
Universidade do Minho

Escola de Engenharia

Master Course in Informatics Engineering

Masters Dissertation

Easy management and user
interconnection across Grid sites

Author:

Tiago Silva e Sá

Supervised by:

Prof. António Manuel Pina

October, 2012

Presentation

This document is the outcome of the last years of work I dedicated to the

Masters in Informatics Engineering and also to the research projects where

I was involved at the same time - namely AspectGrid, CROSS-Fire and

GISELA. All these projects were centred on a common subject - Distributed

Systems.

It was truly exciting to embrace such projects, expanding my knowledge

about a topic that combines so many different pieces, working together to

provide one of the most powerful tools in the technology world.

This document represents the last milestone on my academic path (re-

gardless of what the future holds for me); hopefully a stepping stone for

further developments in this area of computing science.

i

Acknowledgements

It is a pleasure to show my gratitude to those who made this ‘final step’

possible.

Firstly, I would like to thank Prof. António Manuel Pina, who gave me

the opportunity to join him doing research a few years ago, an opportunity

that has certainly changed my academic path in a very positive way. His

motivation, knowledge and comprehension were important factors in my

reaching this point.

I could not forget the friends and colleagues I have had since my first

day at university, both from classes and research groups, who studied and

worked by my side, creating a stimulating and fun environment to grow.

Also the many great professors, who shared their knowledge and experi-

ence, and all the university staff who made Braga such a splendid place to

learn and live.

Lastly, and most importantly, I would like to show my love and gratitude,

once again, to my family, especially my parents and my brother. Here I also

include my closer, lifetime friends (you know who you are!) who play the

most important role in my life. I wish I could repay everything you give me!

iii

Abstract

Distributed computing systems are undoubtedly a powerful resource,

providing functions that no other system can do. However, their inherent

complexity can lead many users and institutions not to consider these sys-

tems when faced by challenges posed by the deployment and administration

tasks.

The first solution for this problem is the European Grid Initiative (EGI)

roll, a tool that simplifies and streamlines those tasks, by extending the tools

that are currently available for cluster administration to the grid. It allows

the infrastructure to be easily scaled and adopted by the institutions that

are involved in grid projects such as EGI.

The second part of this work consists of a platform that enables the

interconnection of computing assets from multiple sources to create a unified

pool of resources. It addresses the challenge of building a global computing

infrastructure by providing a communication overlay able to deal with the

existence of computing facilities located behind NAT devices.

The integration of these two tools results in a solution that not only

scales the infrastructure by simplifying the deployment and administration,

but also enables the interconnection of those resources.

v

Contents

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 Context and motivation . 1

1.1.1 UMinho projects . 2

1.1.2 Scaling the Grid . 3

1.1.3 User interconnection 4

1.2 Document structure . 5

2 State of the art 7

2.1 Introduction . 7

2.2 Cluster . 7

2.2.1 Cluster management with Rocks 8

2.2.2 Other cluster management approaches 9

2.3 Grid . 10

2.3.1 EGI project . 10

2.3.2 Grid Middleware . 12

2.4 Job Management . 15

2.5 Advantages and challenges of NAT 16

2.6 Interconnecting hosts behind NAT 17

2.6.1 NAT reconfiguration 19

2.6.2 Relaying . 19

2.6.3 Autonomous NAT traversal 20

2.6.4 Multiple techniques bundle - ICE 20

vii

viii CONTENTS

2.6.5 Other real world employed techniques 22

2.7 Control Information Exchange 23

2.8 Moving data across the Grid 26

3 Using the Cluster to Scale the Grid 29

3.1 Introduction . 29

3.2 EGI roll . 29

3.2.1 Graph-based configuration 30

3.2.2 Local software repository 32

3.3 gLite RPM list . 33

3.4 Integration . 35

4 Connecting users across Grid sites 37

4.1 Simple Peer Messaging (SPM) 38

4.1.1 Personal Exchange for Domain Groups 39

4.1.2 Point-to-Point links between remote domains 40

4.1.3 Application Programming Interface 41

4.1.4 Intra and Inter Domain-Group Routing 42

4.1.5 SPM Port Mapper utility 42

4.2 Connecting services among Grid sites 42

4.2.1 Using ICE for NAT traversal 45

4.2.2 Using XMPP for control information exchange 49

4.2.3 Simple Peer Messaging (SPM) 50

5 Application of main results 55

5.1 University of Minho Grid sites 55

5.2 SPM - performance evaluation 56

5.2.1 Test-bench configuration 58

5.2.2 Experimental results 58

6 Conclusions and Future Work 61

Bibliography 63

List of Figures

2.1 Ganga Workflow . 16

2.2 General NAT concept, advantages and disadvantages 18

2.3 Relaying example. The peer-to-peer connection is split into

two client/server connections. 20

2.4 XMPP client-server, decentralised architecture 25

3.1 EGI roll old graph . 31

3.2 EGI roll new graph . 32

3.3 gLite parser workflow . 34

3.4 EGI roll scalability. 36

4.1 User Domains spanning multiple heterogeneous infrastruc-

tures with SPM . 39

4.2 Typical ICE deployment scenario 46

4.3 Main transport address candidates on ICE 47

4.4 SPM high-level architecture. Two hosts communicating through

ICE . 51

4.5 SPM sequence diagram. Involves ICE, XMPP and a local

socket . 52

4.6 XMPP handshake for ICE conversation establishment 53

5.1 UMinho-CP site infrastructure 56

5.2 Test setups to be used as reference 57

ix

List of Tables

3.1 The class Register holds information about each gLite node. . 35

5.1 Network bandwidth between nodes. 59

xi

Chapter 1

Introduction

This chapter introduces the context in which this project was developed

and the motivation behind it. Two main solutions were devised as part of

the same project in order to achieve a common goal - Easy management

and user interconnection across Grid sites: a) the EGI roll, which allows

easy and efficient configuration, installation and maintenance of Grid sites

by taking advantage of the features provided by Rocks Clusters and b)

the Simple Peer Messaging (SPM) tool enables the interconnection of Grid

sites (where nodes are usually on a private network), providing a user-level

resource architecture, as part of the User Domains project [1].

1.1 Context and motivation

The Department of Informatics (DI) got involved in European Grid

projects such as EGI, by supporting various research projects and shar-

ing its resources on the Grid. Researchers involved in these projects make

use of the Grid for their experiments in diverse areas, particularly in Civil

Protection (CP) related activities.

The EGI infrastructure (which evolved by former projects like the En-

abling Grids for E-sciencE (EGEE), as further described in section 2.3.1)

is the computing and storage foundation for a great variety of research ini-

tiatives. For the context of this work, it is important to mention the most

relevant projects where the DI got involved. The EGI project has a main goal

1

2 CHAPTER 1. INTRODUCTION

of providing researchers with 24 hours access to a geographically distributed

computing Grid infrastructure. It is also responsible for maintaining and

developing the gLite middleware[2] and operating a large computing infras-

tructure for the benefit of a vast and diverse research community. This EGI

site installed at the department is an essential testbed for the subjects being

addressed, that allows testing of the management tools being developed.

In summary, the work being hereby presented has a main goal, repre-

sented on the title of this dissertation: ‘Easy management and user inter-

connection across Grid sites’. Many products and technologies have proven

their value on specific tasks (e.g., deploying a computing cluster, monitoring

a server), but managing a service made of a large set of smaller components

is generally challenging and time consuming.

1.1.1 UMinho projects

CYCLOPS is an EU research project in the area of Grid computing that

intends to bring the Grid and the Civil Protection (CP) communities closer

together, making CP communities aware of the services provided by Grid

infrastructures and, at the same time, making Grid researchers aware of

CP specific requirements and service enhancement needs. It outlines the

importance of developing e-infrastructures and virtual organisation services

to fully exploit the Grid capabilities for CP applications1.

CROSS-FIRE is a project financed by the Portuguese government which

aims to exploit the Grid infrastructure to demonstrate its potential through

a CP activity application to be deployed among several independent CP

related organisations2.

The research collaboration is not limited to Europe. The Grid Initiatives

for e-Science virtual communities in Europe and Latin America (GISELA)

project3, where the department is also involved, has the objective of guar-

anteeing the long-term sustainability of the European Union-Latin America

e-Infrastructure. For this purpose, the project focuses on two inter-related

1UMinho’s contribution to the CYCLOPS project (homepage): https://pop.cp.di.

uminho.pt/cyclops/
2CROSS-Fire homepage: https://pop.cp.di.uminho.pt/crossfire/
3GISELA project: http://www.gisela-grid.eu

https://pop.cp.di.uminho.pt/cyclops/
https://pop.cp.di.uminho.pt/cyclops/
https://pop.cp.di.uminho.pt/crossfire/
http://www.gisela-grid.eu

1.1. CONTEXT AND MOTIVATION 3

goals: 1) to implement the Latin American Grid Initiative (LGI) sustainabil-

ity model rooted on the National Grid Initiatives (NGI) and 2) to provide

Virtual Resource Centers with the suited e-Infrastructure and application-

related services required to improve the effectiveness of their research.

1.1.2 Scaling the Grid

During the development of these projects, there was the need to find a

way to automatically and efficiently deploy and manage several Grid sites4,

spread across different countries. This task raised special attention in the

research team and motivated deeper work on the subject.

Despite improving the way Grid sites are maintained across different

countries, the collaboration of the different institutions involved in these

research projects has raised another concern. A Grid is intended to be used

for running a high volume of jobs, normally with high computational and

storage requirements. Running a simple job on the Grid requires many

interactions between different services. This adds extra overhead to the

process, increasing the time submitters have to wait for the results.

As part of this effort to improve the tools that are used to utilise and

manage the Grid infrastructure, the team found a need to allow efficient

management and scaling of the Grid sites. A solution was devised, using

the Rocks Clusters management platform and its Rolls, culminating in a

tool called EGI Roll.

The CP research projects, such as CROSS-Fire, demand a pool of com-

puting and storage resources that can only be provided by a scalable plat-

form such as the Grid, requiring a collaboration between many research

institutions. However, these institutions don’t always have the personnel

resources and expertise to deploy and maintain a Grid site. With that in

mind, we developed a Grid site deployment and maintenance tool - the EGI

roll - that makes that task easier.

However, during the development phase of an application, the code has

to be repeatedly tested for debugging. Job Management tools like the ones

4A Grid site, also referred as Resource Center, is the set of Grid services provided by

an institution, normally administrated by its own site managers

4 CHAPTER 1. INTRODUCTION

described in Section 2.4 can be used to increase the flexibility of these com-

putational systems by allowing the developer to easily swap the endpoint

where the job will run without doing major changes in the submission pro-

cess.

1.1.3 User interconnection

This work is also part of a bigger research project called User Domains[1].

User Domains gathers and combines resources from multiple sources to cre-

ate a per-user, geographically distributed, heterogeneous virtualisation plat-

form where user-provided virtual machines can be executed in user mode

(without admin privileges). To address the challenge of building a global

computing infrastructure it is necessary to provide a communication overlay

that is able to deal with the existence of computing facilities located behind

NAT devices or firewalls.

In this work we introduce SPM (section 4.1), a simple peer-to-peer mes-

saging system based on ICE and XMPP technologies, to efficiently inter-

connect remote user domains[3]. Given that User Domains’ performance

is highly dependent on the network characteristics and there is little work

regarding NAT traversal performance, we evaluated SPM performance in

multiple scenarios of interest (see section 5.2).

User Domains focus on providing uniform access to resources, rich soft-

ware environments and enhanced application isolation in distributed envi-

ronments. Enabled by the use of virtualisation in each of the underlying re-

sources, the system maintains independence from the administrative author-

ities of each infrastructure and delivers an unobtrusive user-level platform

that allows the user-level execution of Virtual Machine (VM) in a batch-

oriented computing cluster. A customised user-mode environment enables

the user to run VMs as typical cluster jobs without imposing any persistent

overhead on the execution nodes.

This work is directed towards expanding User Domains to support the

interconnection of multiple infrastructures in a single user-mode computa-

tion overlay through which the network traffic, storage blocks and remote

user interface are directed to the intended destinations. However, most

1.2. DOCUMENT STRUCTURE 5

cluster nodes, Grid worker nodes and personal workstation that need to

be connected are hidden behind NAT devices, so User Domains required

an efficient method to discover and interconnect multiple entities in multi-

ple, even private, locations. Without a central control point, entities must

be able to autonomously become aware of each other existence in order to

communicate. Moreover, there must be a basic mechanism for these peer

entities to exchange control information that allows them to bootstrap more

permanent, and eventually high performance, communication links.

1.2 Document structure

The rest of this document starts, in chapter 2, with a study about the

state of the art - a description of the Distributed Systems environment where

this work is inserted. It evaluates the current state of cluster and Grid tech-

nologies and some areas that still pose challenges to users and developers.

After describing that context, we dive into the implementation of the

tools that were developed to tackle the previously described problems:

• Using the Cluster to Scale the Grid - chapter 3

• Connecting users across Grid sites - chapter 4

Chapter 5 takes those tools and describes how they can be applied,

depicting use cases and presenting some of the achieved testing results.

Finally, chapter 6 reserves space for the conclusions of the developed

solutions and describes some areas that leave room for further improvements

and enhancements.

Chapter 2

State of the art

2.1 Introduction

In this chapter we present some background information regarding the

environment where Distributed System area is evolving, particularly on clus-

ter and grid computing. It is also important to understand how Network

Address Translation (NAT) works, the impact it has on certain applica-

tions and how the posed challenges can be overcome by using NAT traversal

techniques. We also narrow down on some other specific concepts and tech-

nologies that serve as baseline of the solution that was developed as part of

this project.

2.2 Cluster

In computing world, the term ‘cluster’ refers to a group of independent

computers combined through software and networking, which is often used

to run highly compute-intensive jobs. High-performance clusters have be-

come the computing tool of choice for a wide range of scientific disciplines.

A computer cluster is a group of linked computers, working together closely

thus in many respects forming a single computer, usually deployed to im-

prove performance and/or availability, while typically being much more cost-

effective than single computers of comparable speed or availability. Clusters

are designed to harness the power of multiple low-cost servers to provide

affordable compute power for many mission-critical applications.

7

8 CHAPTER 2. STATE OF THE ART

Computer clusters first emerged in universities and research centres, en-

tities that are usually characterised by tight budgets and people with com-

puter expertise.

2.2.1 Cluster management with Rocks

Setting up a computing cluster is much more than simply hooking up

additional machines to a network. Somewhere, something has to set up the

machines to recognise and work with each other; something has to make sure

that compute tasks are assigned to the various nodes in the best fashion. A

special class of middleware, which sits between the operating systems and

the applications, has evolved specifically to handle these tasks, and it goes

by the name of cluster management software.

Cluster management software offers an easy-to-use interface for manag-

ing clusters and automates the process of queuing jobs, matching the re-

quirements of a job and the resources available to the cluster, and migrating

jobs across the cluster.

A Cluster manager usually is a backend graphical interface or command-

line software that runs on the central node, working together with a cluster

management agent that runs on each computing node. In some cases the

cluster manager is mostly used to dispatch work for the cluster to perform.

The free Rocks cluster distribution[4] takes a fresh perspective on clus-

ter installation and management to dramatically simplify version tracking,

cluster management and integration. This end-to-end software stack in-

cludes the operating system, cluster-management middleware, libraries and

compilers. Rocks centers around a Linux distribution based on the Red

Hat Enterprise line, and includes work from many popular cluster and grid

specific projects. Additionally, Rocks allows end-users to add their own soft-

ware via a mechanism called Rolls[5]. Rolls are a collection of packages and

configuration details that modularly plug into the base Rocks distribution.

The traditional Rocks architecture, used for high-performance computing

clusters, favours high-volume components that lend themselves to reliable

systems by making failed hardware easy and inexpensive to replace.

Rocks FrontEnd (FE) nodes are installed with the base distribution and

2.2. CLUSTER 9

any desired rolls. They serve as login and compile hosts for users. Compute

nodes typically comprise the rest of the cluster and function as execution

nodes.

Rocks has been successfully used to manage large clusters consisting of

hundreds of nodes. Included in the standard Rocks distribution are vari-

ous open-source high-performance distributed and parallel computing tools,

such as Sun Grid Engine (SGE), OpenMPI and Condor. This powerful col-

lection of advanced features is one reason why NASA, the NSA, IBM Austin

Research Lab and Harvard, among other institutions, are all using Rocks

for some of their most intensive applications.

On this work, we decided to use Rocks clusters as the management soft-

ware, for it’s a massively adopted tool and also because it is the system

currently being used on the department as the cluster management tool of

choice.

2.2.2 Other cluster management approaches

There are other tools that also play an important role on cluster admin-

istration.

Open Source Cluster Application Resources (OSCAR)1 was created in

2000 by a group of organisations when it became apparent that assembling

cluster software from many components was challenging and tedious. This

group decided to choose ‘best practices’, selected among the many open-

source solutions and include them in a software stack so as to make the

installation, configuration and management of a modest-sized cluster easier.

OSCAR is a bit different in that it installs on top of a standard installation

of a supported Linux distribution. It then creates customised disk images

used to provision the nodes.

Also worth mentioning is Warewulf2, developed by the Scientific Cluster

Support Program at the Lawrence Berkeley National Laboratory. This open-

source toolkit is similar in many ways to Rocks and OSCAR. It works by

allowing compute nodes to boot a shared image from a master node so that

a systems administrator only needs to support the master node and the

1OSCAR project homepage: http://svn.oscar.openclustergroup.org/trac/oscar
2Warewulf homepage: http://warewulf.lbl.gov/trac

http://svn.oscar.openclustergroup.org/trac/oscar
http://warewulf.lbl.gov/trac

10 CHAPTER 2. STATE OF THE ART

shared image for the rest of the system. Note that starting with Warewulf 3,

cluster-provisioning features have been replaced by a project called Perceus.

2.3 Grid

Grid computing has emerged as an important new field, distinguished

from conventional distributed computing by its focus on large-scale resource

sharing, innovative applications, and, in some cases, high-performance ori-

entation.

The Grid can be thought of as a distributed system with non-interactive

workloads that involve a large number of files. What distinguishes grid

computing from conventional high performance computing systems, such as

cluster computing, is that grids tend to be more loosely coupled, heteroge-

neous, and geographically dispersed. Although a grid can be dedicated to

a specialised application, it is more common that a single grid will be used

for a variety of different purposes. Grids are often constructed with the aid

of general-purpose grid software libraries, or middleware.

The distributed computing grid was originally conceived in 1999 to anal-

yse the experimental data produced by the Large Hadron Collider (LHC)3

at CERN – the European particle physics laboratory located on the Swis-

s/French border4.

2.3.1 EGI project

The European Grid Initiative (EGI) project, launched in May 2010, is a

collaboration between National Grid Initiatives (NGIs) and other European

international research organisations. The main goal of this pan-European

infrastructure is to provide scientists a powerful set of computational tools,

where they can take their research activities.

The European DataGrid Project5, which started in January 2001, led

the research and development of Grid technologies. It established the or-

ganisational structure, gathered and analysed requirements, developed mid-

3About the LHC project: http://public.web.cern.ch/public/en/LHC/LHC-en.html
4More about CERN: http://public.web.cern.ch/public/
5DataGrid project homepage: http://eu-datagrid.web.cern.ch/eu-datagrid/

http://public.web.cern.ch/public/en/LHC/LHC-en.html
http://public.web.cern.ch/public/
http://eu-datagrid.web.cern.ch/eu-datagrid/

2.3. GRID 11

dleware (the software that links hardware resources), and provided training

to its users. The project proved the Grid’s successful application in various

research fields such as high energy physics, Earth observation and bioinfor-

matics.

Upon completion in March 2004, a new project called Enabling Grids for

E-sciencE (EGEE)6 took over the Grid’s further development in what would

result in three successive two-year phases. EGEE provided researchers with

access to computing resources on demand, from anywhere in the world and at

any time of the day. Ease of access and the ability to analyse a larger amount

of data within a shorter timescale than before attracted participation from

a wider range of scientific disciplines.

By April 2010, when the last EGEE project phase was completed, a

new project took over - the EGI, a sustainable project that links more than

18,000 researchers (and counting) to the distributed computing electronic

resources (computing and storage) they need for their work.

In other words, EGI provides a production quality Grid infrastructure

distributed among most European countries (including Portugal). EGI is

open to new sites that want to join the infrastructure and offer their re-

sources, sharing more power to the community. However, since EGI is a

production quality infrastructure, several administrative and technical pro-

cedures exist, to ensure that a new site that is being integrated in the infras-

tructure will be able to meet certain quality criteria. So, before entering into

production, a site must pass a set of specific registration and certification

steps.

Each NGI groups a set of institutions among a geographical region, com-

monly formed by one or more countries. Portugal and Spain have joined

their efforts in a single NGI called Ibergrid. Each NGI integrates a Regional

Operation Centre (ROC), responsible for the sites operating in its region.

Notably, a ROC is committed to provide know-how, advice and support to

the sites for the resolution of possible installation and operational issues.

It ensures that the sites get adequate support during deployment and op-

erations and that the operational procedures are enforced within the whole

6EGEE project homepage: http://www.eu-egee.org

http://www.eu-egee.org

12 CHAPTER 2. STATE OF THE ART

NGI.

2.3.2 Grid Middleware

A Grid middleware is a software tool that provides an abstraction layer

between physical resources, even when provided by different vendors and

operated by different organisations, and applications or users. It facilitates

interoperability among Grid services and provides a simplified user inter-

face that ultimately improves utilisation and adoption. In order to address

the end-user requirements, the services need to work together in a coordi-

nated manner, although individual services can still be deployed and used

independently.

The gLite middleware7 is an example of such a tool, currently installed

in hundreds of sites participating in the EGI. gLite provides the necessary

tools and configurations that allows a seamless integration of heterogeneous

clusters in the EGI infrastructure. The middleware includes services and

components addressing four technical areas:

Compute: processing and management of user requests concerning the ex-

ecution of a computational task. Covers the interaction with Local

Resource Management System (LRMS), the provision of a common

interface to the computational resources of a site (the so-called Com-

puting Element) and the availability of high-level meta-scheduling,

workflow execution and task tracking functionality.

Data: storage management, data access and data replication. Multiple

storage solutions exist, addressing different types of resources – disk,

tape or a combination of the two – all exporting the same Storage

Resource Manager (SRM) interface (the so-called Storage Element).

Data access libraries are available for storage systems not offering

a POSIX interface towards the computational resources. Data and

metadata catalogues track the location of copies of data chunks in

multiple places.

Security: enable and enforce the Grid security model, allowing the safe

7gLite website: http://glite.cern.ch

http://glite.cern.ch

2.3. GRID 13

sharing of resources on a large scale. They cover identity manage-

ment, Virtual Organization membership management, authentication,

delegation and renewal of credentials, and authorisation.

Infrastructure: information and management functionality to deployed

Grid services. They include the Information System and Service Reg-

istry, which provide a view of the services available on the Grid to-

gether with their characteristics; the messaging infrastructure, that

allows to collect and distribute messages generated by Grid services

or user tasks; the service monitoring and management providers that

allow the retrieval of Grid services status information and service state

management; the Logging and Bookkeeping services that allows col-

lecting, aggregating and archiving job execution information; the ac-

counting functionality to collect, distribute and publish information

concerning the usage of resources This area also deals with internal in-

frastructure components, such as service containers that are required

for middleware services.

In practical terms, it consists in a set of packages that define the different

roles of computers in a cluster wishing to become part of the EGI grid[6].

Among these roles (called elements in the gLite’s terminology), one can

commonly find in a Grid site:

Computing Element (CE) responsible for the management of the sub-

mitted jobs and for the local resource management system (LRMS)

Storage Element (SE) provides uniform access to data storage resources.

The Storage Element (SE) may control from simple disk servers to

large disk arrays. Most EGI sites provide at least one SE which can

support different data access protocols and interfaces

Accounting Processor for Event Logs (APEL) an accounting tool that

collects accounting data from participating sites

Berkeley Database Information Index (BDII) responsible for the in-

formation system. It collects information from the site elements (such

as number of CPUs, available storage, available services) and makes it

available to be queried from the outside

14 CHAPTER 2. STATE OF THE ART

Worker Node (WN) computing units with the processing power to exe-

cute the jobs

User Interface (UI) the access point to the grid. From a UI, a user can

be authenticated and authorised to use the EGI resources, and can

access the functionalities offered by the Information, Workload and

Data management systems. It provides CLI tools to perform Grid

operations.

In the EGEE era, the middleware development and the infrastructure

operation was handled inside the same European project - as the gLite

middleware was developed by the EGEE project. With the end of EGEE,

different projects have emerged raising a different paradigm with respect to

what was done in the past.

Under the new context, the operation of the infrastructure and the devel-

opment of the middleware are responsibilities of different European projects.

EGI and NGIs, and the communities using the grid infrastructure, are now

assuming a client role, installing products from Technology Providers such

as European Middleware Initiative (EMI).

The products developed by these external Technology Providers (i.e.

EMI) have to fulfil a given set of quality criteria defined by EGI, and only

the products which are properly verified and checked against the EGI qual-

ity criteria can integrate a Unified Middleware Distribution (UMD) release.

The proposed approach of handling middleware maintenance, integration,

testing, and deployment within the EGI infrastructure. UMD defines com-

ponents, processes, involved parties, and so on, in order to guarantee the

infrastructure to get reliable middleware, in terms of both functionality and

quality. Under the current approach, a product can be release in EMI, for

example, but never reach to integrate a UMD release.

The gLite middleware, originally produced by the EGEE project, is cur-

rently being developed by the EMI project, a Technology Provider. The EMI

project aims to deliver a consolidated set of middleware products based on

the four major middleware providers in Europe - ARC, dCache, gLite and

UNICORE. The products, managed in the past by these separate providers,

are now developed, built and tested in collaboration, for deployment in EGI

2.4. JOB MANAGEMENT 15

(as part of the UMD), and other distributed computing infrastructures.

The migration from former packages like gLite to the UMD is being

enforced at the time of writing. Different NGIs devised an action plan that

has to be applied by all the participating Grid sites, in order to ensure a

seamless transition to the new platform.

2.4 Job Management

Scientific users are driven by a requirement to get computing results

quickly and with minimal effort. These users have a wide variety of com-

puting resources at their disposal, namely workstations, batch systems and

computing Grids.

Each of these resources has a unique user interface and users have the

burden of continually reconfiguring their applications to take advantage of

the diverse systems.

Ganga Ganga[7] is a modular, user-friendly job management tool for sci-

entific computing that supports an extensible suite of execution backends,

allowing users to easily run jobs on their local workstation, on a number of

batch systems and many Grid platforms. This situation is shown in Listings

2.1. The first line shows the command that lists the installed backends, de-

pending on the experiment specific plugins that were loaded. The last three

lines show an example about how to specify the desired backend, in this

case: Local (run jobs in the background on local host), PBS (submit jobs to

Portable Batch System) and LCG (submit jobs to the EGI/LCG Grid using

gLite/EDG middleware).

Listing 2.1: Ganga usage example

In [1] : p lug in s (” backends ”)

Out [1] : [’LSF ’ , ’ Remote ’ , ’PBS ’ , ’ Condor ’ , ’SGE ’ , ’ Batch ’ , ’LCG’ , ’

Local ’ , ’ I n t e r a c t i v e ’]

In [2] : job=Job (a p p l i c a t i o n=Executable (exe=’ / bin /hostname ’))

In [3] : job . backend=’ Local ’ #job . backend=’PBS ’ #job . backend=’LCG’

In [4] : job . submit ()

16 CHAPTER 2. STATE OF THE ART

The typical workflow of Ganga is illustrated in figure 2.1. Users can

easily plug new modules to suit their needs. They can develop and debug

on the local workstation, then test on a batch system and finally run a full

analysis on one of the many Grids.

Local PC Cluster Grid

PBS
SGE
LSF

DEBUG TEST FULL RUN

CONDOR

gLite
ARC

...
...

Figure 2.1: Ganga Workflow

2.5 Advantages and challenges of NAT

The Internet’s original uniform address architecture, in which every node

had a globally unique IP address and could communicate directly with every

other node, has been replaced with a new real Internet address architecture,

consisting of a global address space ‘separated’ from many private address

ones.

Minor portions of the IPv4 address space have been allocated or assigned

directly by the Internet Assigned Numbers Authority (IANA)8 for global or

other specialised purposes, namely for private addressing[8]. Routers are

required to interconnect different networks, regardless of whether the IP

address range is public or private. However, if the address range is private,

packets cannot be directly routed across the public Internet.

In the present, most networks use NAT to address this ‘issue’ and it is

estimated that more than 73% of the hosts are behind NAT devices[9]. This

was not a problem in the past, when most communication was based on the

client/server paradigm. However, the Internet has evolved and, nowadays,

the largest portion of the traffic comes from peer-to-peer (p2p) applications.

Applications such as p2p file sharing, VoIP services and the online services

8Internet Assigned Numbers Authority (IANA): http://www.iana.org/

http://www.iana.org/

2.6. INTERCONNECTING HOSTS BEHIND NAT 17

of current generation require clients to be servers as well, thereby posing a

problem for users behind NAT devices, as incoming requests cannot be easily

correlated to the proper internal host, potentially requiring substitution or

special traversal techniques for NAT traversal.

Basically, NAT is the process of transparently modifying IP address in-

formation in IP packet headers, while in transit across a routing device

(see figure 2.2a). Traditional NAT[10] has two variations, namely, Basic

Network Address Translation and Network Address Port Translator. The

latter, Network Address Port Translator (NAPT)[11] is by far the most com-

monly deployed NAT device as it allows multiple private hosts to share a

single public IP address simultaneously.

The main advantages of NAT are that private IP addresses can be re-

used and many hosts on a single LAN can share globally unique IP addresses,

improving the scalability of the address space and helping to overcome the

shortage of unique public addresses in IPv4. NAT operates transparently

and helps shield users of a private network against access from the public

domain, hiding private IP addresses from public networks. NAT operates

much like an Access Control List (ACL), not allowing outside users to access

internal devices. This control of both inbound and outbound traffic can be

seen as an advantage, providing a level of security.

On the other hand, one disadvantage is that additional configuration is

required to allow access from legitimate, external users or p2p applications.

Also, it may impact on some applications that have IP addresses in their

message payload, because these IP addresses must also be translated. Figure

2.2b summarises the main advantages and disadvantages of NAT.

2.6 Interconnecting hosts behind NAT

Many techniques exist for NAT traversal, relying on different methods

and tools, that make these connections to hidden hosts possible. However,

the success rate of different techniques depend on the NAT device being used

and their the implementation can be complex. Most of the NAT traversal

solutions are either part of proprietary applications or nested in the ap-

plication code. Unfortunately, there is not a single technique that works

18 CHAPTER 2. STATE OF THE ART

Internet

NAT

Pu
bl

ic
 In

te
rn

et
G

lo
ba

l I
Ps

Lo
ca

l N
et

w
or

k
Pr

iv
at

e
IP

s

(a) Concept

Advantages of NAT Disadvantages of NAT

• Public IP address sharing
• Transparent to end users
• Improves security and

scalability

• Incompatible with certain
applications

• Hinders legitimate remote
access

• Increased routing processing

(b) Advantages and disadvantages of NAT

Figure 2.2: General NAT concept, advantages and disadvantages

with all existing NATs, because NAT behaviour is not standardised. There

are studies determining average success rates using different methods and

tools[12, 13].

Although the rules of the game are changing, with the actual migration

from IPv4 to IPv6 [14, 15], eventually reducing the need for NATs connect-

ing private hosts to the Internet, the demand for NAT will be increasing

in the near future because NAT itself provides the easiest way to achieve

interoperability between both versions of the IP [11]. Additionally, the mi-

gration is today an hot topic where opinions diverge. Some say that the

total transition will never occur.

Internet Engineering Task Force (IETF) published the informational Re-

quest For Comment (RFC) 5128 in 2008, documenting the various AT traver-

sal methods known to be in use by that time[16]. It covers NAT traversal

approaches, used by both TCP-based and UDP-based applications. An ef-

fort was made to keep this text as coherent as possible with the terminology

and conventions used on that document.

Several non-proprietary solutions have been proposed to allow network

protocols to operate through NATs focused particularly on the UDP traf-

fic required to address the widely used VoIP and file sharing peer-to-peer

applications. IETF has even published RFCs 3489, 5128, 5245, 5389 and

5766 regarding NAT traversal approaches, including support for TCP appli-

cations.

The success rates using different methods and tools in multiple network

configurations were presented in [8, 9], where it can be verified that com-

2.6. INTERCONNECTING HOSTS BEHIND NAT 19

plexity of the network topologies largely determines each techniques’ degree

of success. So, there is no universal NAT traversal solution, but several tech-

niques that can be used together depending on the network configuration.

2.6.1 NAT reconfiguration

NAT traversal strategies such as Network Address Translation-Port Map-

ping Protocol (NAT-PMP), Universal Plug and Play (UPnP) work with a

reconfiguration of the router/NAT device, involving explicit signalling be-

tween applications and NAT devices. These methods are not always an

alternative because, under certain network administration environments, a

common privileged user may be prohibited to change the NAT configuration

due to security concerns. Moreover, the NAT device may not even support

these functionalities.

For these reasons, NAT reconfiguration strategies cannot be completely

trusted as a failsafe solution.

2.6.2 Relaying

Relaying is the most reliable method for implementing p2p communica-

tion across NAT devices, but the least efficient too. This method breaks

a peer-to-peer communication into two standard client/server communica-

tions, through a relaying server with a publicly addressable IP address (see

figure 2.3). This method will always work, as long as both clients are able

to connect to the server. The big disadvantage is that all the traffic is

routed through the relay server, consuming the server’s processing power

and network bandwidth, and increasing the latency of the communication.

However, this strategy can be useful as a fall-back when there is not a more

efficient alternative and if maximum robustness is required. The Traversal

Using Relays around NAT (TURN) protocol [17] defines a method of imple-

menting application agnostic, session-oriented, relaying in a relatively secure

fashion.

20 CHAPTER 2. STATE OF THE ART

A B

NAT

Pu
bl

ic
 In

te
rn

et
G

lo
ba

l I
Ps

Lo
ca

l N
et

w
or

k
Pr

iv
at

e
IP

s

Relay server

Internet

P2P connection

Client/Server
connections

Figure 2.3: Relaying example. The peer-to-peer connection is split into two

client/server connections.

2.6.3 Autonomous NAT traversal

This novel technique presented in [18] provides an autonomous method

for establishing connections to peers behind NAT without reliance on a third

party server. Using third parties increases the complexity of the software

and potentially introduces new vulnerabilities. Technically, this method uses

fake ICMP messages to initially contact a peer behind a NAT.

This strategy works best if only one of the hosts is behind a NAT device.

In that case, it is assumed that the client has somehow learned the current

external IP address of the server’s NAT (i.e. from a previous connection

between the two hosts or by exchanging that information using other out-

of-band methods). Further complications arise if both hosts are behind

NAT, depending on its type (RFC 3489 specifies four NAT variations[19]).

2.6.4 Multiple techniques bundle - ICE

Traditional NAT traversal methods require the help of a third party

server (also known as rendezvous server) with a publicly addressable IP ad-

dress for facilitating the connection[20, 17]. Some methods use the server

only when establishing the connection, while others are based on relaying all

2.6. INTERCONNECTING HOSTS BEHIND NAT 21

data through it, which adds bandwidth costs and increases latency, detri-

mental to real-time voice and video communications. In a few words, the

basic approach in most of these cases is that the server in the private net-

work behind the NAT is notified by the third party that the client would like

to establish a connection. In order for this method to succeed, the server

must maintain a connection to a third party known service, the client must

also be able to locate that broker, which must act according to a specific

protocol.

A method known as hole punching is one of the most effective for es-

tablishing peer-to-peer communication protocols between hosts on different

private networks behind NAT. This technique was firstly designed for UDP-

based applications, but can also be applied for TCP[12].

Interactive Connectivity Establishment (ICE)

As described above, numerous solutions exist allowing protocols to op-

erate through NAT. Unfortunately, these techniques all have pros and cons,

which make each one optimal in some network topologies, but a poor choice

in others. By using them, administrators are making assumptions about

the networks’ topologies in which their solutions will be deployed and intro-

ducing greater complexity into the system. It is necessary to find a single

solution that is flexible enough to work well in all situations.

RFC 5245, published by IETF in April 2010, defines Interactive Connec-

tivity Establishment (ICE) as a technique for NAT traversal for UDP-based

media streams (though ICE can be extended to handle other transport pro-

tocols, such as TCP) established by the offer/answer model[21]. ICE works

by including multiple IP addresses and ports in offers and answers, which

are then tested for connectivity by peer-to-peer connectivity checks. The IP

addresses and ports included in the connection offer and the connectivity

checks itself are performed using the revised STUN specification [20], now

renamed to Session Traversal Utilities for NAT. This name and specification

revision reflects STUN’s new role as a tool that is used with other NAT

traversal techniques (namely ICE) rather than a standalone NAT traversal

solution, as the original STUN specification was.

22 CHAPTER 2. STATE OF THE ART

In a typical ICE deployment, we have two endpoints (known as agents)

that want to communicate. They are able to communicate indirectly via

some signalling protocol (see section 2.7), by which they can perform an

exchange of messages. At the beginning of the ICE process, the agents

have no information about the network topology. They might not even be

behind a NAT. Using ICE, agents can discover enough information about

their topology to potentially find one or more paths by which they can

communicate.

2.6.5 Other real world employed techniques

NAT traversal is currently a hot topic, due to the change on the commu-

nications paradigm (moving from client/server to peer-to-peer). Although

there is a big effort to standardise the protocols and techniques, there is

not a single, infallible solution to solve this problem with all existing NATs

implementations. Generally, the solution is to try different strategies until

the working one is found.

This may sound strange when we have plenty of successful p2p applica-

tions such as VoIP (e.g. Skype), online games, p2p file sharing (e.g. BitTor-

rent), p2p streaming (e.g. PPLive) that have become tremendously popular.

So, how do they overcome the NAT traversal problem? The answer is

not always easy to find because these solutions are either part of closed,

proprietary applications, or nested in the application code itself. Some of

these popular p2p applications are described bellow.

Skype9, is a good example of a popular Voice over IP (VoIP) p2p appli-

cation, claimed to work almost seamlessly across NATs and firewalls, with

good voice and video quality. Although users may find it very similar to

other clients such as MSN messenger10 and Google Talk11, the underlying

protocols and techniques it employs are quite different[22].

Skype could not work properly without efficient NAT and firewall traver-

sal functions. According to the study by Baset and Schulzrinne[22], each

Skype client uses a variant of Session Traversal Utilities for NAT (STUN)[20]

9Skype homepage: http://www.skype.com
10MSN messenger: http://messenger.msn.com
11Google Talk: http://www.google.com/talk

http://www.skype.com
http://messenger.msn.com
http://www.google.com/talk

2.7. CONTROL INFORMATION EXCHANGE 23

and TURN[17] protocols to determine the type of NAT and firewall it is be-

hind. Also, these authors believe that ‘it is by the random selection of

sender and listener ports, the use of TCP as voice streaming protocol, and

the peer-to-peer nature of the Skype network, that not only a Skype client

traverses NATs and firewalls but it does so without any explicit NAT or

firewall traversal server’. Ahmed and Shaon also have an interesting pub-

lication on this topic[23], evaluating popular VoIP services (mainly Skype,

GTalk and Gizmo).

Spotify12 is a popular music streaming service with more than ten mil-

lion users. It uses a hybrid communications architecture, composed by both

client-server streaming and a client p2p network overlay in order to offload

the central servers. This p2p network requires a connection between clients,

generally behind NAT devices. Goldmann and Kreitz recently conduced a

study where, among other measurements, they describe the NAT traversal

strategy employed in that application[24]. According to the authors, the

Spotify client application uses two NAT traversal methods: a) NAT recon-

figuration methods such as UPnP and NAT-PMP to open a port for incom-

ing connections, as described in section 2.6.1 and b) various hole punching

techniques, described in section 2.6.4.

Our conclusion is that these valuable networking features, implemented

by every big company dealing with p2p applications, are well protected and

patented. So, the alternative for a researcher with a quite shorter budget is

to stick with the public standards, specifications and frameworks.

2.7 Control Information Exchange

This section describes the solution for indirectly exchanging control in-

formation to interconnect different devices. As described in section 2.6,

while client/server model has a stable behaviour across the internet, the

increasingly important p2p model sometimes raises significant problems on

the presence of NAT devices.

We previously discussed different methods and solutions to overcome

those problems. Among those, the most flexible and resilient solution is

12Spotify homepage: http://www.spotify.com

http://www.spotify.com

24 CHAPTER 2. STATE OF THE ART

the use of ICE (further described in section2.6.4). However, to be able to

establish a direct p2p connection between two hosts using this technique, we

must firstly be able to exchange calling/control information between them.

This task falls on a different field of communication protocols, where

many alternatives exist. Session Initiation Protocol (SIP) and XMPP are

just two of the various possibilities.

XMPP Extensible Messaging and Presence Protocol (XMPP) is a widely

deployed open technology for real-time interaction, using Extended Markup

Language (XML) as the base format exchanging information. Although

common users don’t notice it, XMPP is under the hood of massive com-

munication services used worldwide like Google Talk. Another important

feature is its security. It provides built-in support for encryption and strong

authentication. The fact that XMPP technologies are deployed in a decen-

tralised client-server architecture with an unlimited number of servers also

improve its security and scalability, since there is no single point of failure.

Any person or organisation can run their own XMPP server and connect it

to the rest of the network using the Internet infrastructure.

XMPP is, at its core, a technology for rapidly delivering XML between

clients, being used for a wide range of applications beyond instant messag-

ing, including gaming, social networking, VoIP, real-time collaboration and

custom applications. Also, it is a standard. Its core aspects have undergone

rigorous public review within the IETF, resulting in strong technologies that

can be freely implemented under any licensing terms.

As you can further read on [25], these and other aspects make more

and more software developers and service providers adopt this technology

on their projects to solve real-world problems.

Among core services such as channel encryption, authentication, con-

tact lists messaging and notifications, XMPP enables peer-to-peer media

sessions. This service, defined in XEP-0166 allows to negotiate and manage

a media session with another entity, for the purpose of voice chat, video

chat, file transfer and other real-time interactions.

XMPP technologies use a decentralised client-server architecture, as de-

picted in figure 2.4, where we can have several clients communicating, using

2.7. CONTROL INFORMATION EXCHANGE 25

a network of servers.

XMPP server 1

XMPP server 3

XMPP server 2

XMPP server 4

Figure 2.4: XMPP client-server, decentralised architecture

Like email, when a XMPP message is sent to a contact on a different

domain, the client connects to its ‘home’ server, which then connects directly

to the other contact’s server, without intermediate hops.

Every XMPP entity needs and address, called JabberID (JID), contain-

ing a domain portion which can be resolved through DNS and a username

portion that identifies the user itself. Additionally, when a client connects

to a XMPP server, it can choose (or be assigned by the server) a resource

identifier for that particular connection. As an example, the JabberID

‘tiago@jabber.org/mobile’ is divided in tree parts: username, domain and

resource.

XML stanzas can be thought of as the basic unit of communication, sim-

ilar to packets or messages in other network protocols, in XMPP. There are

three kinds of stanzas (Message, Presence and IQ), that can carry different

meanings, attributes and payload definitions.

These stanzas are exchanged asynchronously with other entities on the

network. This event-driven approach has a number of advantages, such as

real-time notifications and the ability to work around the need to continually

poll for updated information.

XMPP reaches beyond the instant messaging realm; it is now applied

to a range of applications, including gaming, social networking, VoIP, real-

time collaboration and custom applications. XMPP technologies are hosted

26 CHAPTER 2. STATE OF THE ART

in decentralised client-server systems with an unlimited number of servers

thus providing security and scalability and there is no single point of failure.

2.8 Moving data across the Grid

gLite, the grid middleware currently installed in UMinho’s Grid sites,

has many different tools that can be used to move data across different

devices.

A Storage Element (SE) provides uniform access to data storage re-

sources in the EGI (most sites provide at least one SE), allowing a user or

an application to store data for future retrieval. It may control simple disk

servers, large disk arrays or tape-based storage systems.

SEs can support different data transfer and access protocols. In sum-

mary, the protocols supported in gLite 3.2 are [6]:

GSIFTP - a Grid Security Infrastructure (GSI) secure FTP protocol for

whole-file transfers. It is responsible for secure file transfers to/from

SEs. Every EGI site runs at least one GSIFTP server.

RFIO - offers direct remote access of files stored in the SEs in a secure and

an insecure version

gsidcap - GSI enabled version of the dCache native access protocol.

file - used for local file access to network filesystems.

Most storage resources are managed by a SRM13, a middleware service

providing file handling capabilities. Any type of Storage Element in EGI

offers an SRM interface except for the Classic SE, which was phased out.

However, SRM implementations from different storage system may differ

and offer different capabilities. There are different storage systems used

in EGI. As an example we have: Disk Pool Manager (DPM), used for for

SEs with disk-based storage only; CASTOR, designed to manage large-scale

mass storage systems, with front-end disks and back-end tape storage; and

StoRM. SRM hides the complexity of the resources setup behind it and

allows the user to request files, keep them on a disk buffer for a specified

lifetime, reserve in advance space for new files, and so on. SRM offers also

13Storage Resource Management Working Group https://sdm.lbl.gov/srm-wg/

https://sdm.lbl.gov/srm-wg/

2.8. MOVING DATA ACROSS THE GRID 27

a third party transfer protocol between different endpoints, not supported

however by all SE implementations. It is important to notice that the SRM

protocol is a storage management protocol and not a file access protocol.

Chapter 3

Using the Cluster to Scale

the Grid

3.1 Introduction

In line with the R&D projects in which University of Minho is involved,

a method to hasten the installation and administration process of an EGI

site was developed. This method is based upon Rocks, a RedHat Enterprise

Linux based distribution that aims at an easy installation and administration

of computer clusters.

3.2 EGI roll

The EGI roll intends not only to make de installation of a Grid site

easier, but also to simplify its administration. A former team mate, Bruno

Oliveira, developed a set of features to provide administrators an intuitive

and easy to use tool to perform the most common administration tasks,

including management of the site’s configuration, virtual organisations and

software updates[26].

With hundreds of deployed clusters, Rocks’ approach has shown to be

quite easily adapted to different hardware and logical node configurations.

However, the Rocks architecture and implementation contains a significant

asymmetry: the graph definition of all appliance types except the initial FE

29

30 CHAPTER 3. USING THE CLUSTER TO SCALE THE GRID

can be modified and extended by the end-user before installation. To address

this administrative discontinuity between nodes and FEs, rolls were designed

and implemented. Rolls provide both the architecture and mechanisms that

enable the end-user to incrementally and programmatically modify the graph

description for all appliance types. New functionality can be added and any

Rocks-supplied software component can be overwritten or removed. This

approach to cluster construction has allowed to shrink the core of the Rocks

implementation while increasing flexibility for the end-user. Rolls are op-

tional, automatically configured, cluster-aware software systems. Current

add-ons include: scheduling systems (SGE, PBS), Grid Support, Database

Support, Condor, just to name a few. Community-specific rolls can be and

are developed by groups outside of the Rocks core development group.

3.2.1 Graph-based configuration

The Rocks toolkit (section 2.2) uses a graph-based framework to describe

the configuration of all node types (known as appliances) that make up a

complete cluster.

Rocks offers system administrators the ability to customise the packages

to be installed by creating rolls, and to create dependencies between them

using a graph-based framework. Some graph nodes are used to specify an

appliance, which represents a particular computer node role or type. In

order to be as flexible as possible, Rocks creates the kickstart on demand

based upon a graph representation of the dependencies between packages or

services[27].

The graph representations express both the set of packages to be installed

and the individual package configuration. Each vertex of the graph repre-

sents a package or a service and its configuration. Both graphs and nodes

are described by xml files. The graph file specifies the framework hierarchy

where edges connect nodes to each other and each node file contains a list of

Red Hat packages and optional configuration scripts to turn a meta-package

into a final software deployment. Along with the packages configuration, the

installation process can run pre- and/or post- install scripts that have access

to a global configuration MySQL database managed by the FE that sup-

3.2. EGI ROLL 31

ports complex queries. The configuration of a cluster can then be thought

of as a program used to configure a set of software, whose state, that rep-

resents a single instantiation of a cluster appliance, may be referenced by

XML configuration code.

Taking the graph approach, nodes installation can be easily extended

by creating a new graph that adds an arc linking to the extended node.

Once the node file is created and packages are placed in the file installation

hierarchy tree, other appliances derived from the newly created node can be

added to the site.

As part of this work, the roll was changed to accommodate the recent

changes in the middleware system. Previously, each gLite appliance used

to be an extension of the Rocks compute appliance, as shown in figure

3.1. However, on the upgrade to gLite 3.2, it was required to adapt those

appliances and create additional ones. Plus, some of the EGI appliances

share common packages. For that reason, we decided to create a layer of

gLite node types, that inherit from the traditional Rocks compute node, and

group those node types to form the final EGI appliances. This new graph

structure, which is easier to adapt and maintain, is depicted in figure 3.2.

ROCKS
direct-acyclic-

graph
compute

mon-box

storage-element-
disk-mysql

user-interface

computing-
element

worker-node

gLite appliances

Figure 3.1: EGI roll old graph

32 CHAPTER 3. USING THE CLUSTER TO SCALE THE GRID

ROCKS
direct-acyclic-

graph

compute

mon-box

storage-element-
disk-mysql

user-interface

computing-
element

worker-node

EGI appliances glite-UI

gLite node types

glite-BDII_site

glite-CREAM

glite-
SE_dpm_mysql

glite-
SE_dpm_disk

glite-
TORQUE_client

glite-
TORQUE_server

glite-
TORQUE_utils

glite-WN

glite-MPI_utils

glite-APEL

------other types------

jdk

...

egi-compute

Figure 3.2: EGI roll new graph

3.2.2 Local software repository

One aspect that cannot be overlooked in the maintenance of a cluster is

software updates. In a site with a significant number of nodes, this task can

rapidly drain the available bandwidth and can represent a bottleneck in the

system. The EGI roll gives system administrators the possibility to create

a local repository of the software, so nodes can update themselves locally.

This repository is created using the mrepo package1. The local repository

holds a copy of the three major components in the EGI site: Scientific Linux,

DAG and gLite middleware.

When installing the roll, system administrator can choose between the

local repository or the normal repositories for the software. The creation of

the local repository is time and hard-disk space consuming, but in the long

run, this solution pays-off, since only one machine, the FE, has to fetch the

1mrepo homepage: http://dag.wieers.com/home-made/mrepo/

http://dag.wieers.com/home-made/mrepo/

3.3. GLITE RPM LIST 33

updated packages from the Internet, in a completely transparent automatic

process, dealt by mrepo.

3.3 gLite RPM list

The rocks command, that is available in Rocks clusters, aims to merge

under it all cluster administration tasks, that were scattered in several dif-

ferent commands. It is not about new commands, but a way to simplify

the interface to tasks already offered, with an easy to use and understand

syntax. The rocks command is based in verbs, like add, set, activate, list,

among others.

Taking the rocks command as its base, the egeecli command was created

to offer a clean and easy to use syntax to perform the administration tasks

on a EGI site[26]. Particularly, it allows administrators to easily apply the

frequently released updates of the gLite middleware, which provide new

functionalities and bug fixes. That update process can take several steps,

that involve not only the installation of the update via yum – or apt, in

the case of a Debian environment – but can imply changes to the gLite

configuration files, replication of these files and reconfiguration, via YAIM2.

To aid administrators in the process, the egeecli command has adapted

several verbs and created special objects that, together, automates the pro-

cess. When a new update is released, administrators must add the update

to the database, indicating the name of the meta-package, the version, a flag

stipulating if this meta-package requires reconfiguration, release date and,

optionally, a list of RPMs.

As part of this work, in order to aid administrators to obtain this list of

RPMs, we created the gLite parser. This tool can be used to retrieve this

list by parsing the gLite’s release pages3. gLite parser is a script that takes

the version of the gLite middleware as a parameter and creates a folder tree

structure where each folder represents a gLite meta-package. Inside each

2YAIM is a configuration tool that executes the essential steps in order to prepare

and configure the machine according to its role or appliance type. YAIM project website:

http://yaim.info/
3gLite releases for version 3.2: http://glite.cern.ch/R3.2/

http://yaim.info/
http://glite.cern.ch/R3.2/

34 CHAPTER 3. USING THE CLUSTER TO SCALE THE GRID

meta-package folder, other folders exist - one for each release - containing

the RPM list in text form.

WWW
Releases

class Register:
 glite_version
 node_type
 arch
 link
 description
 releases
 rpm_txt

Input: WEB Memory

packages.txt

Output: File

parse generate

Figure 3.3: gLite parser workflow

As depicted in figure 3.3, the tool starts by parsing the releases web page

for available meta-packages and then, for each one, parses its release page

for released versions. For each version, the tool detects the list of the RPM

packages that belong to this meta-package, and also any special information,

such as if reconfiguration of the service provided by the meta-package is

needed, or the priority level of this particular release.

The administrator can then use the desired meta-package/release to pass

as argument when adding a new update, or to, for instance, retrieve all, or

some, RPMs. This last option, is useful to recreate the EGI roll with the

latest releases.

The parser, written in Python, is based on the HTML/XML parser

BeautifulSoup4, designed for quick turnaround projects like screen-scraping.

BeautifulSoup simplifies the parsing task by turning HTML into a navigable

parse tree.

While parsing the HTML pages, the tool fills a data structure, composed

by instances of the class Register (see table 3.1).

Although, this tool has some limitations because it is based on the HTML

structure of the gLite releases page, which may change and break the existing

code. At the time of writing, the site structure doesn’t fulfil the XHTML

standards, making the parsing harder and leading to a more complicated

code.

4BeautifulSoup homepage: http://www.crummy.com/software/BeautifulSoup/

http://www.crummy.com/software/BeautifulSoup/

3.4. INTEGRATION 35

Variable Type Description

glite version string version of gLite.

ex: 3.2

node type string gLite node type.

ex: glite-UI

arch string version architecture.

ex: x86 64

link string url of the release page

description string release description.

ex: gLite Worker Node (WN)

releases dictversion:rpms Map release-url of the RPM site

rpm txt dictversion:txt Map release-url of the RPM list in .txt

Table 3.1: The class Register holds information about each gLite node.

3.4 Integration

The main goal of this study is to obtain an integrated management re-

source that handles different computing mechanisms in an easy and seamless

way.

In order to join these technologies together, these dots have to be con-

nected, filling the existing gap and creating a technology bridge as depicted

in figure 3.4.

Every EGI site has to obey to certain rules, respecting the minimum

requirements set by the project, and provide a set of control mechanisms.

These components, also known as elements in gLite, are installed in different

machines. As described in section 3.2, this is performed in an easier way

using the Rocks Clusters mechanisms.

Traditionally, the structure of an EGI site is almost static, composed by a

set of machines. This integration method allows the administrator to easily

expand the computing resources, according to the needs, using virtualisation

technologies. New clusters can be easily deployed without needing to modify

the physical structure of the site, severely increasing its scalability.

One of the requirements of the CROSS-Fire project is to develop the

36 CHAPTER 3. USING THE CLUSTER TO SCALE THE GRID

European Grid Iniciative EGI Central Services

WMS VOMS LFC

Scalable EGI Site

POP

UI

Computing Resources
(Virtualization)

Storage
Element

Jo
b

M
an

ag
em

en
t

(G
an

ga
) O

th
er

el

em
en

ts

...

VM
 C

on
ta

in
er

 (p
hy

s) CE1

WN
1-0

WN
1-1

VM
 N

od
es

 (v
irt

)

WN
1-2

... VM
 C

on
ta

in
er

 (p
hy

s) CE2

WN
2-0

WN
2-1

VM
 N

od
es

 (v
irt

)

WN
2-2

...

...

D
es

kt
op

s

Other EGI Sites

1) G
rid-w

ide scalability

2) Site-wide scalability

Figure 3.4: EGI roll scalability.

scalability and flexibility of the system, to permit new institutions to rapidly

integrate the project.

Summing up, the general ecosystem can easily scale in two different di-

mensions. The first one, referred as Grid-wide, allows multiple sites to be

efficiently deployed by using the mechanisms provided by Rocks Clusters

and, more specifically, solutions like the EGI roll. The second vector, re-

ferred as Site-wide, allows the site itself to grow within its boundaries, it

terms of the services it provides. This idea is expressed in figure 3.4.

The Job Management software, described in section 2.4, is an important

component of the platform that allows the user to easily run his jobs in dif-

ferent environments using the same job description. More than just running

the job, it permits monitoring the task, retrieving the outputs and selecting

the destination.

Chapter 4

Connecting users across Grid

sites

Advanced computing infrastructures are complex environments where

the user has limited interference. The user can choose between traditional

infrastructures or several other options that don’t impose significant prior

investments, such as the Grid, virtualised Clouds, and even by personal

systems.

The User Domains platform, presented in [1] tries to leverage resources

from multiple providers in an efficient user-level infrastructure overlay. The

authors proposed the Domain abstraction to manage user-level computing

capacity available in multiple sites. The resources are unified in a personal

overlay infrastructure to allow the creation of consistent and flexible com-

puter environments largely independent of any particular resource provider.

This overlay is unique for each user and presents an interface system that

mediates the connection between all the components of the system. In this

context a Domain is a territory governed by a single ruler, it represents

the computing elements the user has access to locally or in various resource

providers.

However, NAT devices are in widespread use, so addressing the problem

of accessing resources inside them is fundamental in a global access platform.

We are currently evaluating SPM in more complex scenarios, measuring the

interference of SPM in the Ethernet network overlay and in the disk block

37

38 CHAPTER 4. CONNECTING USERS ACROSS GRID SITES

cache.

The ability to present users with a set of the available resources and to

provide an interface to access and explore those resources is fundamental

in any computing system. In [1] the cluster job manager provided a list

of available resources, the cluster login nodes served as the interface to the

resources, and users connected to the system remotely using ssh sessions

and port remapping.

4.1 Simple Peer Messaging (SPM)

SPM is a light-weight peer-to-peer communications library, developed

in the context of User Domains, that is capable of: i) discovering related

live entities using a global presence and messaging system and ii) build-

ing efficient and reliable communication links between any entities that are

successfully registered in that system, including those located behind NAT

devices.

To allow remote infrastructures to be connected by User Domains in a

single user-mode overlay, they must be aware of the existence of each other

and must be able to effectively communicate so that the performance is not

exceedingly impaired by the network links.

The SPM library is a peer-to-peer communication system that was de-

vised to bridge the gap between the dispersed network segments providing

an overlay that runs entirely in user-mode and where each infrastructure is

autonomous and no central control exists. SPM delivers a network layer with

two distinct functions: i) the gathering of information about live peers and

basic session establishment and ii) the direct and reliable interconnection of

the peers using NAT traversal techniques.

Figure 4.1 presents SPM as used in the context of User Domains. In

this example an interface Domain is connected to local single-node Domain

Group and a cluster-based multi-node Domain Group. It connects intra

group System Agents (SAs), storage functions, Ethernet overlay (VM Net-

work) and inter group SAs (SPM interconnection).

4.1. SIMPLE PEER MESSAGING (SPM) 39

	

USER ACCESS

DOMAIN GROUP 4..n: OTHER

DOMAIN GROUP 3: EGI GRID

DOMAIN GROUP 2: CLUSTER

 CLUSTER 1

REMOTE EXECUTION
NODE 1

V
M

 N
et

w
or

k

S
A

 re
al

ia
bl

e
ne

tw
or

k

 SA*

VM/job1

vm
B

VM/job1

vm
C

user
monitor

storage
router/cache

controller
(main)

REMOTE EXECUTION
NODE 2..n

V
M

 N
et

w
or

k

 SA

VM/job1

vm
D

VM/job1

vm
E

storage
router/cache

controller
(standby)

INFRASTRUCTURE
BOOTSTRAP

BATCH SYSTEM

udrun
(loader)

DOMAIN GROUP 1: LOCAL

WORKSTATION

LOCAL EXECUTION
MODULE

 SA*

V
M

 N
et

w
or

k

qemu/kvm

vm
A

user
monitor

storage
router/cache

disk
blocks

ethernet
packets

disk
blocks

ethernet
packetsPhysical Network

Local Storage

priviledged plug

SPM
Interconnection

STORAGE

C
O

N
SO

LE

STUN hole punching

L2 > L3
gateway

L2 > L3
gateway

VM External
Networks

Personal Exchange
online domain groups:

udcmd

DG1
pc1

DG2
cluster1

DG4
other

DG3
egi

DG0
udcmd

port
remap

udcmd
(local)

Figure 4.1: User Domains spanning multiple heterogeneous infrastructures

with SPM

4.1.1 Personal Exchange for Domain Groups

Personal Exchange is a basic presence and messaging system between

remote agents. It provides a central point of aggregation for each user, with

a technology agnostic panorama of the computing resources gathered from

multiple locations and infrastructures. The Personal Exchange hides the

details of each type of system by including infrastructure proxies, which co-

operate with each other to provide a common gateway to resources in the

infrastructures the user has access to. The Personal Exchange allows Do-

main Group awareness, basic communication and sending traffic between

SAs in different Domains Groups, including control requests, Ethernet net-

work and disk blocks.

SPM implements the Personal Exchange using the widely deployed Ex-

tensible Messaging and Presence Protocol (XMPP), an open standard tech-

nology for real-time interaction (see section 2.7). SPM can take advantage

of any XMPP compliant service such as the massive communication services

40 CHAPTER 4. CONNECTING USERS ACROSS GRID SITES

associated with Google Talk, readily available to Gmail users. Nevertheless,

personal servers can be used to create private systems.

4.1.2 Point-to-Point links between remote domains

As described in section 2.6, traversing NAT can be challenging. SPM

resorts to Interactive Connectivity Establishment (ICE) to implement NAT

traversal. It defines an offers/ answer model that takes advantage of several

different NAT traversal strategies until a working one is found. It offers

multiple IP addresses and ports as connection candidates, which are then

tested with peer-to-peer connectivity checks. The IP addresses and ports

included in the candidates and the connectivity checks use the revised STUN

for NAT specification and TURN. The purpose of ICE is to discover which

pairs of addresses will work, by systematically trying all possible pairs until

it finds one or more that work.

Initially the end-points have no information about the network topology

and they may be behind multiple tiers of NAT, or may be directly connected.

ICE assumes that two endpoints wanting to communicate are able to com-

municate indirectly via some signalling protocol that allows the exchange

of messages. ICE is used to discover enough information about the topol-

ogy to find one or more paths by which they can potentially communicate.

Each agent has a set of candidate transport addresses that can be used to

communicate with the remote’s candidate transport addresses. In practice,

however, most combinations will not work. For instance, L and R are behind

different NATs, so their directly attached interface addresses are unlikely to

be able to communicate directly. The low level interconnection always uses

UDP, but there is the option to establish reliable connection using the Pseu-

doTCP emulation of TCP over UDP. This protocol is not a complete TCP

substitute, as there are no timeouts on SYNCTL CONNECT message and

there are no implicit shutdown semantics. But those limitations can, in fact,

be advantages in loosely connected environments.

4.1. SIMPLE PEER MESSAGING (SPM) 41

4.1.3 Application Programming Interface

SPM can be used independently from User Domains through a very sim-

ple Application Programming Interface (API). Although peer-to-peer ori-

ented, underlying SPM is a client/server model of communication, in which

any node can initiate a connection with any other node. An application

interested in receiving requests on a topic must join the group that repre-

sents that specific topic and wait for other clients to connect to it. Once a

client initiates a conversation with the servers that are registered in a topic,

a separate connection is established using NAT traversal as required.

Listing 4.1: SPM main API functions

1 /∗ connect to and d i s connec t from spm ∗/
2 spm t ∗ spm in i t (char∗ j i d , char∗ pass) ;

3 void spm done (spm t∗ h) ;

5 /∗ jo in , l e a v e and enumerate group members ∗/
6 int spm join (spm t∗ h , char∗ group , char∗ name) ;

7 char∗∗ int spm enum(spm t∗ h , char∗ group , int ∗ n) ;

8 int spm leave (spm t∗ h , char∗ group , char∗ name) ;

10 /∗ e s t a b l i s h ICE s e s s i on s ∗/
11 spm l ink t ∗ spm wait (spm t∗ h , long t imeout ns ,

12 int ∗ r e l i a b l e) ;

13 spm l ink t ∗ s p m i n i t i a t e (spm t∗ h , char∗ group , char∗ name ,

14 int ∗ r e l i a b l e) ;

15 void s p m c l o s e l i n k (pm l ink t ∗ l) ;

17 /∗ send data through ICE s e s s i on s ∗/
18 int spm send (spm l ink t ∗ l , void∗ buf f , int sz) ;

19 int spm recv (spm l ink t ∗ l , void∗ buf f , int sz ,

20 long t imeout ns) ;

Listings 4.2 presents the prototype functions of the basic API required

to:

1. connect and authenticate in the system

2. join and leave interest groups

3. establish network connections with peers in those groups

4. directly send and receive data

42 CHAPTER 4. CONNECTING USERS ACROSS GRID SITES

The API also includes functions that allow handling communication us-

ing event handlers, which are more adequate to deal with multiple simulta-

neous connections.

4.1.4 Intra and Inter Domain-Group Routing

User Domains’ network routing scheme is independent of SPM, which is

used in this context only to interconnect different Domain Groups. Every

SA is a network router and each Domain can contact any other by rout-

ing the network messages to the intended destination using the available

interconnections. SPM provides point-to-point links between tasks, which

are maintained as a set of active connections established on request be-

tween the Domain Groups. These connections are created and destroyed by

SAs according to the destination of the messages. Like other infrastructure

drivers, SPM is required to provide a list of interconnection peers and a

database (Exchange) to list SAs capable of interconnecting different net-

work segments. Whenever the destination is unknown or is unreachable the

SAs trigger a destination discovery process, gathering all addresses accessi-

ble and the paths to be followed in each case, using a direct routing strategy

afterwards.

4.1.5 SPM Port Mapper utility

While SPM was developed in the context of User Domains to intercon-

nect multiple remote locations, we believe there are several usage scenarios

in which it can be very useful. One example of such scenarios is an SPM

application we implemented to serve as a generic port redirector, similar to

the netcat utility. It performs network tunnelling between NAT environ-

ments, with which users can publish services and establish tunnels between

multiple network services without needing to use public IP addresses.

4.2 Connecting services among Grid sites

One of the objectives of this work was to develop a solution to connect

different services that were not directly connected to the Internet (don’t have

4.2. CONNECTING SERVICES AMONG GRID SITES 43

a public and accessible IP address). These private addressed machines, resid-

ing behind NAT’s, need special techniques in order to establish a connection

between them. There are many known techniques, described in section 2.6,

that can be used to accomplish this goal.

The first strategy, NAT reconfiguration, involves explicit signalling be-

tween applications and NAT devices, briefly described in section 2.6.1, is

out of the scope of this work, since it is not a real solution for our problem.

Although these techniques are frequently used by popular p2p applications

in small and home networks and supported by most of the common Inte-

grated Service Routers (ISRs), the network environments where this work

is inserted is normally controlled by strict security policies. For this rea-

son, this NAT traversal strategy was excluded form the solution, although

it could be useful under certain conditions.

Relaying, described in section 2.6.2, consists in traversing NAT devices

using a relay server. As previously mentioned, this technique can be useful

as a fallback, when everything else fails, or on very specific scenarios. The

fact that all the traffic passes through a relay server is a big performance

penalty that excludes this strategy from our solution.

Techniques such as hole punching rely on a third party server in order

to establish the connection. This is can be a feasible way to overcome

the problem, however, different devices and topologies require employing

different mechanisms. It is necessary to get information about each topology

to apply the correct technique. This is the may reason why we didn’t choose

to test different hole punching techniques.

Section 2.6.3 introduced a novel technique for NAT traversal that doesn’t

rely on a third party server. This fact brings many advantages when com-

pared with other strategies.

Among several techniques that were studied and analysed, we decided

that this simple and precise method could be a solution for our problem.

This ‘autonomous nat traversal’ strategy[18], were implemented by the au-

thors on the pwnat tool1, a stand-alone implementation of autonomous NAT

traversal. Pwnat is a simple program, openly released for nix operating sys-

1pwnat project homepage, by Samy Kamkar: http://samy.pl/pwnat/

http://samy.pl/pwnat/

44 CHAPTER 4. CONNECTING USERS ACROSS GRID SITES

tems, that must be run on both endpoints of the communication, one acting

as a client and the other as a server2. It allows one ore more clients be-

hind NATs to connect to a server behind a separate NAT. As written by

the authors, ‘There is no middle man, no proxy, no 3rd party, no UPnP/S-

TUN/ICE required, no spoofing, and no DNS tricks’.

However, this method is not infallible. To evaluate that, the authors

developed and released the NAT-Tester framework3, which can be used by

any user and allowed the authors to gather information about common NAT

devices around the Internet. The main results of these studies were published

in 2010[18], where it was concluded that the autonomous NAT traversal

technique ‘works extremely well if only one peer is behind NAT and virtually

never if both peers are behind NAT’.

We have tried this alternative in two different scenarios: from a publicly

addressed, to a host behind NAT; and from two hosts behind NAT. On the

first scenario, the evaluation was successful - We were able to connect to the

NATed device. The second one is more complicated - even running pwnat

on both machines, they were not able to make a successful connection (this

is the harder scenario, as concluded by the evaluations made by the authors

of the application).

The usage of pwnat is fairly simple, as you can see bellow, however is

didn’t show to be as robust as our project requires because it fails in one of

the most important scenarios - when you have two agents behind different

NATs.

Listing 4.2: SPM main API functions

1 % download and compile pwnat on both hos t s

3 wget http : //samy . p l /pwnat/pwnat−0.3− be ta . t g z

4 ta r xvz f pwnat−0.3−beta . tgz

5 cd pwnat−0.3−beta

6 make

2For clarification, on this section, the client and server terms refer to the hosts running

the pwnat application as client or server, respectively.
3NAT-Tester homepage, by Andreas Müller and Andreas Klenk: http://nattest.

net.in.tum.de/

http://nattest.net.in.tum.de/
http://nattest.net.in.tum.de/

4.2. CONNECTING SERVICES AMONG GRID SITES 45

8 % run pwnat in s e r v e r mode on host 1

9 (host 1)# . / pwnat −s

11 % run pwnat as c l i e n t on host 2

12 (c l i e n t)# . / pwnat −c 8000 <pwnat . s e r v e r . com> goog l e . com 80

Once again, we can understand that there isn’t a fully successful solution

for the NAT traversal problem, but each new alternative, like this one,

potentially increases the final success rate.

4.2.1 Using ICE for NAT traversal

In order to be able to connect different devices in separate private net-

works, behind NAT devices, we chose to use the ICE method. RFC 5245

(produced by IETF in April 2010) describes ICE as a technique, rather than

a protocol, for NAT traversal established by the offer/answer protocol. ICE

does not use a single technique for traversing NAT, but takes advantage of

a few existent other methods in an integrated and simpler way. It incor-

porates hole punching, relaying and even NAT reconfiguration techniques

(see section 2.6). This mechanism was described in deeper detail in section

(2.6.4).

In a typical ICE deployment, we have two endpoints, known as agents,

that want to communicate. They are able to communicate indirectly via

some communication protocol (such as SIP or XMPP), in order to exchange

some information about themselves. At the beginning of the ICE process,

the agents have no information about their topologies. They might be be-

hind multiple tiers of NAT, or might not even be behind one. ICE facili-

tates this topology discovery process to potentially find one or more paths

by which they can communicate.

Figure 4.2 is an example of a typical ICE deployment. The two endpoints

(labelled L and R) are behind their own respective NATs though they may

not be aware of it. The type of NAT and its properties are also unknown.

Agents L and R are capable of exchanging session establishment information

through a broker (typically a XMPP or SIP server) in order to set up a p2p

session between L and R.

In addition to the agents, a signalling server and NATs, ICE typically

46 CHAPTER 4. CONNECTING USERS ACROSS GRID SITES

NAT

Pu
bl

ic
 In

te
rn

et
G

lo
ba

l I
Ps

Lo
ca

l N
et

w
or

k
Pr

iv
at

e
IP

s

P2P connectionAgent L Agent R

Broker
-STUN
-TURN
-XMPP (SIP)

Internet

Figure 4.2: Typical ICE deployment scenario

relies on STUN or TURN servers as well (each agent can have its own STUN

or TURN server, or they can be the same).

Each agent has a variety of candidate transport addresses (combination

of IP address and port for a particular transport protocol) it could use to

communicate with the other agent, including (see figure 4.3):

• A transport address on a directly attached network interface (a ḧost

candidateäddress)

• A translated transport address on the public side of a NAT (a s̈erver

reflexiveäddress)

• A transport address allocated from a TURN server (a r̈elayed address)̈

Each agent potentially has a set of candidate transport addresses that

can be used to communicate with the remote’s candidate transport ad-

dresses. In practice, however, many combinations will not work. In this

example, for instance, L and R are behind different NATs, so their directly

attached interface addresses are unlikely to be able to communicate directly

(this is why ICE is needed). The purpose of ICE is to discover which pairs of

addresses will work, by systematically trying all possible pairs (in a carefully

sorted order) until it finds one or more that work.

4.2. CONNECTING SERVICES AMONG GRID SITES 47

Agent R

NAT

Local

Server Reflexive

Agent L

NAT

Broker
-TURN

Local

Server Reflexive

Relayed Relayed

Check candidate
pairs

Figure 4.3: Main transport address candidates on ICE

In order to execute ICE, an agent has to identify all of its address can-

didates. Naturally, one viable candidate is a transport address obtained

directly from a local interface (host candidate). Next, the agent uses STUN

or TURN to obtain additional candidates. These come in two flavours:

translated addresses on the public side of a NAT (server reflexive candidate)

and addresses on TURN servers (relayed address). When TURN servers are

utilised, both types of candidates can be obtained from the TURN server. If

only STUN servers are utilised, only server reflexive candidates are obtained

from them. In other words, a TURN server generally provides a STUN and

TURN service.

Once each agent has gathered all of its candidates, it sorts them in

descendant priority order and sends them to the remote agent over the

signalling channel (i.e. using the XMPP service). At the end of this pro-

cess, each agent has a complete list of both its candidates and its peer’s

candidates. Next, it pairs them up, to check which pairs work (simplified

on figure 4.3). High-priority candidate pairs are checked first, followed by

lower-priority ones. Summarising, the basic principle is simple:

1. Discover the candidate transport addresses

2. Sort the candidate pairs in priority order

3. Send checks on each candidate pair in priority order

48 CHAPTER 4. CONNECTING USERS ACROSS GRID SITES

4. Acknowledge checks received from the other agent

At the end of this handshake, both L and R know that they can send

(and receive) messages end-to-end in both directions.

There are a few open implementations of this protocol. After evaluating

all of their potentialities and limitations, we chose to use libnice4, a free

implementation of the ICE specification written in C, based on the GLib

library.

Using the (sometimes short) available description of the library and the

valuable help of its community, we started by developing a simple application

to test the connection between two separate NATed hosts.

When using libnice, NiceAgent is the main object that takes care of

everything relating to ICE. It takes care of discovering local candidates and

doing connectivity checks to create a stream of data between both peers.

Listings 4.3 details the main structure of libnice usage5:

Listing 4.3: Simple example on how to use libnice

1 // Create a nice agent

2 NiceAgent ∗ agent =nice agent new (NULL, NICE COMPATIBILITY RFC5245

) ;

3 // Connect the s i g n a l s

4 g s i g n a l c o n n e c t (G OBJECT(agent) , ” candidate−gather ing−done” ,

5 G CALLBACK(cb cand ida t e ga the r ing done) ,NULL) ;

6 g s i g n a l c o n n e c t (G OBJECT(agent) , ”component−s ta te−changed” ,

7 G CALLBACK(cb component state changed) ,NULL) ;

8 g s i g n a l c o n n e c t (G OBJECT(agent) , ”new−s e l e c t e d−pa i r ” ,

9 G CALLBACK(c b n e w s e l e c t e d p a i r) ,NULL) ;

10 // Create a new stream and s t a r t ga t h e r ing cand ida t e s

11 s t ream id = nice agent add s t r eam (agent , 1) ;

12 n i c e a g e n t g a t h e r c a n d i d a t e s (agent , s t r eam id) ;

13 // Attach to the component to r e c e i v e the data

14 n i c e a g e n t a t t a c h r e c v (agent , stream id , 1 ,NULL, c b n i c e r e c v ,NULL)

;

15 // Wait u n t i l the s i g n a l candidate−ga ther ing−done i s f i r e d . . .

16 lcands = n i c e a g e n t g e t l o c a l c a n d i d a t e s (agent , stream id , 1) ;

17 // Send l o c a l cand ida te s and s e t the peer ’ s remote cand ida t e s

4libnice project homepage: http://nice.freedesktop.org/
5Similar example can be found on the libnice API: http://nice.freedesktop.org/

libnice/NiceAgent.html

http://nice.freedesktop.org/
http://nice.freedesktop.org/libnice/NiceAgent.html
http://nice.freedesktop.org/libnice/NiceAgent.html

4.2. CONNECTING SERVICES AMONG GRID SITES 49

18 n i c e a g e n t s e t r e m o t e c a n d i d a t e s (agent , stream id , 1 , rcands) ;

19 // Wait u n t i l the s i g n a l new−s e l e c t e d−pa i r i s f i r e d . . .

20 // Send our message !

21 n i c e ag en t s e nd (agent , stream id , 1 , s izeof (b u f f e r) , b u f f e r) ;

In order to succeed, each ICE agent needs to find its own candidates and

send them to the remote agent, as commented on line number 17 of the code

above.

Initially, we accomplished that by writing the NiceCandidate structs

to file and exchanging them between the agents using a FTP/SSH server.

However, after these successful initial tests, we found the need to create

a more sophisticated method for this control information exchange. After

doing some research and questioning the community, and excluding some

other unsuitable possibilities, we got before two different solutions for the

problem. Section 4.2.2 describes the solution for this problem.

NiceCandidate is the structure that carries relevant information about

transport candidate addresses6. The main fields are described in listings 4.4:

Listing 4.4: NiceCandidate structure

1 struct NiceCandidate {
2 NiceCandidateType type ; // type o f cand ida te

3 NiceCandidateTransport t ranspor t ; // t ran spo r t be ing used

4 NiceAddress addr ; // address o f the cand ida te

5 NiceAddress base addr ; // base address used by the cand ida te

6 guint32 p r i o r i t y ; // p r i o r i t y o f the cand ida te

7 // . . .

8 TurnServer ∗ turn ; //TURN s e t t i n g s f o r r e l ay ed cand ida t e s

9 } ;

4.2.2 Using XMPP for control information exchange

XMPP, previously described in section 2.7, is an open XML protocol for

real time messaging, presence and request response services. As described

in section 4.2.1, we needed a simple and versatile way of exchanging the ICE

information between agents.

6more detailed information on the API: http://nice.freedesktop.org/libnice/

libnice-NiceCandidate.html

http://nice.freedesktop.org/libnice/libnice-NiceCandidate.html
http://nice.freedesktop.org/libnice/libnice-NiceCandidate.html

50 CHAPTER 4. CONNECTING USERS ACROSS GRID SITES

XMPP has shown up to be the right way of doing it. In addition to

its XML messaging main feature, XMPP has the concept of presence and

contact lists. As in any common chat application, each user can have a list

of contacts, check his presence status and send/receive messages. Moreover,

it even deals with the authentication concerns. Any user can freely take

advantage of the infrastructure and adapt it to his needs.

After choosing the right protocol for this simple information exchange,

we decided to start building a basic application to accomplish our needs.

One of the advantages of choosing a popular open standard is that you can

get lots of support and examples. That’s the case with XMPP7. There are

plenty of projects going on and, in the homepage, you can find a list of

servers, client software and libraries.

We decided to try Strophe8, a collection of libraries for speaking the

XMPP protocol. Strophe comes in two flavours: Strophe.js, a JavaScript

implementation targeting browser-based clients and libstrophe, a minimal

C library for XMPP clients and components, designed for both POSIX and

Windows systems. As the rest of our application was developed in C code,

we coherently decided to go with libstrophe.

XMPP is a very simple protocol. Yet, there are many components,

modules and extensions that can be used, depending on your product needs.

4.2.3 Simple Peer Messaging (SPM)

SPM is the application that gathers these functionalities together, in

order to tackle our main communication goal: the ability to communicate

among different grid sites. It uses the libnice ICE implementation to es-

tablish a connection across NAT devices and libstrophe XMPP library to

exchange control information.

So, SPM’s main functionality is to establish a transport connection be-

tween two hosts. After managing it, the application has to be fed with data,

the raw material that needs to be transmitted. We decided to use POSIX

sockets to deal with the data input and output of SPM. The high-level ar-

chitecture of SPM is described in figure 4.4.

7XMPP homepage: http://xmpp.org
8Strophe homepage: http://strophe.im

http://xmpp.org
http://strophe.im

4.2. CONNECTING SERVICES AMONG GRID SITES 51

local
socket:
5555

External app

STUN/TURN
server

XMPP infrastrucure

Host L

Host R

SP
M

 a
ge

nt
(in

iti
at

or
)

ICE
send/receive

XMPP
control msgs

XMPP
control msgs

libnice
libstrophe
libsocket

SPM agent
(responder)

Figure 4.4: SPM high-level architecture. Two hosts communicating through

ICE

Summing up, SPM starts by registering itself (the user) in the XMPP

service. This creates a pool of contacts that can be seen as a set of re-

sources that are available at some point. Then, when one of those contacts

is chosen, se communication and negotiation starts. An invitation to start

a ICE conversation is sent to the remote contact. This negotiation involves

exchanging ICE agent credentials and candidate addresses. When this ICE

connection is established, SPM opens a local socket for getting (and return-

ing) data from (to) an external application. This is achieved by opening

a local socket. That data that comes from the local socket is sliced and

sent through the ICE connection, using the appropriate libnice call. The

same applies in the reverse direction. As data arrives from the remote host

through ICE, it is continuously passed to the local socket. Briefly, this is

how data is passed from one host to the other.

Besides its simple high level architecture, SPM has a quite complex se-

quencing. It is responsible for managing and sequencing three different

sources/destinations of data: the ICE connection, the XMPP communica-

tions and a local socket. Figure 4.5 represents that sequence diagram. As

you can read from it, SPM starts by asking ICE for the host’s local creden-

52 CHAPTER 4. CONNECTING USERS ACROSS GRID SITES

SPM_agent ICE XMPP

get local
cands/creds

ICE loop
local cands/creds

exchange ICE information XMPP msg

XMPP msgdone

Local socket

create local socket

received data
though ICE?

send to local socket
send to local

has data to read?
receive
from local

send through ICEm
or

e
da

ta
?

customized loop

Figure 4.5: SPM sequence diagram. Involves ICE, XMPP and a local socket

tials and transport candidates. This operation involves asking the TURN

server for the relayed address candidate. After ICE gets that information,

the loop is stopped and the credentials and local candidates are returned.

The XMPP exchange is then started. The local agent (initiator) in-

vites the remote agent (responder) to start a ICE conversation. After it is

accepted, agents exchange each local credentials and transport candidates.

When this process is achieved, the XMPP loop stops and the local socket is

created. This socket is used to get data from any external application that

is therefore sent though ICE (the reverse also applies).

After creating the local socket and accepting a connection from the ex-

ternal application, a customised loop is run. In each iteration of this loop,

a set of checks is made. Firstly, it starts by checking if any data has been

received through ICE. In that case, that data is immediately written to the

local socket. Then, using select, SPM checks if there is data to be read from

the local socket. In case there is, that data is sent through ICE.

Figure 4.6 describes in greater detail the XMPP communication, that

4.2. CONNECTING SERVICES AMONG GRID SITES 53

SPM_agent
(initiator)

SPM_agent
(responder)

hello

begin

credentials
candidates

done

credentials
candidates
ready

ok

Figure 4.6: XMPP handshake for ICE conversation establishment

works as an handshake to establish a ICE connection. We decided to create a

very simple protocol between the two agents where credentials and transport

candidates are exchanged using XMPP messages.

Listings 4.5 shows three examples of messages exchanged through XMPP

(credentials, candidates and done).

Listing 4.5: Example of three messages sent the XMPP handshake

1 % c r e d e n t i a l s message

2 <message id=”myICE” to=” t iago2@jabber . org ” type=”normal”>

3 <subject>c r e d e n t i a l s </subject>

4 <body>e3YZ / Vu0fnsreWZrkyji i /JYHt</body></message>

6 % cand idates message

7 <message id=”myICE” to=” t iago2@jabber . org ” type=”normal”>

8 <subject>candidates </subject>

9 <body>AAAAAAAAAAACAIevrBBUgwAAAAAAAAAAAAAAAAAAAg. . . </ body>

10 <body>AQAAAAAAAAACANyjwYgTNwAAAAAAAAAA////AAAAAg.. .</ body>

11 <body>AwAAAAAAAAACAMphwYgTvwAAAAAAAAAA////AAAAAg.. .</ body></

message>

13 % done message

14 <message id=”myICE” to=” t iago2@jabber . org ” type=”normal”>

15 <subject>done</subject ></message>

Chapter 5

Application of main results

5.1 University of Minho Grid sites

The core research computing infrastructure at UMinho deployment en-

vironment is based on the Rocks toolkit.

In order to offer its researchers a Grid network suited to support differ-

ent types of scientific applications and to contribute with developments for

applying it to different scientific fields and communities, UMinho became a

member of the EGEE South West federation production infrastructure back

in 2007. UMinho’s EGEE first site (named DI-UMinho) was installed and

configured with the gLite middleware based on Scientific Linux 3.

Later, a second site was installed to support the grid activities taking

place at UMinho (named UMinho-CP). This site responded to the specifici-

ties of the Civil Protection (CP) projects in which the UMinho was involved.

UMinho-CP has evolved since its first deployment, following the needs

of the projects where it participates and the evolution of the infrastructure

itself. Figure 5.1 depicts the actual state of the site, where SVMs 1 to 5 are

virtualisation servers running VMware ESX Server.

Traditionally, each cluster based on Rocks is built around a private

VLAN, where the FE acts as a gateway. However, in this scenario, some

cluster nodes may need to be directly connected to the Internet in order

to provide different Grid services. The private network (private VLAN in

the figure) is used to deploy and maintain the cluster, mastered by the FE.

55

56 CHAPTER 5. APPLICATION OF MAIN RESULTS

ROCKS5.3 Frontend
(GRID-prociv-POP)
pop.grid.prociv.pt

egi-CE
(computing-element-0-0)

ce.egee.di.uminho.pt

egi-SE
(storage-elemt-0-0)

se.egee.di.uminho.pt

egi-MON
(mon-0-0)

mon.egee.di.uminho.pt
193.136.19.167

egi-UI
(user-interface-0-0)
ui.egee.di.uminho.pt

Internet

private VLAN

public VLAN

svm1

svm2

svm3

svm4 svm5

193.136.19.191

egi-BDII
(site-bdii-0-0)

site-bdii.cp.di.uminho.pt

193.136.19.169

193.136.19.166

193.136.19.168

193.136.19.165

193.136.19.167

egi-WN03
egi-WN02
egi-WN01
egi-WN00

egi-WN13
egi-WN12
egi-WN11
egi-WN10

Figure 5.1: UMinho-CP site infrastructure

Additionally, every node except the Worker Nodes (WNs) is also connected

to the Internet, addressed with a public IP. That Internet connection is

indicated by the public VLAN and public IPs in the figure.

The architecture model of each site comprises a set of WNs in a tightly

coupled LAN connected by a private Ethernet switch and several differ-

ent server components connected both to the internal network and to the

Internet.

A Virtual Organization (VO) refers to a dynamic set of individuals or

institutions defined around a set of resource-sharing rules and conditions.

All VOs share some commonality among them, including common concerns

and requirements, but may vary in size, scope, duration, sociology, and

structure.

5.2 SPM - performance evaluation

NAT traversal evaluation has focused primarily on the ability to perform

peer interconnection [12, 16] and there is little information about the per-

5.2. SPM - PERFORMANCE EVALUATION 57

formance achievable by NAT traversal techniques. However, User Domains

platform’s performance is highly dependent on the network characteristics,

so further evaluation was required to study the network bandwidth of NAT

traversal in multiple scenarios of interest[1].

This performance evaluation compares the bandwidth achieved while

transmitting 1GB of data using SPM over PseudoTCP/UDP to the band-

width that is achieved by the iperf benchmark directly over UDP1.

Since the iperf benchmark follows the client/server model and cannot

connect to a server behind a NAT devices autonomously, in the tests that

required NAT traversal the routers were configured to forward the required

ports to the testing hosts, which should introduce a small processing over-

head on the remap. But a UDP only program is also relieved from providing

reliable PseudoTCP service, which itself also introduces an overhead in the

libraries supporting SPM. So, while this comparison is not strictly accurate,

we are convinced that the obtained results may be used to evaluate the

applicability of the approach.

HOME 2HOME 1

SITE 1 SITE 2

PUBLIC LAN

 1.

PRIVATE LAN ADSL ISP

PUBLIC LAN

G

E

FDAB
 0.

C

 2.

 4.

 5.

 7.

WAN BACKBONE

 10.

nat nat

nat

nat

H

nat

Ethernet 1Gbps

Ethernet 100Mbps

Adsl 10/1Mbps

 3.

 9. 8.

 6.

Figure 5.2: Test setups to be used as reference

1iperf project homepage: http://sourceforge.net/projects/iperf/

http://sourceforge.net/projects/iperf/

58 CHAPTER 5. APPLICATION OF MAIN RESULTS

The tests were performed between 4 different sites: the high bandwidth

site1 and site2 sites are typical HPC facilities and the low, and asymmetric,

bandwidth sites home1 and home2 are domestic (see figure 5.2). The test

setups included three categories: LAN, high speed WAN and domestic WAN,

then further divided in eleven different network topology scenarios, including

configurations:

1. without NAT (0, 1)

2. with NAT on one side (2, 3, 5, 6)

3. with NAT on both sides (4, 7, 8, 9, 10)

5.2.1 Test-bench configuration

The testing workbench was based on nodes containing two six-core In-

tel Xeon X5650 processors and 24GB of RAM interconnected by Gigabit

Ethernet, installed with the Linux OS kernel 2.6.18-194 (CentOS 5.4). Two

types of routers were used: router servers based on compute nodes similar to

the ones above in the two main sites and domestic router appliances in the

domestic environments. SPM hole punching and iperf tests were performed

using an UDP block size of 4K bytes, while the network MTU was kept in

the default value of 1500. The results presented are the median of 5 runs of

each performance test and all processes were pinned to a specific processor

core.

5.2.2 Experimental results

Based on the evaluated configurations, we can conclude that SPM was

able to establish direct connection to remote nodes using NAT hole punching

in every scenario.

Table 5.1 lists the bandwidth achieved in the network configurations

presented in figure 5.2. The Efficiency column shows the ratio between SPM

and iperf, representing the overhead of both our library and its dependencies

and the NAT traversal process. From the results, one can conclude that

when connecting different compute nodes the bandwidth available in SPM

5.2. SPM - PERFORMANCE EVALUATION 59

is always within 87% of the raw network performance. Plus, this level of

performance is stable from the low bandwidth domestic ADSL connections

up to the gigabit LAN configurations. Given the intrinsic overhead of the

SPM library, one can also conclude that the NAT hole punching process is

not exceedingly penalising.

Setup SPM (Mbps) iperf (Mbps) Efficiency (%)

0. 6.012,10 7.260,00 83

1. 834,25 958,00 87

2. 845,20 958,00 88

3. 831,37 958,00 87

4. 821,10 910,00 90

7. 90,60 93,30 97

8. 0,98 1,06 92

9. 11,19 12,50 90

10. 0,97 1,12 87

Table 5.1: Network bandwidth between nodes.

Chapter 6

Conclusions and Future

Work

This document describes two integrated solutions that were devised with

a common goal - Easy management and user interconnection across Grid

sites -, motivated by the needs of the Distributed Systems projects where

DI is involved.

The first solution consists on the EGI roll, which allows easy and efficient

configuration, installation and maintenance of Grid sites. It is an evolution

from the previous work that was developed by the team[28, 26]. This contri-

bution adapts the roll to recent software releases and architecture changes,

while also adding extra functionalities as described in chapter 3.

The Distributed Computing area is evolving at a fast pace, particularly

global projects like the EGI. As described in section 2.3.2, there is a plan to

migrate the grid middleware from gLite to UMD. This means that all sites

should start thinking about that transition. In the future, the roll must be

adapted to the new middleware, which should be a fairly simple task, since

the architecture remains the same - UMD still follows the same approach,

based on appliances with different roles that provide the required services

for the Grid ecosystem.

There are other improvements that can be made to the EGI roll. The

way the site-wide configuration file is maintained is a clear point that needs

further work. The configuration of the Grid site’s appliances is done using

61

62 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

YAIM, a tool which takes the site-info.def text file, consisting a list of gen-

eral variables, to configure the different nodes. When doing troubleshooting,

the site administrator tends to make changes on this file locally, on the ap-

pliance where the problem is occurring, rather than on the central node.

This can lead to inconsistency between the different nodes, creating differ-

ent versions of the file. One solution, and further enhancement to the EGI

roll, would be to use a version control system (i.e. subversion) to keep track

of those changes and push the modifications to the other nodes of the Grid

site.

The second solution is SPM, a tool that enables the interconnection

of Grid sites, providing a user-level resource architecture, as part of the

User Domains project [1]. To achieve that control over a loosely coupled

set of resources, SPM creates a presence and messaging system and builds

an efficient communication link between any entities that are successfully

registered in that system, including those located behind NAT devices.

SPM delivers a network layer with two distinct functions: i) the gath-

ering of information about live peers and basic session establishment and

ii) the direct and reliable interconnection of the peers using NAT traversal

techniques.

Security is one subject that must be addressed in the future when think-

ing about using SPM in a production environment. In that situation, it is

critical to harden security both by authenticating the devices that handle

the connection and by protecting the exchanged traffic through encryption.

The results in section 5.2.2 show that the use of SPM doesn’t inflict a

large performance penalty confirming the expectable usability both at high

bandwidth and at home computing facilities.

In summary, the integration of the devised solutions achieves scalability

and flexibility at multiple levels: a) the EGI roll, to allow the infrastructure

to be scaled both site-wide and Grid-wide by simplifying the deployment

and administration processes and b) the User Domain abstraction enables

a user-level platform, creating an infrastructure overlay that allows users to

take full control of their allocated resources leveraging from the computing

capacity available in multiple sites.

Bibliography

[1] V. Oliveira, A. Pina, and A. Rocha. Running user-provided virtual ma-

chines in batch-oriented computing clusters. In Parallel, Distributed and

Network-Based Processing (PDP), 2012 20th Euromicro International

Conference on, pages 583 –587, feb. 2012. doi: 10.1109/PDP.2012.91.

[2] glitehome. gLite Middleware homepage. http://glite.web.cern.ch/

glite/.

[3] V. Oliveira, A. Pina, and T. Sa. Simple peer messaging for remote

user domains interconnection. In High Performance Computing and

Simulation (HPCS), 2012 International Conference on, pages 315 –321,

july 2012. doi: 10.1109/HPCSim.2012.6266931.

[4] Philip M. Papadopoulos, Mason J. Katz, and Greg Bruno. Npaci

rocks: Tools and techniques for easily deploying manageable linux clus-

ters. Cluster Computing, IEEE International Conference on, 0:258,

2001. doi: http://doi.ieeecomputersociety.org/10.1109/CLUSTR.2001.

959986.

[5] G. Bruno, M.J. Katz, F.D. Sacerdoti, and P.M. Papadopoulos. Rolls:

modifying a standard system installer to support user-customizable

cluster frontend appliances. Cluster Computing, IEEE International

Conference on, 0:421–430, 2004. doi: http://doi.ieeecomputersociety.

org/10.1109/CLUSTR.2004.1392641.

[6] Elisa Lanciotti MaartenLitmaath PatriciaMe ndez Lorenzo Vin-

cenzo Miccio Christopher Nater Roberto Santinelli Andrea Sciaba

Stephen Burke, Simone Campana. glite 3.2 user guide.

63

http://glite.web.cern.ch/glite/
http://glite.web.cern.ch/glite/

64 BIBLIOGRAPHY

[7] A Maier. Ganga— a job management and optimising tool. Jour-

nal of Physics: Conference Series, 119(7):072021, 2008. URL http:

//stacks.iop.org/1742-6596/119/i=7/a=072021.

[8] Y. Rekhter, B. Moskowitz, D. Karrenberg, G. J. de Groot, and E. Lear.

Address Allocation for Private Internets. RFC 1918 (Best Current Prac-

tice), February 1996. URL http://www.ietf.org/rfc/rfc1918.txt.

[9] Rubén Cuevas, Ángel Cuevas, Albert Cabellos-Aparicio, Loránd Jakab,

and Carmen Guerrero. A collaborative p2p scheme for nat traversal

server discovery based on topological information. Computer Networks,

54(12):2071 – 2085, 2010. ISSN 1389-1286. doi: 10.1016/j.comnet.2010.

03.022. URL http://www.sciencedirect.com/science/article/

pii/S1389128610001817. ¡ce:title¿P2P Technologies for Emerging

Wide-Area Collaborative Services and Applications¡/ce:title¿.

[10] P. Srisuresh and K. Egevang. Traditional IP Network Address Transla-

tor (Traditional NAT). RFC 3022 (Informational), January 2001. URL

http://www.ietf.org/rfc/rfc3022.txt.

[11] G. Tsirtsis and P. Srisuresh. Network Address Translation - Protocol

Translation (NAT-PT). RFC 2766 (Historic), February 2000. URL

http://www.ietf.org/rfc/rfc2766.txt. Obsoleted by RFC 4966,

updated by RFC 3152.

[12] Bryan Ford, Dan Kegel, and Pyda Srisuresh. Peer-to-Peer Communi-

cation Across Network Address Translators. In Proceedings of the 2005

USENIX Technical Conference, 2005. URL http://citeseerx.ist.

psu.edu/viewdoc/summary?doi=10.1.1.59.6799.

[13] Nathan S. Evans. Methods for secure decentralized routing in open

networks. Master’s thesis, Technische Universität München, Garching

bei München, 08/2011 2011.

[14] J. Postel. Internet Protocol. RFC 791 (Standard), September 1981.

URL http://www.ietf.org/rfc/rfc791.txt. Updated by RFC 1349.

http://stacks.iop.org/1742-6596/119/i=7/a=072021
http://stacks.iop.org/1742-6596/119/i=7/a=072021
http://www.ietf.org/rfc/rfc1918.txt
http://www.sciencedirect.com/science/article/pii/S1389128610001817
http://www.sciencedirect.com/science/article/pii/S1389128610001817
http://www.ietf.org/rfc/rfc3022.txt
http://www.ietf.org/rfc/rfc2766.txt
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.59.6799
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.59.6799
http://www.ietf.org/rfc/rfc791.txt

BIBLIOGRAPHY 65

[15] S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6) Spec-

ification. RFC 2460 (Draft Standard), December 1998. URL http:

//www.ietf.org/rfc/rfc2460.txt. Updated by RFCs 5095, 5722,

5871.

[16] P. Srisuresh, B. Ford, and D. Kegel. State of Peer-to-Peer (P2P) Com-

munication across Network Address Translators (NATs). RFC 5128 (In-

formational), March 2008. URL http://www.ietf.org/rfc/rfc5128.

txt.

[17] R. Mahy, P. Matthews, and J. Rosenberg. Traversal Using Relays

around NAT (TURN): Relay Extensions to Session Traversal Utilities

for NAT (STUN). RFC 5766 (Proposed Standard), April 2010. URL

http://www.ietf.org/rfc/rfc5766.txt.

[18] Andreas Müller, Nathan Evans, Christian Grothoff, and Samy Kamkar.

Autonomous nat traversal. In 10th IEEE International Conference on

Peer-to-Peer Computing (IEEE P2P 2010). IEEE, 2010.

[19] G. Huston, A. Lord, and P. Smith. IPv6 Address Prefix Reserved for

Documentation. RFC 3849 (Informational), July 2004. URL http:

//www.ietf.org/rfc/rfc3849.txt.

[20] J. Rosenberg, R. Mahy, P. Matthews, and D. Wing. Session Traversal

Utilities for NAT (STUN). RFC 5389 (Proposed Standard), October

2008. URL http://www.ietf.org/rfc/rfc5389.txt.

[21] J. Rosenberg. Interactive Connectivity Establishment (ICE): A Pro-

tocol for Network Address Translator (NAT) Traversal for Offer/An-

swer Protocols. RFC 5245 (Proposed Standard), April 2010. URL

http://www.ietf.org/rfc/rfc5245.txt. Updated by RFC 6336.

[22] Salman A Baset and Henning Schulzrinne. An analysis of the skype

peer-to-peer internet telephony protocol. Proceedings IEEE INFOCOM

2006 25TH IEEE International Conference on Computer Communica-

tions, 6(c):1–11, 2004. URL http://arxiv.org/abs/cs/0412017.

http://www.ietf.org/rfc/rfc2460.txt
http://www.ietf.org/rfc/rfc2460.txt
http://www.ietf.org/rfc/rfc5128.txt
http://www.ietf.org/rfc/rfc5128.txt
http://www.ietf.org/rfc/rfc5766.txt
http://www.ietf.org/rfc/rfc3849.txt
http://www.ietf.org/rfc/rfc3849.txt
http://www.ietf.org/rfc/rfc5389.txt
http://www.ietf.org/rfc/rfc5245.txt
http://arxiv.org/abs/cs/0412017

66 BIBLIOGRAPHY

[23] A.S. Ahmed and R.H. Shaon. Evaluation of popular voip services. pages

58 – 63, 2009.

[24] Mikael Goldmann and Gunnar Kreitz. Measurements on the spotify

peer-assisted music-on-demand streaming system. To appear in IEEE

P2P’11 (industrial session), 2011.

[25] P. Saint-André, K. Smith, and R. Tronçon. XMPP: the definitive guide

: building real-time applications with Jabber technologies. Definitive

Guide Series. O’Reilly, 2009. ISBN 9780596521264. URL http://

books.google.pt/books?id=SG3jayrd41cC.

[26] Bruno Oliveira, Antonio Pina, and Alberto Proenca. EGEE site ad-

ministration made easy. In Proenca, A and Pina, A and Tobio, JG

and Ribeiro, L, editor, IBERGRID: 4TH IBERIAN GRID INFRAS-

TRUCTURE CONFERENCE PROCEEDINGS, pages 295–306, 2010.

ISBN 978-84-9745-549-7. 4th Iberian Grid Infrastructure Conference

(IBERGRID), Braga, PORTUGAL, MAY 24-27, 2010.

[27] Mason J. Katz, Philip M. Papadopoulos, and Greg Bruno. Leverag-

ing standard core technologies to programmatically build linux cluster

appliances. In CLUSTER 2002: IEEE International Conference on

Cluster Computing, pages 47–53, 2002.

[28] Antonio Pina, Bruno Oliveira, Albano Serrano, and Vitor Oliveira.

EGEE Site Deployment & Management Using the Rocks toolkit. In

Silva, F and Barreira, G and Ribeiro, L, editor, IBERGRID: 2ND

IBERIAN GRID INFRASTRUCTURE CONFERENCE PROCEED-

INGS, pages 285–295, 2008. ISBN 978-84-9745-288-5. 2nd Iberian Grid

Infrastructure Conference (IBERGRID), Porto, PORTUGAL, MAY 12-

14, 2008.

http://books.google.pt/books?id=SG3jayrd41cC
http://books.google.pt/books?id=SG3jayrd41cC

