_
U

T
F

8
C

H
A

R
 l
a
b
e
l[
]

=
 “

A
 d

a
ta

 o
b
je

c
t”

;

C
K

_
U

T
F

8
C

H
A

R
 a

p
p
lic

a
ti
o
n
[]

 =
 “

A
n
 a

p
p
lic

a
ti
o
n
”;

C
K

_
B

Y
T

E
 d

a
ta

[]
 =

 “
S

a
m

p
le

 d
a
ta

”;

C
K

_
B

B
O

O
L
 t

ru
e
 =

 C
K

_
T

R
U

E
;

C
K

_
A

T
T

R
IB

U
T

E
 t

e
m

p
la

te
[]

 =
 {

 {
C

K
A

_
C

L
A

S
S

,
&

c
la

s
s
,

s
iz

e
o
f(

c
la

s
s
)}

,

 {
C

K
A

_
T

O
K

E
N

,
&

tr
u
e
,

s
iz

e
o
f(

tr
u
e
)}

 {
C

K
A

_
L
A

B
E

L
,

la
b
e
l,
 s

iz
e
o
f(

la
b
e
l)
-1

},

 {
C

K
A

_
A

P
P

L
IC

A
T

IO
N

,
a
p
p
lic

a
ti
o
n
,

s
iz

e
o
f(

a
p
p
lic

a
ti
o
n
)-

1
},

 {
C

K
A

_
V

A
L
U

E
,

d
a
ta

,
s
iz

e
o
f(

d
a
ta

)}

};

D
a

ta
 O

b
je

c
ts

C
la

s
s
 d

e
fi

n
it

io
n

C
K

O
_
D

A
T

A

A
tt

ri
b

u
te

s

V
a
lu

e

N
o

te
s

Table A.5: Data Objects in PKCS # 11

108 A. Documentation

C
K

_
O

B
J
E

C
T

_
C

L
A

S
S

A
tt

ri
b

u
te

D
a
ta

 T
y
p

e
M

e
a
n

in
g

C
K

A
_
T

O
K

E
N

C
K

_
B

B
O

O
L

C
K

_
T

R
U

E
 i
f

o
b
je

c
t

is
 a

 t
o
k
e
n
 o

b
je

c
t;

C
K

_
F

A
L
S

E
 i
f

o
b
je

c
t

is
 a

 s
e
s
s
io

n
 o

b
je

c
t.

D
e
fa

u
lt
 i
s
 C

K
_
F

A
L
S

E
.

C
K

A
_
P

R
IV

A
T

E
C

K
_
B

B
O

O
L

C
K

_
T

R
U

E
 i
f

o
b
je

c
t

is
 a

 p
ri
v
a
te

 o
b
je

c
t;

C
K

_
F

A
L
S

E
 i
f

o
b
je

c
t

is
 a

 p
u
b
lic

 o
b
je

c
t.

D
e
fa

u
lt
 v

a
lu

e
 i
s
 t

o
k
e
n
-

s
p
e
c
if
ic

,
a
n
d
 m

a
y
 d

e
p
e
n
d
 o

n
 t

h
e
 v

a
lu

e
s
 o

f
o
th

e
r

a
tt

ri
b
u
te

s
 o

f
th

e
 o

b
je

c
t.

C
K

A
_
M

O
D

IF
IA

B
L
E

C
K

_
B

B
O

O
L

C
K

_
T

R
U

E
 i
f

o
b
je

c
t

c
a
n
 b

e
 m

o
d
if
ie

d

D
e
fa

u
lt
 i
s
 C

K
_
T

R
U

E
.

C
K

A
_
L
A

B
E

L
R

F
C

2
2
7
9
 s

tr
in

g
D

e
s
c
ri
p
ti
o
n
 o

f
th

e
 o

b
je

c
t

(d
e
fa

u
lt
 e

m
p
ty

).

C
K

A
_
K

E
Y

_
T

Y
P

E
C

K
_
K

E
Y

_
T

Y
P

E
T

y
p
e
 o

f
k
e
y
 t

h
e
 d

o
m

a
in

 p
a
ra

m
e
te

rs
 c

a
n
 b

e
 u

s
e
d
 t

o
 g

e
n
e
ra

te
.

C
K

A
_
L
O

C
A

L
C

K
_
B

B
O

O
L

C
K

_
T

R
U

E
 o

n
ly

 i
f

d
o
m

a
in

 p
a
ra

m
e
te

rs
 w

e
re

 e
it
h
e
r

 -
 g

e
n
e
ra

te
d
 l
o
c
a
lly

 (
i.
e
.,

 o
n
 t

h
e
 t

o
k
e
n
)

w
it
h
 a

 C
_
G

e
n
e
ra

te
K

e
y

 -
 c

re
a
te

d
 w

it
h
 a

 C
_
C

o
p
y
O

b
je

c
t

c
a
ll

a
s
 a

 c
o
p
y
 o

f
d
o
m

a
in

 p
a
ra

m
e
te

rs
 w

h
ic

h
 h

a
d
 i
ts

 C
K

A
_
L
O

C
A

L
 a

tt
ri
b
u
te

 s
e
t

to
 C

K
_
T

R
U

E

T
h
e
 C

K
A

_
L
O

C
A

L
 a

tt
ri
b
u
te

 h
a
s
 t

h
e
 v

a
lu

e
 C

K
_
T

R
U

E
 i
f

a
n
d
 o

n
ly

 i
f

th
e
 v

a
lu

e
 o

f
th

e

d
o
m

a
in

 p
a
ra

m
e
te

rs
 w

e
re

 o
ri
g
in

a
lly

 g
e
n
e
ra

te
d
 o

n
 t

h
e
 t

o
k
e
n
 b

y
 a

 C
_
G

e
n
e
ra

te
K

e
y
 c

a
ll.

D
o

m
a

in
 P

a
ra

m
e

te
r

O
b

je
c

ts
C

la
s
s
 d

e
fi

n
it

io
n

C
K

O
_
D

O
M

A
IN

_
P

A
R

A
M

E
T

E
R

S

A
tt

ri
b

u
te

s
V

a
lu

e

N
o

te
s

Table A.6: Domain Parameters Objects in PKCS # 11

A.2. PKCS #11 Objects Reference 109

C
K

_
O

B
J
E

C
T

_
C

L
A

S
S

A
tt

ri
b

u
te

D
a
ta

 T
y
p

e
M

e
a
n

in
g

C
K

A
_
T

O
K

E
N

C
K

_
B

B
O

O
L

C
K

_
T

R
U

E
 i
f

o
b
je

c
t

is
 a

 t
o
k
e
n
 o

b
je

c
t;

C
K

_
F

A
L
S

E
 i
f

o
b
je

c
t

is
 a

 s
e
s
s
io

n
 o

b
je

c
t.

D
e
fa

u
lt
 i
s
 C

K
_
F

A
L
S

E
.

C
K

A
_
P

R
IV

A
T

E
C

K
_
B

B
O

O
L

C
K

_
T

R
U

E
 i
f

o
b
je

c
t

is
 a

 p
ri
v
a
te

 o
b
je

c
t;

C
K

_
F

A
L
S

E
 i
f

o
b
je

c
t

is
 a

 p
u
b
lic

 o
b
je

c
t.

D
e
fa

u
lt
 v

a
lu

e
 i
s
 t

o
k
e
n
-

s
p
e
c
if
ic

,
a
n
d
 m

a
y
 d

e
p
e
n
d
 o

n
 t

h
e
 v

a
lu

e
s
 o

f
o
th

e
r

a
tt

ri
b
u
te

s
 o

f
th

e
 o

b
je

c
t.

C
K

A
_
M

O
D

IF
IA

B
L
E

C
K

_
B

B
O

O
L

C
K

_
T

R
U

E
 i
f

o
b
je

c
t

c
a
n
 b

e
 m

o
d
if
ie

d

D
e
fa

u
lt
 i
s
 C

K
_
T

R
U

E
.

C
K

A
_
L
A

B
E

L
R

F
C

2
2
7
9
 s

tr
in

g
D

e
s
c
ri
p
ti
o
n
 o

f
th

e
 o

b
je

c
t

(d
e
fa

u
lt
 e

m
p
ty

).

C
K

A
_
K

E
Y

_
T

Y
P

E
C

K
_
K

E
Y

_
T

Y
P

E
T

y
p
e
 o

f
k
e
y

C
K

A
_
ID

B
y
te

 a
rr

a
y

K
e
y
 i
d
e
n
ti
fi
e
r

fo
r

k
e
y
 (

d
e
fa

u
lt
 e

m
p
ty

)

C
K

A
_
S

T
A

R
T

_
D

A
T

E
C

K
_
D

A
T

E
S

ta
rt

 d
a
te

 f
o
r

th
e
 k

e
y
 (

d
e
fa

u
lt
 e

m
p
ty

)

C
K

A
_
E

N
D

_
D

A
T

E
C

K
_
D

A
T

E
E

n
d
 d

a
te

 f
o
r

th
e
 k

e
y
 (

d
e
fa

u
lt
 e

m
p
ty

)

C
K

A
_
D

E
R

IV
E

C
K

_
B

B
O

O
L

C
K

_
T

R
U

E
 i
f

k
e
y
 s

u
p
p
o
rt

s
 k

e
y
 d

e
ri
v
a
ti
o
n
 (

i.
e
.,

 i
f

o
th

e
r

k
e
y
s
 c

a
n
 b

e
 d

e
ri
v
e
d
 f

ro
m

 t
h
is

 o
n
e
 (

d
e
fa

u
lt
 C

K
_
F

A
L
S

E
)

C
K

A
_
L
O

C
A

L
C

K
_
B

B
O

O
L

C
K

_
T

R
U

E
 o

n
ly

 i
f

k
e
y
 w

a
s
 e

it
h
e
r:

 -
 g

e
n
e
ra

te
d
 l
o
c
a
lly

 (
i.
e
.,

 o
n
 t

h
e
 t

o
k
e
n
)

w
it
h
 a

 C
_
G

e
n
e
ra

te
K

e
y
 o

r
C

_
G

e
n
e
ra

te
K

e
y
P

a
ir
 c

a
ll

 -
 c

re
a
te

d
 w

it
h
 a

 C
_
C

o
p
y
O

b
je

c
t

c
a
ll

a
s
 a

 c
o
p
y
 o

f
a
 k

e
y
 w

h
ic

h
 h

a
d
 i
ts

 C
K

A
_
L
O

C
A

L
 a

tt
ri
b
u
te

 s
e
t

to
 C

K
_
T

R
U

E

C
K

A
_
K

E
Y

_
G

E
N

_
 M

E
C

H
A

N
IS

M
C

K
_
M

E
C

H
A

N
IS

M
 _

T
Y

P
E

Id
e
n
ti
fi
e
r

o
f

th
e
 m

e
c
h
a
n
is

m
 u

s
e
d
 t

o
 g

e
n
e
ra

te
 t

h
e
 k

e
y
 m

a
te

ri
a
l.

C
K

A
_
A

L
L
O

W
E

D
_
M

E
C

H
A

N
IS

M
S

C
K

_
M

E
C

H
A

N
IS

M
 _

T
Y

P
E

 _
P

T
R

A
lis

t
o
f

m
e
c
h
a
n
is

m
s

a
llo

w
e
d

to
b
e

u
s
e
d

w
it
h

th
is

k
e
y
.

T
h
e

n
u
m

b
e
r

o
f

m
e
c
h
a
n
is

m
s

in
th

e
a
rr

a
y

is
th

e
u
lV

a
lu

e
L
e
n

c
o
m

p
o
n
e
n
t

o
f

th
e

a
tt

ri
b
u
te

d
iv

id
e
d

b
y

th
e

s
iz

e
o
f

C
K

_
M

E
C

H
A

N
IS

M
_
T

Y
P

E
.

C
K

A
_
S

U
B

J
E

C
T

B
y
te

 a
rr

a
y

D
E

R
-e

n
c
o
d
in

g
 o

f
c
e
rt

if
ic

a
te

 s
u
b
je

c
t

n
a
m

e
 (

d
e
fa

u
lt
 e

m
p
ty

)

C
K

A
_
S

E
N

S
IT

IV
E

C
K

_
B

B
O

O
L

C
K

_
T

R
U

E
 i
f

k
e
y
 i
s
 s

e
n
s
it
iv

e

C
K

A
_
D

E
C

R
Y

P
T

C
K

_
B

B
O

O
L

C
K

_
T

R
U

E
 i
f

k
e
y
 s

u
p
p
o
rt

s
 d

e
c
ry

p
ti
o
n

C
K

A
_
S

IG
N

C
K

_
B

B
O

O
L

C
K

_
T

R
U

E
 i
f

k
e
y
 s

u
p
p
o
rt

s
 s

ig
n
a
tu

re
s
 w

h
e
re

 t
h
e
 s

ig
n
a
tu

re
 i
s
 a

n
 a

p
p
e
n
d
ix

 t
o
 t

h
e
 d

a
ta

C
K

A
_
S

IG
N

_
R

E
C

O
V

E
R

C
K

_
B

B
O

O
L

C
K

_
T

R
U

E
 i
f

k
e
y
 s

u
p
p
o
rt

s
 s

ig
n
a
tu

re
s
 w

h
e
re

 t
h
e
 d

a
ta

 c
a
n
 b

e
 r

e
c
o
v
e
re

d
 f

ro
m

 t
h
e
 s

ig
n
a
tu

re

C
K

A
_
U

N
W

R
A

P
C

K
_
B

B
O

O
L

C
K

_
T

R
U

E
 i
f

k
e
y
 s

u
p
p
o
rt

s
 u

n
w

ra
p
p
in

g
 (

i.
e
.,

 c
a
n
 b

e
 u

s
e
d
 t

o
 u

n
w

ra
p
 o

th
e
r

k
e
y
s
)

C
K

A
_
E

X
T

R
A

C
T

A
B

L
E

C
K

_
B

B
O

O
L

C
K

_
T

R
U

E
 i
f

k
e
y
 i
s
 e

xt
ra

c
ta

b
le

 a
n
d
 c

a
n
 b

e
 w

ra
p
p
e
d

C
K

A
_
A

L
W

A
Y

S
_
S

E
N

S
IT

IV
E

C
K

_
B

B
O

O
L

C
K

_
T

R
U

E
 i
f

k
e
y
 h

a
s
 a

lw
a
y
s
 h

a
d
 t

h
e
 C

K
A

_
S

E
N

S
IT

IV
E

 a
tt

ri
b
u
te

 s
e
t

to
 C

K
_
T

R
U

E

C
K

A
_
N

E
V

E
R

_
E

X
T

R
A

C
T

A
B

L
E

C
K

_
B

B
O

O
L

C
K

_
T

R
U

E
 i
f

k
e
y
 h

a
s
 n

e
v
e
r

h
a
d
 t

h
e
 C

K
A

_
E

X
T

R
A

C
T

A
B

L
E

 a
tt

ri
b
u
te

 s
e
t

to
 C

K
_
T

R
U

E

C
K

A
_
W

R
A

P
_
W

IT
H

_
T

R
U

S
T

E
D

C
K

_
B

B
O

O
L

C
K

_
T

R
U

E
 i
f

th
e
 k

e
y
 c

a
n
 o

n
ly

 b
e
 w

ra
p
p
e
d
 w

it
h
 a

 w
ra

p
p
in

g
 k

e
y
 t

h
a
t

h
a
s
 C

K
A

_
T

R
U

S
T

E
D

 s
e
t

to
 C

K
_
T

R
U

E
.

D
e
fa

u
lt
 i
s
 C

K
_
F

A
L
S

E
.

C
K

A
_
U

N
W

R
A

P
_
T

E
M

P
L
A

T
E

C
K

_
A

T
T

R
IB

U
T

E
_
 P

T
R

F
o
r

w
ra

p
p
in

g
k
e
y
s
.

T
h
e

a
tt

ri
b
u
te

te
m

p
la

te
to

a
p
p
ly

to
a
n
y

k
e
y
s

u
n
w

ra
p
p
e
d

u
s
in

g
th

is
w

ra
p
p
in

g
k
e
y
.

A
n
y

u
s
e
r

s
u
p
p
lie

d
te

m
p
la

te
is

a
p
p
lie

d
a
ft

e
r

th
is

te
m

p
la

te
a
s

if
th

e
o
b
je

c
t

h
a
s

a
lr
e
a
d
y
 b

e
e
n
 c

re
a
te

d
.

T
h
e
 n

u
m

b
e
r

o
f

a
tt

ri
b
u
te

s
 i
n
 t

h
e
 a

rr
a
y
 i
s
 t

h
e
 u

lV
a
lu

e
L
e
n
 c

o
m

p
o
n
e
n
t

o
f

th
e
 a

tt
ri
b
u
te

 d
iv

id
e
d
 b

y
 t

h
e
 s

iz
e
 o

f
C

K
_
A

T
T

R
IB

U
T

E
.

C
K

A
_
A

L
W

A
Y

S
_
A

U
T

H
E

N
T

IC
A

T
E

C
K

_
B

B
O

O
L

If
 C

K
_
T

R
U

E
,

th
e
 u

s
e
r

h
a
s
 t

o
 s

u
p
p
ly

 t
h
e
 P

IN
 f

o
r

e
a
c
h
 u

s
e
 (

s
ig

n
 o

r
d
e
c
ry

p
t)

 w
it
h
 t

h
e
 k

e
y
.

D
e
fa

u
lt
 i
s
 C

K
_
F

A
L
S

E
.

P
ri

v
a

te
 K

e
y
 O

b
je

c
ts

C
la

s
s
 d

e
fi

n
it

io
n

C
K

O
_
P

R
IV

A
T

E
_
K

E
Y

A
tt

ri
b

u
te

s

V
a
lu

e

Table A.7: Private Key Objects in PKCS # 11 (1 of 2)

110 A. Documentation

It
 i
s
 i
n
te

n
d
e
d
 i
n
 t

h
e
 i
n
te

re
s
ts

 o
f

in
te

ro
p
e
ra

b
ili

ty
 t

h
a
t

th
e
 s

u
b
je

c
t

n
a
m

e
 a

n
d
 k

e
y
 i
d
e
n
ti
fi
e
r

fo
r

a
 p

ri
v
a
te

 k
e
y
 w

ill
 b

e
 t

h
e
 s

a
m

e
 a

s
 t

h
o
s
e
 f

o
r

th
e
 c

o
rr

e
s
p
o
n
d
in

g
 c

e
rt

if
ic

a
te

 a
n
d
 p

u
b
lic

 k
e
y
.

H
o
w

e
v
e
r,

 t
h
is

 i
s
 n

o
t

e
n
fo

rc
e
d
 b

y

C
ry

p
to

k
i,
 a

n
d
 i
t

is
 n

o
t

re
q
u
ir
e
d
 t

h
a
t

th
e
 c

e
rt

if
ic

a
te

 a
n
d
 p

u
b
lic

 k
e
y
 a

ls
o
 b

e
 s

to
re

d
 o

n
 t

h
e
 t

o
k
e
n
.

If
 t

h
e
 C

K
A

_
S

E
N

S
IT

IV
E

 a
tt

ri
b
u
te

 i
s
 C

K
_
T

R
U

E
,

o
r

if
 t

h
e
 C

K
A

_
E

X
T

R
A

C
T

A
B

L
E

 a
tt

ri
b
u
te

 i
s
 C

K
_
F

A
L
S

E
,

th
e
n
 c

e
rt

a
in

 a
tt

ri
b
u
te

s
 o

f
th

e
 p

ri
v
a
te

 k
e
y
 c

a
n
n
o
t

b
e
 r

e
v
e
a
le

d
 i
n
 p

la
in

te
xt

 o
u
ts

id
e
 t

h
e
 t

o
k
e
n
.

W
h
ic

h
 a

tt
ri
b
u
te

s
 t

h
e
s
e

a
re

 i
s
 s

p
e
c
if
ie

d
 f

o
r

e
a
c
h
 t

y
p
e
 o

f
p
ri
v
a
te

 k
e
y
 i
n
 t

h
e
 a

tt
ri
b
u
te

 t
a
b
le

 i
n
 t

h
e
 s

e
c
ti
o
n
 d

e
s
c
ri
b
in

g
 t

h
a
t

ty
p
e
 o

f
k
e
y
.

T
h
e
 C

K
A

_
A

L
W

A
Y

S
_
A

U
T

H
E

N
T

IC
A

T
E

 a
tt

ri
b
u
te

 c
a
n
 b

e
 u

s
e
d
 t

o
 f

o
rc

e
 r

e
-

a
u
th

e
n
ti
c
a
ti
o
n
 (

i.
e
.

fo
rc

e
 t

h
e
 u

s
e
r

to
 p

ro
v
id

e
 a

 P
IN

)
fo

r
e
a
c
h
 u

s
e
 o

f
a
 p

ri
v
a
te

 k
e
y
.

“U
s
e
”

in
 t

h
is

 c
a
s
e
 m

e
a
n
s
 a

 c
ry

p
to

g
ra

p
h
ic

 o
p
e
ra

ti
o
n
 s

u
c
h
 a

s

s
ig

n
 o

r
d
e
c
ry

p
t.

 T
h
is

 a
tt

ri
b
u
te

 m
a
y
 o

n
ly

 b
e
 s

e
t

to
 C

K
_
T

R
U

E
 w

h
e
n
 C

K
A

_
P

R
IV

A
T

E
 i
s
 a

ls
o
 C

K
_
T

R
U

E
.

R
e
-a

u
th

e
n
ti
c
a
ti
o
n
 o

c
c
u
rs

 b
y
 c

a
lli

n
g
 C

_
L
o
g
in

 w
it
h
 u

s
e
rT

y
p
e
 s

e
t

to
 C

K
U

_
C

O
N

T
E

X
T

_
S

P
E

C
IF

IC
 i
m

m
e
d
ia

te
ly

 a
ft

e
r

a
 c

ry
p
to

g
ra

p
h
ic

 o
p
e
ra

ti
o
n
 u

s
in

g
 t

h
e
 k

e
y
 h

a
s
 b

e
e
n
 i
n
it
ia

te
d
 (

e
.g

.
a
ft

e
r

C
_
S

ig
n
In

it
).

 I
n
 t

h
is

 c
a
ll,

 t
h
e
 a

c
tu

a
l

u
s
e
r

ty
p
e
 i
s
 i
m

p
lic

it
ly

 g
iv

e
n
 b

y
 t

h
e
 u

s
a
g
e
 r

e
q
u
ir
e
m

e
n
ts

 o
f

th
e
 a

c
ti
v
e
 k

e
y
.

If
 C

_
L
o
g
in

 r
e
tu

rn
s
 C

K
R

_
O

K
 t

h
e
 u

s
e
r

w
a
s
 s

u
c
c
e
s
s
fu

lly
 a

u
th

e
n
ti
c
a
te

d
 a

n
d
 t

h
is

 s
e
ts

 t
h
e
 a

c
ti
v
e
 k

e
y
 i
n
 a

n
 a

u
th

e
n
ti
c
a
te

d
 s

ta
te

 t
h
a
t

la
s
ts

 u
n
ti
l
th

e

c
ry

p
to

g
ra

p
h
ic

 o
p
e
ra

ti
o
n
 h

a
s
 s

u
c
c
e
s
s
fu

lly
 o

r
u
n
s
u
c
c
e
s
s
fu

lly
 b

e
e
n
 c

o
m

p
le

te
d
 (

e
.g

.
b
y
 C

_
S

ig
n
,

C
_
S

ig
n
F

in
a
l,
..

).
 A

 r
e
tu

rn
 v

a
lu

e
 C

K
R

_
P

IN
_
IN

C
O

R
R

E
C

T
 f

ro
m

 C
_
L
o
g
in

 m
e
a
n
s
 t

h
a
t

th
e
 u

s
e
r

w
a
s
 d

e
n
ie

d
 p

e
rm

is
s
io

n
 t

o
 u

s
e

th
e
 k

e
y
 a

n
d
 c

o
n
ti
n
u
in

g
 t

h
e
 c

ry
p
to

g
ra

p
h
ic

 o
p
e
ra

ti
o
n
 w

ill
 r

e
s
u
lt
 i
n
 a

 b
e
h
a
v
io

r
a
s
 i
f

C
_
L
o
g
in

 h
a
d
 n

o
t

b
e
e
n
 c

a
lle

d
.

In
 b

o
th

 o
f

th
e
s
e
 c

a
s
e
s
 t

h
e
 s

e
s
s
io

n
 s

ta
te

 w
ill

 r
e
m

a
in

 t
h
e
 s

a
m

e
,

h
o
w

e
v
e
r

re
p
e
a
te

d
 f

a
ile

d
 r

e
-a

u
th

e
n
ti
c
a
ti
o
n

a
tt

e
m

p
ts

 m
a
y
 c

a
u
s
e
 t

h
e
 P

IN
 t

o
 b

e
 l
o
c
k
e
d
.

C
_
L
o
g
in

 r
e
tu

rn
s
 i
n
 t

h
is

 c
a
s
e
 C

K
R

_
P

IN
_
L
O

C
K

E
D

 a
n
d
 t

h
is

 a
ls

o
 l
o
g
s
 t

h
e
 u

s
e
r

o
u
t

fr
o
m

 t
h
e
 t

o
k
e
n
.

F
a
ili

n
g
 o

r
o
m

it
ti
n
g
 t

o
 r

e
-a

u
th

e
n
ti
c
a
te

 w
h
e
n
 C

K
A

_
A

L
W

A
Y

S
_
A

U
T

H
E

N
T

IC
A

T
E

is
 s

e
t

to
 C

K
_
T

R
U

E
 w

ill
 r

e
s
u
lt
 i
n
 C

K
R

_
U

S
E

R
_
N

O
T

_
L
O

G
G

E
D

_
IN

 t
o
 b

e
 r

e
tu

rn
e
d
 f

ro
m

 c
a
lls

 u
s
in

g
 t

h
e
 k

e
y
.

C
_
L
o
g
in

 w
ill

 r
e
tu

rn
 C

K
R

_
O

P
E

R
A

T
IO

N
_
N

O
T

_
IN

IT
IA

L
IZ

E
D

,
b
u
t

th
e
 a

c
ti
v
e
 c

ry
p
to

g
ra

p
h
ic

 o
p
e
ra

ti
o
n
 w

ill
 n

o
t

b
e

a
ff

e
c
te

d
,

if
 a

n
 a

tt
e
m

p
t

is
 m

a
d
e
 t

o
 r

e
-a

u
th

e
n
ti
c
a
te

 w
h
e
n
 C

K
A

_
A

L
W

A
Y

S
_
A

U
T

H
E

N
T

IC
A

T
E

 i
s
 s

e
t

to
 C

K
_
F

A
L
S

E
.

N
o

te
s

Table A.8: Private Key Objects in PKCS # 11 (2 of 2)

A.2. PKCS #11 Objects Reference 111

C
K

_
O

B
J
E

C
T

_
C

L
A

S
S

A
tt

ri
b

u
te

D
a
ta

 T
y
p

e
M

e
a
n

in
g

C
K

A
_
T

O
K

E
N

C
K

_
B

B
O

O
L

C
K

_
T

R
U

E
 i
f

o
b
je

c
t

is
 a

 t
o
k
e
n
 o

b
je

c
t;

C
K

_
F

A
L
S

E
 i
f

o
b
je

c
t

is
 a

 s
e
s
s
io

n
 o

b
je

c
t.

D
e
fa

u
lt
 i
s
 C

K
_
F

A
L
S

E
.

C
K

A
_
P

R
IV

A
T

E
C

K
_
B

B
O

O
L

C
K

_
T

R
U

E
 i
f

o
b
je

c
t

is
 a

 p
ri
v
a
te

 o
b
je

c
t;

C
K

_
F

A
L
S

E
 i
f

o
b
je

c
t

is
 a

 p
u
b
lic

 o
b
je

c
t.

D
e
fa

u
lt
 v

a
lu

e
 i
s
 t

o
k
e
n
-

s
p
e
c
if
ic

,
a
n
d
 m

a
y
 d

e
p
e
n
d
 o

n
 t

h
e
 v

a
lu

e
s
 o

f
o
th

e
r

a
tt

ri
b
u
te

s
 o

f
th

e
 o

b
je

c
t.

C
K

A
_
M

O
D

IF
IA

B
L
E

C
K

_
B

B
O

O
L

C
K

_
T

R
U

E
 i
f

o
b
je

c
t

c
a
n
 b

e
 m

o
d
if
ie

d

D
e
fa

u
lt
 i
s
 C

K
_
T

R
U

E
.

C
K

A
_
L
A

B
E

L
R

F
C

2
2
7
9
 s

tr
in

g
D

e
s
c
ri
p
ti
o
n
 o

f
th

e
 o

b
je

c
t

(d
e
fa

u
lt
 e

m
p
ty

).

C
K

A
_
K

E
Y

_
T

Y
P

E
C

K
_
K

E
Y

_
T

Y
P

E
T

y
p
e
 o

f
k
e
y

C
K

A
_
ID

B
y
te

 a
rr

a
y

K
e
y
 i
d
e
n
ti
fi
e
r

fo
r

k
e
y
 (

d
e
fa

u
lt
 e

m
p
ty

)

C
K

A
_
S

T
A

R
T

_
D

A
T

E
C

K
_
D

A
T

E
S

ta
rt

 d
a
te

 f
o
r

th
e
 k

e
y
 (

d
e
fa

u
lt
 e

m
p
ty

)

C
K

A
_
E

N
D

_
D

A
T

E
C

K
_
D

A
T

E
E

n
d
 d

a
te

 f
o
r

th
e
 k

e
y
 (

d
e
fa

u
lt
 e

m
p
ty

)

C
K

A
_
D

E
R

IV
E

C
K

_
B

B
O

O
L

C
K

_
T

R
U

E
 i
f

k
e
y
 s

u
p
p
o
rt

s
 k

e
y
 d

e
ri
v
a
ti
o
n
 (

i.
e
.,

 i
f

o
th

e
r

k
e
y
s
 c

a
n
 b

e
 d

e
ri
v
e
d
 f

ro
m

 t
h
is

 o
n
e
 (

d
e
fa

u
lt
 C

K
_
F

A
L
S

E
)

C
K

A
_
L
O

C
A

L
C

K
_
B

B
O

O
L

C
K

_
T

R
U

E
 o

n
ly

 i
f

k
e
y
 w

a
s
 e

it
h
e
r:

 -
 g

e
n
e
ra

te
d
 l
o
c
a
lly

 (
i.
e
.,

 o
n
 t

h
e
 t

o
k
e
n
)

w
it
h
 a

 C
_
G

e
n
e
ra

te
K

e
y
 o

r
C

_
G

e
n
e
ra

te
K

e
y
P

a
ir
 c

a
ll

 -
 c

re
a
te

d
 w

it
h
 a

 C
_
C

o
p
y
O

b
je

c
t

c
a
ll

a
s
 a

 c
o
p
y
 o

f
a
 k

e
y
 w

h
ic

h
 h

a
d
 i
ts

 C
K

A
_
L
O

C
A

L
 a

tt
ri
b
u
te

 s
e
t

to
 C

K
_
T

R
U

E

C
K

A
_
K

E
Y

_
G

E
N

_
 M

E
C

H
A

N
IS

M
C

K
_
M

E
C

H
A

N
IS

M
 _

T
Y

P
E

Id
e
n
ti
fi
e
r

o
f

th
e
 m

e
c
h
a
n
is

m
 u

s
e
d
 t

o
 g

e
n
e
ra

te
 t

h
e
 k

e
y
 m

a
te

ri
a
l.

C
K

A
_
A

L
L
O

W
E

D
_
M

E
C

H
A

N
IS

M
S

C
K

_
M

E
C

H
A

N
IS

M
 _

T
Y

P
E

 _
P

T
R

A
lis

t
o
f

m
e
c
h
a
n
is

m
s

a
llo

w
e
d

to
b
e

u
s
e
d

w
it
h

th
is

k
e
y
.

T
h
e

n
u
m

b
e
r

o
f

m
e
c
h
a
n
is

m
s

in
th

e
a
rr

a
y

is
th

e
u
lV

a
lu

e
L
e
n

c
o
m

p
o
n
e
n
t

o
f

th
e

a
tt

ri
b
u
te

d
iv

id
e
d

b
y

th
e

s
iz

e
o
f

C
K

_
M

E
C

H
A

N
IS

M
_
T

Y
P

E
.

C
K

A
_
S

U
B

J
E

C
T

B
y
te

 a
rr

a
y

D
E

R
-e

n
c
o
d
in

g
 o

f
th

e
 k

e
y
 s

u
b
je

c
t

n
a
m

e
 (

d
e
fa

u
lt
 e

m
p
ty

)

C
K

A
_
E

N
C

R
Y

P
T

C
K

_
B

B
O

O
L

C
K

_
T

R
U

E
 i
f

k
e
y
 s

u
p
p
o
rt

s
 e

n
c
ry

p
ti
o
n

C
K

A
_
V

E
R

IF
Y

C
K

_
B

B
O

O
L

C
K

_
T

R
U

E
 i
f

k
e
y
 s

u
p
p
o
rt

s
 v

e
ri
fi
c
a
ti
o
n
 w

h
e
re

 t
h
e
 s

ig
n
a
tu

re
 i
s
 a

n
 a

p
p
e
n
d
ix

 t
o
 t

h
e
 d

a
ta

C
K

A
_
V

E
R

IF
Y

_
R

E
C

O
V

E
R

C
K

_
B

B
O

O
L

C
K

_
T

R
U

E
 i
f

k
e
y
 s

u
p
p
o
rt

s
 v

e
ri
fi
c
a
ti
o
n
 w

h
e
re

 t
h
e
 d

a
ta

 i
s
 r

e
c
o
v
e
re

d
 f

ro
m

 t
h
e
 s

ig
n
a
tu

re

C
K

A
_
W

R
A

P
C

K
_
B

B
O

O
L

C
K

_
T

R
U

E
 i
f

k
e
y
 s

u
p
p
o
rt

s
 w

ra
p
p
in

g
 (

i.
e
.,

 c
a
n
 b

e
 u

s
e
d
 t

o
 w

ra
p
 o

th
e
r

k
e
y
s
)

C
K

A
_
T

R
U

S
T

E
D

C
K

_
B

B
O

O
L

T
h
e
 k

e
y
 c

a
n
 b

e
 t

ru
s
te

d
 f

o
r

th
e
 a

p
p
lic

a
ti
o
n
 t

h
a
t

it
 w

a
s
 c

re
a
te

d
.

T
h
e
 w

ra
p
p
in

g
 k

e
y
 c

a
n
 b

e
 u

s
e
d
 t

o
 w

ra
p
 k

e
y
s
 w

it
h
 C

K
A

_
W

R
A

P
_
W

IT
H

_
T

R
U

S
T

E
D

 s
e
t

to
 C

K
_
T

R
U

E
.

C
K

A
_
W

R
A

P
_
T

E
M

P
L
A

T
E

C
K

_
A

T
T

R
IB

U
T

E
_
 P

T
R

F
o
r

w
ra

p
p
in

g
k
e
y
s
.

T
h
e

a
tt

ri
b
u
te

te
m

p
la

te
to

m
a
tc

h
a
g
a
in

s
t

a
n
y

k
e
y
s

w
ra

p
p
e
d

u
s
in

g
th

is
w

ra
p
p
in

g
k
e
y
.

K
e
y
s

th
a
t

d
o

n
o
t

m
a
tc

h
c
a
n
n
o
t

b
e

w
ra

p
p
e
d
.

T
h
e

n
u
m

b
e
r

o
f

a
tt

ri
b
u
te

s

in
 t

h
e
 a

rr
a
y
 i
s
 t

h
e
 u

lV
a
lu

e
L
e
n
 c

o
m

p
o
n
e
n
t

o
f

th
e
 a

tt
ri
b
u
te

 d
iv

id
e
d
 b

y
 t

h
e
 s

iz
e
 o

f
C

K
_
A

T
T

R
IB

U
T

E
.

P
u

b
li
c

 K
e

y
 O

b
je

c
ts

C
la

s
s
 d

e
fi

n
it

io
n

C
K

O
_
P

U
B

L
IC

_
K

E
Y

A
tt

ri
b

u
te

s

V
a
lu

e

Table A.9: Public Key Objects in PKCS # 11 (1 of 2)

112 A. Documentation

M
a

p
p

in
g

 o
f

X
.5

0
9

 k
e
y

u
sa

g
e
 f

la
g

s
to

 c
r
y

p
to

k
i

K
e
y
 u

s
a
g

e
 f

la
g

s
 f

o
r

p
u

b
li

c

k
e
y
s
 i

n
 X

.5
0
9
 p

u
b

li
c
 k

e
y

C
o

rr
e
s
p

o
n

d
in

g
 c

ry
p

to
k
i

a
tt

ri
b

u
te

s
 f

o
r

p
u

b
li

c
 k

e
y
s

d
a
ta

E
n
c
ip

h
e
rm

e
n
t

C
K

A
_
E

N
C

R
Y

P
T

d
ig

it
a
lS

ig
n
a
tu

re
,

k
e
yC

e
rt

S
ig

n
,

c
R

L
S

ig
n

C
K

A
_
V

E
R

IF
Y

d
ig

it
a
lS

ig
n
a
tu

re
,

k
e
yC

e
rt

S
ig

n
,

c
R

L
S

ig
n

C
K

A
_
V

E
R

IF
Y

_
R

E
C

O
V

E
R

k
e
y
A

g
re

e
m

e
n
t

C
K

A
_
D

E
R

IV
E

k
e
y
E

n
c
ip

h
e
rm

e
n
t

C
K

A
_
W

R
A

P

n
o
n
R

e
p
u
d
ia

ti
o
n

C
K

A
_
V

E
R

IF
Y

n
o
n
R

e
p
u
d
ia

ti
o
n

C
K

A
_
V

E
R

IF
Y

_
R

E
C

O
V

E
R

It
 i
s
 i
n
te

n
d
e
d
 i
n
 t

h
e
 i
n
te

re
s
ts

 o
f

in
te

ro
p
e
ra

b
ili

ty
 t

h
a
t

th
e
 s

u
b
je

c
t

n
a
m

e
 a

n
d
 k

e
y
 i
d
e
n
ti
fi
e
r

fo
r

a
 p

u
b
lic

 k
e
y
 w

ill
 b

e
 t

h
e
 s

a
m

e
 a

s
 t

h
o
s
e
 f

o
r

th
e
 c

o
rr

e
s
p
o
n
d
in

g
 c

e
rt

if
ic

a
te

 a
n
d
 p

ri
v
a
te

 k
e
y
.

H
o
w

e
v
e
r,

 C
ry

p
to

k
i
d
o
e
s
 n

o
t

e
n
fo

rc
e

th
is

,
a
n
d
 i
t

is
 n

o
t

re
q
u
ir
e
d
 t

h
a
t

th
e
 c

e
rt

if
ic

a
te

 a
n
d
 p

ri
v
a
te

 k
e
y
 a

ls
o
 b

e
 s

to
re

d
 o

n
 t

h
e
 t

o
k
e
n
.

N
o

te
s

Table A.10: Public Key Objects in PKCS # 11 (2 of 2)

A.2. PKCS #11 Objects Reference 113

C
K

_
O

B
J
E

C
T

_
C

L
A

S
S

A
tt

ri
b

u
te

D
a
ta

 T
y
p

e
M

e
a
n

in
g

C
K

A
_
T

O
K

E
N

C
K

_
B

B
O

O
L

C
K

_
T

R
U

E
 i
f

o
b
je

c
t

is
 a

 t
o
k
e
n
 o

b
je

c
t;

C
K

_
F

A
L
S

E
 i
f

o
b
je

c
t

is
 a

 s
e
s
s
io

n
 o

b
je

c
t.

D
e
fa

u
lt
 i
s
 C

K
_
F

A
L
S

E
.

C
K

A
_
P

R
IV

A
T

E
C

K
_
B

B
O

O
L

C
K

_
T

R
U

E
 i
f

o
b
je

c
t

is
 a

 p
ri
v
a
te

 o
b
je

c
t;

C
K

_
F

A
L
S

E
 i
f

o
b
je

c
t

is
 a

 p
u
b
lic

 o
b
je

c
t.

D
e
fa

u
lt
 v

a
lu

e
 i
s
 t

o
k
e
n
-

s
p
e
c
if
ic

,
a
n
d
 m

a
y
 d

e
p
e
n
d
 o

n
 t

h
e
 v

a
lu

e
s
 o

f
o
th

e
r

a
tt

ri
b
u
te

s
 o

f
th

e
 o

b
je

c
t.

C
K

A
_
M

O
D

IF
IA

B
L
E

C
K

_
B

B
O

O
L

C
K

_
T

R
U

E
 i
f

o
b
je

c
t

c
a
n
 b

e
 m

o
d
if
ie

d

D
e
fa

u
lt
 i
s
 C

K
_
T

R
U

E
.

C
K

A
_
L
A

B
E

L
R

F
C

2
2
7
9
 s

tr
in

g
D

e
s
c
ri
p
ti
o
n
 o

f
th

e
 o

b
je

c
t

(d
e
fa

u
lt
 e

m
p
ty

).

C
K

A
_
K

E
Y

_
T

Y
P

E
C

K
_
K

E
Y

_
T

Y
P

E
T

y
p
e
 o

f
k
e
y

C
K

A
_
ID

B
y
te

 a
rr

a
y

K
e
y
 i
d
e
n
ti
fi
e
r

fo
r

k
e
y
 (

d
e
fa

u
lt
 e

m
p
ty

)

C
K

A
_
S

T
A

R
T

_
D

A
T

E
C

K
_
D

A
T

E
S

ta
rt

 d
a
te

 f
o
r

th
e
 k

e
y
 (

d
e
fa

u
lt
 e

m
p
ty

)

C
K

A
_
E

N
D

_
D

A
T

E
C

K
_
D

A
T

E
E

n
d
 d

a
te

 f
o
r

th
e
 k

e
y
 (

d
e
fa

u
lt
 e

m
p
ty

)

C
K

A
_
D

E
R

IV
E

C
K

_
B

B
O

O
L

C
K

_
T

R
U

E
 i
f

k
e
y
 s

u
p
p
o
rt

s
 k

e
y
 d

e
ri
v
a
ti
o
n
 (

i.
e
.,

 i
f

o
th

e
r

k
e
y
s
 c

a
n
 b

e
 d

e
ri
v
e
d
 f

ro
m

 t
h
is

 o
n
e
 (

d
e
fa

u
lt
 C

K
_
F

A
L
S

E
)

C
K

A
_
L
O

C
A

L
C

K
_
B

B
O

O
L

C
K

_
T

R
U

E
 o

n
ly

 i
f

k
e
y
 w

a
s
 e

it
h
e
r:

 -
 g

e
n
e
ra

te
d
 l
o
c
a
lly

 (
i.
e
.,

 o
n
 t

h
e
 t

o
k
e
n
)

w
it
h
 a

 C
_
G

e
n
e
ra

te
K

e
y
 o

r
C

_
G

e
n
e
ra

te
K

e
y
P

a
ir
 c

a
ll

 -
 c

re
a
te

d
 w

it
h
 a

 C
_
C

o
p
y
O

b
je

c
t

c
a
ll

a
s
 a

 c
o
p
y
 o

f
a
 k

e
y
 w

h
ic

h
 h

a
d
 i
ts

 C
K

A
_
L
O

C
A

L
 a

tt
ri
b
u
te

 s
e
t

to
 C

K
_
T

R
U

E

C
K

A
_
K

E
Y

_
G

E
N

_
 M

E
C

H
A

N
IS

M
C

K
_
M

E
C

H
A

N
IS

M
 _

T
Y

P
E

Id
e
n
ti
fi
e
r

o
f

th
e
 m

e
c
h
a
n
is

m
 u

s
e
d
 t

o
 g

e
n
e
ra

te
 t

h
e
 k

e
y
 m

a
te

ri
a
l.

C
K

A
_
A

L
L
O

W
E

D
_
M

E
C

H
A

N
IS

M
S

C
K

_
M

E
C

H
A

N
IS

M
 _

T
Y

P
E

 _
P

T
R

A
lis

t
o
f

m
e
c
h
a
n
is

m
s

a
llo

w
e
d

to
b
e

u
s
e
d

w
it
h

th
is

k
e
y
.

T
h
e

n
u
m

b
e
r

o
f

m
e
c
h
a
n
is

m
s

in
th

e
a
rr

a
y

is
th

e
u
lV

a
lu

e
L
e
n

c
o
m

p
o
n
e
n
t

o
f

th
e

a
tt

ri
b
u
te

d
iv

id
e
d

b
y

th
e

s
iz

e
o
f

C
K

_
M

E
C

H
A

N
IS

M
_
T

Y
P

E
.

C
K

A
_
S

E
N

S
IT

IV
E

C
K

_
B

B
O

O
L

C
K

_
T

R
U

E
 i
f

o
b
je

c
t

is
 s

e
n
s
it
iv

e
 (

d
e
fa

u
lt
 C

K
_
F

A
L
S

E
)

C
K

A
_
E

N
C

R
Y

P
T

C
K

_
B

B
O

O
L

C
K

_
T

R
U

E
 i
f

k
e
y
 s

u
p
p
o
rt

s
 e

n
c
ry

p
ti
o
n

C
K

A
_
D

E
C

R
Y

P
T

C
K

_
B

B
O

O
L

C
K

_
T

R
U

E
 i
f

k
e
y
 s

u
p
p
o
rt

s
 d

e
c
ry

p
ti
o
n

C
K

A
_
S

IG
N

C
K

_
B

B
O

O
L

C
K

_
T

R
U

E
 i
f

k
e
y
 s

u
p
p
o
rt

s
 s

ig
n
a
tu

re
s
 (

i.
e
.,

 a
u
th

e
n
ti
c
a
ti
o
n
 c

o
d
e
s
)

w
h
e
re

 t
h
e
 s

ig
n
a
tu

re
 i
s
 a

n
 a

p
p
e
n
d
ix

 t
o
 t

h
e
 d

a
ta

C
K

A
_
V

E
R

IF
Y

C
K

_
B

B
O

O
L

C
K

_
T

R
U

E
 i
f

k
e
y
 s

u
p
p
o
rt

s
 v

e
ri
fi
c
a
ti
o
n
 (

i.
e
.,

 o
f

a
u
th

e
n
ti
c
a
ti
o
n
 c

o
d
e
s
)

w
h
e
re

 t
h
e
 s

ig
n
a
tu

re
 i
s
 a

n
 a

p
p
e
n
d
ix

 t
o
 t

h
e
 d

a
ta

C
K

A
_
W

R
A

P
C

K
_
B

B
O

O
L

C
K

_
T

R
U

E
 i
f

k
e
y
 s

u
p
p
o
rt

s
 w

ra
p
p
in

g
 (

i.
e
.,

 c
a
n
 b

e
 u

s
e
d
 t

o
 w

ra
p
 o

th
e
r

k
e
y
s
)

C
K

A
_
U

N
W

R
A

P
C

K
_
B

B
O

O
L

C
K

_
T

R
U

E
 i
f

k
e
y
 s

u
p
p
o
rt

s
 u

n
w

ra
p
p
in

g
 (

i.
e
.,

 c
a
n
 b

e
 u

s
e
d
 t

o
 u

n
w

ra
p
 o

th
e
r

k
e
y
s
)

C
K

A
_
E

X
T

R
A

C
T

A
B

L
E

C
K

_
B

B
O

O
L

C
K

_
T

R
U

E
 i
f

k
e
y
 i
s
 e

xt
ra

c
ta

b
le

 a
n
d
 c

a
n
 b

e
 w

ra
p
p
e
d

C
K

A
_
A

L
W

A
Y

S
_
S
E

N
S
IT

IV
E

C
K

_
B

B
O

O
L

C
K

_
T

R
U

E
 i
f

k
e
y
 h

a
s
 a

lw
a
y
s
 h

a
d
 t

h
e
 C

K
A

_
S

E
N

S
IT

IV
E

 a
tt

ri
b
u
te

 s
e
t

to
 C

K
_
T

R
U

E

C
K

A
_
N

E
V

E
R

_
E

X
T

R
A

C
T

A
B

L
E

C
K

_
B

B
O

O
L

C
K

_
T

R
U

E
 i
f

k
e
y
 h

a
s
 n

e
v
e
r

h
a
d
 t

h
e
 C

K
A

_
E

X
T

R
A

C
T

A
B

L
E

 a
tt

ri
b
u
te

 s
e
t

to
 C

K
_
T

R
U

E

C
K

A
_
C

H
E

C
K

_
V

A
L
U

E
B

y
te

 a
rr

a
y

K
e
y
 c

h
e
c
k
s
u
m

C
K

A
_
W

R
A

P
_
W

IT
H

_
T

R
U

S
T

E
D

C
K

_
B

B
O

O
L

C
K

_
T

R
U

E
 i
f

th
e
 k

e
y
 c

a
n
 o

n
ly

 b
e
 w

ra
p
p
e
d
 w

it
h
 a

 w
ra

p
p
in

g
 k

e
y
 t

h
a
t

h
a
s
 C

K
A

_
T

R
U

S
T

E
D

 s
e
t

to
 C

K
_
T

R
U

E
.

D
e
fa

u
lt
 i
s
 C

K
_
F

A
L
S

E
.

C
K

A
_
T

R
U

S
T

E
D

C
K

_
B

B
O

O
L

T
h
e
 w

ra
p
p
in

g
 k

e
y
 c

a
n
 b

e
 u

s
e
d
 t

o
 w

ra
p
 k

e
y
s
 w

it
h
 C

K
A

_
W

R
A

P
_
W

IT
H

_
T

R
U

S
T

E
D

 s
e
t

to
 C

K
_
T

R
U

E
.

C
K

A
_
W

R
A

P
_
T

E
M

P
L
A

T
E

C
K

_
A

T
T

R
IB

U
T

E
_
 P

T
R

F
o
r

w
ra

p
p
in

g
k
e
y
s
.

T
h
e

a
tt

ri
b
u
te

te
m

p
la

te
to

m
a
tc

h
a
g
a
in

s
t

a
n
y

k
e
y
s

w
ra

p
p
e
d

u
s
in

g
th

is
w

ra
p
p
in

g
k
e
y
.

K
e
y
s

th
a
t

d
o

n
o
t

m
a
tc

h
c
a
n
n
o
t

b
e

w
ra

p
p
e
d
.

T
h
e

n
u
m

b
e
r

o
f

a
tt

ri
b
u
te

s
in

th
e
 a

rr
a
y
 i
s
 t

h
e
 u

lV
a
lu

e
L
e
n
 c

o
m

p
o
n
e
n
t

o
f

th
e
 a

tt
ri
b
u
te

 d
iv

id
e
d
 b

y
 t

h
e
 s

iz
e
 o

f
C

K
_
A

T
T

R
IB

U
T

E

C
K

A
_
U

N
W

R
A

P
_
T

E
M

P
L
A

T
E

C
K

_
A

T
T

R
IB

U
T

E
_
 P

T
R

F
o
r

w
ra

p
p
in

g
k
e
y
s
.

T
h
e

a
tt

ri
b
u
te

te
m

p
la

te
to

a
p
p
ly

to
a
n
y

k
e
y
s

u
n
w

ra
p
p
e
d

u
s
in

g
th

is
w

ra
p
p
in

g
k
e
y
.

A
n
y

u
s
e
r

s
u
p
p
lie

d
te

m
p
la

te
is

a
p
p
lie

d
a
ft

e
r

th
is

te
m

p
la

te
a
s

if
th

e
o
b
je

c
t

h
a
s

a
lr
e
a
d
y
 b

e
e
n
 c

re
a
te

d
.

T
h
e
 n

u
m

b
e
r

o
f

a
tt

ri
b
u
te

s
 i
n
 t

h
e
 a

rr
a
y
 i
s
 t

h
e
 u

lV
a
lu

e
L
e
n
 c

o
m

p
o
n
e
n
t

o
f

th
e
 a

tt
ri
b
u
te

 d
iv

id
e
d
 b

y
 t

h
e
 s

iz
e
 o

f
C

K
_
A

T
T

R
IB

U
T

E
.

S
e

c
re

t
K

e
y
 O

b
je

c
ts

C
la

s
s
 d

e
fi

n
it

io
n

C
K

O
_
S

E
C

R
E

T
_
K

E
Y

A
tt

ri
b

u
te

s
V

a
lu

e

Table A.11: Secret Key Objects in PKCS # 11 (1 of 2)

114 A. Documentation

N
o

te
s

If
th

e
C

K
A

_
S

E
N

S
IT

IV
E

a
tt

ri
b
u
te

is
C

K
_
T

R
U

E
,

o
r

if
th

e
C

K
A

_
E

X
T

R
A

C
T

A
B

L
E

a
tt

ri
b
u
te

is
C

K
_
F

A
L
S

E
,

th
e
n

c
e
rt

a
in

a
tt

ri
b
u
te

s
o
f

th
e

s
e
c
re

t
k
e
y

c
a
n
n
o
t

b
e

re
v
e
a
le

d
in

p
la

in
te

xt
o
u
ts

id
e

th
e

to
k
e
n
.

W
h
ic

h
a
tt

ri
b
u
te

s
th

e
s
e

a
re

is
 s

p
e
c
if
ie

d
 f

o
r

e
a
c
h
 t

y
p
e
 o

f
s
e
c
re

t
k
e
y
 i
n
 t

h
e
 a

tt
ri
b
u
te

 t
a
b
le

 i
n
 t

h
e
 s

e
c
ti
o
n
 d

e
s
c
ri
b
in

g
 t

h
a
t

ty
p
e
 o

f
k
e
y
.

T
h
e

k
e
y

c
h
e
c
k

v
a
lu

e
(K

C
V

)
a
tt

ri
b
u
te

fo
r

s
y
m

m
e
tr

ic
k
e
y

o
b
je

c
ts

to
b
e

c
a
lle

d
C

K
A

_
C

H
E

C
K

_
V

A
L
U

E
,

o
f

ty
p
e

b
y
te

a
rr

a
y
,

le
n
g
th

3
b
y
te

s
,

o
p
e
ra

te
s

lik
e

a
fi
n
g
e
rp

ri
n
t,

o
r

c
h
e
c
k
s
u
m

o
f

th
e

k
e
y
.

T
h
e
y

a
re

in
te

n
d
e
d

to
b
e

u
s
e
d

to

c
ro

s
s
-c

h
e
c
k

s
y
m

m
e
tr

ic
k
e
y
s

a
g
a
in

s
t

o
th

e
r

s
y
s
te

m
s

w
h
e
re

th
e

s
a
m

e
k
e
y

is
s
h
a
re

d
,

a
n
d

a
s

a
v
a
lid

it
y

c
h
e
c
k

a
ft

e
r

m
a
n
u
a
l

k
e
y

e
n
tr

y
o
r

re
s
to

re
fr

o
m

b
a
c
k
u
p
.

R
e
fe

r
to

o
b
je

c
t

d
e
fi
n
it
io

n
s

o
f

s
p
e
c
if
ic

k
e
y

ty
p
e
s

fo
r

K
C

V

a
lg

o
ri
th

m
s
.

P
ro

p
e
rt

ie
s
:

 -
 F

o
r

tw
o
 k

e
y
s
 t

h
a
t

a
re

 c
ry

p
to

g
ra

p
h
ic

a
lly

 i
d
e
n
ti
c
a
l
th

e
 v

a
lu

e
 o

f
th

is
 a

tt
ri
b
u
te

 s
h
o
u
ld

 b
e
 i
d
e
n
ti
c
a
l.

 -
 C

K
A

_
C

H
E

C
K

_
V

A
L
U

E
 s

h
o
u
ld

 n
o
t

b
e
 u

s
a
b
le

 t
o
 o

b
ta

in
 a

n
y
 p

a
rt

 o
f

th
e
 k

e
y
 v

a
lu

e
.

 -
 N

o
n
-u

n
iq

u
e
n
e
s
s
.

T
w

o
 d

if
fe

re
n
t

k
e
y
s
 c

a
n
 h

a
v
e
 t

h
e
 s

a
m

e
 C

K
A

_
C

H
E

C
K

_
V

A
L
U

E
.

T
h
is

 i
s
 u

n
lik

e
ly

 (
th

e
 p

ro
b
a
b
ili

ty
 c

a
n
 e

a
s
ily

 b
e
 c

a
lc

u
la

te
d
)

b
u
t

p
o
s
s
ib

le
.

T
h
e

a
tt

ri
b
u
te

is
o
p
ti
o
n
a
l
b
u
t

if
s
u
p
p
o
rt

e
d

th
e

v
a
lu

e
o
f

th
e

a
tt

ri
b
u
te

is
a
lw

a
y
s

s
u
p
p
lie

d
b
y

th
e

lib
ra

ry
re

g
a
rd

le
s
s

o
f

h
o
w

th
e

k
e
y

o
b
je

c
t

is
c
re

a
te

d
o
r

d
e
ri
v
e
d
.

It
s
h
a
ll

b
e

s
u
p
p
lie

d
e
v
e
n

if
th

e
e
n
c
ry

p
ti
o
n

o
p
e
ra

ti
o
n

fo
r

th
e

k
e
y

is

fo
rb

id
d
e
n
 (

i.
e
.

w
h
e
n
 C

K
A

_
E

N
C

R
Y

P
T

 i
s
 s

e
t

to
 C

K
_
F

A
L
S

E
).

If
a

v
a
lu

e
is

s
u
p
p
lie

d
in

th
e

a
p
p
lic

a
ti
o
n

te
m

p
la

te
(a

llo
w

e
d

b
u
t

n
e
v
e
r

n
e
c
e
s
s
a
ry

)
th

e
n
,

if
s
u
p
p
o
rt

e
d
,

it
m

u
s
t

m
a
tc

h
w

h
a
t

th
e

lib
ra

ry
c
a
lc

u
la

te
s

it
to

b
e

o
r

th
e

lib
ra

ry
re

tu
rn

s
a

C
K

R
_
A

T
T

R
IB

U
T

E
_
V

A
L
U

E
_
IN

V
A

L
ID

.
If

th
e

lib
ra

ry

d
o
e
s

n
o
t

s
u
p
p
o
rt

th
e

a
tt

ri
b
u
te

th
e
n

it
s
h
o
u
ld

ig
n
o
re

it
.

A
llo

w
in

g
th

e
a
tt

ri
b
u
te

in
th

e
te

m
p
la

te
th

is
w

a
y

d
o
e
s

n
o

h
a
rm

a
n
d

a
llo

w
s

th
e

a
tt

ri
b
u
te

to
b
e

tr
e
a
te

d
lik

e
a
n
y

o
th

e
r

a
tt

ri
b
u
te

fo
r

th
e

p
u
rp

o
s
e
s

o
f

k
e
y

w
ra

p
a
n
d

u
n
w

ra
p

w
h
e
re

 t
h
e
 a

tt
ri
b
u
te

s
 a

re
 p

re
s
e
rv

e
d
 a

ls
o
.

T
h
e

g
e
n
e
ra

ti
o
n

o
f

th
e

K
C

V
m

a
y

b
e

p
re

v
e
n
te

d
b
y

th
e

a
p
p
lic

a
ti
o
n

s
u
p
p
ly

in
g

th
e

a
tt

ri
b
u
te

in
th

e
te

m
p
la

te
a
s

a
n
o
-v

a
lu

e
(0

le
n
g
th

)
e
n
tr

y
.

T
h
e

a
p
p
lic

a
ti
o
n

c
a
n

q
u
e
ry

th
e

v
a
lu

e
a
t

a
n
y

ti
m

e
lik

e
a
n
y

o
th

e
r

a
tt

ri
b
u
te

u
s
in

g

C
_
G

e
tA

tt
ri
b
u
te

V
a
lu

e
.

C
_
S

e
tA

tt
ri
b
u
te

V
a
lu

e
 m

a
y
 b

e
 u

s
e
d
 t

o
 d

e
s
tr

o
y
 t

h
e
 a

tt
ri
b
u
te

,
b
y
 s

u
p
p
ly

in
g
 n

o
-v

a
lu

e
.

U
n
le

s
s

o
th

e
rw

is
e

s
p
e
c
if
ie

d
fo

r
th

e
o
b
je

c
t

d
e
fi
n
it
io

n
,

th
e

v
a
lu

e
o
f

th
is

a
tt

ri
b
u
te

is
d
e
ri
v
e
d

fr
o
m

th
e

k
e
y

o
b
je

c
t

b
y

ta
k
in

g
th

e
fi
rs

t
th

re
e

b
y
te

s
o
f

a
n

e
n
c
ry

p
ti
o
n

o
f

a
s
in

g
le

b
lo

c
k

o
f

n
u
ll

(0
x0

0
)

b
y
te

s
,

u
s
in

g
th

e
d
e
fa

u
lt

c
ip

h
e
r

a
n
d

m
o
d
e
 (

e
.g

.
E

C
B

)
a
s
s
o
c
ia

te
d
 w

it
h
 t

h
e
 k

e
y
 t

y
p
e
 o

f
th

e
 s

e
c
re

t
k
e
y
 o

b
je

c
t.

Table A.12: Secret Key Objects in PKCS # 11 (2 of 2)

A.2. PKCS #11 Objects Reference 115

C
K

A
_
O

B
J
E

C
T

_
C

L
A

S
S

C
K

A
_
T

O
K

E
N

C
K

_
B

B
O

O
L

C
K

_
T

R
U

E
 i
f

o
b
je

c
t

is
 a

 t
o
k
e
n
 o

b
je

c
t;

C
K

_
F

A
L
S

E
 i
f

o
b
je

c
t

is
 a

 s
e
s
s
io

n
 o

b
je

c
t.

D
e
fa

u
lt
 i
s
 C

K
_
F

A
L
S

E
.

C
K

A
_
P

R
IV

A
T

E
C

K
_
B

B
O

O
L

C
K

_
T

R
U

E
 i
f

o
b
je

c
t

is
 a

 p
ri
v
a
te

 o
b
je

c
t;

C
K

_
F

A
L
S

E
 i
f

o
b
je

c
t

is
 a

 p
u
b
lic

 o
b
je

c
t.

D
e
fa

u
lt
 v

a
lu

e
 i
s
 t

o
k
e
n
-

s
p
e
c
if
ic

,
a
n
d
 m

a
y
 d

e
p
e
n
d
 o

n
 t

h
e
 v

a
lu

e
s
 o

f
o
th

e
r

a
tt

ri
b
u
te

s
 o

f
th

e
 o

b
je

c
t.

C
K

A
_
M

O
D

IF
IA

B
L
E

C
K

_
B

B
O

O
L

C
K

_
T

R
U

E
 i
f

o
b
je

c
t

c
a
n
 b

e
 m

o
d
if
ie

d

D
e
fa

u
lt
 i
s
 C

K
_
T

R
U

E
.

C
K

A
_
L
A

B
E

L
R

F
C

2
2
7
9
 s

tr
in

g
D

e
s
c
ri
p
ti
o
n
 o

f
th

e
 o

b
je

c
t

(d
e
fa

u
lt
 e

m
p
ty

).

C
K

A
_
C

E
R

T
IF

IC
A

T
E

_
T

Y
P

E
C

K
_
C

E
R

T
IF

IC
A

T
E

_
T

Y
P

E
T

y
p
e
 o

f
c
e
rt

if
ic

a
te

C
K

A
_
T

R
U

S
T

E
D

C
K

_
B

B
O

O
L

T
h
e
 c

e
rt

if
ic

a
te

 c
a
n
 b

e
 t

ru
s
te

d
 f

o
r

th
e
 a

p
p
lic

a
ti
o
n
 t

h
a
t

it
 w

a
s
 c

re
a
te

d
.

C
K

A
_
C

E
R

T
IF

IC
A

T
E

_
C

A
T

E
G

O
R

Y
C

K
_
U

L
O

N
G

C
a
te

g
o
ri
z
a
ti
o
n
 o

f
th

e
 c

e
rt

if
ic

a
te

:
0
 =

 u
n
s
p
e
c
if
ie

d
 (

d
e
fa

u
lt
 v

a
lu

e
),

 1
 =

 t
o
k
e
n
 u

s
e
r,

 2
 =

 a
u
th

o
ri
ty

,
3
 =

 o
th

e
r

e
n
ti
ty

C
K

A
_
C

H
E

C
K

_
V

A
L
U

E
B

y
te

 a
rr

a
y

C
h
e
c
k
s
u
m

C
K

A
_
S

T
A

R
T

_
D

A
T

E
C

K
_
D

A
T

E
S

ta
rt

 d
a
te

 f
o
r

th
e
 c

e
rt

if
ic

a
te

 (
d
e
fa

u
lt
 e

m
p
ty

)

C
K

A
_
E

N
D

_
D

A
T

E
C

K
_
D

A
T

E
E

n
d
 d

a
te

 f
o
r

th
e
 c

e
rt

if
ic

a
te

 (
d
e
fa

u
lt
 e

m
p
ty

)

A
tt

ri
b

u
te

D
a
ta

 T
y
p

e
M

e
a
n

in
g

C
K

A
_
S

U
B

J
E

C
T

B
y
te

 a
rr

a
y

D
E

R
-e

n
c
o
d
in

g
 o

f
th

e
 c

e
rt

if
ic

a
te

 s
u
b
je

c
t

n
a
m

e

C
K

A
_
ID

B
y
te

 a
rr

a
y

K
e
y
 i
d
e
n
ti
fi
e
r

fo
r

p
u
b
lic

/p
ri
v
a
te

 k
e
y
 p

a
ir
 (

d
e
fa

u
lt
 e

m
p
ty

)

C
K

A
_
IS

S
U

E
R

B
y
te

 a
rr

a
y

D
E

R
-e

n
c
o
d
in

g
 o

f
th

e
 c

e
rt

if
ic

a
te

 i
s
s
u
e
r

n
a
m

e
 (

d
e
fa

u
lt
 e

m
p
ty

)

C
K

A
_
S

E
R

IA
L
_
N

U
M

B
E

R
B

y
te

 a
rr

a
y

D
E

R
-e

n
c
o
d
in

g
 o

f
th

e
 c

e
rt

if
ic

a
te

 s
e
ri
a
l
n
u
m

b
e
r

(d
e
fa

u
lt
 e

m
p
ty

)

C
K

A
_
V

A
L
U

E
B

y
te

 a
rr

a
y

B
E

R
-e

n
c
o
d
in

g
 o

f
th

e
 c

e
rt

if
ic

a
te

C
K

A
_
U

R
L

R
F

C
2
2
7
9
 s

tr
in

g
If
 n

o
t

e
m

p
ty

 t
h
is

 a
tt

ri
b
u
te

 g
iv

e
s
 t

h
e
 U

R
L
 w

h
e
re

 t
h
e
 c

o
m

p
le

te
 c

e
rt

if
ic

a
te

 c
a
n
 b

e
 o

b
ta

in
e
d
 (

d
e
fa

u
lt
 e

m
p
ty

)

C
K

A
_
H

A
S

H
_
O

F
_
S

U
B

J
E

C
T

_

P
U

B
L
IC

_
K

E
Y

B
y
te

 a
rr

a
y

S
H

A
-1

 h
a
s
h
 o

f
th

e
 s

u
b
je

c
t

p
u
b
lic

 k
e
y
 (

d
e
fa

u
lt
 e

m
p
ty

)

C
K

A
_
H

A
S

H
_
O

F
_
IS

S
U

E
R

_
P

U
B

L
I

C
_
K

E
Y

B
y
te

 a
rr

a
y

S
H

A
-1

 h
a
s
h
 o

f
th

e
 i
s
s
u
e
r

p
u
b
lic

 k
e
y
 (

d
e
fa

u
lt
 e

m
p
ty

)

C
K

A
_
J
A

V
A

_
M

ID
P

_
S

E
C

U
R

IT
Y

_
D

O
M

A
IN

C
K

_
U

L
O

N
G

J
a
v
a
 M

ID
P

 s
e
c
u
ri
ty

 d
o
m

a
in

:
0
 =

 u
n
s
p
e
c
if
ie

d
 (

d
e
fa

u
lt
 v

a
lu

e
),

 1
 =

 m
a
n
u
fa

c
tu

re
r,

 2
 =

 o
p
e
ra

to
r,

 3
 =

 t
h
ir
d
 p

a
rt

y

C
K

A
_
S

U
B

J
E

C
T

B
y
te

 a
rr

a
y

W
T

L
S

-e
n
c
o
d
in

g
 (

Id
e
n
ti
fi
e
r

ty
p
e
)

o
f

th
e
 c

e
rt

if
ic

a
te

 s
u
b
je

c
t

C
K

A
_
IS

S
U

E
R

B
y
te

 a
rr

a
y

W
T

L
S

-e
n
c
o
d
in

g
 (

Id
e
n
ti
fi
e
r

ty
p
e
)

o
f

th
e
 c

e
rt

if
ic

a
te

 i
s
s
u
e
r

(d
e
fa

u
lt
 e

m
p
ty

)

C
K

A
_
V

A
L
U

E
B

y
te

 a
rr

a
y

W
T

L
S

-e
n
c
o
d
in

g
 o

f
th

e
 c

e
rt

if
ic

a
te

C
K

A
_
U

R
L

R
F

C
2
2
7
9
 s

tr
in

g
If
 n

o
t

e
m

p
ty

 t
h
is

 a
tt

ri
b
u
te

 g
iv

e
s
 t

h
e
 U

R
L
 w

h
e
re

 t
h
e
 c

o
m

p
le

te
 c

e
rt

if
ic

a
te

 c
a
n
 b

e
 o

b
ta

in
e
d

C
K

A
_
H

A
S

H
_
O

F
_
S

U
B

J
E

C
T

_
P

U
B

L
IC

_
K

E
Y

B
y
te

 a
rr

a
y

S
H

A
-1

 h
a
s
h
 o

f
th

e
 s

u
b
je

c
t

p
u
b
lic

 k
e
y
 (

d
e
fa

u
lt
 e

m
p
ty

)

C
K

A
_
H

A
S

H
_
O

F
_
IS

S
U

E
R

_
P

U
B

L
IC

_
K

E
Y

B
y
te

 a
rr

a
y

S
H

A
-1

 h
a
s
h
 o

f
th

e
 i
s
s
u
e
r

p
u
b
lic

 k
e
y
 (

d
e
fa

u
lt
 e

m
p
ty

)

C
K

A
_
O

W
N

E
R

B
y
te

 A
rr

a
y

D
E

R
-e

n
c
o
d
in

g
o
f

th
e

a
tt

ri
b
u
te

c
e
rt

if
ic

a
te

's
s
u
b
je

c
t

fi
e
ld

.
T

h
is

is
d
is

ti
n
c
t

fr
o
m

th
e

C
K

A
_
S

U
B

J
E

C
T

a
tt

ri
b
u
te

c
o
n
ta

in
e
d

in
C

K
C

_
X

_
5
0
9

c
e
rt

if
ic

a
te

s
 b

e
c
a
u
s
e
 t

h
e
 A

S
N

.1
 s

y
n
ta

x
a
n
d
 e

n
c
o
d
in

g
 a

re
 d

if
fe

re
n
t.

C
K

A
_
A

C
_
IS

S
U

E
R

B
y
te

 A
rr

a
y

D
E

R
-e

n
c
o
d
in

g
o
f

th
e

a
tt

ri
b
u
te

c
e
rt

if
ic

a
te

's
is

s
u
e
r

fi
e
ld

.
T

h
is

is
d
is

ti
n
c
t

fr
o
m

th
e

C
K

A
_
IS

S
U

E
R

a
tt

ri
b
u
te

c
o
n
ta

in
e
d

in
C

K
C

_
X

_
5
0
9

c
e
rt

if
ic

a
te

s

b
e
c
a
u
s
e
 t

h
e
 A

S
N

.1
 s

y
n
ta

x
a
n
d
 e

n
c
o
d
in

g
 a

re
 d

if
fe

re
n
t.

 (
d
e
fa

u
lt
 e

m
p
ty

)

C
K

A
_
S

E
R

IA
L
_
N

U
M

B
E

R
B

y
te

 A
rr

a
y

D
E

R
-e

n
c
o
d
in

g
 o

f
th

e
 c

e
rt

if
ic

a
te

 s
e
ri
a
l
n
u
m

b
e
r.

 (
d
e
fa

u
lt
 e

m
p
ty

)

A
tt

ri
b

u
te

s

C
K

_
C

E
R

T
IF

IC
A

T
E

_
T

Y
P

E
V

a
lu

e

C
K

C
_
X

_
5
0
9

C
K

C
_
W

T
L
S

C
K

C
_
X

_
5
0
9
_
A

T
T

R
_
C

E
R

T

C
e

rt
if

ic
a

te
 O

b
je

c
ts

C
la

s
s
 d

e
fi

n
it

io
n

C
K

O
_
C

E
R

T
IF

IC
A

T
E

C
o

m
m

o
n

 A
tt

ri
b

u
te

s

A
tt

ri
b

u
te

s
D

a
ta

 T
y
p

e
M

e
a
n

in
g

Table A.13: Certificate Objects in PKCS # 11 (1 of 3)

116 A. Documentation

C
K

A
_
A

T
T

R
_
T

Y
P

E
S

B
y
te

 A
rr

a
y

B
E

R
-e

n
c
o
d
in

g
o
f

a
s
e
q
u
e
n
c
e

o
f

o
b
je

c
t

id
e
n
ti
fi
e
r

v
a
lu

e
s

c
o
rr

e
s
p
o
n
d
in

g
to

th
e

a
tt

ri
b
u
te

ty
p
e
s

c
o
n
ta

in
e
d

in
th

e
c
e
rt

if
ic

a
te

.
W

h
e
n

p
re

s
e
n
t,

th
is

fi
e
ld

o
ff

e
rs

a
n

o
p
p
o
rt

u
n
it
y

fo
r

a
p
p
lic

a
ti
o
n
s

to
s
e
a
rc

h
fo

r
a

p
a
rt

ic
u
la

r
a
tt

ri
b
u
te

c
e
rt

if
ic

a
te

w
it
h
o
u
t

fe
tc

h
in

g
a
n
d

p
a
rs

in
g

th
e

c
e
rt

if
ic

a
te

it
s
e
lf
.

(d
e
fa

u
lt
 e

m
p
ty

)

C
K

A
_
V

A
L
U

E
B

y
te

 A
rr

a
y

B
E

R
-e

n
c
o
d
in

g
 o

f
th

e
 c

e
rt

if
ic

a
te

.

X
.5

0
9
 a

tt
ri
b
u
te

 c
e
rt

if
ic

a
te

 o
b
je

c
ts

W
T

L
S

 p
u
b
lic

 k
e
y

c
e
rt

if
ic

a
te

o
b
je

c
ts

O
n
ly

 t
h
e
 C

K
A

_
IS

S
U

E
R

 a
tt

ri
b
u
te

 m
a
y
 b

e
 m

o
d
if
ie

d
 a

ft
e
r

th
e
 o

b
je

c
t

h
a
s
 b

e
e
n
 c

re
a
te

d
.

T
h
e
 e

n
c
o
d
in

g
 f

o
r

th
e
 C

K
A

_
S

U
B

J
E

C
T

,
C

K
A

_
IS

S
U

E
R

,
a
n
d
 C

K
A

_
V

A
L
U

E
 a

tt
ri
b
u
te

s
 c

a
n
 b

e
 f

o
u
n
d
 i
n
 [

W
T

L
S

]

T
h
e

C
K

A
_
U

R
L

a
tt

ri
b
u
te

e
n
a
b
le

s
th

e
s
u
p
p
o
rt

fo
r

s
to

ra
g
e

o
f

th
e

U
R

L
w

h
e
re

th
e

c
e
rt

if
ic

a
te

c
a
n

b
e

fo
u
n
d

in
s
te

a
d

o
f

th
e

c
e
rt

if
ic

a
te

it
s
e
lf
.

S
to

ra
g
e

o
f

a
U

R
L

in
s
te

a
d

o
f

th
e

c
o
m

p
le

te
c
e
rt

if
ic

a
te

is
o
ft

e
n

u
s
e
d

in
m

o
b
ile

e
n
v
ir
o
n
m

e
n
ts

.

T
h
e

C
K

A
_
H

A
S

H
_
O

F
_
S

U
B

J
E

C
T

_
P

U
B

L
IC

_
K

E
Y

a
n
d

C
K

A
_
H

A
S

H
_
O

F
_
IS

S
U

E
R

_
P

U
B

L
IC

_
K

E
Y

a
tt

ri
b
u
te

s
a
re

u
s
e
d

to
s
to

re
th

e
h
a
s
h
e
s

o
f

th
e

p
u
b
lic

k
e
y
s

o
f

th
e

s
u
b
je

c
t

a
n
d

th
e

is
s
u
e
r.

T
h
e
y

a
re

p
a
rt

ic
u
la

rl
y

im
p
o
rt

a
n
t

w
h
e
n
 o

n
ly

 t
h
e
 U

R
L
 i
s
 a

v
a
ila

b
le

 t
o
 b

e
 a

b
le

 t
o
 c

o
rr

e
la

te
 a

 c
e
rt

if
ic

a
te

 w
it
h
 a

 p
ri
v
a
te

 k
e
y
 a

n
d
 w

h
e
n
 s

e
a
rc

h
in

g
 f

o
r

th
e
 c

e
rt

if
ic

a
te

 o
f

th
e
 i
s
s
u
e
r.

O
n
ly

 t
h
e
 C

K
A

_
A

C
_
IS

S
U

E
R

,
C

K
A

_
S

E
R

IA
L
_
N

U
M

B
E

R
 a

n
d
 C

K
A

_
A

T
T

R
_
T

Y
P

E
S

 a
tt

ri
b
u
te

s
 m

a
y
 b

e
 m

o
d
if
ie

d
 a

ft
e
r

th
e
 o

b
je

c
t

is
 c

re
a
te

d
.

X
.5

0
9
 C

e
rt

if
ic

a
te

 O
b
je

c
t

A
tt

ri
b
u
te

s

O
n
ly

 t
h
e
 C

K
A

_
ID

,
C

K
A

_
IS

S
U

E
R

,
a
n
d
 C

K
A

_
S

E
R

IA
L
_
N

U
M

B
E

R
 a

tt
ri
b
u
te

s
 m

a
y
 b

e
 m

o
d
if
ie

d
 a

ft
e
r

th
e
 o

b
je

c
t

is
 c

re
a
te

d
.

T
h
e

C
K

A
_
ID

a
tt

ri
b
u
te

is
in

te
n
d
e
d

a
s

a
m

e
a
n
s

o
f

d
is

ti
n
g
u
is

h
in

g
m

u
lt
ip

le
p
u
b
lic

-
k
e
y
/p

ri
v
a
te

-k
e
y

p
a
ir
s

h
e
ld

b
y

th
e

s
a
m

e
s
u
b
je

c
t

(w
h
e
th

e
r

s
to

re
d

in
th

e
s
a
m

e
to

k
e
n

o
r

n
o
t)

.
(S

in
c
e

th
e

k
e
y
s

a
re

d
is

ti
n
g
u
is

h
e
d

b
y

s
u
b
je

c
t

n
a
m

e
 a

s
 w

e
ll

a
s
 i
d
e
n
ti
fi
e
r,

 i
t

is
 p

o
s
s
ib

le
 t

h
a
t

k
e
y
s
 f

o
r

d
if
fe

re
n
t

s
u
b
je

c
ts

 m
a
y
 h

a
v
e
 t

h
e
 s

a
m

e
 C

K
A

_
ID

 v
a
lu

e
 w

it
h
o
u
t

in
tr

o
d
u
c
in

g
 a

n
y
 a

m
b
ig

u
it
y
.)

It
is

in
te

n
d
e
d

in
th

e
in

te
re

s
ts

o
f

in
te

ro
p
e
ra

b
ili

ty
th

a
t

th
e

s
u
b
je

c
t

n
a
m

e
a
n
d

k
e
y

id
e
n
ti
fi
e
r

fo
r

a
c
e
rt

if
ic

a
te

w
ill

b
e

th
e

s
a
m

e
a
s

th
o
s
e

fo
r

th
e

c
o
rr

e
s
p
o
n
d
in

g
p
u
b
lic

a
n
d

p
ri
v
a
te

k
e
y
s

(t
h
o
u
g
h

it
is

n
o
t

re
q
u
ir
e
d

th
a
t

a
ll

b
e

s
to

re
d

in
 t

h
e
 s

a
m

e
 t

o
k
e
n
).

 H
o
w

e
v
e
r,

 C
ry

p
to

k
i
d
o
e
s
 n

o
t

e
n
fo

rc
e
 t

h
is

 a
s
s
o
c
ia

ti
o
n
,

o
r

e
v
e
n
 t

h
e
 u

n
iq

u
e
n
e
s
s
 o

f
th

e
 k

e
y
 i
d
e
n
ti
fi
e
r

fo
r

a
 g

iv
e
n
 s

u
b
je

c
t;

 i
n
 p

a
rt

ic
u
la

r,
 a

n
 a

p
p
lic

a
ti
o
n
 m

a
y
 l
e
a
v
e
 t

h
e
 k

e
y
 i
d
e
n
ti
fi
e
r

e
m

p
ty

.

T
h
e

C
K

A
_
IS

S
U

E
R

a
n
d

C
K

A
_
S

E
R

IA
L
_
N

U
M

B
E

R
a
tt

ri
b
u
te

s
a
re

fo
r

c
o
m

p
a
ti
b
ili

ty
w

it
h

P
K

C
S

#
7

a
n
d

P
ri
v
a
c
y

E
n
h
a
n
c
e
d

M
a
il

(R
F

C
1
4
2
1
).

N
o
te

th
a
t

w
it
h

th
e

v
e
rs

io
n

3
e
xt

e
n
s
io

n
s

to
X

.5
0
9

c
e
rt

if
ic

a
te

s
,

th
e

k
e
y

id
e
n
ti
fi
e
r

m
a
y
 b

e
 c

a
rr

ie
d
 i
n
 t

h
e
 c

e
rt

if
ic

a
te

.
It
 i
s
 i
n
te

n
d
e
d
 t

h
a
t

th
e
 C

K
A

_
ID

 v
a
lu

e
 b

e
 i
d
e
n
ti
c
a
l
to

 t
h
e
 k

e
y
 i
d
e
n
ti
fi
e
r

in
 s

u
c
h
 a

 c
e
rt

if
ic

a
te

 e
xt

e
n
s
io

n
,

a
lt
h
o
u
g
h
 t

h
is

 w
ill

 n
o
t

b
e
 e

n
fo

rc
e
d
 b

y
 C

ry
p
to

k
i.

T
h
e

C
K

A
_
U

R
L

a
tt

ri
b
u
te

e
n
a
b
le

s
th

e
s
u
p
p
o
rt

fo
r

s
to

ra
g
e

o
f

th
e

U
R

L
w

h
e
re

th
e

c
e
rt

if
ic

a
te

c
a
n

b
e

fo
u
n
d

in
s
te

a
d

o
f

th
e

c
e
rt

if
ic

a
te

it
s
e
lf
.

S
to

ra
g
e

o
f

a
U

R
L

in
s
te

a
d

o
f

th
e

c
o
m

p
le

te
c
e
rt

if
ic

a
te

is
o
ft

e
n

u
s
e
d

in
m

o
b
ile

e
n
v
ir
o
n
m

e
n
ts

.

T
h
e

C
K

A
_
H

A
S

H
_
O

F
_
S

U
B

J
E

C
T

_
P

U
B

L
IC

_
K

E
Y

a
n
d

C
K

A
_
H

A
S

H
_
O

F
_
IS

S
U

E
R

_
P

U
B

L
IC

_
K

E
Y

a
tt

ri
b
u
te

s
a
re

u
s
e
d

to
s
to

re
th

e
h
a
s
h
e
s

o
f

th
e

p
u
b
lic

k
e
y
s

o
f

th
e

s
u
b
je

c
t

a
n
d

th
e

is
s
u
e
r.

T
h
e
y

a
re

p
a
rt

ic
u
la

rl
y

im
p
o
rt

a
n
t

w
h
e
n
 o

n
ly

 t
h
e
 U

R
L
 i
s
 a

v
a
ila

b
le

 t
o
 b

e
 a

b
le

 t
o
 c

o
rr

e
la

te
 a

 c
e
rt

if
ic

a
te

 w
it
h
 a

 p
ri
v
a
te

 k
e
y
 a

n
d
 w

h
e
n
 s

e
a
rc

h
in

g
 f

o
r

th
e
 c

e
rt

if
ic

a
te

 o
f

th
e
 i
s
s
u
e
r.

T
h
e
 C

K
A

_
J
A

V
A

_
M

ID
P

_
S

E
C

U
R

IT
Y

_
D

O
M

A
IN

 a
tt

ri
b
u
te

 a
s
s
o
c
ia

te
s
 a

 c
e
rt

if
ic

a
te

 w
it
h
 a

 J
a
v
a
 M

ID
P

 s
e
c
u
ri
ty

 d
o
m

a
in

.

C
K

C
_
X

_
5
0
9
_
A

T
T

R
_
C

E
R

T

N
o

te
s

C
e
rt

if
ic

a
te

 o
b
je

c
ts

T
h
e
 C

K
A

_
C

E
R

T
IF

IC
A

T
E

_
T

Y
P

E
 a

tt
ri
b
u
te

 m
a
y
 n

o
t

b
e
 m

o
d
if
ie

d
 a

ft
e
r

a
n
 o

b
je

c
t

is
 c

re
a
te

d
.

T
h
is

 v
e
rs

io
n
 o

f
C

ry
p
to

k
i
s
u
p
p
o
rt

s
 t

h
e
 f

o
llo

w
in

g
 c

e
rt

if
ic

a
te

 t
y
p
e
s
:

 -
 X

.5
0
9
 p

u
b
lic

 k
e
y
 c

e
rt

if
ic

a
te

 -
 W

T
L
S

 p
u
b
lic

 k
e
y
 c

e
rt

if
ic

a
te

T
h
e
 C

K
A

_
T

R
U

S
T

E
D

 a
tt

ri
b
u
te

 c
a
n
n
o
t

b
e
 s

e
t

to
 C

K
_
T

R
U

E
 b

y
 a

n
 a

p
p
lic

a
ti
o
n
.

It
 m

u
s
t

b
e
 s

e
t

b
y
 a

 t
o
k
e
n
 i
n
it
ia

liz
a
ti
o
n
 a

p
p
lic

a
ti
o
n
 o

r
b
y
 t

h
e
 t

o
k
e
n
’s

 S
O

.
T

ru
s
te

d
 c

e
rt

if
ic

a
te

s
 c

a
n
n
o
t

b
e
 m

o
d
if
ie

d
.

T
h
e

C
K

A
_
C

E
R

T
IF

IC
A

T
E

_
C

A
T

E
G

O
R

Y
a
tt

ri
b
u
te

is
u
s
e
d

to
in

d
ic

a
te

if
a

s
to

re
d

c
e
rt

if
ic

a
te

is
a

u
s
e
r

c
e
rt

if
ic

a
te

fo
r

w
h
ic

h
th

e
c
o
rr

e
s
p
o
n
d
in

g
p
ri
v
a
te

k
e
y

is
a
v
a
ila

b
le

o
n

th
e

to
k
e
n

(“
to

k
e
n

u
s
e
r”

),
a

C
A

c
e
rt

if
ic

a
te

(“
a
u
th

o
ri
ty

”)
,

o
r

a
n
 o

th
e
r

e
n
d
-e

n
ti
ty

 c
e
rt

if
ic

a
te

 (
“o

th
e
r

e
n
ti
ty

”)
.

T
h
is

 a
tt

ri
b
u
te

 m
a
y
 n

o
t

b
e
 m

o
d
if
ie

d
 a

ft
e
r

a
n
 o

b
je

c
t

is
 c

re
a
te

d
.

T
h
e

C
K

A
_
C

E
R

T
IF

IC
A

T
E

_
C

A
T

E
G

O
R

Y
a
n
d

C
K

A
_
T

R
U

S
T

E
D

a
tt

ri
b
u
te

s
w

ill
to

g
e
th

e
r

b
e

u
s
e
d

to
m

a
p

to
th

e
c
a
te

g
o
ri
z
a
ti
o
n

o
f

th
e

c
e
rt

if
ic

a
te

s
.

A
c
e
rt

if
ic

a
te

in
th

e
c
e
rt

if
ic

a
te

s
C

D
F

w
ill

b
e

m
a
rk

e
d

w
it
h

c
a
te

g
o
ry

“t
o
k
e
n

u
s
e
r”

.
A

 c
e
rt

if
ic

a
te

 i
n
 t

h
e
 t

ru
s
te

d
C

e
rt

if
ic

a
te

s
 C

D
F

 o
r

in
 t

h
e
 u

s
e
fu

lC
e
rt

if
ic

a
te

s
 C

D
F

 w
ill

 b
e
 m

a
rk

e
d
 w

it
h
 c

a
te

g
o
ry

 “
a
u
th

o
ri
ty

”
o
r

“o
th

e
r

e
n
ti
ty

”
d
e
p
e
n
d
in

g
 o

n
 t

h
e
 C

o
m

m
o
n
C

e
rt

if
ic

a
te

A
tt

ri
b
u
te

.a
u
th

o
ri
ty

 a
tt

ri
b
u
te

 a
n
d
 t

h
e

C
K

A
_
C

H
E

C
K

_
V

A
L
U

E
:

T
h
e
 v

a
lu

e
 o

f
th

is
 a

tt
ri
b
u
te

 i
s
 d

e
ri
v
e
d
 f

ro
m

 t
h
e
 c

e
rt

if
ic

a
te

 b
y
 t

a
k
in

g
 t

h
e
 f

ir
s
t

th
re

e
 b

y
te

s
 o

f
th

e
 S

H
A

-1
 h

a
s
h
 o

f
th

e
 c

e
rt

if
ic

a
te

 o
b
je

c
t’
s
 C

K
A

_
V

A
L
U

E
 a

tt
ri
b
u
te

.

T
h
e

C
K

A
_
S

T
A

R
T

_
D

A
T

E
a
n
d

C
K

A
_
E

N
D

_
D

A
T

E
a
tt

ri
b
u
te

s
a
re

fo
r

re
fe

re
n
c
e

o
n
ly

;
C

ry
p
to

k
i
d
o
e
s

n
o
t

a
tt

a
c
h

a
n
y

s
p
e
c
ia

l
m

e
a
n
in

g
to

th
e
m

.
W

h
e
n

p
re

s
e
n
t,

th
e

a
p
p
lic

a
ti
o
n

is
re

s
p
o
n
s
ib

le
to

s
e
t

th
e
m

to
v
a
lu

e
s

th
a
t

m
a
tc

h

th
e
 c

e
rt

if
ic

a
te

’s
 e

n
c
o
d
e
d
 “

n
o
t

b
e
fo

re
”

a
n
d
 “

n
o
t

a
ft

e
r”

 f
ie

ld
s
 (

if
 a

n
y
).

Table A.14: Certificate Objects in PKCS # 11 (2 of 3)

A.2. PKCS #11 Objects Reference 117

X
.5

0
9
 C

e
rt

if
ic

a
te

 O
b

je
c
t
A

tt
ri

b
u
te

s

W
T

L
S

 p
u
b
lic

 k
e
y

c
e
rt

if
ic

a
te

o
b
je

c
ts

X
.5

0
9
 a

tt
ri
b
u
te

 c
e
rt

if
ic

a
te

 o
b
je

c
ts

C
K

_
O

B
J
E

C
T

_
C

L
A

S
S

 c
la

s
s
 =

 C
K

O
_
C

E
R

T
IF

IC
A

T
E

;

C
K

_
C

E
R

T
IF

IC
A

T
E

_
T

Y
P

E
 c

e
rt

T
y
p
e
 =

 C
K

C
_
X

_
5
0
9
;

C
K

_
U

T
F

8
C

H
A

R
 l
a
b
e
l[
]

=
 “

A
 c

e
rt

if
ic

a
te

 o
b
je

c
t”

;

C
K

_
B

Y
T

E
 s

u
b
je

c
t[

]
=

 {
..

.}
;

C
K

_
B

Y
T

E
 i
d
[]

 =
 {

1
2
3
};

C
K

_
B

Y
T

E
 c

e
rt

if
ic

a
te

[]
 =

 {
..

.}
;

C
K

_
B

B
O

O
L
 t

ru
e
 =

 C
K

_
T

R
U

E
;

C
K

_
A

T
T

R
IB

U
T

E
 t

e
m

p
la

te
[]

 =
 {

 {
C

K
A

_
C

L
A

S
S

,
&

c
la

s
s
,

s
iz

e
o
f(

c
la

s
s
)}

,

 {
C

K
A

_
C

E
R

T
IF

IC
A

T
E

_
T

Y
P

E
,

&
c
e
rt

T
y
p
e
,

s
iz

e
o
f(

c
e
rt

T
y
p
e
)}

;

 {
C

K
A

_
T

O
K

E
N

,
&

tr
u
e
,

s
iz

e
o
f(

tr
u
e
)}

,

 {
C

K
A

_
L
A

B
E

L
,

la
b
e
l,
 s

iz
e
o
f(

la
b
e
l)
-1

},

 {
C

K
A

_
S

U
B

J
E

C
T

,
s
u
b
je

c
t,

 s
iz

e
o
f(

s
u
b
je

c
t)

},

 {
C

K
A

_
ID

,
id

,
s
iz

e
o
f(

id
)}

,

 {
C

K
A

_
V

A
L
U

E
,

c
e
rt

if
ic

a
te

,
s
iz

e
o
f(

c
e
rt

if
ic

a
te

)}

}; C
K

_
O

B
J
E

C
T

_
C

L
A

S
S

 c
la

s
s
 =

 C
K

O
_
C

E
R

T
IF

IC
A

T
E

;

C
K

_
C

E
R

T
IF

IC
A

T
E

_
T

Y
P

E
 c

e
rt

T
y
p
e
 =

 C
K

C
_
W

T
L
S

;

C
K

_
U

T
F

8
C

H
A

R
 l
a
b
e
l[
]

=
 “

A
 c

e
rt

if
ic

a
te

 o
b
je

c
t”

;

C
K

_
B

Y
T

E
 s

u
b
je

c
t[

]
=

 {
..

.}
;

C
K

_
B

Y
T

E
 c

e
rt

if
ic

a
te

[]
 =

 {
..

.}
;

C
K

_
B

B
O

O
L
 t

ru
e
 =

 C
K

_
T

R
U

E
;

C
K

_
A

T
T

R
IB

U
T

E
 t

e
m

p
la

te
[]

 =
 {

 {
C

K
A

_
C

L
A

S
S

,
&

c
la

s
s
,

s
iz

e
o
f(

c
la

s
s
)}

,

 {
C

K
A

_
C

E
R

T
IF

IC
A

T
E

_
T

Y
P

E
,

&
c
e
rt

T
y
p
e
,

s
iz

e
o
f(

c
e
rt

T
y
p
e
)}

;

 {
C

K
A

_
T

O
K

E
N

,
&

tr
u
e
,

s
iz

e
o
f(

tr
u
e
)}

,

 {
C

K
A

_
L
A

B
E

L
,

la
b
e
l,
 s

iz
e
o
f(

la
b
e
l)
-1

},

 {
C

K
A

_
S

U
B

J
E

C
T

,
s
u
b
je

c
t,

 s
iz

e
o
f(

s
u
b
je

c
t)

},

 {
C

K
A

_
V

A
L
U

E
,

c
e
rt

if
ic

a
te

,
s
iz

e
o
f(

c
e
rt

if
ic

a
te

)}

}; C
K

_
O

B
J
E

C
T

_
C

L
A

S
S

 c
la

s
s
 =

 C
K

O
_
C

E
R

T
IF

IC
A

T
E

;

C
K

_
C

E
R

T
IF

IC
A

T
E

_
T

Y
P

E
 c

e
rt

T
y
p
e
 =

 C
K

C
_
X

_
5
0
9
_
A

T
T

R
_
C

E
R

T
;

C
K

_
U

T
F

8
C

H
A

R
 l
a
b
e
l[
]

=
 "

A
n
 a

tt
ri
b
u
te

 c
e
rt

if
ic

a
te

 o
b
je

c
t"

;

C
K

_
B

Y
T

E
 o

w
n
e
r[

]
=

 {
..

.}
;

C
K

_
B

Y
T

E
 c

e
rt

if
ic

a
te

[]
 =

 {
..

.}
;

C
K

_
B

B
O

O
L
 t

ru
e
 =

 C
K

_
T

R
U

E
;

C
K

_
A

T
T

R
IB

U
T

E
 t

e
m

p
la

te
[]

 =
 {

 {
C

K
A

_
C

L
A

S
S

,
&

c
la

s
s
,

s
iz

e
o
f(

c
la

s
s
)}

,

 {
C

K
A

_
C

E
R

T
IF

IC
A

T
E

_
T

Y
P

E
,

&
c
e
rt

T
y
p
e
,

s
iz

e
o
f(

c
e
rt

T
y
p
e
)}

;

 {
C

K
A

_
T

O
K

E
N

,
&

tr
u
e
,

s
iz

e
o
f(

tr
u
e
)}

,

 {
C

K
A

_
L
A

B
E

L
,

la
b
e
l,
 s

iz
e
o
f(

la
b
e
l)
-1

},

 {
C

K
A

_
O

W
N

E
R

,
o
w

n
e
r,

 s
iz

e
o
f(

o
w

n
e
r)

},

 {
C

K
A

_
V

A
L
U

E
,

c
e
rt

if
ic

a
te

,
s
iz

e
o
f(

c
e
rt

if
ic

a
te

)}

};

S
a
m

p
le

 T
e
m

p
la

te
s

Table A.15: Certificate Objects in PKCS # 11 (3 of 3)

118 A. Documentation

A.3 Plugin Installed in Several Platforms

The following images show our plugin (SmartCardsEveryWhere) being listed as one of the

available plugins in each one of the web browsers: Google Chrome, Mozilla Firefox, and

Microsoft Internet Explorer. We present an image for each supported OS as well.

Google Chrome

Figure A.1: Plugin Installed in the LUbuntu version of Google Chrome

A.3. Plugin Installed in Several Platforms 119

Figure A.2: Plugin Installed in the Mac OS X version of Google Chrome

120 A. Documentation

Figure A.3: Plugin Installed in the Microsoft Windows version of Google Chrome

A.3. Plugin Installed in Several Platforms 121

Mozilla Firefox

Figure A.4: Plugin Installed in LUbuntu version of Mozilla Firefox

122 A. Documentation

Figure A.5: Plugin Installed in the Mac OS X version of Mozilla Firefox

A.3. Plugin Installed in Several Platforms 123

Figure A.6: Plugin Installed in the Microsoft Windows version of Mozilla Firefox

124 A. Documentation

Microsoft Internet Explorer

Figure A.7: Plugin Installed in Microsoft Internet Explorer

A.3. Plugin Installed in Several Platforms 125

	Introduction
	Motivation
	Goals
	Contribution
	Dissertation Outline

	Related Work
	Web Browser Access to Smart Cards
	Smart Card Access Libraries
	A Short Introduction to PKCS #11

	Developing a Web Browser Plugin
	Tampering Detection and Vulnerability Containment
	Code Signing
	Application Sandboxing

	Summary

	Plugin Development
	Designing the Solution
	Smart Card Access
	Plugin Development
	Implementation

	API Design
	Methods
	Attributes
	Events

	The Firebreath Framework
	Requirements
	Development Life Cycle of a Firebreath Plugin
	Using the Firebreath Framework

	Implementation
	Plugin Usage
	Plugin Experimentation
	Output Examples

	Summary

	Security Analysis
	Source Code Analysis
	Attack Trees
	Modelling Possible Attacks to the Plugin

	Maintainability Analysis
	Summary

	Conclusion
	Documentation
	JavaScript API
	PKCS #11 Objects Reference
	Plugin Installed in Several Platforms

