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tober 2005)ON THE WAITING TIME TO ESCAPEMARIA CONCEIC� ~AO SERRA,� Chalmers University of Te
hnologyAbstra
tThe mathemati
al model we 
onsider here is a de
omposable Galton-Watsonpro
ess with two types of individuals, 0 and 1. Individuals of type 0 aresuper
riti
al and 
an only produ
e individuals of type 0, whereas individualsof type 1 are sub
riti
al and 
an produ
e individuals of both types. The aimof this paper is to study the properties of the waiting time to es
ape, i.e. thetime it takes to produ
e a type 0 individual that es
apes extin
tion when thepro
ess starts with a type 1 individual. With a view towards appli
ations, weprovide examples of populations in biologi
al and medi
al 
ontexts that 
an besuitably modeled by su
h pro
esses.Keywords: De
omposable Galton-Watson bran
hing pro
esses; probabilitygenerating fun
tions2000 Mathemati
s Subje
t Classi�
ation: Primary 60J85Se
ondary 60J801. Introdu
tionIn many biologi
al and medi
al 
ontexts we �nd populations that, due to a smallreprodu
tive ratio of the individuals, will get extin
t after some time. Yet, some-times 
hanges o

ur during the reprodu
tion pro
ess that lead to an in
rease of thereprodu
tive ratio, making it possible for the population to es
ape extin
tion. In thiswork we use the theory of bran
hing pro
esses to model the evolution of this kind ofpopulations.Can
er 
ells submitted to 
hemotherapy are an example of su
h populations. Infa
t, when submitted to 
hemotherapy, the 
apa
ity of division of the 
ells is redu
ed,hopefully leading to the extin
tion of tumour 
ells. Yet mutations may lead to another� Postal address: Department of Mathemati
al Statisti
s, Chalmers University of Te
hnology,SE-412 96 G�oteborg, Sweden 1
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ei�
~aokind of 
ells that are resistant to the 
hemotherapy. Thus, the population of this newtype of 
ells has a larger reprodu
tive ratio and 
an es
ape extin
tion.Another example 
an be found in epidemi
s like HIV or SARS. Imagine a virus of onehost spe
ies that is transferred to another host spe
ies where it has a small reprodu
tivemean and, therefore, the extin
tion of its lineage is 
ertain. Yet, mutations o

urringduring the reprodu
tion pro
ess 
an lead to a virus whi
h is 
apable of initiating anepidemi
 in the new host spe
ies.The goal of this arti
le is to use a two-type Galton-Watson bran
hing pro
esses(G.W.B.P.) to study properties of the populations des
ribed above. We assume thatthe pro
ess starts with just one sub
riti
al individual that gives birth to individuals ofthe same type but, through mutation, her des
endents 
an be
ome super
riti
al andtherefore 
apable of initiating a population that has a positive probability of es
apingextin
tion.In Se
tion 2 we introdu
e the model, the main reprodu
tion parameters of thepro
ess, and give some theoreti
al and applied referen
es.Se
tion 3 
ontains the main results and proofs. Based on probability generatingfun
tions, we derive properties of the distribution of the waiting time to produ
e anindividual that es
apes extin
tion. We prove that it has a point mass at 1, 
omputethe tail probabilities and its expe
tation (
onditioned on being �nite). We also showthat, in the long run, the population size of this pro
ess grows as the one of a single-typeG.W.B.P., with a delay. 2. Des
ription of the modelConsider a two-type G.W.B.P. f(Z(0)n ; Z(1)n ); n 2 N0g, where Z(0)n and Z(1)n denotethe number of individuals of type 0 and of type 1, respe
tively, in the nth genera-tion. Suppose that individuals of type 1 are sub
riti
al, i.e. have reprodu
tion mean0 < m < 1 and that ea
h one of its des
endents 
an mutate, independently of ea
hother, to type 0 with probability 0 < u < 1. Individuals of type 0 are super
riti
al,i.e. have reprodu
tion mean 1 < m0 <1 and there is no ba
kward mutation. For this



On the waiting time to es
ape 3parti
ular two-type G.W.B.P., the �rst moment matrix is of the formA = 24 m0 0mu m(1� u) 35 :Unless stated otherwise, we assume that the pro
ess starts with just one individual oftype 1, i.e. Z(0)0 = 0; Z(1)0 = 1. The probability generating fun
tion (p.g.f.) of thereprodu
tion law of type i individuals will be denoted by fi, i 2 f0; 1g, and the jointp.g.f. of �Z(0)1 ; Z(1)1 � is given byF (s0; s1) = E �sZ(0)10 sZ(1)11 �= 1Xk=0 p(1)k kXj=0�kj�sj0uj sk�j1 (1� u)k�j= f1(s0u+ (1� u)s1); (s0; s1) 2 [0; 1℄2; (2.1)where fp(1)k ; k 2 N0g represents the reprodu
tion law of type 1 individuals.Bran
hing pro
esses have been intensively studied during the last de
ades; 
lassi
alreferen
es are the books of Harris (1963), Athreya and Ney (1972), Jagers (1975)and Mode (1971). For re
ent books, with emphasis on appli
ations, see Axelrod andKimmel (2002) and also Ha

ou, Jagers and Vatutin (2005). For a ni
e example on howbran
hing pro
esses 
an be used to solve important problems in biology and medi
ine,the reader should take a look at the papers of Iwasa, Mi
hor and Nowak (2003, 2004).3. Main results3.1. Number of mutants and the probability of extin
tionConsider the sequen
e of random variables fIn; n 2 N0g, with In being the totalnumber of mutants produ
ed until generation n (in
luded), and let I be the randomvariable that represents the number of mutants in the whole pro
ess. By mutant wemean an individual of type 0 whose mother is of type 1.It is obvious that the sequen
e In 
onverges pointwise to random variable I . The�rst theorem of this paper uses this 
onvergen
e to establish a fun
tional equation forthe p.g.f. of I , denoted by fI .
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ei�
~aoTheorem 3.1. The p.g.f. of I satis�es the following fun
tional equationfI(s) = f1(us+ (1� u)fI(s)); (3.1)for all s 2 [0; 1℄.Proof. First we establish a re
ursive relation for the p.g.f.'s of the random variablesIn, denoted by fIn .fIn(s) = E �sIn� = E hE hsIn jZ(0)1 ; Z(1)1 ii= E �E �sZ(0)1 +PZ(1)1i=1 Iin�1 jZ(0)1 ; Z(1)1 ��= E �sZ(0)1 �E �sIn�1��Z(1)1 �= F (s; fIn�1(s))= f1(su+ (1� u)fIn�1(s)); 8n � 1; (3.2)where the I in�1 are i.i.d. 
opies of the random variable In�1, the fun
tion F was de�nedin (2:1) and fI0(s) = 1.Taking the limit in relation (3:2) we obtain the fun
tional equation (3:1). �We now pro
eed to determine the probability of extin
tion. Using the followingnotation: q0 = P [Z(0)n = Z(1)n = 0; for some n � 1jZ(0)0 = 1; Z(1)0 = 0℄and q1 = P [Z(0)n = Z(1)n = 0; for some n � 1jZ(0)0 = 0; Z(1)0 = 1℄;it follows, from the 
lassi
al result on extin
tion of bran
hing pro
esses, that q0 is thesmallest root of equation q0 = f0(q0) (3.3)in the interval [0; 1℄. To determine q1, noti
e that extin
tion of the pro
ess o

urs ifand only if all the super
riti
al single-type G.W.B.P. starting from the mutants dieout. Sin
e there are I su
h pro
esses, thenq1 = E[qI0 ℄ = fI(q0): (3.4)Obtaining expli
it expressions for q1 is not always possible and therefore approxi-mations are ne
essary for appli
ation purposes. Assuming small mutation rate u, the



On the waiting time to es
ape 5authors of [6℄ and [7℄ provide these approximations for parti
ular reprodu
tion laws,namely Poisson and geometri
 distribution. Their results extend to an even more
omplex s
heme of mutations leading to bran
hing pro
esses with more than two typesof individuals.3.2. Waiting time to produ
e a su

essful mutantConsider the random variable T that represents the time to es
ape, i.e. the �rstgeneration where a su

essful mutant was produ
ed. By su

essful mutant we mean amutant that was able to start a single-type G.W.B.P. that es
aped extin
tion. Thisvariable assumes values in the set f1; 2; : : : ;1g, with T = 1 if no su

essful mutantwas produ
ed.Theorem 3.2. The distribution of T satis�es the following:(i) P [T > k℄ = fIk (q0); for all k � 0;(ii) P [T =1℄ = q1;(iii) E[T jT <1℄ =P1k=0 fIk (q0)�q11�q1Proof. To prove (i), observe that T > k means that all Ik mutants were unsu

es-sful. Therefore P [T > k℄ = E[qIk0 ℄ = fIk(q0):To prove (ii), observe that (T > k)k�0 is a non-in
reasing sequen
e of events andP [T =1℄ = P � 1\k=0 (T > k)� = limk!1P [T > k℄ = limk!1 fIk (q0) = fI(q0) = q1:To prove (iii), observe that T > 0 and thereforeE[T jT <1℄ = 1Xk=0 P [T > k; T <1℄P [T <1℄= 1Xk=0 P [T <1℄� P [T � k℄1� q1= 1Xk=0 fIk(q0)� fI(q0)1� q1with the fIk de�ned re
ursively by (3:2) in the proof of Theorem 3.1. �A similar problem was 
onsidered in [3℄ where a single-type G.W.B.P. with immi-gration in the state 0 is used to model the re-population of an environment. The idea
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ei�
~aois the following. Consider a population starting with a super
riti
al individual and letit grow a

ording to a G.W.B.P.. If extin
tion o

urs at time t then immigration takespla
e immediately after, i.e., one individual of the same kind is introdu
ed and a newpro
ess, i.i.d. with the �rst one, restarts. Among others results, the authors deriveproperties of the last instant of immigration, i.e. of the generation where an immigrantthat started a pro
ess that es
aped extin
tion was introdu
ed.In the appli
ations we 
onsider, the mutants appear at random times as des
endentsof the sub
riti
al individuals and therefore the model des
ribed above does not apply.3.3. Comparison with a single-type super
riti
al G.W.B.P.In this se
tion we prove a result that will allow us to 
ompare the limit behavior ofthe sequen
e Z(0)n with the limit behavior of a single-type super
riti
al G.W.B.P..First we re
all a result on single-type G.W.B.P.. The proof 
an be found in any ofthe 
lassi
al books referred in Se
tion 2.Theorem 3.3. Let fYn; n 2 N0g be a single-type super
riti
al G.W.B.P. with repro-du
tion law fp(0)k ; k 2 N0g and suppose Y0 = 1. If1Xk=0k log k p(0)k <1 (3.5)then Yn�n !W a.s. and in L1where � = 1Pk=0k p(0)k and E[W ℄ = 1: Furthermore, the Lapla
e transform of W , �W ,satis�es �W (�s) = f0(�W (s)); s � 0:Our result is the following.Theorem 3.4. If the reprodu
tion law of type 0 individuals satis�es 
ondition (3:5),then Z(0)nmn0 ! U a.s. and in L1with E[U ℄ = umm0�m(1�u) < 1. Furthermore, the Lapla
e transform of U , �U , satis�esthe fun
tional equation �U (m0s) = f1(u�W (s) + (1� u)�U (s))
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ape 7where �W is as in Theorem 3.3.Proof. Consider the sequen
e of random variables fJn; n � 1g, where Jn representsthe number of mutants in generation n, i.e. Jn = In � In�1. Using these variables,Z(0)n ; n � 1, 
an be de
omposed in the following way:8>><>>: Z(0)1 = J1Z(0)n = n�1Xk=1 JkXi=1 Y in�k; n � 2; (3.6)where the random variable Y in�k represents the number of individuals in generationn�k of the super
riti
al single-type G.W.B.P. initiated by the i-th mutant of generationk. These pro
esses are independent of ea
h other and have the same reprodu
tion law,fp(0)k ; k 2 N0g.Dividing (3:6) by mn0 and taking expe
tations we getE "Z(0)nmn0 # = n�1Xk=1 1mk0 E " JkXi=1 Y in�kmn�k0 #= n�1Xk=1 1mk0E[Jk℄= n�1Xk=1 1mk0 um[m(1� u)℄k�1�!n!1 umm0 �m(1� u) < 1 (3.7)The expe
tation of Jk is obtained by di�erentiation of the re
ursive relation (3:2).Sin
e nm�n0 Z(0)n ; n � 0o is a submartingale with respe
t to the �-algebraFn = �(Z (0 )m ;Z (1 )m ; 0 � m � n) and, from (3:7),supE "Z(0)nmn0 # <1;the martingale 
onvergen
e theorem ensures that the sequen
e 
onverges a.s. to arandom variable, U , and E[U ℄ <1.To prove L1 
onvergen
e, it remains to show thatE[U ℄ = umm0 �m(1� u) : (3.8)Observe that, given (Z(0)1 ; Z(1)1 ), the following de
omposition holds:
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ei�
~aoZ(0)nmn0 = 1m0 Z(0)1Xi=1 Y in�1mn�10 + 1m0 Z(1)1Xj=1 X(0)n�1;jmn�10 (3.9)where the Y in�1 are as des
ribed in de
omposition (3:6) and the X(0)n�1;j are the randomvariables that represent the number of type 0 individuals in generation n�1 of the jthtwo-type G.W.B.P. initiated in generation 1. There are Z(1)1 su
h pro
esses and theyare independent of ea
h other. Taking the limit in (3:9), (the existen
e of the limits ofthe sequen
es involved was already proved) givesU = 1m0 Z(0)1Xi=1 Wi + 1m0 Z(1)1Xj=1 Uj (3.10)where Wi are i.i.d. 
opies of W , as de�ned in Theorem 3.3, and Uj are i.i.d. 
opies ofU . It is now a matter of taking expe
tation in (3:10) to obtain the desired (3:8).Finally, to prove the fun
tional equation for the Lapla
e transform of U , is just amatter of using (3:10). In fa
t,�U (s) = E �e�sU� = E hE he�sU j Z(0)1 ; Z(1)1 ii= E "E "e� sm0 PZ(0)1i=1 Wi j Z(0)1 ; Z(1)1 #E "e� sm0 PZ(1)1j=1 Uj j Z(0)1 ; Z(1)1 ##= E "h�W � sm 0�iZ(0)1 h�U � sm 0�iZ(1)1 #= f1 �u�W � sm 0�+ (1� u)�U � sm 0�� (3.11)�Taking � = ���logm0 � umm0�m(1�u)����, we 
an 
on
lude that there exists a randomvariable U� su
h that Z(0)nmn��0 ! U� a.s. and in L1with E[U�℄ = 1. This indi
ates that the sequen
e Z(0)n exhibits, with a delay � , thesame limit behavior as a single-type super
riti
al G.W.B.P.. It remains to investigatethe relation between the 
onstant � and the random variable that represents the delaybetween the two pro
esses.



On the waiting time to es
ape 9In the appli
ations, it is not only important to study the time to produ
e a su

essfulmutant, but also the time it takes for the number of type 0 individuals to rea
h highlevels is relevant. Theorem 3.4 provides a �rst step to answer this question.A
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