Universidade do Minho

Paulo Alexandre da Silva Lopes

Program and Aspect Metrics for MATLAB
Design and Implementation

Tese de Mestrado

Mestrado em Informatica

Trabalho efectuado sob a orientagio de

Prof. Dr. Joao Saraiva e Prof. Dr. Joao M. P. Cardoso

Setembro de 2011

Acknowledgements

First, I would like to thank my supervisors PhD Jodo Saraiva and PhD Jodo Cardoso, for

the great support, helping me every time I needed.

I thank to my parents Manuel and Rosa, and all my family that have been following me

in all the stages of my life, and supporting me all the time.

To my friends who always were there for me in the good and bad moments, remember-
ing me that there is no impossibles. I thank also to my colleagues and friends of the Judo
team of Universidade do Minho, that in all this years helped me to get great times and with

whom I learned so much.

I would like to thank Susana for her support for all these years where was an important

pillar in my live, and always helped me reach my goals.

Finally, I would like to thank the AMADEUS project (PTDC/EIA/70271/2006), about
Aspects and Compiler Optimizations for MATLAB System Development, under FCT for

funding and supporting this research.

i

Resumo

MATLAB € uma linguagem de programac¢do suportada por um software interactivo de
alta performance voltado para o cdlculo numérico. O MATLAB integra andlise numérica,
cédlculo com matrizes, processamento de sinais e constru¢ao de graficos num ambiente in-
tuitivo, onde as operacdes sobre matrizes sao mais simples usando MATLAB , ao contrério
do que acontece na programacao tradicional.

Na linguagem MATLAB o elemento bdsico de informacdo sdo matrizes em que o dimen-
sionamento pode ser feito dinamicamente. Este sistema permite a resolucdo de muitos
problemas numéricos em apenas uma frac¢do do tempo que se gastaria para escrever um
programa semelhante usando outra linguagem como o Fortran, Basic ou C . Além disso,
as solugdes dos problemas sdo expressas em MATLAB de forma muito semelhante a sua
escrita matematica.

Por todas as suas vantagens, MATLAB tem vindo a ser uma das linguagens de progra-
macao mais usadas na comunidade ciéntifica, e para atestar isso estd o vasto ndimero de
livros e publica¢cdes dedicadas a esta linguagem de programacao.

Os objectivos deste projecto sdo dois: o primeiro € desenvolver um catidlogo de métricas de
programas para a linguagem de programacdo MATLAB que ird servir para definir padrdes
de qualidade para programas escritos em MATLAB. O segundo € desenvolver um catdlogo
de métricas para aspectos, que irdo ser usadas em conjunto com as métricas para progra-
mas, de modo a analisar os prés e contras do uso de aspectos num programa MATLAB e
perceber as vantagens na sua utilizagao.

Para isto a ferramenta Weaver desenvolvida anteriormente para o projecto AMADEUS, ird
ser usada, uma vez que permite, durante o seu processo de weaving’, a andlise do pro-
grama MATLAB sem aspectos, a andlise do aspecto envolvido neste processo, e a andlise
do programa MATLAB , final produzido pelo Weaver, que € o programa MATLAB origi-

nal com aspectos no seu codigo.

Thttp://www.mathworks.com/products/matlab/

1l

v

RESUMO

Abstract

MATLAB is an programming language supported by an interactive software for high per-
formance dedicated to the numerical calculation. MATLAB integrates numerical analysis,
matrix computation, signal processing and construction of charts an friendly-use environ-
ment, where operations on matrices are simplified by using MATLAB , contrary to what
happens in traditional programming.

In MATLAB language the basic element of information are matrices in which the dimen-
sioning can be done dynamically. This system allows the resolution of many numerical
problems in a fraction of the time it takes to write a similar program in Fortran, Basic or
C 2. Furthermore, the solutions for problems are expressed in MATLAB much like its writ-
ing in the mathematic way.

For all its advantages, MATLAB has been one of the most widely used programming
languages in the scientific community, and to attest it is the vast number of books and pub-
lications dedicated to this programming language. [8]

This MSc thesis’s goal is twofold: first, we wont to develop a catalog of program metrics
for the programming language MATLAB, which will be used to asses the quality of pro-
grams in MATLAB. Second, we wont develop a catalog of aspect metrics, that will be used
with the program metrics in order to analyze the pros and cons of the use of aspects an a
MATLAB program, so as to realize if there is some advantage in its use.

For this the Weaver tool developed in previous work in the context of AMADEUS project
will be used, once this process allow analyze MATLAB programs without aspects, analyze
the aspect involved in the weaver process, and analyze the resulting MATLAB program of

this process, which is the original MATLAB program with aspects embedded on its code.

2http://www.mathworks.com/products/matlab/

vi

ABSTRACT

Contents

Resumo il
Abstract v
Contents e e viii
Listof Figures e X
Listof Tables Xxi

1 Introduction 1
1.1 The MATLAB Programming Language 2
1.1.1 Imntroduction to MATLAB 3

1.2 Metrics e 6

1.3 Contributions e 9
1.3.1 Aspect-MATLAB 9

1.3.2 Software Metrics 10

1.3.3 Aspect-Oriented Metrics 10

1.4 Organization.ttt e 11

2 Metrics for MATLAB 13
2.1 Metrics Suite e 13
2.2 Metrics for quality of MATLABcode 18
2.3 Quality Model for MATLAB Programs 22
24 Summary e e e e 26

vil

viil

3 Metrics for Aspect MatLab

3.1 Domain Specific Aspects Language (DSAL)
3.2 Organization of an Aspect Module
3.3 AspectMetrics Suite
3.4 Results of Metrics for Aspects
3.5 Aspected Oriented Programming AOP

3.5.1 Results represented in graphics

3.6 Summary

4 Tools

4.1 Analysis of MATLAB program
4.1.1 Analysis of MATLAB program in Practice

4.2 Analysis of Aspect MATLAB code in the weaving’ process
4.2.1 Analysis of MATLAB program *weaved’ in Practice

43 Graph-tool
4.3.1 Betweenness Centrality
432 PageRank
4.3.3 Cyclomatic Complexity
4.4 Summary e e e

5 Conclusions

5.1 FutureWork

References

CONTENTS

List of Figures

1.1
1.2

2.1
22
2.3

3.1
3.2
33
34
3.5
3.6
3.7
3.8
39

3.10
3.11
3.12
3.13

4.1

Sum of a Matrix on MATLAB Language 4
Sumvals functionin MATLAB 6
Control flow graph of the function sumvals” 16
Matrix Multiplication on MATLAB 20
Matrix Multiplicationon C 20
MATLAB analysis process oo v i i v i 30
Sumvals function with logging 32
’Sumvals’ function withoutconcerns L. 33
LOC values of the original MATLAB and the AO version 38
Number of operators of the original MATLAB and the AO version 39
Number of operands of the original MATLAB and the AO version 40
Vocabulary vales of the original MATLAB and the AO version 41
Program Length values of the original MATLAB and the AO version . .. 42
Calculated Program Length values of the original MATLAB and the AO

VEISION o o i e e 43
Volume values of the original MATLAB and the AO version 44
Difficultyvalues of the original MATLAB and the AO version 45
Effort values of the original MATLAB and the AO version 46
Graphic of cyclomatic complexity values 47
MATLAB analysis process v v v v v i v i e 50

1X

4.2
4.3
4.4
4.5
4.6
4.8
4.7
4.9

LIST OF FIGURES

AST of ’sumvals’program 51
CFG of 'sumvals’ function 52
MATLAB ’weaved’ analysis process« oo .. 54
Example of Betweenness Centrality calculation 58
Example of For loop for Betweenness Centrality Values 59
Example of For loop for Page Rank Values 60
Example of Page Rank calculation 61
Loops to obtain the number of edges and the number of nodes 62

4.10 Cyclomatic Complexity Calculation 62

List of Tables

2.1
22
2.3
24
2.5
2.6

3.1
3.2
33
34

4.1

Metricsresultso 19
Average packages values e 22
Intervals of quality e 22
sumvals’ resultso Lo L 23
classification of the measurements of the programs 24
Classification of the programs 25
Aspect metrics results e 34
Metrics results on Aspects e e 35
Metrics results of programs without Concerns 36
Sum of the Tab. 3.2 and Tab. 3.3 (AO version) 37
Final results 53

X1

Xii

LIST OF TABLES

Chapter 1
Introduction

MATLAB is a popular dynamic programming language used for scientific and numerical
programming with a very large and increasing user base. Data from MathWorks shows that
the number of users of MATLAB was | million in 2004, with the number of users doubling

every 1.5 to 2 years. !

Certainly it is one of the key languages used in education, research and development
for scientific and engineering applications. There are currently over 1200 books based on
MATLAB and its companion software, Simulink 2. This large and diverse collection of
books illustrates the many scientific areas which rely on computational approaches and use
MATLAB.

The key features of MATLAB includes no need to declare variables (floating-point,
double precision representation is the default data type), operator overloading, function
polymorphism and dynamic type specialization. However, tasks such as exploiting non-
uniform fixed-point representations, monitoring certain variables during a timing window,
or including handlers to watch specific behaviors are extremely cumbersome, error-prone
and tedious. Each time these features are necessary, invasive changes on the original code,
as well as insertion of new code need to be performed. This problem is felt in other imple-
mentation issues as well, since MATLAB can be regarded as a specification rather than an
implementation language. Other open issues are related to efficient automatic synthesis of
MATLAB specifications to a software language or a hardware description language.

The AMADEUS project addresses the enrichment of MATLAB with aspect-oriented ex-

'www.mathworks.com/company/newsletters/news_notes/clevescorner/jan06.pdf

Zhttp://www.mathworks.com/support/books

2 CHAPTER 1. INTRODUCTION

tensions [19,29] to include additional information (e.g., type and shape of variables) and
experiment different implementations features (e.g., different implementations for the same
function, certain type binding for variables, etc.). The proposed aspects aim to configure
the low-level data representation of real variables and expressions, to specifically-tailored
data representations that benefit from a more efficient support by target computing engines
(e.g., fixed-point instead of floating-point representation). The project approach also aims
to help developers to introduce handlers (code triggered when certain conditions may occur
and with a richer functionality than assertions) and monitoring features, and to configure
functions implementations. We believe aspect-oriented extensions will help system mod-
eling simulation, and exploration of features conceiving system implementation. One of
the advantages is related to the fact that a single version of the specification can be used
throughout the entire development cycle rather than maintaining multiple versions, as it
currently the case.

MATLAB is a widely used language, and thus, there is a large number of (legacy) pro-
grams developed in MATLAB . The goal of this MSc project is to build on previous work
developed in the AMADEUS project that aimed at providing an AOP extension to MAT-
LAB. In [8], a preliminary version of the Aspect-MATLAB language was proposed by
the members of the project. This extension models aspects as a set of (aspect) rules while
maintaining the original program unchanged. In this project we will define a catalog of
metrics for MATLAB and a catalog of metrics for aspects. These catalogs will serve
two purposes: firstly we will use the metrics to asses the quality of MATLAB programs.
Secondly we use these two catalog of metrics to compare MATLAB program with the

equivalent Aspect-Oriented version of it.

This thesis was developed in the context of the AMADEUS project, a FCT funded
project (PTDC/EIA/70271/2006).
Part of this work was funded by AMADEUS under a BI grant.

1.1 The MATLAB Programming Language

“MATLAB is a high-level language and interactive environment that enables

you to perform computationally intensive tasks faster than with traditional pro-

1.1. THE MATLAB PROGRAMMING LANGUAGE 3

gramming languages such as C, C# and Fortran.”in >

In this section we introduce the MATLAB language and its programming environment,
as well as some exclusive features and programming particularities when developing pro-
grams in MATLAB.

1.1.1 Introduction to MATLAB

MATLAB is a high-performance language for technical computing. It integrates compu-
tation, visualization, and programming in an easy-to-use environment where problems and

solutions are expressed in familiar mathematical notation. Typical uses include :

e Math and computation;

Algorithm development;

Modeling, simulation and prototyping;

Data analysis, exploration and visualization;

Scientific and engineering graphics;

Application development, including Graphical User Interface building;

MATLAB is a programming language supported by an interactive software, whose ba-
sic data element are arrays whose dimensioning is done dynamically. This allows us so
solve many technical computing problems, specially those with matrix and vector formu-
lations, in a fraction of the time it would take to write a program in a scalar non interactive
language such as C or Fortran. An example of a matrix operation is the sum of a matrix
that is very simple to write in MATLAB language, FIG. 1.1.

In fact, the name MATLAB stands for matrix laboratory. It was originally written
to provide easy access to matrix software developed by the LINPACK and EISPACK
projects, which together represent the most of the state-of-art in software for matrix com-

putation.

3 http://www.mathworks.com

4 CHAPTER 1. INTRODUCTION

A=[163213;510118,967 12 4 15 14 1]
A p—
6 3 2 13
5 10 11 8
9 6 7 12
4 15 14 1
sum(A)
ans =
34 34 34 34

Figure 1.1: Sum of a Matrix on MATLAB Language

The MATLAB system consists of five main parts:

The MATLAB language
This is a high-level matrix/array language with control flow statements, functions,
data structures, input/output, and object-oriented programming features. It allow
both "programming in the small" to rapidly create quick and dirty throw-away pro-
grams, and "programming in the large" to create complete large and complex appli-

cation programs.

The MATLAB working environment
This is the set of tools and facilities that we work with as the MATLAB user or
programmer. It includes facilities for managing the variables in our workspace and
importing and exporting data. It also includes tools for developing, managing, de-
bugging, and profiling M-files, which are MATLAB functions files, the MATLAB’s

applications.

Handle Graphs
This is the MATLAB graphics system. It includes high-level commands for two-
dimensional and three-dimensional data visualization, image processing, animation,
and presentation graphics. It also includes low - level commands that allow you to
fully customize the appearance of graphics as well as to build complete Graphical

User Interfaces on our MATLAB applications.

1.1. THE MATLAB PROGRAMMING LANGUAGE 5

The MATLAB mathematical function library
This is a vast collection of computational algorithms ranging from elementary func-
tions like sum, sine, cosine, and complex arithmetic, to more sophisticated functions

like matrix inverse, matrix eigenvalues, Bessel functions, and fast Fourier transforms.

The MATLAB application Program Interface (API)
This is a library that allows programmers to write C and Fortran programs that in-
teract with MATLAB . It include facilities for calling routines from MATLAB (dy-
namic linking), calling MATLAB as a computational engine, and for reading and
writing M-files.

MATLAB has evolved over a period of years with input from many users. In university
environments, it is a widely adopted language/tool for introductory and advanced courses
in mathematics, engineering and science. In industry, MATLAB is the tool of choice for
high-productivity research, development and analyze.

It features a family of applications-specific solutions called toolboxes. Very important
to most users of MATLAB, toolboxes allow us to learn and apply specialized technol-
ogy. Toolboxes are comprehensive collections of MATLAB functions (M-files) that ex-
tend the MATLAB environment to solve particular classes of problems. Areas in which
toolboxes are available include signal processing, control system, neural networks, fuzzy

logic, wavelets, simulation and many others.

MATLAB supports Object Oriented Programming (OOP), which introduce the concepts
of class, object and inheritance, but apart from architecture and designing, there is no use-
ful new advantages to code control or debugging, which still implies direct changes in the
source code. Garbage collection is not supported, first because of the complexity associ-
ated with managing objects lifecycles and lastly because it makes testing and debugging an
application more difficult. For instance, one can stop the workspace and see all the activi-
ties that took place, while a garbage collection engine could destroy steps that can not be

repeated.

There are more than 1200 books that, alone, prove the wide usage of MATLAB and
associated functions and tools.

In MATLAB the definition of functions is very similar to C. In Fig. 1.2, we present the
MATLAB function with name ’sumvals’ taken from [9]:

6 CHAPTER 1. INTRODUCTION

1 function s = sumvals(start, step, stop)
2 1 = start;
3 s =1
4
5 if(start < stop)
6 disp(’Stop bigger than Start’)
7
8 while i < stop
9 1 = i+fstep;
10 s=s+1
11 end
12 end
a = sumvals(1, 1, 1076);
b = sumvals([1 2], [1.5 3], [20°5 20"5];

Figure 1.2: Sumvals function in MATLAB

The function ’sumvals’ is designed to sum numbers within a range of values. There are
a few differences from MATLAB to C functions. First, the variable returned by the func-
tion (in this case is ’s’), is declared in the function definition, instead of having a special
primitive to do this, like the ’refurn’ in C. In fact, MATLAB functions may return more

than one variable.

This function will be used to show how the metrics works, as we will see in chapter 2.

1.2 Metrics

“Measurement is the process by which number or symbol are assigned to at-
tributes of entities in the real world in such a way as to describe them according
to clearly defined rules”. [14]

Why metrics are so important to us? The answer is very simple, it is because they make
possible understand our world, everything that surrounds us, man has the need of control-

ling every single entity [14], and does that by measuring.

1.2. METRICS 7

Measurement is not solely the domain of professional technologists, each of us uses it in
everyday life. Price acts as a measure of a value of an item in a shop, and we calculate
the total bill to make sure the shopkeeper gives us correct change. We use height and size
measurements to ensure that our clothing will fit properly. So measurement help us to un-
derstand our world, interact our surroundings and improve our lives.

Measurement captures information about attributes of entities. An entity is an object such
as a person or a room or even a journey or the testing phase of a program code.

We want to describe the entity by identifying characteristics that are important to us in
distinguishing one entity from another. An attribute is a feature or property of an entity.
Typical attributes include the area or color (of a room), the cost (of a journey) or the quality
of a source code of a program.

When we describe entities by using attributes we often define the attributes using numbers
or symbols. Thus, price is designated as a number of euros, while height is defined in terms
of centimeters (or inches).

Measurement is a process whose definition is far from clear-cut. Many different authori-
tative views lead to different interpretations about what constitutes measurement. To un-
derstand what measure is, we must ask a host of questions that are difficult to answer. For

example:

The height of a person is a commonly understood attribute that can be measured, but

what about others attributes of people, such as intelligence?

Is intelligence adequately measured by as 1Q test score? Similarly, wine can be
measured in terms of alcohol content ("proof"), but wine quality be measured using

the ratings of experts?

The accuracy of a measure depends on the measuring instrument as well as on the defi-
nition of the measurement. For example, length can be measured accurately as long as the
ruler is accurate and used properly. But some measures are not likely to be accurate, either
because the measurement is imprecise or because it depends on the judgment of a human

intelligence.

In software the measurement is an essential element of management, there is a little

chance of controlling what we cannot measure.

8 CHAPTER 1. INTRODUCTION

“You can’t manage what you can’t control, and you can’t control what you

don’t measure.” [11].

Software metrics are measures of some property of a piece of software namely, its
source code or its specification. There are a several aspects of measuring software at-
tributes, like specification related measures (e.g. function point metrics), process metrics
(e.g. average time spent for fixing a bug) or product metrics.

Although the fundamental assumption of software quality assurance states that the quality
of a software is in strict correlation with the quality of the process which was used during
the development phase, product metrics have their reason of existence because of the fol-

lowings:

e [t is often the case that a version of the system already exists when a process based
quality assurance is introduced (nothing is known about the quality of the already

existing program).
e Product metrics validate process metrics.

e A prototype product is already available at early stages of the development, therefore

product metrics and other product related attributes can be calculated.

Therefore, a well constructed software quality assurance methodology has to utilize

both process and product related metrics to complement each other.

Over the years the measurement in software has proved to be the rule that every devel-
oper should follow. The software metrics help to avoid pitfalls as a cost overruns, i.e., most
projects fail to separate design and coding costs. Doing so helps identifying where problem
exist, other problem that the software metrics help to resolve is clarify goals, in the projects
goals are often fuzzy, and so it is difficult to quantify how well they have been achieved.

Metrics can help answering many questions like, for example:

1.3. CONTRIBUTIONS 9

e How productive is the staff?
e How good is the code being developed?

e How can the code under development be improved?

The notion of software metrics is used every day by programmers, for example, it is
known for all programming languages that a function with too many arguments or too
many lines of code is difficult to understand and to update/maintain. Indeed, software pro-

grammers use an empirical notion of metrics to improve their programs.

In conclusion we can perfectly say that software metrics play a crucial role in the con-
tinuos refactoring approach of software maintenance. The role of metrics in software is an
active area of research, as can be seen in the annual international workshop on Quantitative

Aspect of Programming .*

1.3 Contributions

1.3.1 Aspect - MATLAB

There are some works that, in context of Aspect Oriented approach for MATLAB, con-
tributes for the development of this kind of paradigm.

To the best of our knowledge the work propose in [8] was the first approach considering
aspect oriented programming extensions for MATLAB. This work suggests various useful
AOQP features, specially those to specify different numeric data types. It has also pointed
out the importance of AOP for MATLAB and suggest some further use cases.

Others approaches like [3] took [8] as inspiration, and implemented an aspect-oriented
language for MATLAB. They create a language that allow implement typically AOP use
cases, such as performance profiling and data annotations, on MATLAB programs.

A work developed for the AMADEUS project [21] also presents a language to add aspect
oriented mechanisms to MATLAB, this language was then used to develop a Weaver, [20],
that automates this process of adding aspects to MATLAB programs.

“http://www1.isti.cnr.it/ Massink/EVENTS/QAPL2012/

10 CHAPTER 1. INTRODUCTION
1.3.2 Software Metrics

Software metrics have a long history, since the very beginning of the software industry,
companies were already concerned with the quality of their product and (mainly) with their
coast. So although the first dedicated book on software metrics was not published until
1976 [16], the history of active software metrics dates back to the late-1960’s. In that
early times, the Lines of Code measure (LOC or KLOC for thousands of lines of code)
was used routinely as the basis for measuring both programmer productivity (LOC per
programmer month) and program quality (defects per KLOC). In other words LOC was
being used as a surrogate measure of different notions of program size. The early resource
prediction models (such as those of [27] and [5]) also used LOC or related metrics like
delivered source instructions as the key size variable. In 1971 Akiyama [32] published
what we believe was the first attempt to use metrics for software quality prediction when
he proposed a crude regression-based model for module defect density (number of defects
per KLOC) in terms of the module size measured in KLOC. In other words he was using

KLOC as a surrogate measure for program complexity.

The need for more discriminating measures became especially urgent with the increas-
ing diversity of programming languages. Thus, the decade starting from the mid-1970’s
saw an explosion of interest in measures of software complexity (pioneered by the likes of
[17] and [22]) and measures of size (such as function points pioneered by [1] and later by

[31]) which were intended to be independent of programming language.

Work on extending, validating and refining complexity metrics, works like [10], has

been a dominant feature of academic metrics research up to the present day [13,34].

So due to its importance, in our days software metics are very used by the most of soft-

ware companies.

1.3.3 Aspect-Oriented Metrics

Up to now, there are a lot of studies about metrics for Aspect Oriented paradigm. Lopes’
work [18] has contributed for the increasing interest in this area. She has defined a set of
different metrics for separation of concerns, but the Lopes’ metrics only capture different
dimensions of separation of concerns. In addition, the definition of her metrics is quite

strongly coupled to her empirical study and tailored to the distribution concern in Java

1.4. ORGANIZATION 11

code.

Zhao, [33], also proposes a metrics suite for aspect-oriented software, which is specifically
designed to quantifys the information flows in an aspect-oriented program . His metrics are
based on a dependence model for aspect-oriented software that consists of a group of de-
pendence graphs; each can be used to explicitly represent various dependence relations at
different levels of an aspect-oriented program. But the use of such metrics requires that
software engineers construct a number of dependence graphs for different levels of modu-
larity, such as the method dependence graph, the advice dependence graph, the introduction
dependence graph, and so on. As a consequence, such metrics are very complex to under-
stand and use, and requires the implementation of a dependence analysis tool that is likely
to differ from one language to another. In addition, Zhao’s metrics are not derived from
well-tested metrics, and the associated dependence model is not based on any well-known
software engineering model.

Other studies like [4] proposed a unified coupling framework for AOP. In order to consis-
tently and unambiguously define coupling measurements, they defined new terminologies
for representing components of AO systems. In their framework, they considered two
AOP languages, Aspect] and Caesar]. They have extended their framework from Briand’s
frameworks [2, 6] and tried to maximize the use of the terminology and coupling criteria
originally defined in Briand’s frameworks.

They have shown how the framework can be instantiated for Java, Aspect] and CaesarJ.
Also they demonstrated the applicability of the framework by using it on an existing cou-
pling metric.

Studies for this kind of metrics have increased over the years, and proof of this is the con-

siderable amount of papers published °.

1.4 Organization

The main body of this thesis is diveded as follows:

e Chap. 2 present our metrics suite for MATLAB, and introduce some results for MAT-

LAB programs examples

>http://dl.acm.org/results.cfm?h=1&cfid=66340118&cftoken=63218358

12 CHAPTER 1. INTRODUCTION

e Chap. 3 presents the aspects for MATLAB , by introducing the aspect language
(DSAL), and our aspect metrics suite. This chapter also presents the classification of
our MATLAB programs.

e Chap. 4 introduce the tools for measurement of quality of MATLAB programs.

e Chap. 5, summarizes what has been achieved and what could be done next.

Chapter 2

Metrics for MATLAB

In this chapter we will present the metrics we have implemented to give us some feedback
on the quality of program we are analyzing.

Our catalogue of metrics consists of 12 metrics, each one analyzes a different aspect of the
program. This catalogue of MATLAB source code metrics is the building block for our
MATLAB quality model that we propose to assess the quality of MATLAB software.

2.1 Metrics Suite

This suite is composed by 12 metrics. Each metric is defined and described next. We will
use our running example: ’sumvals’ function, presented in Fig. 1.2, to see the results of the

metrics in a real MATLAB program.

Lines of Code: this is the very first metric used in software engineering to assess the
quality of source code programs (as discussed in section 1.3.2), so, this metric give us the

total number of lines of code of an MATLAB program.

In the example of the ’sumvals’ function, Fig. 1.2 we have 12 lines of code, so LOC =
12.

Distinct Number of Operands: this metric gives us the number of distinct operands on

13

14 CHAPTER 2. METRICS FOR MATLAB

a MATLAB program.
In our ’sumvals’ function we have used the following operands i, start, s, stop, and step.

Thus, the final result of this metric is 5 (#operands = 5).

Distinct Number of Operators : this metric gives us the number of distinct operators
on an MATLAB program.
In ’sumvals’ function we have used the following operators =, <, and +. Thus, the final

result of this metric is 3 (#operators = 3).

Halstead’s Complexity: this suite of metrics was developed to measure a program’s
complexity directly from source code. The suite of Halstead’s measures is composed of six
measures that emphasize computational complexity of a program: Program Vocabulary,
Program Length, Calculated Program Length, Volume, Difficulty, and Effort. These mea-
sures are simple to calculate, however, in order to automate the calculations process, strong
rules for identifying the operands and operators have to be stablished [26].

Letnl, n2, N1, and N2 be the number of distinct operators, the number of distinct operands,
the total number of operators, and the total number of operands. Then, the metrics that con-

stitutes the Halstead suite are defined as follows:

Program Vocabolary: n = nl + n2

Program Length : N = N1 + N2

Calculated Program Length: N = nl x logonl + n2 x log,n2

Volume: V = N X log,n

1 N2
Difficulty: D = 2
2 n2

Effort: E=DXxV

Please note, that the Difficulty measure is related to the difficulty to write or understand
a program.There is an usual way to translate the effort measure into actual running time

code, and this way is done using of the following relation: [17]

2.1. METRICS SUITE 15

E
Time required to program(T) = —

18

The time to implement or understand a program (T) is proportional to the effort. Empirical
experiments can be used for calibrating this quantity. Halstead has found that dividing the

effort by 18 gives an approximation for the time in seconds.

Let us analyze this suite in our running example: The values of this measurements for
the ’sumvals’ function depends of n1, n2, N1, and N2.
The n1 and n2 we already see them is 3 and 5 respectively, and the values of N1, and N2 is
18 and 9 respectively. With this values we get the Halstead’s Complexity for the function

’sumvals’;

e Program Vocabolary: n =3 +5=238

Program Length : N =18+ 9 =27

Calculated Program Length: N = 3 x log,3 + 5 x log,5 = 16.36

Volume: V =27 X log,8 = 81

3 18
Difficulty: D = 3 X 5 = 5.4

Effort: £E =54 x81 =437.40

but what can we say about these results? Are they good or bad? Well, having just these
values we are not able to say anything, once these measures don’t have units, and this is
well-known problem of the Halstead suite: there is no qualitative interpretation of the num-
bers. In fact, there is no consensus in the scientific community on how to interpret Halstead
results. However, this suite is widely used in a context where the results can be compared
with some reference values.
So these metrics have to be used in comparison with reference values in MATLAB . In
section. 2.3, we will present MATLAB reference values defining by analyzing a large

MATLAB repository and we will use to assess the quality of ’sumvals’ function.

16 CHAPTER 2. METRICS FOR MATLAB

Cyclomatic Complexity: or conditional complexity, or MacCabe Complexity is used
to indicate the complexity of a program. It directly measures the number of linear indepen-
dent paths through a program’s source code.

MacCabe Cyclomatic complexity is computed using the control flow graph (CFG) of the
MATLAB program.

and it is calculated by the following formula:

CC=E-N+p

1 function s = sumvals(start, step, stop)

2 1= start;

3 s=1;

if(start < stop)

ot

disp(’ Stop bigger than Start)

8 while 1 < stop

9 i = i-step;

(o]

10 § =18+ 1

@ end

end

Figure 2.1: Control Flow Graph of the function ’sumvals’

2.1. METRICS SUITE 17

where E is the number of edges, N is the of nodes and p is the number of connected
components [26]. The nodes of the graph correspond to an indivisible group of commands
of a program, and, a directed edge connects two nodes if the second command might be
executed immediately after the first command. The following table shows us how to inter-

pret the values of this measure:

]Complexity value for a program Risk thresholds
0-3 Simple, low risk of defects
4-6 Complex, moderate risk
7-8 Complex, possible high risk
9 and higher Consider unstable

Let us analyze the Cyclomatic Complexity of our running example. Fig. 2.1 presents the
CFG of ’sumvals’ function, where we have £ = 12, N = 10 and p = 1, so the Cyclomatic

Complexity of this functionis 11 =10+ 1 = 2.

Centrality Measures: Like cyclomatic complexity this measure uses a CFG to be com-
puted, there are various measures of the centrality of a vertex within a graph that determi-
nate the relative importance of a vertex within the graph ! [15], in our case we have two

centrality measures, the Betweenness centrality and Page Rank.

e Betweenness Centrality: is a centrality measure of a vertex within a graph (there is
also edge betweenness, which is not discussed here). This metric gives us the ver-
tices that occur on many shortest paths between other vertices. These vertices have

higher betweenness BC(v) than those that do not. Its definition is given by :

BC(v) of a vertex v € V is the sum of vertices u, w € V, of the fraction of shortest

paths between u and w that pass through v:

)

uw

BC(v) = Z

u,wev
UFVEW

'for example, how important a person is in the social network, or in theory of space syntax, how important
aroom is within a building or well-used a road is within as urban network

18 CHAPTER 2. METRICS FOR MATLAB

where %,,,(V) denotes the total number of shortest path between u and w that pass
through vertex v and #,,, denotes the total number of shortest paths between u and
w [23].

e Page Rank: ? [24] is the same algorithm developed by Larry Page and used by

google on web search, but here we use it to ranking nodes instead web pages.

Please note the Betweenness centrality and PageRank, were implemented in our tool,
using an external tool called Graph-tool 3, that calculates this specific measures on a graph,
in this case, the CFGs of a MATLAB program, but we will give you more details in chapter
4.

2.2 Metrics for quality of MATLAB code

In this section we will show some results of applying these metrics to MATLAB programs.
We use two different packages, we use the MATLAB code of a multi-criteria based applica-
tion developed for site selection for spacecraft landing on planets [12,25,28], referred here
as IMPACTED, and, an library package more specifically an Robotic library. This library
belongs to the repository of MATLAB programs of the AMADEUS project .

Table 2.1 presents the metrics suite for these two MATLAB applications. We include the

results of 10 metrics, namely:

e LOC (column 3)

e Distinct Number of Operands (column 4)
e Distinct Number of Operators (column 5)
e Program Length (column 6)

e Program Vocabulary (column 7)

Zhttp://www.smashingmagazine.com/2007/06/05/google-pagerank-what-do-we-really-know-about-it/
3http://projects.skewed.de/graph-tool/

2.2. METRICS FOR QUALITY OF MATLAB CODE 19

e Calculated Program Length (column 8)

e Volume (column 9)

e Difficulty (column 10)

e Effort (column 11)

e Cyclomatic Complexity (column 12)

Function package | LOC | #operators | #operands | Voc PL | CPL | Volume | Difficulty Effort | C.C.
fdyn2.m Robotic 13 4 16 20 70 72 | 302.53 6.25 1890.84 | 2
ftrans.m Robotic 9 5 14 19 44 | 6491 | 186.90 5.17 967.92 1

gravload.m Robotic 14 3 9 12 29 | 33.28 | 103.96 3.83 39852 | 2

ishomg.m Robotic 9 2 7 9 17 | 21.65 53.88 1.71 9238 | 2
isvec.m Robotic 13 2 8 10 22 26 73.08 1.87 137.02 | 3

itorque.m Robotic 4 1 6 7 15| 15.50 42.11 1.08 45.61 1

motomanhp.m Robotic 10 4 19 23 89| 88.71 | 402.59 6.84 2754.61 1
roty.m Robotic 2 9 11 24 | 30.52 83.02 2.11 175.27 1
standford.m Robotic 3 5 145 | 251.88 | 809.81 4.16 337424 | 1
startup.m Robotic 1 1 2 0 2 0.5 1 1
t2r.m Robotic 3 5 15| 16.36 45 3 1351 3
tr2angvec.m Robotic 42 9 20 29| 230 | 114.96 | 1117.33 38.02 | 42486.68 | 3

tr2diff.m Robotic 9 6 9 15 86 | 44.03 | 335.99 21.66 27983 | 2
tr2jac.m Robotic 3 7 10 69 | 2440 | 229.21 10.5 2406.73 1
trplot.m Robotic 15 3 11 23| 28.75 79.56 3 238.70 | 3

uninorm.m Impacted | 71 12 14 26| 404 | 96.32 | 1898.97 105.85 | 201020.34 | 9

track_sites_errorm | Impacted 20 7 12 19 63 | 62.67 | 267.61 12.25 3278.33 4
ad_map_files.m Impacted | 28 5 16 21 89 | 75.60 | 390.91 9.53 372592 | 2
hybrid.m Impacted | 18 11 15 26 140 | 96.65 | 658.06 31.53 | 20750.87 | 4
hist_rank.m Impacted | 18 9 13 22 73| 76.63 | 325.53 17.65 5747.00 | 1
historic_error.m Impacted 13 4 14 18 67 | 61.30| 279.38 7.28 2035.51 1
get_thresholds.m | Impacted | 18 4 20 24 126 | 94.43 | 577.70 8.4 4852.72 1
get_retargeting.m | Impacted 4 13 49 | 36.52 | 181.32 7.55 1369.98 1
get_nominalSite.m | Impacted 9 4 10 25| 23.50 83.04 533 442.92 1
fuzzy_trap.m Impacted | 19 12 13 25 123 | 91.12 | 571.19 3830 | 21881.13 | 4
find_pixel_regions.m | Impacted | 17 7 12 19 91 | 62.67 | 386.56 19.25 744130 | 2
dist_d.m Impacted | 19 6 13 67 | 35.16 | 247.92 16.28 4037.70 | 2
decision_values.m | Impacted 11 2 9 24 | 21.65 76.07 2.14 163.02 1
comp_weights.m Impacted | 15 4 13 45 | 36.52 | 166.51 6.66 1110.13 2
build_regions.m Impacted | 27 9 19 28 92 | 109.23 | 442.27 13.26 586598 | 2
build_map.m Impacted | 13 4 9 13 37| 36.52) 13691 5.77 791.07 | 3
Average 15.87 5 12.19 17.19 | 77.26 | 559.66 | 340.55 13.44 | 10964.46 | 2.16

Table 2.1: Metrics results

20 CHAPTER 2. METRICS FOR MATLAB

Looking at the results on Tab. 2.1, the measure may cause some surprise, is the Cy-
clomatic Complexity (CC) due to their low values. These results derived from the unique
properties of MATLAB programming language, like matrix manipulations.

If we compare the operation of matrix multiplying in MATLAB with other programming
language, C for example, we can realize the difference of complexity between them.
The Fig. 2.2 and 2.3 help to illustrate this example.

A=1[1351247
B = [-5811;3921:40 §|
C:

24 35 114

30 52 162

Figure 2.2: Matrix Multiplication on MATLAB

void Matrix Mult(int al[|[x]|, int a2[][y], int a3||[y])

{

int i = 0;
int j = 0;
int k = 0;

Figure 2.3: Matrix Multiplication on C

As is showed in Fig. 1.1, when we calculate the matrix multiplication in MATLAB, a
simple line is enough, in this case C = A * B, i.e., there is no complexity (CC = 0), but to
do the same operation in C, are necessary three For loops (CC = 3), that is clearly more
complex than the MATLAB version. Thus, the programs are small (between 4 and 7 LOC),

this example helps to illustrate why the Cyclomatic Complexity values are low.

2.2. METRICS FOR QUALITY OF MATLAB CODE 21

Looking at each package individually, we can see clear differences between a reusable
MATLAB library and a MATLAB industrial application, in this case Robotic and IM-
PACTED packages.

The results for each one of them show interesting measures, but, at the same time pre-
dictable: for example, the LOC average,Tab. 2.2, is bigger in the IMPACTED programs
that in Robotic. There are two possible reasons to that, first of all, it is because we are deal-
ing with a library composed by functions with operations, like move, rotate, etc., to be used
in robotic applications. This operations are significantly more smaller than the operations
defined in the functions of an industrial application like IMPACTED.

The second one is because we are comparing MATLAB programs developed from a more
generic approach, in order to allow it reuse, with MATLAB programs develop for an spe-
cific goal, i.e., specialized programs. For example thinking on very simple example pro-

gram like the sum of two values read from keyboard, the algorithm is something like:

Read valuel

Read value2

Return valuel + value2

but, if we want specialize this program to work on integers only, then the resulting

algorithm is more complex:

Read valuel
Test if is an Int
if not

Return error message

Read value2
Test if is an Int
if not

Return error message

Return valuel + value2

Furthermore if we analyze the Difficulty, Effort, and Cyclomatic Complexity values,
this difference is further enhanced, so remain the idea that when we develop more specific

22

CHAPTER 2. METRICS FOR MATLAB

MATLAB programs, we take the risk of loose quality.

Package | LOC | #operators | #operands | Voc PL | CPL | Volume | Difficulty | Effort | C.C.
Robotic | 11.2 3.4 9.5 15.6 | 58.7| 555 264.1 73| 36923 | 1.8
Impacted | 20.25 6.5 12.2 18.7 | 94.68 | 63.52 418.1 20.7 | 17782.1 | 2.5

Table 2.2: Average packages values

2.3 Quality Model for MATLAB Programs

In order to define a quality model for MATLAB we consider four different levels of "qual-

ity", and we define metrics ranges for each of such intervals.

The first interval is the interval of very good values, i.e., is the interval of desirable values

for any program. If a program has, for all metrics, its values in this interval, then its quality

is undeniable.

The second one is the interval of good values, i.e., is the interval where most values will fit,

in other words, i.e., the interval of average values, and here, the lower the better will be the

quality value, once is closer to the range of very good values.

The third interval is the interval of acceptable values, i.e., are values bellow of the average

of quality values, but nevertheless gives some quality to the program.

At last the interval of values without quality, i.e, any value belonging to this interval, indi-

cate that for this metric, the program doesn’t has quality.

Tab. 2.3 show the intervals defined for each metric.

To define these intervals we apply our metrics in the MATLAB programs presented in this

thesis and in others MATLAB programs from the AMADEUS repository. Then comparing

the final results of each metric we defined the values for the intervals. In these definitions

also contributed, the observation of others thresholds languages, such java or C.

Interval LOC | #operators | #operands | Voc PL CPL Volume | Difficulty Effort C.C.

very good values | 0-15 0-5 0-15 0-15 0-70 0-50 0-250 0-10 0-2500 1-3
good values 16-28 6-8 16-27 16-25 | 71-145 | 51-100 | 251-525 11-25 2501-10000 | 4-6
Acceptable values | 29-45 9-11 28-35 26-35 | 146-220 | 101-150 | 526-1000 | 26-35 10001-17000 | 7-8
Without quality | 46-c0 12-c0 36-c0 36-c0 | 221-00 151-c0 1001-00 36-00 17001-c0 9-c0

Table 2.3: Intervals of quality

2.3. QUALITY MODEL FOR MATLAB PROGRAMS 23

Having as reference the values presented in Tab. 2.3, we can compare with the values
obtained in Tab. 2.1, and then proceed to the classification of the programs analyzed. But
first let’s start to classify our running example, the *sumvals’ function, for the classification
we will use the classification system by stars(x). Being that this classification goes from
one star to five stars, where one star means that the program is very bad, two stars means the
program is bad, three means is reasonable, four stars means is good, and five stars means
is excellent.

So, comparing the values, Tab. 2.4, of ’sumvals’ function with the reference values in
Tab. 2.3:

Name | LOC | #operators | #operands | Voc | PL | CPL | Volume | Difficulty | Effort | C.C.
sumvals | 12 3 5 8 | 27 | 16.36 81 5.4 43740 | 1

Table 2.4: ’sumvals’ results

we can give a classification to ’sumvals’ function, and as all the values are in the interval

of very good values, we give a classification of five stars (x * % x %) to this function.

We can easy classify the ’sumvals’ because we are only analyze one program, and in

this case all the measurements are in the interval of optimal values.

To assess the quality of the MATLAB programs presented previously, we will use this
classification system to give a classification for each measure for each program, as is pre-
sented by Tab. 2.5, and then we take in this classification and make an average for each
program. This average will be the final classification of the programs, Tab. 2.6 present this

final classification.

24 CHAPTER 2. METRICS FOR MATLAB

Function LOC | #operators | #operands Voc PL CPL Volume | Difficulty Effort C.C.
fdyn2.m | % % % % * | * *x *x * % * Kk kk * ok kk |k ok ok kK * Kk kk koK kk |k k ok ok k| K ok ok ok ok | kK ok ok &
ftrans.m | % % k % & | k k k kK | Kk Kk * * Kk kK |k ok ok ok ok kok ok | kk ok ok ok |k ok ok ok ok |k k ok ok ok | Kok ok ok ok

gravload.m * ok k ok Kk * K ok ok ok |k k k k| ok ok ok ok k| ok ki ki ok k| ok ki ok ok ok |k ki ok ok k| ok ok ok ok ok | ok ok ok ok k| ko ke ok ok

ishomg.m * ok Kk kK Kok ko k |k k k ok k| sk sk ok ok ok | sk sk sk ok k| ok sk sk ke k| sk sk ok kb | sk ok ke ke ok |k ke ke ko |k ok ok ok ok

isvec.m | * % * % % Kok ok ok ok |k k k ok k| sk sk sk ok k| sk sk sk ok k| ok sk sk ok k| sk sk sk ok k| sk ok sk ke k| ok ko ke ke |k ok ok ok ok

itorque.m * ok k ok Kk * ok k ko |k ok ok k k| ok ok ok ok k| ok ki ki ok k| ok ki ok ok k| sk ok ok ok ok | ok k k ok ok | ok ko k| ok ok ok ok ok

motomanhp.m * * k k Kk * * k k Kk * %k Kk * %k * * kk * k k * ok k| ko ok ok ok * ok kk |k k ok ok ok

roty.m | % % *x % % Kok ok ok ok |k k k ok k| sk sk sk sk k| sk sk sk sk k| ok sk sk ok k| sk sk ok kb | sk ok sk ok k| ok ke ke ke ke |k ok ok ok ok

standford.m | * % % * % * ok ok ok ok |k ok ok ok ok |k ok ok ok ok * Kk Kk * *k | ok ok ok ok ok * ok k| ko ok ok ok

startup.m | * % % % % * ok k k k| ok ok ok ok k| ko ok ok ok | ok ki k ok k| ok ki ko k| sk ki ok ok k| ok ok ok ok ok | ok ok ok ok ok | ko ke ok ok

02rm | * % % % * Kok ok ko |k k k ok k| sk sk sk sk k| sk sk sk ok k| ok sk sk sk k| sk sk ok kb | sk ki ke ke k| ok ke ke ke ke |k ok ok ok ok

tr2angvec.m *k *k * * K * *k k * |k kK Kk * * * | koK kK k
tr2diff.m | * % % x % * ok okk | Kok ok ok k| ok ok ok ok ok * Kk kk | Kk ok ok ok ok * % kok * Kk ok | Kok ok ok ok |k ok ok ok ok
tr2jac.m | k k ok ok k | kk kA k| kok ok ok ok | kk ok ok ok | kk ok ok ok [kkk ok ok | kkk ok Kk * ok ok | Kok ok ok k| Kk ok ok ok ok

lrplot.m * ok Kk kK Kok ok ok ok |k k k ok k| sk sk sk sk k| sk sk sk ok k| ok sk sk sk k| sk sk ok kb | sk ke ke ke k| ok ke ke ke ke |k ok ok ok ok

uninorm.m * * | Kok ok koK * K * * * * * * * * *
track_sites_error.m * Kk kK * ok k| ok ok ok ok ok * KKK | KKK kK * K kK * ok kK * % Kk * k kK * *k *
ad_map_files.m * ok ok | ok ok ok ok ok * K ke * K * * % kK * * * Kok ok | Kok ok okok | Kok ok ok ok | Kok ok ok ok
hybrid.m * K Kk Kk | Kk ok Kk ok * Kk * * kK * ok * * ok * * * Kk * * K *
hist_rank.m * * kok * ok k| ok ok ok ok ok * K * * * Kok * * x * % kok * * Kk * kK | Kk Kk Kk ok ok
historic_error.m | * % % % % | % * x k k | * * *x *x * * KKK | KKK Kk * K kK * ok kok |k ok ok ok k| ok ok ok ok k| Kk ok ok ok K
get_thresholds.m * Kk kk | Kk Kk ok ok ok * * * * * kKk * * % * * kKk * x k| Kk kK ok K * Kk kk | Kk kK Kk
get_retargeting.m | x *x x k% | Ak kkk | kA kkk | Ak kkk | kA k* k| Xk % *x % *ok kk | kok ok ok ok | kok ok ok ok |k ok ok ok K

get_nominalSite.m | * x k k k| Kk kkok | khk Ak, | kkkkk [khk Ak, | hkkkk | khkhxhkk | hkkhkk | Kk *x*xk | %%kkkk

fuzzy_trap.m f * ok kK * | Kok ok Kk Kk * K * * * * * * * * *k ok * * * *k *
ind_pixel_regions.m * * kKk * ok k| Kok ok ok Kk * * kKk * * kk * * *k * * kKk * * % * x k| Kk Kk Kk Kk
dist_d.m * Kk kk Kk kk | Kok ok ok k| kok ok ok ok | kok ok ok k| ok k ok ok k| koK ok ok ok * % ko * ok kk | Kk ok K ok

decision_values.m | * x % * % k ko kok |k ke ke ke k| ke ke ok ok k| ke ok ok ok k| ke ke ok ok k| ke ke ke ok k| ke ke ok ok k| ok ok ok ok ok |k ok ok ok ok

comp_weights.m * ok Kk Kk ok Kok ok ok ok |k k k ok k| sk sk sk ok k| sk sk sk ok k| ok sk sk ok k| sk sk sk kb | sk ki ke ke k| ok ke ke ok ke |k ok ok ok ok

build_regions.m * k Kok * % % * %k kx| Kk Kk Kk Kk ok * * Kk * * * * % % * * Kk * K k| Kk ok ok ok ok

build_dmap.m | k x kx x % | Ak kA kK | kkkkk [Ak Ak k| kkhkhkhk | KAk hkk | khkhkhkhx | KA kkk | khkkhkk | *k****

Table 2.5: classification of the measurements of the programs

2.3. QUALITY MODEL FOR MATLAB PROGRAMS 25

Function | Package | Classification
fdyn2.m Robotic * Kk Kk kK
ftrans.m Robotic * Kk Kk kK

gravload.m Robotic * K K Kk Kk

ishomg.m Robotic * Kk kK K
isvec.m Robotic * K K Kk Kk

itorque.m Robotic * Kk kK K

motomanhp.m Robotic * Kk ok
roty.m Robotic * % K Kk k
standford.m Robotic * k ok
startup.m Robotic * Kk k kK

t2r.m Robotic * kK kK
tr2angvec.m Robotic * Kk k
tr2diff.m Robotic * *k ok
tr2jac.m Robotic * Kk Kk kK
trplot.m Robotic * K K Kk Kk
uninorm.m | IMPACTED * %
track_sites_error.m | IMPACTED * * %
ad_map_files.m | IMPACTED * * kk

hybrid.m | IMPACTED * k *

hist_rank.m | IMPACTED * Kk kk
historic_error.m | IMPACTED * Kk kK *
get_thresholds.m | IMPACTED * * kK
get_retargeting.m | IMPACTED * Kk Kk K Kk
get_nominalSite.m | IMPACTED * Kk Kk kK
fuzzy_trap.m f | IMPACTED * Kk k
ind_pixel_regions.m | IMPACTED * k Kok
dist_ d.m | IMPACTED * K K Kk Kk
decision_values.m | IMPACTED * % Kk k *
comp_weights.m | IMPACTED * Kk kK K
build_regions.m | IMPACTED * * kk
build_dmap.m | IMPACTED * X Kk ok k

Table 2.6: Classification of the programs

Once more, looking to the classification it is notorious the difference of quality between

the generic programs and the specialized programs.

26 CHAPTER 2. METRICS FOR MATLAB

2.4 Summary

In this chapter we have presented our metrics suite for MATLAB . The metrics were pre-
sented one by one, giving its definition, explaining its meaning, and in some cases present-
ing the formulas to obtain them.

After the introduction of the metrics, we use the sumvals’ function, Fig. 1.2, to see the
metrics in a real case, at the same time commenting its results, to see how they work.

The problem of Halstead suite was discussed, and explained the context which it must
be used, i.e., in a context of comparison with reference values. Here we also presented
some results of applying our metrics suite in real MATLAB programs. These programs
belong to two different packages, a library package(Robotic) that belongs to a repository
of MATLAB programs of the AMADEUS project and an industrial application pack-
age(IMPACTED) [12,25,28].

After presented the results, we did some analysis and we concluded that generic MATLAB
programs tend to have more quality than the specialized MATLAB programs.

We also define a quality model for MATLAB programs, using for this, intervals of values
that allow us to classify the MATLAB programs, so, four intervals were defined: Optimal
values, reasonable values, acceptable values, and values without quality.

Finally, we took all the information about the programs (all measurement values) and give
them a classification. This classification use a classification system by stars, where the pro-

grams can be classified from one until a maximum of five stars.

Chapter 3

Metrics for Aspect MatLab

Like in any other programming paradigm, programs developed in paradigm of aspect ori-
ented programming (AOP) can have god or bad quality. As a consequence, we wish to
extend our tool in order to assess the quality of Aspect MATLAB programs.

In this chapter we present and describe the metrics suite for aspect MATLAB in order to
observe the impact of aspects on MATLAB code, and for this we use an Domain Specific
Aspects Language (DSAL) for MATLAB.

3.1 Domain Specific Aspects Language (DSAL)

Here we describe a MATLAB Aspect oriented language, created in previous works [7]
[21], with mechanisms to detect join points and to perform transformations in MATLAB

source code.

"Aspect-oriented programming provides powerful ways to augment programs
with information out of the scope of the base language while avoiding harming
code readability and thus portability. MATLAB is popular modeling/program-
ming language that will strongly benefit of aspect-oriented programming fea-
tures. For instance, MATLAB programmers could be use aspects to provide
information such as restrictions on allowed data types and/or values, monitor-

ing specific aspects of the execution such as the effective sataset sizes or if a

27

28 CHAPTER 3. METRICS FOR ASPECT MATLAB

given variable ever assumes a specific value, without "polluting" the code with
"check code" ". [T]

The flexibility of the interpretative language of MATLAB also hinders performance,
forcing programmers to develop reference versions of the program functionality in lan-
guages such as C and C ++. When it comes to evaluate specific features, such as logging,
exploiting non-uniform fixed-point representations or including handlers to watch certain
behaviors, the programmer is overwhelmed by cumbersome, error-prone and tedious tasks,
which imply invasive code in the original MATLAB sources.

The AOP extension proposed to MATLAB in [7] consider an aspect MATLAB specifi-
cation divided in two parts: a legal MATLAB program where no aspect code is included,

and an aspect specification where code defines different aspects of the program as defined.

3.2 Organization of an Aspect Module

The DSAL treats an aspect as an independent modular unit. An aspect module can only
represent one instruction, although it can have more than one action to be executed in that
instruction. It is started by the constructor aspect, followed by the name of the aspect, and
ended by end (similarly to MATLAB). Inside the aspect we define the join point and the

actions necessary, as shown next :

aspect aspect name
capture join_point
action to join point

action to join_point

end

The aspects are organized in modules (sources files), that may contain more than one
aspect. Each source file from DSAL must have, in the beginning, a strategy for applying
the aspects.
this strategy is mandatory and represents the sequence in which the programmer wants
the aspects to be implemented. This strategy is composed by the disjunctions (&&) and

conjunctions (||) (disjunctions have priority).

3.2. ORGANIZATION OF AN ASPECT MODULE 29

So, at the beginning of each DSAL source file, it is mandatory to right a strategy before
the aspects, as shown next (strategy is highlighted):

al && a2 && a4 || a3

aspect al
aspect a2
aspect a4

aspect a4

In this particular example, the aspects ’al’, ’a2’ and ’a4’ run sequentially and, if any of
them can not be executed, than the aspect a3’ is executed. It is possible to use parentheses
and create very powerful strategies. If no Aspect Combinator is defined, the Weaver applies
the aspects in the order they are defined in the file. Using the disjunction (&&), if the any of
the aspect fails, the others can not be applied, whereas using the conjunction (||) the failing

of an aspect does not interrupt the sequence.

It is important to notice that it is possible for two aspects to advise the same join point or,
more important, for an aspect to advise another. One aspect might, for example, introduce
a new variable ’a’, and another aspect search for the declaration of the same variable. For
this to happen, it is important that the strategy is constructed in a manner that the second
aspect runs after the first one. To better understand how this work let’s see a real example

with the ’sumvals’ function.

The reader may have noticed that the ’sumvals’ function persented in Fig. 1.2, was man-
ually updated so that it perform test instructions. This process implied manually inserting
intrusive pieces of information on the original function to be able to test parts of the func-

tion execution. Next, we present how to concisely specify such program using the DSAL.

First, is define an aspect with name ’variable_test’ that is responsible for testing if the
variable stop is smaller then start. The join point ‘read’ detects when a value is readed. The

execute primitive introduces the invasive code before the join point.

aspect sumvals test
select: within(sumvals) && read(stop)
apply: if(stop < start)

30 CHAPTER 3. METRICS FOR ASPECT MATLAB

disp(’Start bigger then Stop’)
end :: execute before

end

Using the Aspect MATLAB Weaver developed in [20], we take the aspects and the
original Matlab (Fig. 3.3) program and weaved’ them to obtain the code on Fig. 1.2.

3.3 Aspect Metrics Suite

We propose some metrics for aspect-oriented approach, which are specifically designed to

quantify the information flows in an aspect-oriented program.

e Concern Diffusion over LOC(CDLOC): this metric counts the number of transition
points for each concern through the lines of code. The use of this metric requires a
shadowing process that partitions the code into shadowed area and non-shadowed ar-
eas. The code into shadowed areas are lines of code that implement a given concern.
Transition points are points in the code where is a transition from a non-shadowed
area to a shadowed area and vice-versa [30].

Fig. 3.1 helps to visualize how this measure works.

1 function s = sumvals(start, step, stop)
2 1 = start;

3 5=1;

4 Transition Paint

5 if(start < stop)

i disp(’Stop bigger thenStart’)

T Transition Paint
8 while i < stop

9 i = itstep;

10 8§ =8 + i

11 end

12 end

Figure 3.1: Transition points on ’sumvals’ function

3.3. ASPECT METRICS SUITE 31

The transition points are easy to identify, in this example there are two transition
points, one in line 4 to 5 when the IF statement begin and other in line 6 to 7 in the

end of IF statement.

e Tangling Ratio [18]: this metric gives an estimation about the tangling on the pro-
gram source code. We can calculate it using the formula:

CDLOC

Tangling Ratio =
angling Ratio T0C

2
The Tangling Ratio of the ’sumvals’ function is o= 0.166, i.e. about 17% of this

code is tangled.

e Concern Impact on LOC: this metric gives us the ratio between the original code
and the code after transformation(Weaver), this allow us to have a first intuition about

the impact of aspects in terms of lines of code, and it is given by the formula:

LOC of original program

C 1 t LOC =
oncern fmpac LOC of transformed program

The range of the results varies from zero to one, where one mean the code is clear of
aspects (the desirable result).

When removed, the identified aspects, as we see in Fig. 3.3, the LOC of ’sumvals’

9
function is 9, with this we calculate the Aspect Impact LOC, which is o= 0.75

e Aspectual Bloat [18] measure the aspects in terms of LOC bloat in the MATLAB
programs, and is calculated by the following formula:

LOC MATLAB - LOC without concerns
LOC of aspects

32 CHAPTER 3. METRICS FOR ASPECT MATLAB

when the result is 1, means that the number of lines of aspect plus the the number of
lines of the MATLAB program without aspects is the same that the number of lines
of the MATLAB program with aspects.

When the the result is bigger then 1, means that the number resulting by the differ-
ence of number of lines of MATLAB programs with and without aspects, is bigger
than the number of lines of aspects, i.e., the same aspects appear more then once in

the same program, like logging in Fig. 3.2.

1 function s = sumvals(start, step, stop)
2 1 = start;

3 disp(i);

4 s =1

5

6 while i < stop

7 1 = ifstep;
8 disp(i);

9 s =15+ 1
10 end

11 end

Figure 3.2: Sumvals function with logging

applying this metrics on the example of the Fig. 3.2, where we have the same disp com-

mand twice in the ’sumvals’ program, we get the following result:

3.4. RESULTS OF METRICS FOR ASPECTS

33

© 00 1O UL W N

function s = sumvals(start, step, stop)
1 = start;
s =1

while i < stop
1 = i+step;
S =58+ 1
end
end

Figure 3.3: "Sumvals’ function without concerns

3.4 Results of Metrics for Aspects

The table 3.1 presents the results of aspect metrics applied to the same programs on the

Chap. 2.

34 CHAPTER 3. METRICS FOR ASPECT MATLAB

Function package | Concern Impact | Tangling Ration | Concern Diffusion over LOC | Aspectual Bloat
fdyn2.m Robotic 0.92 7.00% 1 1.5
ftrans.m Robotic 1 0.00% 0 N/A

gravload.m Robotic 0.71 28.86% 2 2.25

ishomg.m Robotic 1 0.00% 0 N/A
isvec.m Robotic 0.69 39.23% 4 2.25

itorque.m Robotic 1 0.00% 0 N/A

motomanhp.m Robotic 1 0.00% 0 N/A

roty.m Robotic 1 0.00% 0 N/A
standford.m Robotic 0.666 33.33% 2 1

startup.m Robotic 1 0.00% 0 N/A
t2r.m Robotic 0.5 50.00% 4 2
tr2angvec.m Robotic 0.904 4.00% 2 3

tr2diff.m Robotic 0.666 22.22% 2 2.25
tr2jac.m Robotic 1 0.00% 0 N/A
trplot.m Robotic 0.66 26.66% 4 1.67

uninorm.m IMPACTED 0.9577 2.00% 2 1.35
track_sites_errorm | IMPACTED 1 0.00% 0 N/A
load_map_files.m IMPACTED 0.678 7.00% 2 2.33
hybrid.m IMPACTED 1 0.00% 0 N/A
hist_rank.m IMPACTED 1 0.00% 0 N/A
historic_error.m IMPACTED 1 0.00% 0 N/A
get_thresholds.m IMPACTED 0.888 16.00% 3 1
get_retargeting.m | IMPACTED 0.5 50.00% 4 1
get_nominalSite.m | IMPACTED 0.44 22.22% 2 1
fuzzy_trap.m f IMPACTED 0.89 10.52% 2 1
find_pixel_regions.m | IMPACTED 0.933 13.33% 2 1
dist_d.m IMPACTED 1 0.00% 0 N/A
decision_values.m | IMPACTED 1 0.00% 0 N/A
comp_weights.m IMPACTED 0.86 13.33% 2 1
build_regions.m IMPACTED 0.666 7.41% 2 35
build_dmap.m IMPACTED 0.92 15.38% 2 1

Table 3.1: Aspect metrics results

Observing the table 3.1, we see that in only eighteen out of thirty one MATLAB pro-

grams analyzed have aspects (concerns). Analyzing these eighteen programs where aspects
were found, we can see through the Tanging Ratio that the code of the programs, are sig-
nificantly polluted.
Nevertheless, if we look to results of CDLOC, we can see that the numbers of transition
points in these MATLAB programs are not to big, so is obvious that the identified concerns
are very concentrated in the code. A good example is the t2r.m program that has an Tanging
Ratio of 50%, and an CDLOC of 4.

3.5. ASPECTED ORIENTED PROGRAMMING AOP

3.5 Aspected Oriented Programming AOP

35

Having computed the programs in our repository that have aspects, we can now further

analyze them. This analysis consists on verifying which version of the MATLAB program

is better, in terms of quality, but to do this we first have transform these programs into AOP

equivalents, since, there is no automatic tool to perform this "aspectualization" we have

done it manually. Them we apply the metric suite referenced in Chap. 2 in the MATLAB

programs (without concerns) and in the aspects.

Once we have the results of each one, we will analyze, for each metric, if the AO version

of the program is better than the original.

Function package | LOC | #operators | #operands | Voc | PL | CPL | Vol Dif Effort | C.C
fdyn2.m Robotic 4 2 8 10 | 15 26 49.82 | 1.37 68.51 0
gravload.m Robotic 4 1 6 7 16 | 1550 | 4491 | 1.16 52.40 0
isvec.m Robotic 2 1 2 3 3 2 4.75 0.5 2.37 2
standford.m Robotic 2 2 2 4 11 4 22 35 77 0
t2r.m Robotic 2 0 1 1 1 0 0 0 0 2
tr2angvec.m Robotic 2 0 5 5 7 0 16.25 0 0 1
tr2diff.m Robotic 2 4 7 11 | 30 | 27.65 | 103.78 | 6.85 711.65 1
trplot.m Robotic 3 1 2 3 4 2 6.33 0.5 3.16 1
uninorm.m IMPACTED | 26 12 8 20 | 150 | 67.01 | 648.28 | 71.25 | 46190.60 | 0O
load_map_files.m | IMPACTED 3 1 5 6 7 | 11.60 | 18.09 0.5 9.04 1
get_thresholds.m IMPACTED 2 1 2 3 5 2 7.92 0.75 5.94 0
get_retargeting.m | IMPACTED 2 1 2 3 4 2 6.33 0.75 4.75 0
get_nominalSite.m | IMPACTED 3 1 2 3 4 2 6.33 0.75 4.75 0
fuzzy_trap.m IMPACTED 3 1 4 5 9 8 20.89 | 0.87 1 8.28 3
find_pixel_regions.m | IMPACTED 2 1 1 2 2 0 0.5 1 0
comp_weights.m IMPACTED 2 1 1 2 2 0 0.5 1 0
build_regions.m IMPACTED 2 3 3 6 10 | 9.50 | 25.84 2.5 64.62 0
build_dmap.m IMPACTED 1 1 2 3 4 2 6.33 0.75 4.75 0

Table 3.2: Metrics results on Aspects

36 CHAPTER 3. METRICS FOR ASPECT MATLAB

Function package | LOC | #operators | #operands | Voc | PL | CPL Vol Dif Effort | C.C.
fdyn2.m Robotic 7 4 14 18| 54| 61.30| 22517 | 5.42| 1222.38 1
gravload.m Robotic 5 1 20 | 11.60 51.69 1.7 87.88 1
isvec.m Robotic 8 2 17 | 21.65 5388 | 1.71 9238 | 0
standford.m Robotic 5 3 134 | 251.88 | 809.81 | 3.93 | 294364 | O
t2r.m Robotic 4 2 6| 12 10 31.01 2 6203 | 0
tr2angvec.m Robotic 36 8 20 28 | 221 | 110.43 | 1062.42 | 32.2 | 34210.09 | 1
tr2diff.m Robotic 4 5 14| 54| 40.13 | 205.59 | 11.11 | 2284.41 1
tr2jac.m Robotic 4 3 10| 69| 2440 | 22921 | 10.5| 240673 | O
trplot.m Robotic 10 3 11 23| 2875 79.56 3 23870 | 2
uninorm.m IMPACTED | 36 11 14 25251 | 91.35 | 1165.60 | 58.92 | 68687.60 | 8
load_map_files.m IMPACTED | 21 5 15 20| 73| 70.21 | 31550 | 8.16 | 2576.58 0
get_thresholds.m | IMPACTED | 16 4 19 23 | 122 | 88.71 | 551.87| 852 | 470545| O
get_retargeting.m | IMPACTED 6 4 12| 45 32| 161.32 7| 125025 | O
get_nominalSite.m | IMPACTED 6 4 91 21 19.60 66.56 5.2 346.15 0
fuzzy_trap.m IMPACTED | 17 12 13 25 | 114 | 91.12 | 529.39 | 35.07 | 18569.70 | O
find_pixel_regions.m | IMPACTED | 15 7 12 19| 89| 62.67 | 378.06 | 1895 | 716749 | 1
comp_weights.m | IMPACTED | 13 4 9 13| 43| 36.52| 159.11 | 6.44 | 102543 1
build_regions.m IMPACTED | 20 8 19 27| 82|104.71 | 389.90 | 10.73 | 4186.30 | 1
build_dmap.m IMPACTED | 12 4 9 13| 33| 36.52| 122.11 | 5.11 624.14 | 2

Table 3.3: Metrics results of programs without Concerns

Please note we are using real application/library where no logging was performed. As
it is widely known, logging is "the" example of AOSD, and we are convinced that better

results will be achieved in that context.

With the results presented in Tab. 3.2 and Tab. 3.3, we are now able to compare the
original MATLAB programs with its AO version. To do that we will sum, for each metric,
the results of the AO version, i.e., we sum the results obtained for MATLAB programs
without concerns with the results obtained for the aspects, and once we have these values
we will than compare them with the values of Tab. 2.1 and see which of them, original or
AOQ version, has better quality. This analysis will allow us to verify when it is worth the use
of AOP in MATLAB programs.

3.5. ASPECTED ORIENTED PROGRAMMING AOP 37

Function package | LOC | #operators | #operands | Voc | PL CPL Vol Dif Effort | C.C.
fdyn2.m Robotic 11 4 16 20| 69| 8730 | 274.99 6.79 | 1290.89 1
gravload.m Robotic 9 3 11} 36| 27.10 96.60 2.86 140.28 1
isvec.m Robotic 10 2 10| 20| 23.65 58.63 2.21 9475 | 2
standford.m Robotic 6 3 8| 145 | 255.88 | 831.81 743 | 302064 | O
2r.m Robotic 2 7| 13 10 31.01 2 62.03| 2
tr2angvec.m Robotic 38 8 20 28 | 228 | 110.43 | 1078.67 32.2 1 34210.09 | 2
tr2diff.m Robotic 6 15 84| 67.78 | 309.37 | 17.96 | 2996.06 1
trplot.m Robotic 13 3 11 27| 30.75 85.92 35 241.86 1
uninorm.m IMPACTED 62 12 14 26 | 401 | 158.36 | 1813.88 | 130.17 | 114878.2 8
load_map_files.m | IMPACTED | 24 5 16 21| 80| 81.81 | 333.59 8.66 | 2585.62 1
get_thresholds.m | IMPACTED | 18 4 20 24 | 127 | 90.71 | 559.79 927 | 4711.62| 0
get_retargeting.m | IMPACTED 8 4 9 13| 49 34 | 167.65 7.75 1255 0
get_nominalSite.m | IMPACTED 9 4 6 10| 25| 21.60 72.89 5.95 3509 0
fuzzy_trap.m IMPACTED | 19 12 13 25| 123 | 99.12 | 550.28 | 3594 | 1857798 | 3
find_pixel_regions.m | IMPACTED 17 7 12 19| 91 62.67 | 380.06 19 | 7168.49 1
comp_weights.m IMPACTED | 15 4 9 13| 45| 36.52| 161.11 6.94 | 1026.43 1
build_regions.m IMPACTED | 22 9 19 28 | 92| 114.21 4154 | 1323 | 4250.92 1
build_dmap.m IMPACTED | 13 4 9 13| 37| 38.52| 128.44 5.86 628.89 | 2

Table 3.4: Sum of the Tab. 3.2 and Tab. 3.3 (AO version)

3.5.1 Results represented in graphics

To compare the results of Tab 2.1 with the results of Tab. 3.3, we will consider each metric
and present it in an bar chart. This kind of illustration allows to analyze the results for each
metric an each program.

For each chart we will interpreting/analyze the behavior of the values in the both versions
of programs, and try to get any conclusion of where the AOP for MATLAB is a better
approach than the traditional approach for MATLAB programming, i.e, which of the two

versions gives us more quality.

38 CHAPTER 3. METRICS FOR ASPECT MATLAB

70
B Original MatLab
O MatLab + Aspects
60 —
50
40 —
30
20
N I:|I:|I:| I:II:| I:|I] I:| I:|
. ok |
N T O T S5 9 & ¥ QO v O O Q c B 9o a
cmosﬁwaggagg:g_ggcw
> O =z & 2 q & o | T v £ =5 5 = 9 €
ke KZEE S] o T 5 & [T |]
e = 2 = €S a o @ <) |
S % \ Cm'%“-gihl ;|92
S} T I\ DE|9‘9E§E’Q-CIS
h - £ & 2 &£ x g 2 2
(G"‘l_._,| | o O S
2 5 8 o ¢ 2
o 2 o j=
=

Figure 3.4: LOC values of the original MATLAB and the AO version

Fig. 3.4, present the chart of the comparison of the LOC values between the original
MATLAB programs and the AO versions. Looking to the chart we see that in general way,
the use of AOP in MATLAB is beneficial, once that in this case, the worst scenario is when
the LOC value is the same as the original MATLAB . For all the other cases we observe an
gain in the LOC value when we used this approach, translating this to numbers, ten of the
eighteen programs analyzed showed improves for this metric when used the AO versions

of the programs.

3.5. ASPECTED ORIENTED PROGRAMMING AOP 39

B Original MatLab
O MatLab + Aspects

10

fdyn2
isvec

t2r
p_file
gions

trplot
uninorm

tr2zangvec
comp_weight
build_re

build_ma

load_ma
get_nominalsite

get_threshoulds

o N & («2) [o2) K;
L I I I I I |
gravioad [HE——
standford 5
trodiff T
get_retergeting E
fuzzy trap | ——
p |—

find_pixel_region

Figure 3.5: Number of operators of the original MATLAB and the AO version

As it is shown in Fig. 3.5, the chart of the #operators values shows that in average the
use, in terms of #operators, of AO MATLAB version brings no advantage, once the val-
ues in both version of the programs are the same in most cases. Only two of the eighteen
programs presented, the r2r and tr2angvec programs, have some gain when use the AOP

approach.

40 CHAPTER 3. METRICS FOR ASPECT MATLAB

20
B Original MatLab
O MatLab + Aspects

15

fdyn2
isvec

t2r
gions

trplot
uninorm
p_file

tr2zangvec

comp_weight
build_re
build_ma

load_ma
get_nominalsite

get_threshoulds

o o 8
L I I
gravioad |
standford 5
trodiff
get_retergeting [
fuzzy trap |E—
p [EEEE—

find_pixel_region

Figure 3.6: Number of operands of the original MATLAB and the AO version

Fig. 3.6 shows a total balance in the values of #operands in both versions in all pro-
grams. In this case the AOP approach for MATLAB does not changes the quality, in terms
of #operands values, of the originals MATLAB programs.

3.5. ASPECTED ORIENTED PROGRAMMING AOP 41

B Original MatLab
O MatLab + Aspects
25

20
15

10

o (8]
L I
gravioad [EE—
standford E
trodiff
fuzzy trap | —
p [EE—

get_retergeting —

I3 5} 0 = R Q c 2 o
c 9] IS o E = © = 6 5 ¢ ®©
> a 5) e o | > 2] D 5 Re] 1S
ke) o g = £ a ©° © 9] =) I
S c © < c = 2 9 -
S S g @ = _ | = =
= 2 o 2 'cl 2
- ° £ e X E = ®°
o * | Q O 3
o .l - i © 2
- [[T
o o =
=

Figure 3.7: Vocabulary values of the original MATLAB and the AO version

The chart of Vocabulary, Fig. 3.7, shows that in average the quality of both versions of
the programs is the same, in only three programs we can observe some improvement in the
quality in the AO version of the MATLAB program.

The programs are: gravioad, t2r, tr2angvec, and as we can see the improvement is not very

high, only one unit in each program, but enough to enhance the quality.

42 CHAPTER 3. METRICS FOR ASPECT MATLAB

400 — »
B Original MatLab
3 MatlLab + Aspects
300 —
200 —
100 - I]
0 [|[|l] - H[l H [|[| H[I[|l]
N T QO T &S5 9 E B E 0O 9 O O Q c ¥ @ o
I = © Q2 =
S 8 2 5~ 283 3 5% 2 £33 L& o5 g
S s 2 3T 2 5 & £ oo § @ I o 2 o 5
© S & c g g 2 53900
o » N > E| o 2 §E 83 o S 3
g = 5 a g 3
S v ° B - © e
o @ o =
=

Figure 3.8: Program Length values of the original MATLAB and the AO version

In the PL measures we can see that we have all the possibles scenarios, i.e., we have
some cases where the original MATLAB program has best quality, others where the AO
version is better, and for last the cases where the quality is the same in both versions.

The chart, Fig. 3.8 shows that eight programs keep the quality when we pass from the origi-
nal MATLAB program to it AO version, they are: standford, get_retergeting, get_nominalsite,
fuzzy_trap, find_pixel_region, comp_weight, build_regions, and build_map.

Seven of the programs, fdyn2, isvec, t2r, tr2angvec, tr2diff, uninorm, and load_map_file,
shows some improvements in the quality, and only three programs, gravioad, get_thresholds,
and trplot, lose quality when we get the AO version.

But looking for all picture the gains and the losses are minimum, so we can say, once more,

that on average, the quality still the same in both versions.

3.5. ASPECTED ORIENTED PROGRAMMING AOP 43

250 — B Original MatLab

3 MatLab + Aspects

200 —

150 —

100

50 —

isvec
t2r
trplot E]
uninorm
p_file
gions

o
|
gravioad E
=
standford —l
-
trociff [——

fdyn2

tr2angvec

comp_weight E
build_re
build_map 5

load_ma
get_nominalsite

get_retergeting E
fuzzy trap ~[E—

get_threshoulds
find_pixel_region

Figure 3.9: Calculated Program Length values of the original MATLAB and the AO ver-
sion

In the chart of the CPL values we see that, like we see in the chart of CP metric, there
is the three possible cases.
So for this metric we have nine programs,fdyn2, standford, tr2diff,trplot, uninorm, load_map_file,
fuzzy_trap, build_regions, and build_map, that lose some quality with the AO version of
the program. Seven, gravload, isvec, t2r,tr2angvec, get_threshouls, get_retergeting, and
get_nominalsite, have some improvement in quality and only three has the same quality in
the both versions.
Once that some losses of quality are more significative that the gains, we can conclude
that,in term of CPL, there is no benefit is the use of the AOP approach for most of the

programs.

44 CHAPTER 3. METRICS FOR ASPECT MATLAB

Bl Original MatLab
(3 MatLab + Aspects

1500 —
1000 —
N I H
N e) [&] © = (o] = - [0) (2] ()] [0] Qo c = (2] Q
c 8 ¢ 539 ¢35 8 E2 822 E S5 ¢ g
O = > - — T B
S s 2 T o ¥ 5 £ o 3 © w T T B |
& c = E g £ 2 R 5 32D
o % N\ B EI o 2 E N § o |5
h o £ 2 2 & x g 2 2
8 = _l S5 & g 35
o < o B o © e
5 ° o =
&

Figure 3.10: Volume values of the original MATLAB and the AO version

In Fig. 3.10, we can observe that in almost all programs the use of AOP approach is ben-
eficial to the increase of quality, we can see that only two programs, standford and trplot,
contradict this tendency, all the others programs improve its quality with the AO version.

So, in terms of Volume, the AO versions of the programs is the best approach.

3.5. ASPECTED ORIENTED PROGRAMMING AOP 45

60 —
B Original MatLab
O MatLab + Aspects
50
40

10

uninorm

N w
o o o
| | | |
fdyn2 E]
gravioad E
isvec E,
standford b
t2r E
tr2angvec
trciff - [——
trplot E]
p_file [HE—.
get_retergeting E,
fuzzy_trap —
build_ma

comp_weight E,

build_regions 5
p [

load_ma
get_nominalsite

get_threshoulds
find_pixel_region

Figure 3.11: Difficulty values of the original MATLAB and the AO version

In the Difficulty metric presented in Fig. 3.11, we have similar results, being that, nine
programs, fdyn2, isvec, standford, trplot, get_threshouls, get_retergeting, get_nominalsite,
comp_weight, and build_map, has better quality in the original version of the program, and
seven, gravload, t2r, tr2angvec, tr2diff, load_map_file, fuzzy_trap, and find_pixel_region,
has better quality in the AO version.

However, in this case, the gains of use the AO version is greater then the losses, so on

average, we can say that justify the use of AO version, in terms of Difficulty.

46 CHAPTER 3. METRICS FOR ASPECT MATLAB

20000 —
B Original MatLab
O MatLab + Aspects
15000 —
10000 —
5000 —
N T O T &5 O £ B QO O Y o €S B o o
cf 593 eEEsEEES 55 ¢
Z L 2 5 5 Y 5 2 J 3 v g T QT o5
e = s & = o = & =z P
2 g \ Cmﬁ’“-EN‘_I|QE
) - q Delq;QENEQ_I'S
h o £ 2 2 & x g 2 2
o a qQ 3
_045"65*5 o © 2
o 2 o <
=

Figure 3.12: Effort values of the original MATLAB and the AO version

Looking to the Fig. 3.12 , we can see that the use of the AO version of the MATLAB
programs gives more quality for the most of the programs, fourteen of the eighteen, fit is
this case.

So, in terms of Effort, the use of AO version of the programs is a better solution.

3.6. SUMMARY 47

8 —
B Original MatLab
O3 MatLab + Aspects

6 —

4 -

t2r

=
gravload E
|
trodiff [—-—
[
|
|
|
fuzzy_trap E
e
=
=
p [H—

N o © o s O © O O c 2 o
S 8 B 2 S E2z3 22 S5 5 ¢©
& B = & g o 13 g 2 > g 2 €
g22s 29E2J3%8ss0%es b
= 3 E g £ 2 c 5 3 ¢ o
0 N 3E|®QE 2 o |5
h - £ 2 2 X g 2 &
c = _l Q Q 3>
(=
o «' o = | © ©
- 9 o 9 b
)) c
=

Figure 3.13: Graphic of cyclomatic complexity values

In Fig. 3.13, we see the chart of the Cyclomatic Complexity, and here there is no changes
in quality when we use these two different versions of MATLAB programs. So the use of

AO version, in terms of complexity, added nothing to the quality of the original program.

In conclusion and looking for all metrics results, we can say that the use of an AOP

approach for MATLAB programs, gives more quality to the program.

3.6 Summary

In this chapter we presented the aspects for MATLAB , by introducing the aspect language
(DSAL) developed in previous works for the AMADEUS project.

48 CHAPTER 3. METRICS FOR ASPECT MATLAB

In that context, we showed how the modules of aspects organize, the syntax used, and ex-
amples of this modules.

We introduce our aspects metrics suite, describing each one one of them, and applying
them to our running function example (’sumvals’), for an better understanding.

Once presented the metrics, we apply them to the same programs of the Chap. 2. This
allow us to observe in which programs we can find concerns, and with this, create an AO
version of these programs (MATLAB program without concerns + aspect module),in order
to compare, qualitatively, this version with the original one.

For this comparison we applied the metrics presented in Chap. 2 to the MATLAB programs
and to the aspect modules, and then we added the results to get the table results of the AO
version of these programs (MATLAB program without concerns results + aspect module
results).

For this analysis we generate bar charts for each metric, so as to facilitate the comparison
between the two versions of the program.

In the end of the analysis, we concluded that the use of AOP approach, is advantageous,
for the most of the MATLAB programas analyzed.

Chapter 4
Tools

Two tools were developed in this project: a tool to analyze MATLAB code, and other to

analyze the aspect extension of MATLAB.

4.1 Analysis of MATLAB program

The approach to build this two tools is very similarly, both are based in strategic program-
ming. To implement our metrics suite we use the Abstract Syntax Tree (AST), given by
the parser of MATLAB to extract all data necessary to our measures, and also an external
tool. The name of this tool is graph-tool, and like we said in chapter 2, this tool allow us to
calculate three specific measures, the Centrality Betweenness, Page Rank, and the Cyclo-
matic Complexity, the section 4.3 explains how this tool work and how this two measures
are calculated.

The parser that we use to obtain the AST, was developed for Amadeus project in previous
works: it is the first important step to the process of metrics calculation. The Fig. 4.1 show

a data flow diagram that represents the implementation of this tool.

49

50 CHAPTER 4. TOOLS

MatLab Program

MatLab
Grammar —% JavaCC Parser

v

Visual
. A -
7
R CFG

e/
J7 %
e e

CSV file

Figure 4.1: MATLAB analysis process

This scenario covers all the necessary steps to apply all the implemented metrics of a
MATLAB program. The final result of this procedure generates a csv file here the metric

results are stored, furthermore the results can be visualized graphically.

4.1.1 Analysis of MATLAB program in Practice

To better understand this process let us see an real example of a MATLAB program being
analyzed step by step. For this we will consider the sumvals’ functions as is showed in
Fig. 3.3.

e Step 1: parsing the MATLAB program file. The result of this parsing process is the
AST of the ’sumvals’ program. Fig. 4.2 shows us the graphical representation of the
AST for this input.

4.1. ANALYSIS OF MATLAB PROGRAM 51

Start

stop 1

FEE

>}
5 gg& =
Figure 4.2: AST of ’sumvals’program

e Step 2: is the main part of the measure process, it takes the AST as input, resulting of
the step1, and extract all data we need. We extract data which give us metrics like the
LOC or distinct number of operators and the distinct number of operands, and
extract data which are parameters for metrics who are calculated through formulas
as the total number of operators and the total number of operands, which is used
in the Halstead metrics for example.

Once we extract all data we have the results for metrics such as LOC or distinct
number of operators and the parameters to calculate the others, which is pure math-
ematics. The results are returned to the metrics results’(step3).

Besides the AST is also used, as we said above, not only to extraction of data but also

52

CHAPTER 4. TOOLS

to generate the CFG,Fig. 4.3 (remember that the numbers correspond to the lines of
code, just like Fig. 2.1), necessary to use by the graph-tool. Once again this is made
through the strategic-based programming, and the CFG generated is represented in
dot format.

The CFG resulting is loaded by the graph-tool module, and the remain metrics (Cen-
trality Betweenness, Page Rank, and Cyclomatic Complexity) are calculated and also

returned to the 'metrics results’.

Figure 4.3: CFG of ’sumvals’ function

e step3: is the *metrics results’ step which receive all the metrics results and treat them

in order to be stored in an csv file.

4.2. ANALYSIS OF ASPECT MATLAB CODE IN THE "WEAVING’ PROCESS 53
Name | LOC | #operators | #operands | Voc | PL | CPL | Volume | Difficulty | Effort | C.C. | B.C. | PR
sumvals 9 3 5 8 | 24 | 16.36 72 4.8 33560 | 1 0.07 | 0.03

Table 4.1: Final results

4.2 Analysis of Aspect MATLAB code in the ’weaving’

process

This second tool is very similarly to the first, the difference is the aspects metrics imple-

mentation. Here we made use of all metrics developed in this project, MATLAB metrics

and aspect-MatLab metrics.

With this tool we can measure a MATLAB program when it will be *weaved’,i.e, in the

weaver process we measure the original MATLAB program, measure the aspect to be im-

plemented in the original MATLAB program, and than measure the final product of the

weaver which is the new MATLAB program (original MATLAB program + aspect).

This allow us compare the original MATLAB program and the aspect with *weaved” MAT-

LAB program, in order to understand the advantages or disadvantages of the use of aspects
in MATLAB programs.

the Fig. 4.4 show the data flow diagram of this implementation:

54 CHAPTER 4. TOOLS

MatLab Program Aspect-MatLab

= AntrrP
MatLab JavaCC Parser < Grammar
Grammar

v v
B < A >] N (i)
v ooev v

s o R =
Q0

v

Metrics
Calculation

Metrics Results.

Graph-tool
| Strategic-Based Weaver i

v

B <A\
v <

—— <} | WewMata Program

JavaCC Parser

B < A - =

Metrics
Calculation

{> 4_ —_—

v
oo]

Figure 4.4: MATLAB ’weaved’ analysis process

0—0
=i

|
©

/
O

4.2. ANALYSIS OF ASPECT MATLAB CODE IN THE "WEAVING’ PROCESS 55

4.2.1 Analysis of MATLAB program weaved’ in Practice

Let’s take the same example of the section 4.1, the ’sumvals’ function, and see how this
process work at each stage in the weaver process, and for this consider the following aspect

necessary to the process:

aspect sumvals_ test
select: within(sumvals) && read(stop)
apply: if(stop < start)
disp(’Start bigger then Stop’)
end :: execute before

end

The aspect ’sumvals_test” will test if the variable stop is smaller then variable start, and
will be introduced in the ’sumvals’ program when the variable stop is read. The final pro-

gram of the weaver process is showed in Fig. 1.2.

Now let’s see the description of the measurement process in the weaver process, and

let’s do it describing it step by step, like in subsection 4.1.1:

e Stepl: consist in measure the original MATLAB program, and this process is exactly

the same as described in subsection 4.1.1.

e Step2: is apply the metrics on the aspect script, and this process is similar to the
measurement of the original MATLAB program in stepl.
Here we use the the Antlr paser for the aspect language(DSAL) that we already see in
Chap. 3, and the result is the AST necessary for the rest of the measurement process.
But before applying the the Antlr parser to the aspect script, we remove the syntactic
sugar, and left only the MATLAB code, only then we apply the Antlr parser, this
allow a more easier analyze of the AST resulting from parsing.
After getting the AST the procedure is the same as Stepl, i.e., we get from AST all
the data we need from the metrics, that is the values for ’direct metrics’, and the pa-
rameters for the metrics that need them for its calculation. The only difference is that

the graph-tool is not use, which means that we don’t a apply the metrics arising from

56 CHAPTER 4. TOOLS

it which are the Centrality Betweenness, Page Rank, and Cyclomatic complexity.
The reason is very simple, the technique developed for this metrics calculation needs
a CGF, that for the MATLAB code in the aspects is not reachable. To Calculate this
metrics, is necessary others approaches, but this is out of the context of this project.

e Step:3 is the analyze of the transformed MATLAB program, and this is done by ap-
plying the metrics for MATLAB once more, and the metrics for aspect-MATLABThe
metrics for aspect-MATLAB is made manually, once we is need some parameters
that are not automatized, like the counting of transitions points. The results are stored
in a CSV file.

The analyze of the metrics for this three entities for see the pros and cons of the use of

aspects in a MATLAB program is done manually.

4.3 Graph-tool

Graph-tool is an efficient python module for manipulation and statistical analysis of graph(a.k.a.
networks). Contrary to most other python modules with similar functionality, the core data
structures and algorithms are implemented in C++. making extensive use of metaprogram-
ming, based heavily on the boost graph library. This confers a level of performance which
is comparable, both in memory usage and computation time, to that of pure C++ library.
With graph-tool we can easily create directed or undirected graphs and manipulate them
in an arbitrary fashion, using the convenience and expressiveness of the python language.
When a graph is created or loaded is possible associate arbitrary information to the vertices,
edges or even the graph itself by, means of property maps.

This python module enables filter vertices and / or edges "on the fly", such that they appear
to have been removed from the graph but can be easily recovered.

The graphs can loaded, or drawn using a variety of algorithms and output formats, includ-
ing to the screen, graph-tool makes a good use of graphviz package, giving thus a great
visualization support.

There are two interesting features in graph-tool, one is capability of collect all sorts of

statistics data, like degree / property histogram, combined degree / property histogram,

4.3. GRAPH-TOOL 57

vertex-vertex correlations, associativity, average vertex-vertex shortest distance and many
others.

The other feature is related to the calculation of clustering coefficients, motif statistics,
communities, centrality measures, etc.

Is this capability of calculate centrality measures who allow us calculate the Betweenness
Centrality and the Page Rank measures of our metrics suite. To cyclomatic complexity we
easily manipulate the graph in order to obtain its parameters, which is the number of edges
and the number of nodes.

4.3.1 Betweenness Centrality

To calculate the Betweenness Centrality with graph-tool, its only necessary execute the

follow command :

graph_tool.centrality.betweenness(g, vprop = None, eprop = None, weight = None,

norm = True)

which give us the betweenness centrality for each vertex and edge.

For better understand what the parameters of the command means let’s see one by one

its meaning.

e g is the graph we wont to use.

e vprop is the vertex property map to store the vertex betweenness values, this param-

eter is optional (default : None).

e eprop is the edge property map to store the edge betweenness values, this parameter

is optional (default : None).

e weight is the edge property map corresponding to the weight value of each edge, this
parameter is optional (default : None).

58

CHAPTER 4. TOOLS

e norm is boolean parameter to decide if the betweenness values should be normalize

or not, this is a parameter optional (default : None)

Typically this command is executed as follows:

graph_tool.centrality.betweenness(g)

in Fig. 4.5 we have a example of how to calculate the Betweenness Centrality values of

a graph.

[0.04889806
0.04490836
0.03771112
0.05409258
0.0494527
0.03305169
0.06024004
0.01742486

0.00629595
0.02092959
0.00995364
0.09659583
0.02144698
0.02348452
0.00430209

>>> from numpy.random import poisson, seed

>>> seed(42)

>>> g = gt.random_graph(100, lambda: (poisson(3), poisson(3)))
~ vb, eb = gt.betweenness(g)

~ = print vb.a

0. 0.0466751 0.01072612 0.10288046 0.00563973 0.03850413

0. 0.01044655 0.04415432 0.04447525]

0.07181892 0.0256799 0.02885791 0. 0.05060927
0.03763462 0.02033383 0.03163202 0.02641248 0.03171598
0.02194663 0.0374907 0.01072567 0. 0.03079281
0.00163434 0.00051978 0.01045902 0. 0.00796784
0.00647576 0.03708252 0.00304503 0.0663657 0.03903257
0. 0.07787098 0.03938866 0.08577116 0.020183
0.01004935 0.0443127 0.06397736 0. 0.00363548
0.03216543 0.01918144 0.02059159 0. 0.01476213

0.01292137 0.0537963 0.04454985 0.01227018 0.00729488
0.02308238 0.00712703 0.02193975 0.03823342 0.
0.04023839 0.0312708 0.0111312 0.00228516 O.
0.01327402 0.05792071 0.08606828 0.0143541 0.00221604
0. 0.04023879 0.00715758 0. 0.

0.00760922 0.01486521 0.08132792 0.0382674 0.03078318
0.01772787 0.02280666 0.0373011 0.03077511 0.02871265

Figure 4.5:

Example of command execution that calculates Betweenness Centrality

and in the detached part in gray there is the execution of the command only with param-

eter g (graph), since the others parameter are optionals, and the print of vertex betweenness

4.3. GRAPH-TOOL 59

values, despite both vertex and edge betweenness values are calculated.

Once the result is given in array format, the solution to get the maximum values of this

array was implement a For loop as is showed in Fig. 4.6

max = 0
for fvl in [vb.a
if max < vl:
max = vl

Figure 4.6: For loop to get the maximum value of the vertex betweenness values

basically, what this loop do is see for every value (vl) of the array (vb.a) exists one great

than max that has is initial value equal to zero.

4.3.2 Page Rank

Similarly to the Betweenness, we need to execute a simple command line to get the page
rank values of the vertex of the graph, the command is executed as follow:

graph_tool.centrality.pagerank(g, damping = 0.85, pers = None, weight = None, prop

= None, epsilon = le-06, max_iter = None, ret_iter = False)

Like the Betweenness command, this has optional parameters with default values, lets

look the meaning of each one:

e g is the graph we wont to use.

e damping is a floating value and represent the dumping factor, this parameter is op-
tional (default : 0.85).

e pers is the personalization vector, if omitted, a constant value of % will be used, this

parameter is optional (default : None).

60 CHAPTER 4. TOOLS

o weight is the edge weight, if omitted a constant value 1 will be used, this parameter

is optional (default : None).

e prop is the vertex property map to store the page rank values, this parameter is op-
tional (default : None).

e epsilon is a floating value which give us the convergence condition, the iteration will
stop if the total delta of all vertices are bellow this value, this parameter is optional
(default : 1e-06).

e max_iter is a int value, if supplied, this will limited the total number of iterations,

this parameter is optional (default : None).

e ret_iter is a boolean parameter, if true the the total number of iterations is also re-

turned, this parameter is optional (default : False).

Typically this command is executed like the betweenness command, i.e. only with g

parameter :

graph_tool.centrality.pagerank(g)

In Fig. 4.7 we have a example of the execution of this centrality measure on a graph.

in gray we have the execution of the command only with g parameter, and the printer
of the values in array format, so like in the betweenness array values, is necessary execute

a loop to extract the maximum value, as is showed in Fig. 4.8 .

max = 0
for (vl in [Pl
if max < vl:
max = vl

Figure 4.8: For loop to get the maximum value of the vertex Page Rank values

4.3. GRAPH-TOOL

61

>>> from numpy.random import random, poisson, seed
>>> seed(42)
>>> g = gt.random_ graph(100, lambda: (poisson(3), poisson(3)))

- pr = gt.pagerank(g)

> print pr.a

[0.00865316
0.00550065
0.00508731
0.0057385
0.00698342
0.00460646
0.00933103
0.00594069
0.00385394

0.00402607

0.00856838
0.00292034
0.00676183
0.00553866
0.00399605
0.00249869
0.01004638

0.0054067 0.00406312 0.00426668 0.0015

0.00936397
0.01020047
0.00621745
0.00206302
0.00994648
0.00301154
0.00884372
0.00672702
0.00451133
0.00280517
0.00479769
0.00695336
0.00486233
0.00399605
0.00684919
0.00331612

0.00347917
0.00562247
0.001755
0.01094466
0.01005248
0.00264951
0.00453417
0.00258411
0.00480966
0.00280563
0.00552694
0.01023352
0.0078653
0.00881571
0.00241374
0.00926359

0.00991696
0.00731864 0.00689843 0.00286274
0.00584915 0.02457086 0.00438568
0.0045073 0.0015 0.00225167
0.001925 0.00710093 0.00519877
0.00904629 0.00676221 0.00789208
0.00842812 0.0015 0.00191034
0.00388987 0.00317433 0.0086067
0.01468262 0.00454 0.00381159
0.00811557 0.00571949 0.00317433
0.00906324 0.00614421 0.0015
0.00604799 0.0115922 0.0015
0.01737541 0.00451443 0.00197688
0.00867599 0.01248092 0.0015
0.00638008 0.01056944 0.00353724
0.01061397 0.00673569 0.00590937
0.00460809]

Figure 4.7: Example of command execution that calculates Page Rank

which is similarly to the Fig. 4.6, the only difference is the name of array, and with this

the maximum value of page rank values is returned.

4.3.3 Cyclomatic Complexity

As we see before the Cyclomatic Complexity of a graph is give by the formula £ — N + p
where E is the number of edge of the graph, the N is the the number of nodes, and p is the
the number of connected components.

So the features of graph-tool allows to get the first two parameters, the number of edges
and the number of nodes, as we are evaluating CFG of MATLAB programs, all the com-

ponents of the graph are connected, so the variable p assume a constant value of one.

62 CHAPTER 4. TOOLS

In order to obtain the number of edges and the number node, its only necessary two
simple loops, as we see in Fig. 4.9 . The strategic adopted, once the graph-tool, don’t give
us directly this values, is run each edge/node, and keep it on an array, in the end we only

need the size of the array, as is showed in Fig. 4.10 ,

for v in g.vertices():
vlist.append(v)

for e in g.edges():
elist.append(e)

Figure 4.9: Loops to obtain the number of edges and the number of nodes

Cyclomatic Complexity = len(elist) - len(vlist) + 1

Figure 4.10: Cyclomatic Complexity Calculation

4.4 Summary

In this chapter we introduced two tools for measurement of quality of MATLAB pro-
grams.

The first tool is used to measure MATLAB programs applying the metrics presented in
Chap. 2, and saving the results in an CSV file. The second one, use the same metrics but is
used for the comparison qualitative of traditional MATLAB program, with it AO version.
For the better understanding of the tools we presented the data flow diagrams of both tools,
and explain step, by step its procedure.

We also introduced the graph-toll, which an external tool that we use in our tools to help in
the calculation in some of the metrics, presenting some of its features directly related with

our metrics.

Chapter 5
Conclusions

This thesis presented a set of program and aspect metrics to assess the quality of MATLAB

programs, and two tool that automate the process of measuring.

With this we can assess quality to a MATLAB program and compare the quality of a
traditional MATLAB program with its AO version, and conclude which of both approaches

gives more assurance in terms of quality for that program.

The programs that we used for this study were, generic MATLAB programs belonging
to the repository of AMADEUS project (Robotic library), and specific MATLAB programs
belonging to an industrial application (IMPACTED) [12,25,28]. The total number of MAT-
L AB programs used was 31, in which 18 we found concerns, that means that of the 31, only
in 18 we used the AOP approach.

To classify a MATLAB program we used a classification system by star(x), and for each
program example presented we applied the metrics suite, and then based in the results we
proceed to its classification. In MATLAB programs with high LOC number, their complex-
ity, for almost all cases, were higher too. However for the MATLAB program presented,
the worst case was the uninorm program from the industrial application with a classification
of two stars, this program has 71 lines of code, and is the program presented with highest
LOC number. All the others MATLAB programs presented had higher classification, be-
ing that the average classification is four stars, which means that the MATLAB programs

presented have a quite good quality.

Using the same approach we classify the AO versions of the 18 MATLAB programs,

and than compare the results with the traditional version. With this we got the difference

63

64 CHAPTER 5. CONCLUSIONS

between quality of both programs, i.e., using this metrics we can understand when we have
advantage to the use of the AO version of an MATLAB program instead of the traditional

one.

For the examples presented in this thesis, we concluded that for the most of them, the
use of the AOP approach gives more quality than the traditional one. When comparing, the
results of the metrics applied to both version of MATLAB programs, we can verify that,
for most cases, the AOP approach has more advantage than the traditional version. For
example, we saw that for LOC metric the most of results obtained shows better results for
the AO version of the programs, and this scenario is the same when we look to the results
of metrics like the Volume, Effort, or Difficulty.

The use of these two different types of MATLAB programs, generic and specialize, al-
lowed us too, to conclude that the generic programs have more quality than the specific
ones, once, to specify a program, verification is used more frequently (if statements), this

increase the complexity of the program and reduces its quality.

5.1 Future Work

Future work around the tools developed for this thesis, and others developed in previous
work for the AMADEUS project, includes implementation of new metrics for programs
and aspects . This will allow us reinforce the asses of quality, and expose more detail the
aspects on MATLAB programs, in order to understand if they are an asset or not.

In the future, an automatization of the aspects metrics will allow the automatic results and
classification for each MATLAB program.

An Aspect-Mining study can use this tool for its goal, once that asses to quality for MAT-
LAB programs is one of the steps necessary to identify aspects(concerns) on a MATLAB

program.

Bibliography

[1]

(2]

[3]

[4]

[5]
[6]

[7]

[8]

A. Albrecht. Measuring Application Development Productivity. In I. B. M. Press,
editor, IBM Application Development Symp., pages 83-92, Oct. 1979.

E. Arisholm, L. C. Briand, and A. Foyen. Dynamic coupling measurement for object-
oriented software. IEEE Trans. Softw. Eng., 30:491-506, August 2004.

T. Aslam, J. Doherty, A. Dubrau, and L. Hendren. Aspectmatlab: an aspect-oriented
scientific programming language. In Proceedings of the 9th International Conference
on Aspect-Oriented Software Development, AOSD 10, pages 181-192, New York,
NY, USA, 2010. ACM.

T. T. Bartolomei, A. Garcia, C. Sant’Anna, and E. Figueiredo. Towards a unified
coupling framework for measuring aspect-oriented programs. In Proceedings of the
3rd international workshop on Software quality assurance, SOQUA ’06, pages 46—
53, New York, NY, USA, 2006. ACM.

B. W. Boehm. Software Engineering Economics. Prentice Hall, Nov. 1981.

L. C. Briand, J. W. Daly, and J. K. Wiist. A unified framework for coupling mea-
surement in object-oriented systems. IEEE Trans. Softw. Eng., 25:91-121, January
1999.

J. Cardoso, P. Diniz, M. P. Monteiro, J. M. Fernandes, and J. Saraiva. A domain-
specific aspect language for transforming MATLAB programs. In Fifth Workshop on
Domain-Specific Aspect Languages, March 2010.

J. Cardoso, J. Fernandes, and M. Monteiro. Adding aspect-oriented features to matlab.
In workshop on Software Engineering Properties of Languages and Aspect Technolo-
gies (SPLAT! 2006), March 2006.

65

66 BIBLIOGRAPHY

[9] M. Chevalier-Boisvert, L. Hendren, and C. Verbrugge. Optimizing matlab through
just-in-time specialization. In R. Gupta, editor, CC, volume 6011 of Lecture Notes in

Computer Science, pages 46—65. Springer, 2010.

[10] S. Chidamber and C. Kemerer. A metrics suite for object oriented design. IEEE
Transactions on Software Engineering, 20:476—493, 1994.

[11] T. DeMarco. Controlling Software Projects: Management, Measurement, and Esti-
mates. Prentice Hall. Prentice Hall PTR Upper Saddle River, 1986.

[12] T. P. R. R. J. Devouassoux and S. Reynaud. Dynamic ranking algorithm for land-
ing site selection. [Int. Conference on Information Processing and Management of
Uncertainty (IPMUOS), 2008.

[13] N. E. Fenton. Software Metrics: A Rigorous Approach. Chapman & Hall, Ltd.,
London, UK, UK, 1991.

[14] N. E. Fenton and S. L. Pfleeger. Software Metrics - A Rigorous and Practical Ap-
proach. PWS, 1998.

[15] L. C. Freeman. A set of measures of centrality based on betweenness. Technical

report, Lehigh university, 1977.

[16] T. Gilb. Principles of software engineering management. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1988.

[17] M. H. Halstead. Elements of Software Science (Operating and programming systems
series). Elsevier Science Inc., New York, NY, USA, 1977.

[18] C. V. Lopes, C. V. Lopes, G. Kiczales, and G. Kiczales. D: A language framework

for distributed programming. Technical report, 1997.

[19] C. V. Lopes, C. V. Lopes, and C. V. Lopes. Aspect-oriented programming: An histor-

ical perspective (what’s in a name?), 2002.
[20] H. N. R. Macedo. A strategic-based weaver for aspect-matlab, 2010.

[21] P. M. R. Martins. A domain specific aspect language for matlab, 2010.

BIBLIOGRAPHY 67

[22] T.J. McCabe. A complexity measure. In Proceedings of the 2nd international confer-
ence on Software engineering, ICSE *76, pages 407—, Los Alamitos, CA, USA, 1976.
IEEE Computer Society Press.

[23] S. Narayanan. The betweenness centrality of biological networks, 2005.

[24] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking:
Bringing order to the web. Technical Report 1999-66, Stanford InfoLLab, November
1999. Previous number = SIDL-WP-1999-0120.

[25] T. Pais and R. A. Ribeiro. Contributions to dynamic multicriteria decision making
models. Proceedings of the International Fuzzy Systems Association World Congress
and European Society for Fuzzy logic and technology Conference (IFSA-EUSFLAT
2009), pages : 719-724, 2009.

[26] J. Peckhan and S. J. Lloyd. Practicing Software Engineering in 21st century. IRM
Press, 2003.

[27] L. H. Putnam. A general empirical solution to the macro software sizing and estimat-
ing problem. IEEE Trans. Softw. Eng., 4:345-361, July 1978.

[28] J. D. S. R. G. J. R. Ribeiro and T. C. Pais. Hazard avoidance developments for plan-

etary exploration. 7th International ESA Conference on Guidance, Navigation and
Control Systems, 2008.

[29] T. E. Robert E. Filman. Aspect- Oriented Software Development. Addison-Wesley,
Boston, 2005.

[30] C. Sant’anna, A. Garcia, C. Chavez, C. Lucena, and A. v. von Staa. On the reuse and
maintenance of aspect-oriented software: An assessment framework. In Proceedings

XVII Brazilian Symposium on Software Engineering, 2003.

[31] C. Symons. Function point analysis: Difficulties and improvements. /EEE Transac-
tions on Software Engineering, 14:2—11, 1988.

[32] M. Takahashi and Y. Kamayachi. An empirical study of a model for program error
prediction. IEEE Transactions on Software Engineering, 15:82—-86, 1989.

[33] J. Zhao. Towards a metrics suite for aspect-oriented software. Technical report, In-

formation Processing Society of Japan (IPSJ, 2002.

68 BIBLIOGRAPHY

[34] H. Zuse. Software complexity: measures and methods. Walter de Gruyter & Co.,
Hawthorne, NJ, USA, 1991.

	Resumo
	Abstract
	Contents
	List of Figures
	List of Tables

	Introduction
	The MATLAB Programming Language
	Introduction to MATLAB

	Metrics
	Contributions
	Aspect - MATLAB
	Software Metrics
	Aspect-Oriented Metrics

	Organization

	Metrics for MATLAB
	Metrics Suite
	Metrics for quality of MATLAB code
	Quality Model for MATLAB Programs
	Summary

	Metrics for Aspect MatLab
	Domain Specific Aspects Language (DSAL)
	Organization of an Aspect Module
	Aspect Metrics Suite
	Results of Metrics for Aspects
	Aspected Oriented Programming AOP
	Results represented in graphics

	Summary

	Tools
	Analysis of MATLAB program
	Analysis of MATLAB program in Practice

	Analysis of Aspect MATLAB code in the 'weaving' process
	Analysis of MATLAB program 'weaved' in Practice

	Graph-tool
	Betweenness Centrality
	Page Rank
	Cyclomatic Complexity

	Summary

	Conclusions
	Future Work

	References

