






Domain-specific Languages for Cryptographic Software

ii



Abstract

Cryptography plays an important role in our society, essentially because it is used
in critical computer systems that must work properly, even in the face of errors
or human mistakes. Banking or health care are examples of areas which use
hardware and software that must work in every situation. The main goal of the
use of cryptography in those systems is to achieve information security, which in
most cases is sensitive.

In the last few years, programming languages that focus on a particular domain
emerged, denominated as Domain-specific Languages (DSLs). Two DSLs for
cryptography appeared, Cryptol and CAO, both aiming to increase the produc-
tivity of developers, but also to improve the communication between them and
domain experts.

Cryptol is a functional language and has an associated toolkit composed by a
verification suite and compilation back ends to languages such as C or VHDL (a
hardware description language). CAO is an imperative language, with a syntax
similar to C’s and also has an associated toolkit with tools that allows, for instance,
the introduction of higher-order operations into the language.

In this work, these two DSLs for cryptography will be analysed, focusing on its
features and how they can re-target a published algorithm into a specific imple-
mentation. Furthermore, it was developed a compiler tool that aims to translate
CAO source code into Cryptol, in order to compile it afterwards to VHDL.

Finally, a case study focusing on elliptic curve cryptography, was used to compare
the two DSLs and to test the developed tool.
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Resumo

A criptografia desempenha um papel importante na nossa sociedade, visto que
é utilizada em sistemas de computação designados como críticos, que têm que
funcionar mesmo na presença de erros. Áreas como os sistemas bancários ou
de saúde usam software e hardware, que têm que funcionar em todas as circun-
stâncias. O principal objectivo para o uso de criptografia nesses sistemas, é o de
garantir a segurança da informação, que em muitos casos é sensível.

Nos últimos anos, foram surgindo linguagens de programação que se focam num
domínio específico, chamadas de linguagens de domínio específico (DSLs). No
domínio da criptografia, apareceram as linguagens Cryptol e CAO, ambas ambi-
cionando aumentar a produtividade dos programadores, mas também aumentar
a comunicação entre estes e os especialistas do domínio.

O Cryptol é uma linguagem funcional e tem um conjunto de ferramentas associ-
adas, compostas por um conjunto de ferramentas de verificação e de compilação
para linguagens como C ou VHDL, que é uma linguagem descritiva de hardware.
O CAO é uma linguagem imperativa, com uma sintaxe idêntica à do C, e tem
também um conjunto de ferramentas associado, que permite a introdução de
operações de alto nível na linguagem, por exemplo.

Neste trabalho, essas duas linguagens foram abordadas, em particular as suas
funcionalidades, e como podem ser usadas para implementar um algoritmo através
da sua especificação. Além disso, foi desenvolvida uma ferramenta de compi-
lação que pretende transformar código fonte CAO em código Cryptol, de forma a
compilá-lo para VHDL posteriormente.

Por fim, um caso de estudo que foca curvas elípticas para criptografia, foi utilizado
para comparar as duas DSLs e também para testar a ferramenta desenvolvida.
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Chapter 1

Introduction

Nowadays, information systems are important in our society. These systems use
a wide range of electronic devices: personal computers, mobile phones or other
embedded systems. Everyday, these systems generate and store big amounts
of data and, as most of them are network-based, a great amount of traffic is
transmitted through the network.

Complex computer systems in specific areas like banking, health care or aero-
nautics usually are considered to be critical systems. The information handled
by these systems is sensitive. For example: in the banking systems there are
managed bank accounts, client data and money transactions; in the health care
systems there are managed patients’ medical records, diseases and other private
information to doctors and the patient.

The design of these systems must have a different approach from typical soft-
ware engineering, approach in which developers keep programming and tuning
the system until it does what it is supposed to do. In a critical system, security
requirements are of major priority: these systems have to work in every single
situation, even when concerning human mistakes, arbitrary errors or in the pres-
ence of a malicious adversary.

When properly used, cryptography may assure information security. The formal
mathematical nature of it applied to computer science and electronic engineering
can be used to achieve security properties such as confidentiality, data integrity
or user authentication. In fact, cryptographic components are increasingly being
incorporated into electronic devices and play a big role in most part of Information
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Technologies (IT) software. Therefore, since these components can be used to
assure security, they assume an important part in their systems.

At a software level, cryptography may be implemented using any general purpose
language such as JAVA or C/C++. However, in the past few years, two domain-
specific languages (DSLs) for cryptography appeared, capturing the semantics of
the cryptographic domain: Cryptol and CAO. Both languages incorporate features
that allow one to represent cryptographic primitives, such as big numbers, number
theory libraries or bit-wise operations. The DSLs are smaller when compared to
general purpose languages, they make their programs easier to write, to reason
about and to maintain.

The Cryptol language was designed by Galois and it is based on the functional
programming paradigm. It allows developers to design high-level specifications of
cryptographic algorithms and takes advantage of polymorphic functions, lambda
abstractions, data records, and sequence comprehension. The Cryptol language
is part of a toolkit which is composed by the language itself and an interpreter
to evaluate produced code. Furthermore, it includes back end compilers to other
languages like C or VHSIC Hardware Description Language (VHDL), which can
be used in electronic design automation to describe digital and mixed-signal
systems. Cryptol also includes formal methods-based tools to generate formal
proofs, to be tested and verified in external theorem provers such as static code
analysers. In particular, the Cryptol-VHDL compiler is an interesting tool, as it al-
lows developers to design high-level specifications of cryptographic algorithms
based on published standards and then compile them to VHDL, which is an
industry-standard chip layout language or a Field-programmable Gate Array (FPGA)
circuit.

The CAO language was designed by the Cryptography and Information Security
Group of the University of Bristol and it was designed to allow the implementation
of cryptographic primitives such as block ciphers, hash functions or sequences
of finite field arithmetics. The language is based on the imperative programming
paradigm and has a syntax similar to C’s. In the context of the Computer Aided
Computer Engineering (CACE) project, a set of tools were developed in order to
improve CAO’s functionalities, such as the CALF compiler or the CAO-SL: the for-
mer introduces higher-level features into the language such as polymorphism and
dependent types; the latter allows one to define contracts such as pre-conditions,
post-conditions and loop invariants.

2



1.2. Dissertation Outline

1.1 Objectives

The main purpose of this work, is to study, analyse and compare the two DSLs.
The inherent differences of both languages start on their paradigms. The con-
structors and features that can be found in an imperative general purpose lan-
guage such as JAVA or C++, when compared to a functional one like Haskell,
are clearly distinct, requiring a different programming style. As cryptographic al-
gorithms are published mostly as pseudo-code, the first part of this dissertation
will focus on the comparison between two implementations of an widely used al-
gorithm: the AES. Some key aspects like the type systems, iteration building or
the manipulation of containers and structures of data have different approaches
both in functional and imperative paradigms, and will be addressed further in this
document.

One of the most interesting features of the Cryptol toolkit is the VHDL back end.
However, this particular Cryptol back end has some limitations, and some of them
are hardware related. Taking this into account, this dissertation proposes a tool,
CAO2Cryptol, that aims to take CAO source code as input, and as result generate
the equivalent Cryptol source code. Particularly, the output of the compiler must
be translatable to a hardware description language, such as VHDL.

Due to the differences of the paradigms of Cryptol and CAO, in the construction of
the CAO2Cryptol compiler, some components of the CAO language such as the
Abstract syntax tree (AST) were used to generate a Control-flow Graph (CFG),
a graph structures that indicates the program flow. Consequently, compiler re-
lated algorithms such as the Dominance Frontier algorithm were applied to the
CFG, in order to obtain the SSA form of a given program. After a set of trans-
formations over the input program, a source code program written in CAO, can
be translatable to Cryptol, and it is expected that the output to be compilable to
VHDL.

1.2 Dissertation Outline

This work is divided into six chapters. In the current chapter, we present an
introduction to all the work related to this dissertation.

3
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Chapter 2 describes the domain-specific languages focused on the cryptographic
domain: Cryptol and CAO, presenting the features of both languages and their
toolkits.

Chapter 3 introduces the AES algorithm and discusses its implementation both
in Cryptol and CAO. The implementations of the algorithm will be compared, fo-
cusing on particular key aspects of the languages.

Chapter 4 analyses the compilation of the AES algorithm to VHDL, through the
Cryptol toolkit. It is used the AES-128 version of the algorithm, which uses a 128-
bit key to encrypt data. The 32-bit implementation of AES algorithm will be also
addressed in this chapter, as well as the algorithm approach that uses auxiliary
tables (T-boxes) to optimize the algorithm.

Chapter 5 presents and describes the building process of the CAO2Cryptol
compiler, oriented on hardware compilation. The limitations of the Cryptol toolkit
and the requirements for the compiler will be presented, followed by the steps
required to transform CAO source code into Cryptol source code.

Chapter 6 evaluates the implemented compiler with a case study. Elliptic curve
cryptography primitives are used to test the CAO2Cryptol compiler, focusing on
the operations which manipulate elliptic curve points.

In the last chapter we present the conclusion of this dissertation, summarizing the
developed work and describing what can be done in the future based on it.

4



Chapter 2

Domain-specific languages for
cryptography

The use of representation models, specification techniques or programming lan-
guages to solve problems of a particular domain has risen in the past years.
According to [Fow10], a Domain-specific Language (DSL) may be defined as a
computer programming language of limited expressiveness focused on a particu-
lar domain, and can be defined by the following key elements:

• Computer programming language

• Language nature

• Limited expressiveness

• Domain focus

Like any general purpose programming language, a DSL must be human read-
able and machine processable, allowing humans to interact with computers in a
fluent way. Since they are domain-specific, these languages must focus in the
core elements of the target domain, supporting the required language features to
solve domain’s problems [Fow10].

DSLs are popular mainly because they increase the productivity of developers
and improve the communication between them and domain expertises [Fow10].
They are used in a large set of contexts. For instance, SQL is an example of a
DSL, which focuses on relational databases queries: it captures the semantics of
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the problems of that domain and provides a structured language, so that devel-
opers may deal with and manipulate relational databases. Regular expressions,
CSS or XML configuration files such as Struts and Hibernate are other examples
of DSLs, all of them human readable and focused on their domains [Fow10].

In this chapter, we will focus on the cryptographic domain. The main components
of cryptographic protocols will be exposed and analysed in order to identify which
elements must be present in a domain-specific language designed to capture
the semantics of the cryptographic domain. Later in this chapter we will present
Cryptol and CAO, two DSLs for cryptography. Each DSL is also complemented
with a toolkit, providing auxiliary tools like verification and re-targeting compilers,
useful for program validation and to the compilation of cryptographic code to other
languages, respectively.

2.1 Cryptography Domain

Cryptography may be seen as a mixture of concepts from different backgrounds.
It takes advantage of knowledge from areas such as mathematics, applying them
to software and hardware, which requires an additional knowledge of computer
science and electronic engineering [BMP+11]. As described in [VOMV96], cryp-
tography is the study of mathematical techniques related to aspects of information
security such as confidentiality, data integrity, entity authentication and data origin
authentication. In fact, cryptography aims to accomplish other security goals such
as authentication, identification, authorization, validation, access control, certifi-
cation or time stamping [VOMV96]. More specifically, cryptography boils down
to information security and secure communication between agents, which can be
people, computers or other embedded systems.

Confidentiality aims to guarantee that only authorized agents may access se-
cret information [VOMV96]. Data integrity assures that data is not manipulated
by unauthorized parties, ensuring that no malicious adversaries insert, delete or
substitute existing data by incorrect or corrupted values [VOMV96]. Authentica-
tion is directly related to identification: it is the process in which an agent proves
to another that it really is who it claims to be [VOMV96][Sch93]. Finally, non-
repudiation aims to prevent that an agent can not deny previous actions or com-
mitments [Sch93]. There are a lot of scenarios in which cryptography is used to
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achieve information security or access control of any type of resource, requiring
the use of the appropriate techniques to assure that people’s privacy, for instance,
is not violated.

Confidentiality The main building block to achieve confidentiality are ciphers,
which use a secret usually referred as the key, to assure that only authorized
agents have access to private information [Sch93]. Ciphers are divided into two
major groups: symmetric and asymmetric, both aiming to create unintelligible
messages to whoever does not know the secret/key. Symmetric ciphers use the
same key for encryption and decryption [Sch93]. Furthermore, symmetric ciphers
may be either stream ciphers or block ciphers: the formers create an extended
version of the key based on the original one, combining with the plain text, on bit
at a time; the latter split the original plain text into smaller blocks, performing the
encryption or decryption operation on these blocks.

Data Integrity To assure data integrity, one must guarantee that a received
message was not modified since it has been sent. The basic build block to
achieve integrity are hash functions, which produce a message digest, a smaller
bit string known as the hash value [Sch93]. Most hash functions are one-way, i.e.
it is hard to retrieve the original message based on the hash value [Sch93].

Authentication and Identification In some scenarios, it is also important to
authenticate a message or the entity, i.e. to verify that the sender is who it claims
to be [Sch93]. Based on asymmetric cryptography, digital signatures may be used
to authenticate an agent: the sender signs the message with its private key and
the receiver(s) verify the authenticity of the signature by using the sender public
key [Sch93]. In some cases, it important to guarantee the authentication of a
message and its integrity, which can be achieved by the use of Message Authen-
tication Codes (MACs). These MACs take advantage of symmetric cryptography
by combining a symmetric cipher and a hash function.

Non-repudiation Non-repudiation is used to prevent that an agent later de-
nies some action or commitment, such as sending a message [VOMV96][Sch93].
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Non-repudiation is also achieved by the use of digital signatures or even time
stamping techniques [VOMV96].

At the core of these cryptographic primitives (symmetric or asymmetric ciphers,
hash functions, MACss, digital signatures, etc.), there are protocols which use al-
gorithms from fields such as information theory, complexity theory, number theory
or abstract algebra, most of them implemented through low-level mathematical
primitives [VOMV96]. However, the natural representation of data in a computer
system is through bits, making bit-wise operations, such as rotates, shifts and
permutations, widely used to represent and manipulate cryptographic algorithms.
Therefore, a DSL for the cryptographic domain must assure that these primitives
are included in the language’s features somehow, allowing a re-targeting from
the specification of a cryptographic algorithm to a concrete implementation in a
programming language.

2.2 Cryptol

Cryptol was designed by Galois1 in parcery with cryptography experts from the
National Security Agency (NSA) and is a pure, declarative and functional lan-
guage [cry08]. It brings a formal methods-based approach to the cryptographic
domain and allows cryptography developers to produce code in a clear and direct
way [cry08]. Besides the programming language, Cryptol is a toolkit composed
by a set of compilation back ends to languages such as C or VHDL. It also may
be seen as a framework for verification [cry08].

With this tools, Cryptol may be seen as a language for cryptography, allowing de-
velopers to implement cryptographic algorithms, and re-target them to software
and hardware platforms [cry08]. It allows one to implement cryptographic algo-
rithms based on the published standard, verify it through the verification suite
(e.g. by checking the equivalence of a high-level specification against test vec-
tors) and then compile it to a target platform such as C (for software) or VHDL
(for hardware). Particularly, the Cryptol language and the generated VHDL code
maybe useful to design a FPGA board circuit or to use it on embedded systems
or smart cards. [cry08].

1www.galois.com
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2.2.1 Type system

Cryptol is a strongly typed programming language and has a sophisticated type
system [cry08]. Similar to what happens in functional languages such as Haskell,
it allows developers to implement abstract functions by using lambda expressions
or by declaring polymorphic functions. It supports higher-order functions, nested
functions and has the Bit type as its main building block, assuming the values
True (1) or False (0).

The natural way of structuring bits is via sequences. Sequences are ordered and
indexed structures of data, where all elements have the same type. This allow
one to build complex structures such as numeric literals, vectors, matrices, etc.
For example, an 8-bit word (Byte) may be represented by a sequence with eight
elements in which each element is a Bit and is represented by its word size: [8].

When declaring a function, the function signature may be specified, i.e. the type of
each argument and the output may be specified. Although the function signature
may be omitted, it is considered a good practice to write it. For example, the
identity function may be defined in Cryptol as follows:

Listing 2.1: Identity function in Cryptol

1 f : {a} [a] −> [a];
2 f x = x;

In this example, it is explicitly defined that the input and the output have the same
type [a]. Additionally, this function f is polymorphic: for any word size {a}, it takes
an a-sized word and returns an a-sized word [cry08]. However, some restrictions
may be applied in the function signature. For instance, if the function signature is
substituted by f : {a} [a > 6] => [a];, f is still polymorphic, however it will
only accept as input an a-sized word with more than 6 bits.

Another way to structure data is by using tuples, that unlike sequences, do not
need to have the same type in all of their elements [cry08]. Consider the following
example, that aims to store a bit string with a byte and one with 1 bit:
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Listing 2.2: Tuple representation in Cryptol

1 type NewType = ([8],[1]);
2

3 t : NewType;
4 t = (15,1);

The two elements have different types, which makes this not possible to be rep-
resented using sequences.

Additionally, the Cryptol language has a record system which extends tuples with
two additional features: the fields can be labeled and they support polymorphism.
For example, the previous example using tuples, could be represented by the
following:

Listing 2.3: Records representation in Cryptol

1 type NewType = {a : [8]; b : [1];};
2

3 t : NewType;
4 t = {a = 15; b = 1};

As we can see, each position of the record is labeled with a field name. For exam-
ple, t.a returns the value of the field a. Also, the records may have polymorphism
in their elements.

2.2.2 Operations and Features

Like most programming languages, Cryptol supports a large a set of operators for
arithmetic, boolean, equality and comparison operations. It supports comments
and literate programming which is a coding style that emphasizes documentation.
Also, Cryptol is stateless and it does not support I/O, as its functions depend only
on the input.

The Cryptol’s operators are the following:

• Arithmetic operators: +,-,*,/, % (modulo), ** (power) and lg2 (logarithm
base 2)
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• Polynomial arithmetic operators: pmult (multiplication), pdiv (division),
and pmod (modulus over polynomials)

• Boolean operators: & (and), | (or), ^ (exclusive-or), ~ (complement) and
negate (two’s complement)

• Equality and comparison operators: == (equality), != (non-equality), <

(less than), > (greater than), <= (greater than or equal to), >= (less than or
equal to)

As a functional programming language, Cryptol does not supports the while or for
control structures found in most imperative languages. Instead, it uses function
composition, recursion and sequence comprehension to achieve iteration. Se-
quence comprehension is similar to set comprehension and is useful to combine
elements from distinct sequences. The if-then-else control structure is supported
by Cryptol, allowing one to test conditional expressions and execute specific in-
structions based on the test result (true or false). However, as a strongly typed
language, the returning type of the then clause must be the same as the else
clause [cry08].

Polynomial representation and operators allow one to define and execute the ba-
sic operations of multiplication, division or modular reduction over them. To de-
fine a polynomial, it should be enclosed by <| and |>. For instance, polynomial
p(x) = x2 + 1 can be defined in Cryptol as p = <| x^2 + 1|>;.

Bit-wise operations such as shifting and rotating ones, have a strong impact in
cryptographic algorithms. In Cryptol, left-shifting may be done by using the <<

operator and right-shifting may by using the >> operator. Left-rotate may be done
by using the <<< operator and right-rotate by using the >>> operator.

As sequences are a relevant part of the Cryptol language, there are some built-in
functions to manipulate them. Concatenation (#) or selection (@) are examples of
these functions. Other built-in function for selection is (@@):

Listing 2.4: @@ operator in Cryptol

1 Cryptol> [0x01 0x02 0x03] @@ [0 2]
2 [0x1 0x3]

In this example, it is selected from the first sequence, the values on the indexes
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provided on the second sequence, passed as argument. There are other built-in
functions in Cryptol, useful for sequence manipulation, as we can see in the Table
2.1.

Function Signature Description
! {a b c} (fin a) =>

([a]b,[c]) -> b
selects (from the end)
the element of the index
passed as argument

!! {a b c d} (fin a) =>
([a]b,[c][d]) -> [c]b

selects (from the end)
the elements of the in-
dexes passed as argu-
ments

drop {a b c} (fin a,a >=
0) => (a,[a+b]c) ->
[b]c

returns a new sequence
only leaving out the first
n elements of the argu-
ment sequence

groupBy {a b c} (b,[a*b]c) ->
[a][b]c

groups a set of split-
ted sequences with the
same width

join {a b c} [a][b]c ->
[a*b]c

concatenate the ele-
ments of a sequence

reverse {a b} (fin a) => [a]b
-> [a]b

reverses the elements of
a sequence

split {a b c} [a*b]c ->
[a][b]c

splits a sequence into
smaller parts

splitBy {a b c} (a,[a*b]c) ->
[a][b]c

splits a sequence into n
parts

tail {a b} [a+1]b -> [a]b drop the first element of
a sequence

take {a b c} (fin a,b >=
0) => (a,[a+b]c) ->
[a]c

returns a new sequence
only leaving out the last
n elements of the argu-
ment sequence

transpose {a b c} [a][b]c ->
[b][a]c

transpose the top two
levels of a nested se-
quence

width {a b c} (c >= width
a) => [a]b -> [c]

returns the number of el-
ements of the sequence
passed as argument

Table 2.1: Cryptol built-in functions for sequence manipulation

In short, sequences are the natural way to structure data in Cryptol and may be
used to create nested sequences of data, for instance, to represent matrices.
These functions allow developers to manipulate and structure sequences and
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nested sequences efficiently.

2.2.3 Compilation and Verification

The Cryptol toolkit provides back ends and evaluation modes to re-target high-
level specifications to other languages, as well as verification tools. The back
ends for re-targeting Cryptol code into other programming languages are C, as
well as other evaluation modes, focused on hardware platforms, such as bit, LL-
SPIR, VHDL and FPGA [Inc08] [cry08].

The C back end produces optimized executable code. During the compilation,
a set of verifications like the out-of-bounds-check are executed. This verification
aims to assure that every access, on an array, founds an element. However, the C
compiler has a limitation, as it can only compile Cryptol code with monomorphic
functions [Inc08].

The first mode, for hardware platforms, is the bit, which evaluates if data is mod-
elled as sequences of bits. The second evaluation mode produces as output a
.dot file of the LLSPIR (Low Level Signal Processing Intermediate Representa-
tion). The third evaluation mode compiles the high-level specification to LLSPIR
and then translates it to VHDL. VHDL was originally designed to support the
whole hardware design process from the specification of the highest abstraction
level to the physical level [EKP98]. It is a strongly typed language, in which every
object has an associated type, specifying which type of values may be stored and
which operations may be performed on it. The fourth evaluation mode, FPGA,
compiles the high-level specification to LLSPIR, translates it to VHDL and then
use external tools to synthesize the generated VHDL into a specific netlist. There
are three modes of operation: FSIM, TSIM, FPGA_Board [Inc08].

The Cryptol tool kit also may be used to verify foreign VHDL implementations.
These tools provide equivalence checking between VHDL code generated via
Cryptol and given external VHDL code. With this tool, developers may import
external VHDL code for a specific cryptographic algorithm and verify if it is equiv-
alent to the VHDL generated via the Cryptol specification [Inc08].

QuickCheck is also supported by Cryptol, and can be used to generate test vec-
tors.
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2.3 CAO

Proposed by the Cryptography and Information Security Group of the University
of Bristol, CAO is a cryptography-aware domain-specific language. It was taken
over by the CACE2 project, which aimed to develop a set of tools to the speci-
fication and design of applications in the cryptographic domain. In these tools,
are included the CALF compiler (an extension to the CAO language), or the CAO
Deductive Verification Tool, which aims to verify programs written in CAO auto-
matically [BAC+09].

CAO is an imperative language and its syntax looks similar to C’s. It was designed
to quickly incorporate data types that allow an easy transcription of cryptographic
primitives, based on the published specifications [BAC+09]. With the CAO lan-
guage and the associated tool kit, it is expected that cryptographic developers
may produce components with a higher quality and that their productivity is in-
creased [BAC+09].

2.3.1 Type system

The CAO programming language uses variables to represent data, which may
be manipulated by a set of language’s operators. These variables are identified
by a variable name and a type. CAO’s type system is monomorphic, i.e., every
constant, variable or function result must have its type declared [WFH90]. The
CAO’s type system is composed by primitive types and synonym types: the for-
mer represent the built-in types and the latter represent new types, defined by
developers.

As we can see in the Table 2.2, primitive types are composed by the types void, int
(integer with arbitrary precision) and bool (boolean type). It supports bit strings
with an arbitrary length which may be signed or unsigned and finite fields over
a body with m elements. Also, it supports container types such as vectors or
matrices, which can store values of the same type.

Other types may be defined by using typedef, allowing developers to create syn-
onym types of an existing one. Furthermore, structures similar to C’s may be
defined. Considering a geometric point with two coordinates (x,y), we can define

2http://www.cace-project.eu/
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Type Description
void Empty type
int Integers in Z

bool Boolean values (True or False)
signed bits[n] Bitstrings with length n, with signal bit
unsigned bits[n] Bitstrings with length n, without signal

bit
mod m Finite field defined over m
vector[n] of a Vector with n elements of the type a
matrix[n,m] of a Matrix with n × m elements of the type

a

Table 2.2: CAO’s types

a new type named Point by using the reserved word struct:

Listing 2.5: A structure in CAO representing a 2D point

1 typedef Point := struct [
2 def x : int;
3 def y : int;
4 ];

Type casts or type conversions, i.e. the implicit or explicit conversion of a variable
data type to another, is possible in CAO. This allows developers to convert, for
instance, an integer to an unsigned bit string, as long as the unsigned bit variable
has the required bits to represent the original integer. Particularly, the conversion
of a vector or matrix is only possible if every member’s data type is convertible.

2.3.2 Operations and Language features

Just like most general programming languages, CAO supports arithmetic, boolean,
equality and comparison operations, to manipulate its data types. The supported
operators are the following:

• Arithmetic operators: +,-,*,/, % (modulo), ** (power)

• Boolean operators: && (and), || (or), ˆ (exclusive-or)

• Equality and comparison operators: == (equality), != (non-equality), <,
>, <=, >=
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• Conditional expressions: if-then-else, if-then

• Shifts and rotates: << (shift left), >> (shift right), <| (rotate left), |> (rotate
right)

• Sequence operators: @ (concatenation)

It supports control structures such as if-then-else, used to test conditionals.
However, the else clause may be omitted, i.e. a conditional statement may be
executed exclusively with the then clause. For iteration, CAO provides the while

command, which executes a block of instructions, if the boolean condition is sat-
isfied. Two other cycle iterators are available: seq and seq by, which iterate from
a lower bound to an upper bound. For the seq by instruction, a third value must
be specified, known as the leap, which defines the leap that is made in the fol-
lowing iteration. The seq instruction may be seen as a seq by with leap = 1. The
values used as the lower bound, upper bound and the leap must be known at the
compile time. Considering the following example:

Listing 2.6: ’Using seq in CAO’

1 seq x:=0 to 15 by 4 {
2 i := i+1;
3 }

This seq iterates from 0 to 15, and since the leap is defined as 4, it executes 4
times.

To access an element in the position i of a vector, bit string or matrix v is done by
accessing v[i]. Also, multiple values may be selected, using ranges like v[i..j],
which return a vector with the elements in the vector v from the position i to the
position j.

Functions and procedures are similar to C’s: the function name, arguments and
corresponding types and the returning type need to be specified. Particularly,
functions’ arguments are passed by value and not by reference as happens in C.
Also, in CAO a function may return multiple values.

There are three types of functions in CAO: pure functions, read-only functions
and procedures [BAC+09]. The first ones do not depend on global variables and
only call other pure functions, in order to guarantee that a pure function always
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return the same values if called with the same arguments. Read-only functions
may read global values but cannot change them and may call pure and read-only
functions. The procedures may read and write into global variables and call any
type of functions [BAC+09]. The distinction of types of functions do not have any
implication in the implementation of programs in CAO, however it was useful in
the language design. [BAC+09].

2.3.3 The CAO tool kit

The CACE project proposed a set of tools on different levels of abstraction. It
had as main goals to develop tools that allow the translation from natural specifi-
cations, automatic security awareness and automatic optimization for a diversity
of platforms. In this context, CAO was used to low-level side channel resistant
implementation of cryptographic algorithms. Libraries for secure communication
or the formal verification of developed code were also approached [BAC+09].

A set of tools, that interact directly with CAO, was developed: the CALF com-
piler, the CAO interpreter, the CAO VCGen (Verification Condition Generator)
which uses the CAO-SL annotation language and finally, the CAO2C compiler
[BAC+09].

CALF Language The CALF language was designed to be an enhanced ver-
sion of the CAO language, including higher-level features that aim to provide a
more user-friendly programming environment, reduce probability of programming
errors, easier code re-usability, portability and manageability [BAC+09]. It imple-
ments features such as higher-order operators, dependent types and allow the
implementation of polymorphic functions.

For example, consider the following definition of the parameters (a key-pair) of
the DSA algorithm, a digital signature algorithm:

Listing 2.7: ’Polymorphism using CALF’

1 typedef DSAParams<(p : int, q : int)> := struct [
2 def g : mod[p];
3 ];
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This represents an abstract representation of the DSA parameters, that can be
instantiated for different values of p and q. However, as all values in CAO must be
known at compile time, the CALF compiler parses the developed code to generate
the target CAO implementation, with concrete values for p and q.

CAO Interpreter The CAO interpreter was designed based on the formal spec-
ification of the CAO language and is an interactive interpreter of CAO programs
[BAC+09]. It was designed to parse a CAO program according to the syntactic
rules of the language specification but also to execute type checking against the
expressions in the code.

CAO-SL The CAO-SL is a specification language, that can be used to add an-
notations to CAO programs. This annotation language includes the definition of
function contracts with pre-conditions, post-conditions and statement annotations
such as assertions, loop variants and invariants.

CAO Deductive Verification Tool This tool was designed to generate a set of
proof obligations that can be discharged using a large set of automatic theorem
provers such as Simplify, Alt-Ergo, Coq or Z3. It was built over existing tools such
as Jessie (a plug-in for the Frama-C tool that allows static analysis of C programs)
and Why, a Verification Condition Generator (VCGen). The Jessie plug-in trans-
lates the annotated CAO code to the input required by the Why tool. Then, such
input is processed by one of the previously mentioned automatic theorem provers
to verify if the CAO program satisfies the specified conditions.

2.4 Summary

In this chapter we have presented the definition of a DSL, focusing on the par-
ticular domain of cryptography. A brief overview on the cryptographic domain,
its main primitives and the main requirements that a DSL for cryptography must
satisfy, was presented. Two DSLs for cryptography were also presented: Cryp-
tol and CAO: the former is a functional language and the latter is an imperative
language. However, both were designed with a formal methods-based approach
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and the main goal is that one can implement cryptographic algorithms in a clear
way, assuring that the developed code is secure.

We have also shown the tools that are provided with both languages. Cryptol is
composed by compilation back ends, to compile produced high-level specifica-
tions to other platforms such as C, VHDL or FPGA boards. The Cryptol language
also provides verification tools to test the produced code. On the other hand, the
CAO toolkit is composed by an extension to the CAO language, the CALF com-
piler, that aims to introduce some higher-level features like polymorphism. Also
there is the CAO-SL tool that can be used to define function contracts with pre-
conditions and post-conditions and the CAO Deductive Verification tool, which
can be used to verify cryptographic code, developed with CAO.

In the next chapter, we will present the AES algorithm and will compare its im-
plementation both in CAO and Cryptol. Key aspects of the implementation of the
algorithm in both languages will be discussed.
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Chapter 3

DSL comparison using the AES
algorithm

One of the main purposes of the two presented DSLs for cryptography is to re-
target a published algorithm from its formal specification to a concrete implemen-
tation in a simple and direct way. At first glance, both languages allow one to
implement a published cryptographic algorithm based on its formal specification.
They provide language’s features to implement these algorithms such as their
type systems with appropriate data types for the cryptographic domain, cycle
iterators, functions or procedures or bit-wise operators. However, these two lan-
guages have distinct programming paradigms, which makes the implementation
approach slightly different. One of many key aspects is iteration building: in CAO
it may be implemented using the seq control structure; in Cryptol should be used
sequence comprehensions, for instance.

In this chapter, we will address the AES algorithm, one of the most widely used
cryptographic algorithms for symmetric encryption [AES01]. This algorithm uses
a large set of mathematical structures and functions in its formal specification.
It uses bit-wise operations such as bit-shifting and takes advantage of sophisti-
cated mathematical structures such as finite fields and its representation using
polynomials. This algorithm will be used to analyse and to compare a functional
implementation written in Cryptol and one written in CAO.

Initially, the AES encryption scheme will be presented, with special focus on its
cipher. Following this, the two implementations will be analysed and compared,
focusing on key aspects for program development such as iteration building, func-
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tion composition, bit-wise operations and polynomial implementation among other
considerations.

3.1 Advanced Encryption Standard

Published in 2001 by Joan Daemen and Vincent Rijmen, Rijndael is an iterated
block cipher that can be used to achieve information confidentiality [AES01]. It
was later established as a standard for symmetric encryption as the Advanced
Encryption Standard, replacing its predecessor DES, in many practical scenarios.

The AES encryption scheme is based on a substitution permutation network, and
it was designed to be implemented both in hardware and software. It has a fixed
block size of 128 bits and a variable key size of 128, 192 or 256 bits [VOMV96].
The key size also depends on the desired security level and defines the most com-
mon ciphers of the AES algorithm: AES-128, AES-192 and AES-256 [LLS09].
Additionally, the key size also defines the number of rounds (Nr) to be performed
in an AES run, as we can see in the Figure 3.1.

Key Length Block Size Number of Rounds
AES-128 4 4 10
AES-192 6 4 12
AES-256 8 4 14

Figure 3.1: Relationship between key length and the number of rounds

The algorithm is divided into two major steps: the Key Expansion and the Cipher
(and Inverse Cipher) steps. The Key Expansion step takes the original cipher key,
expanding it to Nr+1 separate keys. The Cipher step iterates through Nr rounds,
with an auxiliary 4×4 matrix of bytes, denominated as the state [DR99].

3.1.1 Cipher

Initially, the input text is copied to the state array, as illustrated in the Figure 3.2.
After iterating through Nr rounds, the cipher’s output is the final state of these
iterations. The process for the Inverse Cipher is similar [DR99]: it takes the cipher
text as input and retuns the plain text as output.
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Figure 3.2: Cipher process

Each round consists of the sequence of four byte-oriented transformations: Sub-
Bytes, ShiftRows, MixColumns and AddRoundKey [DR99]:

1. SubBytes byte substitution using a S-box (substitution box).

2. ShiftRows shifting rows of the state array by different offsets.

3. MixColumns mixing the data within each column of the State matrix.

4. AddRoundKey adds a round key to the state.

Additionally, the first round is preceded by an additional AddRoundKey and the
final round does not apply the MixColumns tranformation [DR99]. Generically, the
AES cipher’s looks like the Figure 3.3.

AddRoundKey ⇒

( SubBytes ⇒ ShiftRow ⇒ MixColumns ⇒ AddRoundKey ⇒ ) ×9

SubBytes ⇒ ShiftRow ⇒ AddRoundKey

Figure 3.3: AES-128 encryption scheme with 10 rounds

SubBytes The SubBytes transformation operates on each byte of the state,
introducing non-linearity into the AES cipher [AES01]. It consists on a direct
substitution of each input byte, by looking up on a substitution table (S-box). For
the inverse cipher, there is also an inverse substitution table. The Rijndael S-box
used in the AES cipher looks like the table in the Figure 3.4.

Once built, the substitution process takes on each input byte of the state and re-
turns the corresponding value, by looking up on the S-box table. For example,
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0 1 2 3 4 5 6 7 8 9 a b c d e f
0 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76
1 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0
2 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15
3 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75
4 09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84
5 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf
6 d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8
7 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2
8 cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73
9 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db
a e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79
b e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08
c ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a
d 70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e
e e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df
f 8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16

Figure 3.4: Substitution-box table for the AES algorithm

considering {62} as input for the S-box, the output consists on verifying the inter-
section between the row with index {6} and the column with the index {2}, which
as we can see in the Figure 3.4 outputs {aa} [AES01].

However, the building process of the S-box table is complex, involving two steps:

• Take the multiplicative inverse in GF(28)

• Apply the affine transformation over GF(2)

The multiplicative inverse in GF(28) of a polynomial a(x) corresponds to a(x)−1

modulo an irreducible polynomial, which in the case of AES is i(x) = x8 + x4 +

x3+x+1 [DR99]. The affine transformation may be represented by the operations
represented in the Figure 3.5.
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Figure 3.5: Affine transformation used in the S-box construction

ShiftRows The ShiftRows transformation shifts the last three rows of the state
over different offsets. In the AES-128 cipher, with Nb = 4, the following shifts
occurs:

• First row is not shifted

• Second row is shifted with offset = 1

• Third row is shifted with offset = 2

• Fourth row is shifted with offset = 3

MixColumns The MixColumns transformation operates column-by-column on
the state, considering each column as a polynomial over GF(28). Each of these
polynomials are multiplied by a(x) = 3x3 + 3x2 + x + 2 modulo x4 + 1. The out-
put state of this transformation may be seen as s�(x) = a(x) ⊗ s(x), where s(x)

and s�(x) represent the input and the output states, respectively. As explained in
[DR02], this operation can be seen as a matrix multiplication:
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Figure 3.6: MixColumns transformation

AddRoundKey The AddRoundKey transformation applies the bit-wise exclusive-
or operation to each byte of the round key and each byte of the state: s�(x) =
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s(x)⊕ ki, where ki, s(x) and s�(x) represent the key of the round i, the input state
and the output state, respectively.

3.2 AES Implementations

As seen in the Chapter 2, Cryptol is a functional language based on function
composition, recursion and sequence comprehension, representing every type of
data via sequences of bits. On the other hand, the CAO language is an imperative
one, similar to C, and uses the most common control structures of the paradigm
such as while loops or if-then-else conditional statements. In this section, two
distinct implementations of the same AES algorithm, will be compared based
on the following points of analysis: which types can be used to store the state
of the AES algorithm, the construction of the S-box, iteration through indexed
structures of data such as sequences or vectors/matrices, polynomials and bit-
wise operations.

3.2.1 Types and the State

The CAO language provides a set of types that can be useful to represent data,
including container types, such as vectors or matrices that can be used to struc-
ture and store data [BAC+09]. On the other hand, the Cryptol type system is
composed by the Bit type, which can be used to define new types based on se-
quences [cry08].

As seen previously, the AES-128 state is composed by a 4×4 matrix of bytes
(8 bits). One way to represent this in Cryptol is by using a [4*4][8] state or
[4][4][8], representing that matrix.

In the CAO’s implementation may be used the container type matrix, to represent
the 4×4 matrix of bytes. This can be used to represent either the state (S) and
the round key (K):

The GF2 type represents the finite field GF(2). The GF2N type is an extension of
GF2, representing the finite field GF(28).
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Listing 3.1: Types for the AES State in CAO

1 typedef S := matrix[4,4] of GF2N;
2 typedef K := matrix[4,4] of GF2N;
3

4 typedef GF2 := mod[ 2 ];
5 typedef GF2N := mod[ GF2<X> / X∗∗8 + X∗∗4 + X∗∗3 + X + 1 ];

3.2.2 Function Composition

As in most general purpose languages, composing functions by using the output
of a function as input of another is largely used by developers. In the Round
function, the SubBytes transformation takes the state as input. Then, after the
ShiftRows, MixColumn and AddRoundKeys, the state is returned as output.

These four transformations are composed in order to execute one round of the
AES algorithm. The implementation of the Round function in Cryptol looks like the
following:

Listing 3.2: AES Round implementation in Cryptol

1 Round : ([4][4][8], [4][4][8]) −> [4][4][8];
2 Round (State, RoundKey) = State3 ^ RoundKey
3 where {
4 State1 = ByteSub State;
5 State2 = ShiftRow State1;
6 State3 = MixColumn State2;
7 };

It stores temporary states (State1, State2 and State3) as the intermediate results
from each transformation, returning the output of the MixColumns transformation
XORed with the RoundKey.

On the other hand, the CAO’s approach also focuses on composing the functions:

Listing 3.3: AES Round implementation in CAO

1 def FullRound( s : S, k : K ) : S
2 {
3 return MixColumns( ShiftRows( SubBytes(s) ) ) + k;
4 }
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Both functions take the state and the round key given as input and return the
exclusive-or of the output of the MixColumns transformation with the round key.
Note that the K type is also defined as a GF2N and so, the exclusive-or operation
is done by the operator +.

3.2.3 Iteration

Iteration through container types such as vectors or matrices in CAO or se-
quences in Cryptol is a key point for the implementation of cryptographic algo-
rithms. As the programming paradigms differ, it is important to identify how it
could be implemented in these languages.

The AES cipher iterates through Nr rounds: the Round function is called Nr times.
Note that there is an additional AddRoundKey before the Nr rounds and that
MixColumns is not applied in the last round.

In Cryptol, the approach to implement this function is through the use of recursive
sequence comprehension lists. The following function implements the Rounds

function, according to the AES standard:

Listing 3.4: AES Rounds implementation in Cryptol

1 Rounds (State, (initialKey, rndKeys, finalKey)) = final
2 where {
3 istate = State ^ initialKey;
4 rnds = [istate] # [| Round (state, key)
5 || state <− rnds
6 || key <− rndKeys |];
7 final = FinalRound (last rnds, finalKey);
8 };

After executing an additional AddRoundKey on the initial state, this function iter-
ates through Nr rounds. This is done by the use of a sequence comprehension
lists, that take the current state and a key from rndKeys and calls the Round func-
tion. Finally, the FinalRound, which is a particular implementation of the round
without the MixColumns transformation, is executed.

The CAO language supports while loops or iteration through the use of the seq it-
erator. Considering that the round keys are stored in the vector keys, the following
code snippet may be used to implement the rounds of the AES algorithm:
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Listing 3.5: Code snippet of the AES Rounds implementation in CAO

1 // (...)
2 seq i := 1 to 9 {
3 r := FullRound( r,keys[i] );
4 }
5

6 return ShiftRows( SubBytes(r) ) + keys[10];
7 }

The FullRound function is called nine times, passing as argument the current
state and the round key. In the return statement, is executed the last round of the
AES cipher, executing only the SubBytes, ShiftRows and the final AddRoundKey.

3.2.4 Indexed structures manipulation

The natural way to structure data in Cryptol is via sequences, which allow one
to group bits as intended. CAO’s containers such as vectors or matrices may be
used for the same purpose. However, after store data into these structures, it is
necessary to manipulate them.

Cryptol provides a large set of pre-defined functions to manipulate sequences,
such as join and split, as seen in the Table 2.1 on the page 12. These
functions, are polymorphic and could be used with any sequence size. On the
other hand CAO does not have these built-in functions and they must be written
specifically for each scenario.

This is related to the polymorphism that the Cryptol’s type system supports unlike
CAO, that only supports polymorphism via the CALF Extension [BAC+09].

3.2.5 The S-box construction

As seen previously in the formal specification of the Rijndael S-box [DR99], it is
built in two steps:

• Take the multiplicative inverse in GF(28)

• Apply the affine transformation (over GF(2))
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Both implementations in Cryptol and CAO have similar approaches to implement
this component of the AES algorithm. In the Cryptol implementation, the S-box
table results precisely from the application of the affine function to the inverse of
every element 0 ≤ x < 256:

Listing 3.6: Rijndael S-box function in Cryptol

1 sbox : [256][8];
2 sbox = [| affine (inverse x) || x <− [0 .. 255] |];
3

4 affine : [8] −> [8];
5 affine xs = join (mmultBit (affMat, split xs)) ^ 0x63;

The affine transformation implementation in Cryptol executes the required opera-
tions to execute the matrix multiplication represented in the Figure 3.5, however,
it will not be explained here in detail for the sake of clarity. Even so, it is impor-
tant to notice the exclusive-or with the number 0x63, which represents the vector
[01100011].

The CAO implementation also intends to reproduce the affine transformation rep-
resented in Figure 3.5 on the page 25. It represents explicitly the matrix M and the
vector C as we can see in the following code snippet:

Listing 3.7: Auxiliary matrix and vector to the affine transformation in CAO

1 def M : matrix[8,8] of GF2 := { 1, 0, 0, 0, 1, 1, 1, 1,
2 1, 1, 0, 0, 0, 1, 1, 1,
3 1, 1, 1, 0, 0, 0, 1, 1,
4 1, 1, 1, 1, 0, 0, 0, 1,
5 1, 1, 1, 1, 1, 0, 0, 0,
6 0, 1, 1, 1, 1, 1, 0, 0,
7 0, 0, 1, 1, 1, 1, 1, 0,
8 0, 0, 0, 1, 1, 1, 1, 1 };
9

10 def C : vector[8] of GF2 := { 1, 1, 0, 0, 0, 1, 1, 0 };

Then, the S-box function in CAO boils down to the application of the inverse
transformation over GF(28) followed by the affine transformation:

The M matrix is multiplied by the result of the inverse of the input e, then the affine
transformation is applied by executing the sum operation with the vector C. To note
that some casts between GF2N and GF2V need to be applied, in order to execute
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Listing 3.8: Rijndael S-box function in CAO

1 def SBox( e : GF2N ) : GF2N
2 {
3 return (GF2N)( (GF2N)( M ∗ (GF2V)( 1 / e ) ) + (GF2N)C );
4 }

the matrix multiplication.

3.2.6 Polynomial representation

Polynomials play a big role in the cryptographic domain. They are used in a
large set of cryptographic primitives, and the AES algorithm is no exception. AES
uses polynomials in the key expansion step and in the MixColumns round trans-
formation [DR99]. As operations over finite fields such as GF(28) may be also
represented as polynomials [IEE99], CAO’s native type allows developers to di-
rectly represent them. On the other hand, Cryptol does not have native support
for finite fields, supporting only polynomials with binary coefficients.

Considering the expansion key step, in which the the irreducible polynomial of
degree 8 (i(x) = x8+x4+x3+x+1) is used. This polynomial may be represented
in Cryptol as:

Listing 3.9: Representation of x8 + x4 + x3 + x+ 1 in Cryptol

1 irred : [9];
2 irred = <|x^8 + x^4 + x^3 + x + 1|>;

The irred polynomial requires at least 9 bits to be represented. As every variable
is represented using bits in Cryptol, that polynomial is similar to 0b100011011,
which represents its coefficients.

CAO’s representation of polynomials is made based on finite fields. For instance,
the irreducible polynomial i(x) may be represented as:

Concretly, the new type GF2N, defines a finite field (used in the state), in which is
performed for every operation over it the modular reduction over the polynomial
i(x).
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Listing 3.10: Representation of x8 + x4 + x3 + x+ 1 in CAO

1 typedef GF2 := mod[ 2 ];
2 typedef GF2N := mod[ GF2<X> / X∗∗8 + X∗∗4 + X∗∗3 + X + 1 ];

3.2.7 Bit-wise operations

Most cryptographic algorithms use bit strings to represent data, making bit-wise
operations a very relevant feature in DSLs for cryptography. As seen in the Chap-
ter 2, both of the two presented languages support shifts, rotates or permutations.
These operations are present in a large set of cryptographic algorithms, like the
AES ShiftRows operation.

In the Cryptol implementation, the input state is divided into the four rows, and
then each row is rotated by an offset i :

Listing 3.11: ShiftRows transformation in Cryptol

1 ShiftRow : [4][4][8] −> [4][4][8];
2 ShiftRow state =
3 [| row <<< i
4 || row <− state
5 || i <− [ 0 .. 3 ] |];

The CAO’s implementation is similar, also taking the state as input and rotating
every row by a different offset i :

Listing 3.12: ShiftRows transformation in CAO

1 def ShiftRows( s : S) : S
2 {
3 def r : S;
4 seq i := 0 to 3 {
5 r[i,0..3] := (vector[4] of GF2N) s[i,0..3] |> i;
6 }
7 return r;
8 }

To note that in this function, it was used the selector of multiple indexes [i,0..3].
Furthermore, it was necessary to cast the output of the rotation to a vector[4]

of GF2N, which is the type of each row in the state S.
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3.3 Summary

In this chapter, we have presented the AES algorithm and how it works. Particu-
larly, the encryption scheme was focused, leaving behind the key expansion step
and the inverse cipher.

Followed by this, we have compared the two DSLs introduced in the Chapter 2.
The type systems of the two languages were focused: the Cryptol type system
is composed exclusively by the bit type and sequences built from them; on the
other hand, CAO provides basic types such as integers and booleans, as well
as container types. Also, the polymorphism that Cryptol provides is also use-
ful when manipulating sequences. CAO’s monomorphic type system, forces the
programmer to specify functions to manipulate vectors. Other features such as
function composition, iteration, polynomials and bit-wise operations were also ap-
proached.

At first glance, both languages allow one to implement a cryptographic algorithm
from its formal specification. However, it was clear that the paradigms’ character-
istics make the implementation of an algorithm distinct in both languages. Cryptol
focuses on sequence comprehension lists, function composition and recursion.
On the other side, CAO as an imperative language aim to be stateful and take
advantage of control structures such as while’s and seq’s.
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Chapter 4

Compilation to hardware

The design of hardware components, in particular those that use cryptographic
primitives, is a sensitive area, mainly because these components are incorpo-
rated into critical systems. Ensuring that the integrity of these systems is not
violated and that an attacker may not obtain sensitive information, are important
aspects to be considered [Huf10].

Hardware systems focused on cryptography require a different design approach
when compared to software ones. Although both aim to protect sensitive informa-
tion and avoid attacks from malicious agents, hardware systems are vulnerable
to a different type of attacks, such as timing and side-channel ones. These at-
tacks require additional attention and must be considered in early design phases
[Huf10]. Also, the design of cryptographic components for hardware platforms
require an additional knowledge of the target platform. It is necessary to know
how to take advantage from each component of the hardware and essentialy, to
know how to keep the system secure.

Field-programmable Gate Array (FPGAs) are a customizable and low-cost solu-
tion to prototype hardware components [Huf10]. It supports most bit-level op-
erations to implement bit shifting or permutations, which are required by block
ciphers, public key cryptography or other primitives, making it a first choice to
design hardware components [Huf10].

In this chapter we will address the compilation of high-level specifications written
in Cryptol to hardware platforms, focusing on the VHDL and FPGA back ends of
the Cryptol toolkit. The limitations of these back ends will be analysed with the
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example of the previous chapter: the AES algorithm. Additionally, transformations
described detailed in [Inc08] will be addressed.

Later on, we will transform the implemented algorithm into a 32-bit version, re-
placing the round transformations into a simple set of lookups on T-boxes tables,
based on the AES specification [DR99]. All these transformations are based on
the original AES, using the Rijndael S-box.

4.1 Cryptol’s Back Ends Limitations

The Cryptol tool kit provides a set of compilation tools that allows one to re-target
high-level specifications to other languages, such as C, SPIR, VHDL or FPGA
Board [Inc08]. However, these compilation back ends do not support the full set
of features provided by the Cryptol language. Some language’s elements may
not be used in the implementations of high-level specifications to be translated
to hardware platforms such as VHDL of FPGA [Inc08]. Also, some language’s
features may complicate the generation of efficient and optimized circuits [Inc08].

Most of the limitations of the Cryptol’s back ends are related to the targeted plat-
forms. For example, the VHDL/FPGA Board back ends have the following limita-
tions:

• the VHDL/FPGA compiler only supports division by powers of 2

• the VHDL/FPGA compiler does not support primitive recursion

• the VHDL/FPGA compiler only partially supports higher-order functions

The C back end does not support polymorphic functions [Inc08]. Also, all values
must be known at compile time.

Therefore, the implementation of a high-level specification to be re-targeted to one
of these back ends, it is necessary to remove recursion, do not use higher-order
functions, and polymorphic functions.
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4.2 Compiling Regular AES Implementation

The AES algorithm uses a large set of mathematical primitives and bit-wise op-
erations, as seen in the Chapter 3. However, the AES implementation presented
there uses higher-order constructs such as polymorphic functions, making the
translation to VHDL or FPGA not possible.

For instance, after loading the AES implementation in the Cryptol to the Cryptol’s
interpreter, and after setting it to the VHDL translation mode (:set vhdl), the
following error message appears:

1 Sorry, not implemented: unsupported form of recursion.
2 Currently we only allow recursive value bindings.
3 The offending binding:
4 rec find1 (xs_find1,i_find1) : ([256][8],[8]) −> [8] =
5 if
6 xs_find1 @{256,[8],8} i_find1 =={[8]} 1 {8}
7 then
8 i_find1
9 else

10 find1 (xs_find1, i_find1 +{8,Bit} 1 {8})

This error is related to the use of recursion in the function find1, used to calculate
the Rijndael S-box, in particularly the inverse step.

In fact, there are some steps that must be followed before the AES algorithm
implementation may be translated to VHDL: the Rijndael S-box will be explicitly
defined rather than calculated, the MixColumns transformation will be redesigned
in order to do not use recursion, and the Rounds and Round functions will be
defined as monomorphic. This steps are essential to eliminate the higher-order
constructs that are not supported by the back ends of Cryptol.

4.2.1 SubBytes

The SubBytes transformation maps every byte of the input state into the output
state by executing a substitution using the Rijndael S-box [DR99]. In Cryptol, this
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can be represented by the following functions:

Listing 4.1: ByteSub transformation

1 ByteSub : [4][4][8] −> [4][4][8];
2 ByteSub state =
3 [| [| Sbox x || x <− row |] || row <− state |];
4

5 Sbox : [8] −> [8];
6 Sbox x = sbox @ x;

In fact, the SubBytes function uses the sbox function, which return the output
vale for each byte of the input. This function may be defined, according to the
formal specification, by calculating the multiplicative inverse over GF(28) and by
applying the affine transformation over GF(2). An alternative, is to explicitly define
the S-box presented in the Figure 3.4 in Cryptol. This can be seen in the Listing
4.2.

Listing 4.2: sbox function explicitly defined in Cryptol
1 sbox : [256][8];
2 sbox =
3 [
4 0x63 0x7c 0x77 0x7b 0xf2 0x6b 0x6f 0xc5 0x30 0x01 0x67 0x2b 0xfe 0xd7 0xab 0x76
5 0xca 0x82 0xc9 0x7d 0xfa 0x59 0x47 0xf0 0xad 0xd4 0xa2 0xaf 0x9c 0xa4 0x72 0xc0
6 0xb7 0xfd 0x93 0x26 0x36 0x3f 0xf7 0xcc 0x34 0xa5 0xe5 0xf1 0x71 0xd8 0x31 0x15
7 0x04 0xc7 0x23 0xc3 0x18 0x96 0x05 0x9a 0x07 0x12 0x80 0xe2 0xeb 0x27 0xb2 0x75
8 0x09 0x83 0x2c 0x1a 0x1b 0x6e 0x5a 0xa0 0x52 0x3b 0xd6 0xb3 0x29 0xe3 0x2f 0x84
9 0x53 0xd1 0x00 0xed 0x20 0xfc 0xb1 0x5b 0x6a 0xcb 0xbe 0x39 0x4a 0x4c 0x58 0xcf

10 0xd0 0xef 0xaa 0xfb 0x43 0x4d 0x33 0x85 0x45 0xf9 0x02 0x7f 0x50 0x3c 0x9f 0xa8
11 0x51 0xa3 0x40 0x8f 0x92 0x9d 0x38 0xf5 0xbc 0xb6 0xda 0x21 0x10 0xff 0xf3 0xd2
12 0xcd 0x0c 0x13 0xec 0x5f 0x97 0x44 0x17 0xc4 0xa7 0x7e 0x3d 0x64 0x5d 0x19 0x73
13 0x60 0x81 0x4f 0xdc 0x22 0x2a 0x90 0x88 0x46 0xee 0xb8 0x14 0xde 0x5e 0x0b 0xdb
14 0xe0 0x32 0x3a 0x0a 0x49 0x06 0x24 0x5c 0xc2 0xd3 0xac 0x62 0x91 0x95 0xe4 0x79
15 0xe7 0xc8 0x37 0x6d 0x8d 0xd5 0x4e 0xa9 0x6c 0x56 0xf4 0xea 0x65 0x7a 0xae 0x08
16 0xba 0x78 0x25 0x2e 0x1c 0xa6 0xb4 0xc6 0xe8 0xdd 0x74 0x1f 0x4b 0xbd 0x8b 0x8a
17 0x70 0x3e 0xb5 0x66 0x48 0x03 0xf6 0x0e 0x61 0x35 0x57 0xb9 0x86 0xc1 0x1d 0x9e
18 0xe1 0xf8 0x98 0x11 0x69 0xd9 0x8e 0x94 0x9b 0x1e 0x87 0xe9 0xce 0x55 0x28 0xdf
19 0x8c 0xa1 0x89 0x0d 0xbf 0xe6 0x42 0x68 0x41 0x99 0x2d 0x0f 0xb0 0x54 0xbb 0x16
20 ];

As we can see, the functions SubBytes, Sbox and sbox, used in the SubBytes
transformation, are all monomorphic. Also, all values are known at compile time,
and does not use any recursive function, making the SubBytes transformation
translatable to hardware platforms such as VHDL.
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4.2.2 MixColumns

The MixColumns transformation considers every column of the state as poly-
nomials over GF(28) and multiplies it modulo x4 + 1 with the fixed polynomial
a(x) = 3x3 + 3x2 + x + 2 [DR99]. The implementation in Cryptol that is being
followed, implements this transformation through the use of complex polymorphic
functions, essentially used for the polynomial representation.

As explained in [Inc08], the MixColumns transformation may be defined in a
way that does not use polymorphic functions, replacing gPower and gTimes for
monomorphic functions. Specifically, the MixColumns is defined as presented in
the Listing 4.8.

Listing 4.3: MixColumn function in Cryptol

1 MixColumn : [4][Nb][8] −> [4][Nb][8];
2 MixColumn state =
3 transpose [| multCol (cx, col)
4 || col <− transpose state
5 |];

In this function, the main problem is related to multCol, which calls a large set of
polymorphic functions. A solution, described in [Inc08], is to explicitly define two
functions gTimes2 and gTimes3 which are instances of the function gTimes.

Listing 4.4: MixColumn function in Cryptol translatable to hardware

1 mixColumn_prime : [4][8] −> [4][8];
2 mixColumn_prime([y0 y1 y2 y3]) = [
3 (gTimes2(y0) ^ gTimes3(y1) ^ y2 ^ y3)
4 (y0 ^ gTimes2(y1) ^ gTimes3(y2) ^ y3)
5 (y0 ^ y1 ^ gTimes2(y2) ^ gTimes3(y3))
6 (gTimes3(y0) ^ y1 ^ y2 ^ gTimes2(y3))
7 ];
8

9 MixColumn_prime : [4][Nb][8] −> [4][Nb][8];
10 MixColumn_prime (state) = transpose(
11 [| mixColumn_prime column
12 || column <− transpose(state)
13 |]
14 );

The new function MixColumn_prime, calls the mixColumn_prime function, which is
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monomorphic, allowing the compilation to VHDL.

4.2.3 The Encryption Scheme

The encryption scheme on AES is based on two steps, the key schedule and the
cipher step. The cipher step, focused on this work, is based on the application of
Nr rounds, using the following Round, Rounds and encrypt functions. The Round

and Rounds function is similar to the one presented in Chapter 3:

Listing 4.5: Rounds function in Cryptol

1 Rounds : {a} ([4][4][8], ([4][4][8],[a][4][4][8],[4][4][8])) −> [4][4][8];
2 Rounds (State, (initialKey, rndKeys, finalKey))
3 = final
4 where {
5 istate = State ^ initialKey;
6 rnds = [istate] # [| Round (state, key)
7 || state <− rnds
8 || key <− rndKeys |];
9 final = FinalRound (last rnds, finalKey);

10 };

However, as we can see in the Rounds function signature, this function may accept
a-sized values, in the rndKeys arguments, i.e. this function can be used in AES-
128, AES-192 and AES-256. When attempting to translate these functions to
VHDL, the Cryptol’s interpreter outputs the following message:

Listing 4.6: Type of the Rounds function in Cryptol

1 <polymorphic value> : {a} ([4][4][8],([4][4][8],[a][4][4][8],[4][4][8])) −> [4][4][8]

In our scenario, we intend to compile the Rounds function focusing on the AES128
cipher, which uses 10 rounds and 11 keys: 1 initial round for the additional Ad-
dRoundKey and 10 round keys. So, we can explicitly change the function signa-
ture of the function by defining

Listing 4.7: Rounds function signature in Cryptol

1 Rounds : ([4][4][8], ([4][4][8],[9][4][4][8],[4][4][8])) −> [4][4][8];
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After this transformation, the Rounds function is now monomorphic and it can be
translatable to VHDL. To finish the encryption scheme of the AES, consider the
encrypt function, that receives as argument a set of round keys and the plain
text:

Listing 4.8: encrypt function in Cryptol

1 encrypt (XK, PT) = unstripe (Rounds (State, XK))
2 where {
3 State : [4][4][8];
4 State = stripe PT;
5 };

This function can be directly translated to VHDL, as it does not use polymorphism
or recursion. The stripe and unstripe functions are used as auxiliary: the former
is used to transform the plain text given as input into the state and the latter is
used in the inverse process [cry08].

4.3 32-bit AES implementation

The Rijndael cipher was designed to fit any type of architecture, i.e. to be im-
plemented on a large set of platforms, that can be hardware or software. It was
intended to be implemented in a large set of processors, distinct computer archi-
tectures and dedicated hardware [DR99].

The most common implementations of the AES algorithm in hardware are de-
signed for 8-bit and 32-bit processors. The former fits essentially in smart cards
and the latter was designed to fit in personal computers [DR99]. In this section,
we will present the 32-bit version of the AES algorithm.

4.3.1 Formal Specification

The four transformations of the AES round may be combined into a single opera-
tion, which consists on a set of table lookups, based on the original Rijndael S-box
(Figure 3.4) [DR99]. The AES state may be seen as a 4×4 matrix of bytes which
may be also represented as a vector of 4 elements with 32 bits each. The AES
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32-bit version processes the state 32-bit at a time, by combining each column of
the state (composed by 4 bytes) into one block.

Considering that one column of the round output is represented by e and the input
is represented by a, ai,j represent the input byte of the row i and the column j, an
AES round may be expressed as:

ej = T0 [a0,j]⊕ T1 [a1,j]⊕ T2 [a2,j]⊕ T3 [a3,j]⊕ kj

Each Ti, with 0 ≤ i < 3, is known as a T-box, a table composed by 256 words
of 4-bytes each entry. These tables are also built based on the original Rijndael
S-box, combining also the ShiftRows and MixColumns transformation:

T0 [a] =





S[a] • 02
S[a]
S[a]
S[a] • 03



 T1 [a] =





S[a] • 03
S[a] • 02
S[a]
S[a]





T2 [a] =





S[a]
S[a] • 03
S[a] • 02
S[a]



 T3 [a] =





S[a]
S[a]
S[a] • 03
S[a] • 02





Figure 4.1: T-boxes specification

The construction of these T-boxes is obtained by combining the four transforma-
tions of the AES round. The set of steps to execute to build these T-boxes will not
be explained here, however, it is fully described in [DR99].

4.3.2 Implementation in Cryptol

As presented in the previous section, the Rijndael S-box may be used to build
T-boxes, transforming the AES round into a set of lookup in these tables. To
build these tables, it is necessary to implement functions to calculate the T-boxes
elements, as explained in the Figure 4.1.

Considering the T0-box, each element a, may be built according to the following
function:
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Listing 4.9: Calculation of the values for the T0-box

1 T0_func : [8] −> [4][8];
2 T0_func(a) = [(gtimes2 s) s s (gtimes3 s)]
3 where s = Sbox(a);

This aims to represent the operations presented in Figure 4.1: the substitution
of the input a by the corresponding value of the S-box e is made, and then the
sequence [s2 s s s3] is returned. The auxiliary functions gtimes2 and gtimes3 cal-
culates s2 and s3, respectively. As we are using 32-bit, it is necessary to execute
an auxiliary function to join these [4][8] elements into [32] words. This can be
done through the function T0_table, which returns 32-bit words.

Listing 4.10: Calculation of the T0-box

1 T0_table = [| join (T0_func(a)) || a <− [0..255] |];

Appling the join function to 0 ≤ X ≤ 255, returns a table with 256 entries with 32
bit each. The generated T0_table is presented in the Appendix A.

The other T-boxes may be calculated by similar functions, which only rotate the
elements in the output sequence:

Listing 4.11: Calculation of the others T-boxes

1 T1_func : [8] −> [4][8];
2 T1_func(a) = [(gtimes3 s) (gtimes2 s) s s]
3 where s = Sbox(a);
4

5 T2_func : [8] −> [4][8];
6 T2_func(a) = [s (gtimes3 s) (gtimes2 s) s]
7 where s = Sbox(a);
8

9 T3_func : [8] −> [4][8];
10 T3_func(a) = [s s (gtimes3 s) (gtimes2 s)]
11 where s = Sbox(a);

With these T-boxes, it is now possible to compile the AES128 encryption scheme,
using 32-bit, to VHDL although it is still necessary to update the Round function
to execute the lookups on these tables.

To note in this function, the if-then-else condition for the final round, which unlike
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Listing 4.12: Round function using T-boxes

1 Round : ([4][4∗8], [4][4∗8], Bit) −> [4][4∗8];
2 Round (State, RoundKey, final)
3 = d ^ RoundKey
4 where {
5 a : [4][4][8];
6 a = [| split s || s <− State |];
7 d = [| if final
8 then (t0_32 ^ t1_32 ^ t2_32 ^ t3_32
9 where {

10 t0_32 = ((Sbox (a @ ((j) % 4) @ 0)) # zero);
11 t1_32 = ((Sbox (a @ ((j+1) % 4) @ 1)) # zero) << 8;
12 t2_32 = ((Sbox (a @ ((j+2) % 4) @ 2)) # zero) << 16;
13 t3_32 = ((Sbox (a @ ((j+3) % 4) @ 3)) # zero) << 24;
14 }
15 )
16 else (t0 ^ t1 ^ t2 ^ t3
17 where {
18 t0 = T0_table @ (a @ ((j) % 4) @ 0);
19 t1 = T1_table @ (a @ ((j+1) % 4) @ 1);
20 t2 = T2_table @ (a @ ((j+2) % 4) @ 2);
21 t3 = T3_table @ (a @ ((j+3) % 4) @ 3);
22 }
23 )
24 || j <− [0 .. 3]
25 |];
26 };

the normal round, does not execute the lookups on the T-boxes, using the original
S-box instead.

4.4 Summary

In this chapter, we approached the compilation of high-level specifications written
in Cryptol to hardware platforms, focusing on the VHDL back end of the Cryptol
toolkit.

There are some limitations related to the VHDL back end, that does not support
the full set of Cryptol’s features. Higher-order functions, recursive calls and poly-
morphic functions are examples of features that must not be used in high-level
specifications that aim to be translated to a hardware platform such as VHDL,
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afterwards.

Some transformations were applied to the AES algorithm, in order to make it
translatable to VHDL. Two versions were presented: the regular version pre-
sented in the previous chapter and a 32-bit version.
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Chapter 5

CAO2Cryptol: A compilation tool

The two DSLs for cryptography presented through this document, Cryptol and
CAO, provide the appropriate features to implement a cryptographic algorithm,
based on its formal specification. Also, the two languages have toolkits asso-
ciated: the Cryptol language is complemented by a verification suite and a set
of compilers that allow one to re-target Cryptol code to C or VHDL; the CAO
language is complemented by the CALF compiler that introduces higher-order
features in the language, the CAO-SL that allows one to specify function con-
tracts and the CAO Deductive Verification Tool, that allows one to generate a set
of proof obligations.

Unlike the Cryptol toolkit, CAO does not support the translation of high-level spec-
ifications to any type of platform. It would be desirable to have a compiler that
could take on the implementation of a cryptographic algorithm in CAO, and trans-
late it to a hardware description language, such as VHDL.

As we seen in the Chapter 4, the Cryptol back ends focused on hardware plat-
forms (VHDL and FPGA Board), only support a subset of the language. Higher-
order functions, polymorphism or primitive recursion are not supported by the
VHDL or FPGA compilers. The code using these features should be rewritten, so
that it can be re-targeted to these platforms.

In this chapter, we intend to analyse and prototype a compiler that takes CAO
source code as input, and produces Cryptol source code as output: the CAO2Cryptol
compiler. Particularly, it is expected that the generated code may be translatable
to hardware, i.e. that the Cryptol code does not use recursion, polymorphism or
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higher-order functions.

The two languages were already explained in detail in the Chapter 2, followed by
a practical example, the AES in the Chapter 3, providing the required background
to analyse the requirements of the CAO2Cryptol tool: the limitations of the Cryptol
back ends, its type systems and the characteristics of each language.

5.1 Requirements Analysis

In order to design the CAO2Cryptol, it is necessary to understand and define
which features of CAO can be supported for compilation and in what elements of
the target language, they will match. Also, since it is intended that the generated
source code may be translated to hardware description languages, it is important
to consider the limitations of the Cryptol language, as presented in Chapter 4.

5.1.1 Languages Analysis

Although both Cryptol and CAO are domain-specific languages for cryptography,
they are distinct in a lot of features of the languages. Actually, they are based on
two distinct programming paradigms, which makes the approaches used to build
high-level specification of cryptographic algorithms different.

The Cryptol language is a functional language and focuses itself in lambda calcu-
lus and function application. The Haskell programming language, for instance, is
a pure functional programming language which uses a static type system. How-
ever, it allows side effects through the use of monads. The Cryptol language, is
stateless and its functions does not produce side effects.

The CAO programming language, is based on the imperative paradigm, and each
program is composed by a list of statements, where each one may change the
state of the program.

Type systems

As presented in the Chapter 2, the CAO’s type system is composed by the fol-
lowing types: void, int, bool, signed bits, unsigned bits, finite fields over an
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integer m (mod m). Also, there are the container types, which can be vectors, ma-
trices or structures. On the other hand, the Cryptol’s type system is composed by
the Bit type, which then can be used to create sophisticated data types, including
vectors or matrices, by the use of sequences.

In the Table 5.1, the relation between the representation of CAO’s types in Cryptol
is presented. The � symbol, represents the size in bits of a CAO data type.

Type in CAO Type in Cryptol
void _
int �

bool True or False : [1]
signed bits[n] [� + 1]
unsigned bits[n] [�]
mod m
vector[n] of a [n][�]
matrix[n,m] of a [ n ] [ m ] [ � ]

Table 5.1: CAO’s types relation with Cryptol’s types

At first glance, the int, bool, signed bits and unsigned bits can be represented in
Cryptol, because the values of these types can be represented using bits. The
void type is usually used as a return type for functions that produce side effects.
As Cryptol is a functional language that does not support them, such type will not
be considered. The finite field type, will not be considered for compilation, at this
point.

The CAO language provides vectors and matrices that can store a set of values
of the same type. These container types may be represented in Cryptol as se-
quences. Structures are also containers that may contain variables of distinct
types. One approach would be to represent them using tuples or records in Cryp-
tol. For this purpose, tuples will be used in Cryptol to represent CAO’s structures.

Function signatures

A CAO function is defined by the function signature, which is composed by the
function name, the arguments (variable and variable type), its return type and a
list of statements.

49



Domain-specific Languages for Cryptographic Software

Listing 5.1: A sample function in CAO

1 def func() : unsigned bits[163] {
2 (...) /∗ list of statements ∗/
3 }

On the other hand, Cryptol does not require that the function signatures are ex-
plicitly defined, however, it is a good practice to define them. The previous func-
tion would be represented in Cryptol as the following:

Listing 5.2: A sample function in Cryptol

1 func : [163];
2 func = (...) /∗ list of statements ∗/

Operations

The two languages provide almost the same operators, which can be divided
into the following groups: arithmetic, boolean, equality, comparison, shifting and
rotation.

The operations provided by both languages are similar, allowing the developer
to evaluate expressions such as e1 op e2, where op represents a binary oper-
ator. Most of these binary operators, have a direct correspondent in the other
language:

Arithmetic operators The supported set of arithmetic operators of the two lan-
guages its almost the same. Operators such as sum (+), subtraction (-), mul-
tiplication (*) or division (/) operators are the same in the two languages. The
modulo (%) and the ** operators are also supported by both languages. How-
ever, the Cryptol language supports the lg2 operator that CAO does not.

Boolean operators The boolean operators and (&&), or, exclusive-or are sup-
ported by both languages, although they are represented by distinct symbols.
The Cryptol language also supports the (~) (complement) and the negate opera-
tor, that CAO does not.
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Equality and comparison operators Equality testing is supported by both lan-
guages, and are represented by the same operators: == (equal test), != (not equal
test), < (less), > (more), >= (less or equal), <= (more or equal).

Shifting and Rotates Bit shifting and rotate functions exist in both languages.
The shifting operators << (left shifting) and >> (right shifting) are represented in
the same way in CAO and Cryptol. The CAO’s rotate operators <| (left rotate) |>
(right rotate) are represented by the Cryptol’s <<< and >>> operators, respectively.

Container element selection The selection of an element of a container through
an index (an index if it is a vector or a field name if it is a structure) is possible
in Cryptol. However, multiple selection using ranges in CAO, which may be re-
targeted using the @@ function in Cryptol, will not be considered for code compila-
tion.

Conditional Expressions and Other considerations

As detailed in the Chapter 2, both languages support conditionals: the CAO lan-
guage supports if-then and if-then-else compound statement; on the other hand,
the Cryptol language, supports if-then-else expressions which do not have pro-
duce any side effect in the program. However, as CAO is an imperative language,
the branches of the if-then-else statement may be any other statement that can
change the state and the variables of the program.

The iteration constructs of CAO, such as while, also have this problem. For
the sake of simplicity they will not be considered in the compiler CAO2Cryptol.
The seq and seq by statements, can be expanded: the number of executions of
each cycle must be known at compile, and so, the code may be replicated. For
example,

Listing 5.3: Example of seq in CAO

1 seq i := 0 to 4 {
2 j := j+1;
3 }

can be expanded to:
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Listing 5.4: Example of an expanded seq in CAO

1 j := j +1;
2 j := j +1;
3 j := j +1;
4 j := j +1;

The type conversions or casts, possible in CAO for some data types, will not be
considered for the compiler. Another aspect, is that a CAO program may have
multiple return statements in a function. Although a tuple may be returned (with
multiple values), a function must return only once.

5.1.2 Compiler Architecture

In order to re-target a source file written in the CAO language to Cryptol, in a way
that such program can be processed and generate VHDL code, it is necessary
that the generated code take into account the limitations of the Cryptol back end
for hardware languages.

In fact, some features of Cryptol does not compile to hardware. It is necessary to
be aware of such features, and assure that the generated Cryptol code does not
use them. As CAO does not support polymorphic types (only the CALF compiler
extension supports them), it automatically excludes the use of polymorphism in
the generated code: every function or variable in CAO is monomorphic and has
its type explicitly declared. However, CAO’s variables may change during the
execution of the program.

Listing 5.5: Example of a CAO function

1 def f(a : int) : int
2 {
3 def x : int;
4 if (a > 0) {
5 x :=4
6 } else {
7 x := 2∗a;
8 }
9 return x;

10 }

52



5.2. Compiler Implementation

In this Listing 5.5, the variable x is modified in line 5 and 7. Actually, Cryptol does
not support this: each variable must be defined only once in a function. Also, the
if-then-else statements must be simplified in order to be translated into Cryptol’s
if-then-else expressions.

To solve these problems, the CAO input program will be transformed into the SSA
form, which states that each variable is defined once and only once in the program
[AP02]. To calculate the SSA form of a CAO program, it is necessary to calculate
the CFG of a CAO program. The is a graph representing the instructions of the
CAO program. After this calculation, the dominance frontier algorithm is applied to
the CFG, allowing the calculation of the SSA form. Afterwards, the procesed CAO
program is translated to Cryptol, using a pretty printer module. These algorithms
will be approached in detail in the following sections.

5.2 Compiler Implementation

In this section, the required transformations for the CAO2Compiler will be pre-
sented, namely the CFG, the set of algorithms for the dominance frontier calcula-
tion and the SSA form.

5.2.1 Control Flow Graph

To perform analysis and optimisations on a program, in this case in a CAO pro-
gram, it is useful to generate a control-flow graph (CFG) [All70] [AP02]. The CFG
is a directed graph, in which each statement of the program is a node in the flow
graph and if statement x is followed by statement y, then there is an edge con-
necting x and y. However, nodes with only one predecessor and one successor
can be merged into basic blocks [AP02]. The result is a control-flow graph with
fewer nodes, making the execution of algorithms over the graph to execute faster.
Consider the following pseudo-code example:
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Listing 5.6: Example to illustrate the CFG calculation

1 y<−0
2 if (X>1)
3 y <− x
4 x <− 2
5 else
6 y <− 2
7 return y

The CFG calculated based on this program, can be represented as the following
graph:

Figure 5.1: Control-flow graph

In the Figure 5.1, the CFG has four nodes. Note that the if-then-else conditional
creates two branches, one for the then clause and one for the else clause, and
finally the fourth node, which merges both branches.

After calculate the CFG, it is now possible to execute algorithms over graphs,
most of them used in program optimization, such as the dominance frontier algo-
rithm.

5.2.2 Dominance Frontier

Before present the dominance frontier algorithm, it is important to introduce basic
concepts related to it, such as the concept of predecessor, successor, dominator
and dominator tree.
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Dominators

A node n in the CFG is said to dominate b if n passes through node b for every
path, from the entry node of the CFG. The set of dominators for a node b is known
as DOM(b) and contains everynode n that dominates b [CHK01]. Also, a node n
strictly dominates b if n dominates b and n �= b.

As described in [CHK01], the algorithm to calculate the dominators of a graph
such a CFG, is the following:

for all nodes n
DOM[n] ← { 1 . . N }

Changed ← true
while (Changed)

Changed ← false
for all nodes, n, in reverse postorder

new_set ← (∩p∈preds(n)DOM [p]) ∪ {n}
if (new_set �= DOM[n])

DOM[n] ← new_set
Changed ← true

Figure 5.2: Iterative Algorithm to calculate dominators for each CFG node
[CHK01]

Dominator Tree

In a dominator tree, the children of a node x are the set of all nodes that x imme-
diately dominates.

The algorithm to calculate the dominator tree, based on a graph such a CFG and
the dominators, is represented in the Figure ??, as described in [CHK01].

This algorithm takes as input a graph (for instance, a CFG), and returns the dom-
inator tree of that graph. The dominator tree is useful to calculate the dominance
frontier, which can be further used to calculate the SSA form of a program.

Dominance Frontier Algorithm

The dominance frontier algorithm, presented in the Figure 5.4, is calculated for
each node of the CFG and it is useful to calculate the SSA form of a program.
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for all nodes, b
doms[b] ← Undefined

doms[start_node] ← start_node
Changed ← true
while (Changed)

Changed ← false
for all nodes, n, in reverse postorder

new_idom ← first (processed) predecessor of b
for all other predecessors, p, of b

if doms[p] �= Undefined
new_idom ← intersect(p, new_idom)

if doms[b] �= new_idom
doms[b] ← new_idom
Changed ← true

function intersect(b1, b2) returns node
finger1 ← b1
finger2 ← b2
while (finger1 �= finger2)

while (finger1 < finger2)
finger1 = doms[finger1]

while (finger2 < finger1)
finger2 = doms[finger2]

return finger1

Figure 5.3: Iterative Algorithm to calculate dominators for each CFG node
[CHK01]

In [CFR+91], dominance frontier of a node x is defined as the set of all nodes y
such that x dominates a predecessor y but does not strictly dominate y.

for all nodes, b
if the number of predecessors of b ≥ 2

for all predecessors, p, of b
runner ← p
while runner �= doms[b]

add b to runner’s dominance frontier set
runner = doms[runner]

Figure 5.4: The dominance frontier algorithm [CHK01]

The calculation of the dominance frontiers for each node in the CFG plays an
important role in the single-static assignment form. After this calculations, the
SSA form of a CAO program can be calculated.
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5.2.3 Single-static Assignment Form

The SSA form states that each variable has only one definition in the program
[AP02]. It allows the execution of dataflow and optimization algorithms, that are
simpler when each variable has only one definition. Usually, a program is trans-
lated to the SSA form, processed and optimized and then is translated back out
from from the SSA form [CFR+91].

For example, the pseudo-code presented in the Figure 5.1, would have the fol-
lowing representation in the SSA form:

1 y_0 <−0
2 if (X>1)
3 y_1 <− X
4 x_1 <− 2
5 else
6 y_2 <− 2
7 return phi_y(y_1,y_2)

The SSA form is divided into two major steps:

1. insertion of φ-functions for each variable at each join point

2. renaming the definitions and uses, using subscripts

Inserting φ-functions

The first step of the SSA form, starts with a set V of variables, a graph G (the
CFG) with program nodes (each node is a basic block of statements) and for
each node n, is calculated a set Aorig[n], with the name of variables defined in
that node. The pseudo-code of the algorithm to insert φ-functions is described in
the Figure 5.5.

The algorithm computes Aφ[a], the set of nodes that must have φ-functions for
the variable a. In practice, φ-functions are inserted after join points, which ocurr
essentially when there are conditional branches in the control-flow graph, such
as if or while statements.
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for each node n
for each variable a in Aorig[n]

defsites[a] ← defsites[a] ∪ {n}
for each variable a

W ← defsites[a]
while W not empty

remove some node n from W
for each y in DF[n]

if y �∈ Aφ[a]
insert the statement a ← φ(a, a, ..., a) at the top

of block y where the φ-function has as many
arguments as y has predecessors

Aφ[a] ← Aφ[a] ∪ {y}
if a �∈ Aorig[y]

W ← W ∪ {y}

Figure 5.5: Inserting φ-functions step of the SSA form

Renaming variables

The second step of the SSA form is to rename each occurrence of a variable,
such as a, to a_1 or a_2. The main purpose of this step is that the program uses
the most recent version of a. For this purpose, it is used the dominance frontier,
calculated previously.

This algorithm is divided into two steps: the first initializes two auxiliary stacks, for
each variable: Count and Stack; the second step is the algorithm that transverses
each statement of the program to rename the variables.

for each variable a
Count[a] ← 0
Stack[a] ← empty
push 0 onto Stack[a]

This algorithm, transforms a program given as input into the correspondent SSA
form. After this transformations, the program may now be processed or opti-
mized. The most common optimizations are code motion, elimination of partial
redundancies or constant propagation [CFR+91].
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Rename(X) =
for each statement S in block n

if S is not a φ-function
i ← top(Stack[i])
replace the use of x with xi in S

for each definition of some variable x in S
Count[a] ← Count[a] + 1
i ← Count[a]
push i onto Stack[a]
replace definition of a with definition of ai in S

for each successor Y of block n
Suppose n is the jth predecessor of Y
i ← top(Stack[a])
replace the jth operand with ai

for each child X of n
Rename(X)

for each definition of some variable a in the original S
pop Stack[a]

Figure 5.6: Renaming variables (SSA form, step 2

Container types

CAO support container types such as vectors, matrices or structures. One of the
most used operations is the access to a specific element of a container, using an
index (in a vector) or the field identifier (in a structure).

Most part of the mentions of vectors and structures in a CAO program is to access
specific indexes or fields. Considering a vector v in CAO, we can access the index
i through v[i]. Actually, this can be used as a scalar variable, like an int or
bool. However, as we need to transform the CAO program into the SSA form,
these containers must be seen as an unique variable [CFR+91].

For example, consider the following code snippet, which uses a vector with eight
integers and an auxiliary variable, to execute a swap between two vector ele-
ments:

In the line 4, there is an assignment that reads the value in the position 1 of v
and assigns it to v. In the following line, there is a similar assignment that reads
a value of v and assigns it to the element of v in the index 2. In the line 6, there is
another assignment, that stores the value of x in v[2].
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Listing 5.7: Swap operation in CAO using a vector

1 def v : vector[8] of int := {1,2,3,4,5,6,7,8};
2 def x : int;
3

4 x := v[1];
5 v[1] := v[2];
6 v[2] := x;

With the approach detailed in [CFR+91], the array may be treated as single vari-
able. When a occurs a modifitation in an element of the container, the whole
memory (vector or structure), should be replicated. The above example, would
be replaced with:

Listing 5.8: Swap operation in CAO using a vector after the transformation

1 def v : vector[8] of int := {1,2,3,4,5,6,7,8};
2 def x : int;
3

4 x := load(v,1);
5 v := store(v,1(load(v,2));
6 v := store(v,2,x);

The structures in CAO are also containers, However, instead of indexes there
are fields that can be accessed, similar to what happens in vectors or matrices.
Considering the same swap operation, but this time using a structure:

Listing 5.9: Swap operation in CAO using a structure

1 typedef GFPoint := struct [def cx : int; def cy : int;];
2 def s : GFPoint;
3 def x : int;
4

5 x := s.cx;
6 s.cx := s.cy;
7 s.cy := x;
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The same store and load functions may be applied, resulting in the following
output:

Listing 5.10: Swap operation in CAO using a structure after the transformation

1 typedef GFPoint := struct [def cx : int; def cy : int;];
2 def s : GFPoint;
3 def x : int;
4

5 x := load(s,cx);
6 s = store(s,cx,load(s,cy));
7 s = store(s,cy,x);

After these transformations, applied to container types (vectors, matrices and
structures), the SSA form may now be applied, because such variables are now
treated as scalar variables.

5.2.4 Other transformations

The transformations presented here, aim to assure that a variable is defined only
once in a program. Also, the φ-functions are inserted essentially when conditional
branches such as if-then-else occur. However, in order to eliminate the if-then-
else statements, a few transformations are required: initially, the conditions of
each branch are inserted directly into the φ-functions; later, the if-then and if-
then-else statements are removed, assuring that their statements remain in the
program. With this transformation, a function of a program may be now seen as
an unique basic block in the CFG.

Insert phi-conditions

This transformation, aims to insert in each φ-function, the condition that allows
the program to decides if it takes the first argument or the second one from the
φ-function.

Considering the code snippet in the Listing 5.11, the value of y_3 would depend
on the value of a: if a is bigger than 1 then y_3 takes the value of y_1, otherwise,
it takes the value of y_2. This transformation aims to introduce the condition into
the φ-function, resulting in the code presented in the Listing 5.12.
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Listing 5.11: Example of CAO code in the SSA form

1 if (a > 1) {
2 y_1 := 1;
3 } else {
4 y_2 := 10;
5 }
6 y_3 := phi_y(y_1,y_2)

Listing 5.12: Example of CAO with the condition implicit in the φ-function

1 if (a > 1) {
2 y_1 := 1;
3 } else {
4 y_2 := 10;
5 }
6 y_3 := phi_y(y_1,y_2, a> 1)

Remove if-then-else statements

This transformation, aims to take on the output of the previous one, and remove
the if-then-else statements, always assuring that its statements remain in the pro-
gram.

Taking the previous example, this transformation results as output:

Listing 5.13: CAO code in an unique basic block

1 y_1 := 1;
2 y_2 := 10;
3 y_3 := phi_y(y_1,y_2, a> 1)

These programs are equivalent, essentially because the phi_y function stores the
condition to decide which value will take y_3. After these transformations, a CAO
function may be seen as an unique basic block of straight-line code.

5.3 CAO2Cryptol Pretty Printer

The pretty printer module of the CAO2Cryptol compiler, aims to take on a CAO
program modified according to the transformations described previously, and pro-
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duce Cryptol code that can be interpreted by the Cryptol tools.

The CAO code that is given as input to the pretty printer module is composed by
a basic block, containing only declarations, assignments and return statements:
the if-then-else statements were removed in the SSA form transformations. In
this section, we will explain the main phases of the translation of a CAO program
to Cryptol.

In the AST of the CAO language, there are three types of definitions, which can
be variables, types or functions: the variables are directly translated to Cryptol
as a function; the types are translated to Cryptol as a new type definition; the
functions are translated according to the Listings 5.14 and 5.17

The two kinds of variable declaration that initializes a variable in a single decla-
ration (VarDeclInit and ContainerDeclInit) require two lines in Cryptol: one to
the function signature and another to the assignment of the initialization.

Data types The data types in CAO are translated to Cryptol according to the
Table 5.1:

• int is translated into [1024]

• bool is translated into [bool]

• unsigned bits[n] is translated into [n]

• signed bits[n] is translated into [n]

• vector[n] of a is translated into [n][(size of a)]

• matrix[n,m] of a is translated into [n][m][(size of a)]

The void type is not possible to be implemented in a functional language, and as
stated previously, the finite fields were not considered for compilation.

Variable Declaration The variable declarations in CAO may be of four types:

• def x : bool; is translated into x : [1];

• def x,y : bool; is translated into x,y : [1];

• def x : int := 10; is translated into x : [1024]; x = 10;
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Function Definition The translation of a CAO function, which is composed by
the function name, its arguments and respective types, the return type and the
list of statements is made accordingly to the Listing 5.14 and 5.17:

A function definition in CAO is composed by the function name, its arguments and
its types, the return type and the list of statements. The following function:

Listing 5.14: A sample function in CAO

1 def func() : unsigned bits[163] {
2 (...) /∗ list of statements ∗/
3 }

is translated as:

Listing 5.15: A sample function in Cryptol

1 func : [163];
2 func = (...) /∗ list of statements ∗/

However, in the body of the function (the list of statements) of the CAO program
to be translated, can appear assignments and declarations. Although the if-then-
else control structures have been removed, it still can appear function calls of
φ-functions.

A declaration and an assignment are translated almost directly: the declaration
declares a new variable with the correspondent type in the Cryptol language; the
assignment binds the value to the variable on the left side of the expression.

The φ-functions, usually appear as following:

Listing 5.16: φ-function in CAO

1 y_3 := phi_y(y_1,y_2,x > 1);

The translation to Cryptol, is direct, requiring only to use the properly syntax:

Listing 5.17: φ-function translation for Cryptol

1 y_3 = if (x> 1) then y_1 else y_2;
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Another relevant part of the translation are the container types: vectors, matrices
and structures. As stated previously, vectors and matrices are translated to se-
quences. On the other hand structures in CAO are translated to tuples in Cryptol,
which allow the representation of different data types in the same variable.

For example, considering the following code snippet:

Listing 5.18: Translating vectors to sequences (CAO version)

1 def v : vector[8] of bool;
2

3 /∗ accessing a position in a function ∗/
4 def a := v[5];
5

6 /∗ storing a new value in a position, in a function ∗/
7 v[0] := 10;

would be translated to the following:

Listing 5.19: Translating vectors to sequences (Cryptol version)

1 v : [8][1];
2

3 /∗ accessing a position in a function ∗/
4 a = v @ 5;
5

6 /∗ storing a new value in a position, in a function ∗/
7 a = take(0,v) # [10] # drop(0+1,v);

The structures in CAO are translated into a tuple, where each element has the
same type of the original type in the CAO program. For example, a structure with
two booleans, is translated to type D = ([1],[1]); in Cryptol. Also, a load and
a store function is generated, to access each element of the structure.

5.4 Summary

In this chapter, we proposed a tool to compile CAO source code to Cryptol, as-
suring that the output code does not use unsupported feature by the VHDL back
end of the Cryptol toolkit. In the first section, it was described the requirements
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for the compiler, focusing on the limitations of the Cryptol toolkit and the feature
of the two languages, in order to identify its similarities.

The Cryptol code must be straight-line and a variable must be defined only once,
unlike CAO. This made the necessity to transform the CAO program to the SSA
form before translate it to Cryptol. The if-then or if-then-else statements, are also
distinct in the two languages: in CAO they are statements which can modify the
whole state of the program and in Cryptol they are expressions which must return
the same type. By using the dominance frontier algorithms and the SSA form,
this problem was solved, and made the CAO code translatable.

After apply a set of transformations to the original CAO code given as input to
the compiler, it is translated to Cryptol by the use of a pretty printing module.
This module generates as output Cryptol compilable code, which can then be
translated to VHDL.

In the next chapter, we will address a case study based on elliptic curve cryp-
tography, comparing an implementation of an algorithm in both languages, and
testing the developed tool.
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Chapter 6

Case study: elliptic curve
cryptography

Through this document, we addressed the features that Cryptol, CAO and its
toolkits. So far, the AES algorithm was presented, with particular focus on its
encryption scheme. The AES algorithm was useful to compare two implemen-
tations of its encryption scheme in the two DSLs, which are distinct, mostly be-
cause of their paradigms. The compilation tools, specially the ones that allow the
re-targeting of Cryptol code to VHDL and FPGA board platforms were studied in
Chapter 4. In the last chapter, a tool that aims to take on CAO source file as input,
and generates as input Cryptol source code as presented. Also, it is intended that
the generated code can be translatable to VHDL, using the Cryptol toolkit.

The elliptic curves are algebric constructions defined over prime or binary finite
fields and were proposed by Neal Koblitz in [Kob87], to implement public-key al-
gorithms. In [Mil86], the Diffie-Hellman key-exchange algorithm was solved using
elliptic curves and it is proved that such structures may be used to implement
cryptographic algorithms. One of the biggest advantages of these systems is that
they may use smaller key sizes to achieve the same security level when com-
pared to classical finite fields [Sch93]. With smaller key sizes, elliptic curves may
be useful for hardware implementations, where the computer resources are rare.

In this chapter, we present a case study, which focuses on elliptic curve cryp-
tography. After present a brief summary on elliptic curves and its application to
cryptography, we present two implementations of an operation of elliptic curves
in CAO and Cryptol. As the two languages differ in their paradigms and features,
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we will focus on the pros and cons of re-targeting an algorithm to an imperative or
a functional language. Finally, using the developed tool presented in the Chapter
5, CAO2Cryptol, we will test the compiler, using an implementation written CAO
as input and analysing the Cryptol code that result as output.

6.1 Elliptic Curve Cryptography

The elliptic curves may be used to implement a large set of public-key primitives,
such as digital signatures. One of these primitives is the Elliptic Curve Digital
Signature Standard (ECDSA), for instance.

The elliptic curve algorithms use finite fields as its coefficients for the equation of
the curve. Also, each point of the curve P is represented by the coordinates (x,
y and z), which are also members of the same finite field. In cryptography, two
types of finite fields are used: the prime finite fields GF(p) and the binary finite
fields GF(2m). In the former, p is a prime number, and the set Zp is a prime finite
field. In the latter, the binary finite field GF(2m) represents the 2m possible bit
strings of length m.

In this work, we will use elliptic curves with binary finite fields on its coefficients
and points. The addition of two values in a binary finite field is made by calculating
the bitwise addition modulo 2. The multiplication in a binary finite field is the
multiplication of two values modulo an irreducible polynomial, used to define the
finite field.

The generic elliptic curve equation, for the ones that use binary finite fields is the
following:

E: y2 +xy=x3 +x2 + b

where b is an element of GF(2m) with b �= 0.

Through this work, we will use the binary finite field GF(2163) which is part of the
FIPS 186-2 standard [HLHM00]. The recommended values by NIST for the B-163
parameters of the elliptic curve are the following:

• n = 5846006549323611672814742442876390689256843201587
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• b = 20a601907b8c953ca1481eb10512f78744a3205fd

• Gx = 3f0eba16286a2d57ea0991168 d4994637e8343e36

• Gy = 0d51fbc6c71a0094fa2cdd545b11c5c0c797324f1

Also, the irreducible polynomial used in this by the binary finite field is p(t) =

t163 + t7 + t6 + t3 + 1.

Generically, the elliptic curves allow one to implement cryptographic public-key
primitives. The similarities between elliptic curves and finite fields that use the
discrete logarithm, are the following:

DL EC
Setting GF(q) curve E over GF(q)
Basic operation multiplication in GF(q) addition of points
Main operation exponentiation scalar multiplication
Base element generator g base point G
Base element order prime r prime r
Private key s (integer modulo r) s (integer modulo r)
Public key w (element of GF(q)) W (point on E)

Table 6.1: Comparison between Discrete Logarithm and Elliptic Curves [IEE99]

The main operation over elliptic curves, is the scalar multiplication, as we can see
in the Table 6.1. However, such operation uses other minor operations, such as
the Full Addition, Subtraction, Double and Addition. Also, there is a representa-
tion of the point in the infinity, which is represented by the point with coordinates
(1,1,0). Through this section, the formal specification of the Double operation will
be presented, in order to provide the required background to the implementations
in CAO and Cryptol, ahead in this chapter.

6.1.1 Elliptic Double operation

The Double algorithm, described in [IEE99], takes on a point P1 = (X1, Y1, Z1) of
the elliptic curve in which its coordinates x, y and z are elements of 2163; Also,
this algorithm uses a constant c which is calculated from the original parameter
b, using the following equation: b2163−2. The formal specification of this operation
has an imperative approach and is presented in the Figure 6.1.
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1. T1 ← X1

2. T2 ← Y1

3. T3 ← Z1

4. T4 ← c
5. If T1 = 0 or T3 = 0 then output (1,1,0) and stop.
6. T2 ← T2 × T3

7. T3 ← T3
2

8. T4 ← T3 × T4

9. T3 ← T1 × T3

10. T2 ← T2 + T3

11. T4 ← T1 + T4

12. T4 ← T4
2

13. T4 ← T4
2

14. T1 ← T1
2

15. T2 ← T1 + T2

16. T2 ← T2 + T4

17. T1 ← T1
2

18. T1 ← T1 × T3

19. T2 ← T1 + T2

20. T1 ← T4

21. X2 ← T1

22. Y2 ← T2

23. Z2 ← T3

Figure 6.1: EC Double algorithm using projective coordinates

The output of this operation, is the point P2 = (X2, Y2, Z2), which is the double of
the point P1 given as input.

6.2 Elliptic Curve Implementations

In this section, we will present the implementation of elliptic curves in CAO and
Cryptol. The main focus will be on the data types to be used, as well as the
Double operation over an elliptic curve point.

6.2.1 Implementation in CAO

The required variables to execute an elliptic curve algorithm are the points of
the curve and its parameters. Each point P is composed by its coordinates.
The B-163 curve uses 163-bit words to represent its points’ coordinates and its
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parameters, which can be represented by the type unsigned bits[163]. In the
CAO language, there are a few alternatives to represent each curve point:

• a structure with three fields (x, y and z)

• a vector with three positions (position 0,1,2 for x, y and z, respectively)

Using the first alternative, a structure defining a new type GFPoint with three fields
for each point of an elliptic curve, may be defined as follows:

Listing 6.1: Elliptic curve point in CAO

1 typedef GFPoint := struct [def x : unsigned bits[163]; def y : unsigned bits[163]; def z :
unsigned bits[163];];

The same GFPoint would be the second alternative, the vector with three posi-
tions, could be defined as:

Listing 6.2: Elliptic curve point in CAO

1 typedef GFPoint := vector[3] of unsigned bits[163];

However, using bit vectors to define each element of GF(2163), the addition and
multiplication operations must be explicitly defined for that finite field:

Listing 6.3: Elliptic curve addition and multiplication

1 def mult (def a : unsigned bits[163], def b : unsigned bits[163], def irred : unsigned bits
[163]) : unsigned bits[163] {

2 def c : unsigned bits[163];
3 c := (a ∗ b) \% irred;
4 return c;
5 }
6

7 def sum (def a : unsigned bits [163], def b : unsigned bits[163]) : unsigned bits[163] {
8 return a ^ b;
9 }

To note that the irreducible polynomial defined for the elliptic curve B-163 is an
argument of the multiplication function, and is used to assure that the operation
is made correctly.
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Another alternative to define the bit strings for each coordinate of the elliptic curve
point is through the use of the mod type that exist in CAO. Such structure allows
one to define a finite field based on a polynomial, like the one used in the B-
163 curve. With that type, the addition and multiplication may be done by using
the + and ∗ operators, as these operations are natively implemented in the CAO
language.

Elliptic Double operation

The Double function takes as input a point P of the elliptic curve, and after execu-
tion it returns a new point, which corresponds to 2P . One implementation of the
Double operation described in the Figure 6.1, could be the following code:

Listing 6.4: EC2Double in CAO

1 def c : unsigned bits[163] := (...) // c := b∗∗(2∗∗(163−2))
2

3 def EC2Double (P : GFPoint) : GFPoint
4 {
5 def nP : GFPoint;
6 def T1,T2,T3,T4 : unsigned bits[163];
7 T1 := P.x;
8 T2 := P.y;
9 T3 := P.z;

10 T4 := c;
11 if ( T1 == 0b0 || T3 == 0b0 ) {
12 return EC2infinity();
13 }
14 T2 := mult(T2,T3);
15 T3 := mult(T3,T3);
16 T4 := mult(T3,T4);
17 T3 := mult(T1,T3);
18 T2 := sum(T2,T3);
19 T4 := sum(T1,T4);
20 T4 := mult(T4,T4);
21 T4 := mult(T4,T4);
22 T1 := mult(T1,T1);
23 T2 := sum(T1,T2);
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24 T2 := mult(T2,T4);
25 T1 := mult(T1,T1);
26 T1 := mult(T1,T3);
27 T2 := sum(T1,T2);
28 T1 := T4;
29 nP.x := T1;
30 nP.y := T2;
31 nP.z := T4;
32 return nP;
33 }

The implementation in CAO of this algorithm based on its formal specification is
almost direct. This implementation has two return points: the first at the line 10
(that only returns if the coordinates x and z are zero; the second is done at the
end of the function. Furthermore, the auxiliary functions sum and mult are used,
in order to execute the addition and multiplication in the finite field GF(2163).

6.2.2 Implementation in Cryptol

In order to represent the required variables for the elliptic curve operations (the
coordinates of a point and the parameters of the elliptic curve), there are different
approaches that may be used in the Cryptol implementation.

The first alternative for the implementation of the points P = (x, y, z) is through
the use of a tuple with three elements of the type ([163],[163],[163]): three
elements represented by 163 bits each. The second one, is through the use of a
sequence with three elements, where the positions 0, 1 and 2 represent the x, y
and z coordinates, respectively. The last alternative, is to use a record, which can
be defined as follows:

Listing 6.5: Elliptic curve point in CAO using records

1 type GFPoint = {x : [163]; y : [163]; z : [163]};

However, independently of the chosen alternative, it is necessary to define the
addition and multiplication operations, similar to the CAO’s implementation:

Listing 6.6: Elliptic curve addition and multiplication in Cryptol
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1 irred = <| x^163 + x^7 + x^6 + x^3 + 1 |>;
2 mult (a,b) = pmod (pmult(a,b),irred)
3

4 sum : ([163],[163]) −> [163]
5 sum (a,b) = s
6 where {
7 x = a : [163];
8 y = b : [163];
9 s = x ^ y;

10 };

The irred variable represents the polynomial used in the B-163 curve and is used
in the multiplication function.

Elliptic Double Operation

The implementation of the algorithm introduced in the Figure 6.1 in Cryptol, is the
following:

Listing 6.7: EC2Double in Cryptol

1 EC2Double : GFPoint −> GFPoint;
2 EC2Double p = newPoint
3 where {
4 t1 = getX p;
5 t2 = getY p;
6 t3 = getZ p;
7 t4 = c;
8 t2’ = mult t2 t3;
9 t3’ = mult t3 t3;

10 t4’ = mult t3 t4;
11 t3’’ = mult t1 t3’;
12 t2’’ = sum t2’ t3’’;
13 t4’’ = sum t1 t4’;
14 t4’’’ = mult t4’’ t4’’;
15 t4’’’’ = mult t4’’’ t4’’’;
16 t1’ = mult t1 t1;
17 t2’’’ = sum t1’ t2’’;
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18 t2’’’’ = mult t2’’’ t4’’’’;
19 t1’’ = mult t1’ t1’;
20 t1’’’ = mult t1’’ t3’’;
21 t2’’’’’ = sum t1’’’ t2’’’’;
22 t1’’’’ = t4’’’’;
23 newPoint = (t1’’’’,t2’’’’’,t3’’);
24 };

Although Cryptol is a functional language, this implementation looks like an im-
perative one. It uses the where clause, that allows one to bind values to function-
s/variables. However, as each variable must be defined only once in the execution
of a program, "’" are concatenated to the variables.

6.3 Compilation using the CAO2Cryptol tool

The compilation tool presented in the Chapter 5, aims to take on CAO source
code given as input and translate it to Cryptol. The Cryptol generated as output
should not use polymorphism and other unsupported constructs by the Cryptol’s
back ends, so that it can be translatable to VHDL.

Considering the CAO’s implementation of the EC2Double function, it has two re-
turn statements in the function. In order to translate it to Cryptol using the de-
veloped tool, it must have only one return statement. Also, the return statement
should be the last statement of the function, returning the last state of the return-
ing variable.

Therefore, the CAO code presented in the previous section must be transformed
so that it uses only one return statement: a new variable named nP with the state
of the return statement is created. Then, it is returned in the last statement of the
function.

For example, using structures, the code necessary to access (load) and modify
(store) the values of each coordinate of the point would be the following:

Listing 6.8: Structure load and store operations in the EC2Double function

1

2 /∗ (...) ∗/
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3 /∗ load ∗/
4 T1 := P.x;
5 T2 := P.y;
6 T3 := P.z;
7

8 /∗ EC2Double algorithm ∗/
9

10 /∗ store ∗/
11 nP.x := T1;
12 nP.y := T2;
13 nP.z := T4;
14

15 /∗ return statements ∗/

Furthermore, the CAO2Cryptol compilation tool only supports local variables, i.e.
it does not support a variable declared out of the scope of the function. The
EC2Double function uses the constant c, which can be passed as argument or
be defined inside the function scope. In this implementation, we defined the c

variable explicitly in the function.

After executing the EC2Double compiler, giving the code above as input, it suc-
ceeds. However, when trying to compile the output to VHDL, the follow error
occurs, due to the use of tuples.

Listing 6.9: Compilation error using Cryptol-VHDL

1 "ECurves.cry", line 14, col 1: unable to compile use of ’%%LAMBDA%%_store_s_x.
_163’ as a function value −− its definition isn’t closed.

However, a new approach using the proposed solution which uses a vector with
three elements of the type unsigned bits[163 was more successful. After trans-
forming the EC2Double according that structure, the following code was given as
input to the CAO2Cryptol compiler.
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Listing 6.10: EC2Double input for the CAO2Cryptol compilation tool

1 typedef GFPoint := vector[3] of unsigned bits[163];
2 def EC2Double (P : GFPoint) : GFPoint
3 {
4 def nP : GFPoint := EC2zero();
5 def T1,T2,T3,T4 : unsigned bits[163];
6 def c : unsigned bits[163] := (...) // c := b∗∗(2∗∗(163−2))
7 T1 := P[0];
8 T2 := P[1];
9 T3 := P[2];

10 T4 := c;
11 if ( (T1 == 0b0) || (T3 == 0b0) ) {
12 nP := EC2infinity();
13 } else {
14 T2 := mult(T2,T3);
15 T3 := mult(T3,T3);
16 T4 := mult(T3,T4);
17 T3 := mult(T1,T3);
18 T2 := sum(T2,T3);
19 T4 := sum(T1,T4);
20 T4 := mult(T4,T4);
21 T4 := mult(T4,T4);
22 T1 := mult(T1,T1);
23 T2 := sum (T1,T2);
24 T2 := mult(T2,T4);
25 T1 := mult(T1,T1);
26 T1 := mult(T1,T3);
27 T2 := sum(T1,T2);
28 T1 := T4;
29 nP[0] := T1;
30 nP[1] := T2;
31 nP[2] := T4;
32 }
33 return nP;
34 }

The total output of the translation can be checked in the Appendix B, however, a
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code sample of the output is presented in the Listing 6.11.

Listing 6.11: EC2Double output sample using the CAO2Cryptol tool

1 EC2Double : (GFPoint) −> GFPoint;
2 EC2Double (P) = nP_5
3 where {
4 /∗ (...) ∗/
5 T1_1 = mult(T1_0, T1_0);
6 T2_3 = sum(T1_1, T2_2);
7 T2_4 = mult(T2_3, T4_4);
8 T1_2 = mult(T1_1, T1_1);
9 T1_3 = mult(T1_2, T3_2);

10 T2_5 = sum(T1_3, T2_4);
11 T1_4 = T4_4;
12 nP_2 = take (0,nP_1) # [T1_4] # drop (0+1,nP_1);
13 nP_3 = take (1,nP_2) # [T2_5] # drop (1+1,nP_2);
14 nP_4 = take (2,nP_3) # [T4_4] # drop (2+1,nP_3);
15 nP_5 = if ((T1_0 == 0b0) | (T3_0 == 0b0)) then (nP_1) else (nP_4);
16 /∗ (...) ∗/
17 };

Considering the output, it is important to note a few key points:

• The load of a position of the vector is translated to operator and the store
operation is translated using the take and drop functions of the Cryptol lan-
guage.

• For each store operation on the vector, it is necessary to replicate the mem-
ory used by the memory.

• For each variable and each definition of a new value, it is created a new
variable with the respective index as subscript.

• As the variables were typed in CAO, they still have its type represented in
the Cryptol implementation.

This code concatenates subscripts with indexes into the variable names, with the
number of the occurrence of that variable, similar to the Cryptol implementation
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described in the previous section. The return value, is the last value of nP, which
in this case, its nP_5.

As we can see, there are some optimizations that can be done, mostly because
of the unnecessary memory that is being used when a store operation is made
on a sequence. Also, the if-then-else conditionals except the line 49 may be also
considered as dead code, i.e. if they are removed from the function it does not
affect the program results.

6.4 Summary

In this chapter we have presented a brief introduction to elliptic curves for cryptog-
raphy, focusing some aspects relevant to a practical implementation. The elliptic
curves for cryptography were chosen as a case study essentially because of the
smaller key sizes used by them, which makes them a primary choice for hardware
design.

The first part of this chapter addresses the two languages and the implementation
of elliptic curves. The data types used for the representation of elliptic curve
points over the GF(2163) field and the Double operation in CAO and Cryptol were
presented. The imperative nature of the formal specification makes it easier to
implement using the CAO language. However, the implementation in Cryptol is
also possible, having some similarities.

Finally, it was presented the compilation of the Double algorithm from CAO to
Cryptol, using the tool presented in the previous chapter. The results were pos-
itive, as it was possible to compile the output to VHDL using the Cryptol toolkit.
However, the generated code can still be optimized, for example, by executing
dead code elimination on it.
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Chapter 7

Conclusions and future work

This chapter aims to present a summary of the work performed in the context
of this dissertation, establishing some conclusions about the developed work,
focusing on the contributions that were made. Additionally, a few considerations
about future work on this subject will be made, discussing the state of the DSLs
for cryptography and what features could be added to the CAO2Cryptol compiler.

7.1 Conclusions

This work presented two domain-specific languages for cryptography, Cryptol and
CAO. The main purpose was to study these two languages and to understand
how its features could be used to implement cryptographic algorithms.

• The Cryptol language is based on the functional paradigm, uses function
composition to create programs, is stateless and has higher-order con-
structs such as polymorphism and other operators. The Cryptol toolkit is
composed by a verification suite (that was not approached in this work) and
a set of compiler tools to other languages such as C or VHDL.

• The CAO language, is an imperative language with a syntax similar to C’s
and aims to allow one to quickly re-target a cryptographic algorithm from its
formal specification. It includes data types such as bit vectors or finite fields
which are used widely in cryptography. Part of the CAO toolkit is also the
CAO-SL tool that allows one to specify contracts in CAO functions, such as
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pre-conditions and post-conditions. The CALF compiler, introduces higher-
order features in the language such as polymorphism.

To compare the two languages, it was used the AES algorithm, which is an en-
cryption scheme widely used nowadays to achieve information confidentiality. The
implementation of the cipher of the algorithm in Cryptol and CAO was partially
presented, essentially to compare the implementation of some parts of the algo-
rithm in both languages. Most part of the differences were because of the distinct
characteristics of the functional and imperative paradigms. On one hand, the
functional approach uses function composition, recursion and sequence compre-
hension lists. On the other, the imperative implementation uses mostly iteration
cycles such as seq’s and take advantage of the finite fields data type.

Furthermore, this work also studied the limitations of the Cryptol’s compilation
tools for hardware platforms. This was important to study the viability of building
a CAO2Cryptol compiler. The variables of a CAO program are monomorphic and
all values are known at compile time, which makes the compilation easier. How-
ever, a few transformations are required, mostly because the if-then-else state-
ments in CAO, which can change the whole state of the program. In Cryptol, the
if-then-else is an expression and must return the same type. The variables should
be defined only once in a functional language, unlike imperative languages such
as CAO. To solve this problem, the original CAO program is translated to the
SSA form, which inserts indexes in the variables as subscripts. With this trans-
formations, the CAO program is transformed into straight-line code which can be
translated to Cryptol code using a pretty printer module, which writes Cryptol’s
syntax.

The main contributions from the work performed in this dissertation, besides the
compilation, were mainly focused on the CAO language. The CFG and SSA
components developed for the CAO language, may be incorporated in the future
in the CAO compiler. In fact, the SSA form may be used to perform optimizations
in CAO programs such as constant propagation or dead code elimination. The
implementation of the elliptic curves and its algorithms was also a contribution,
which can be used in the future as a library to be used by the CAO language.
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7.2 Future work

The compilation tool developed in this dissertation used most of the features in
the CAO language. However, the finite fields data type was not considered for the
compilation tool. As this type is something that is used widely in cryptographic
primitives and Cryptol does not support natively, would be an interesting addition
to compiler. The while statement was not considered either, and could be added
to the compiler also.

Because of the SSA transformation, the output code uses a lot of memory and
that is notorious when container types such as vectors, matrices or structures are
used: for each store operation, the whole container memory is rewritten in a new
variable. If there are a huge number of store operations, the size of used memory
would be high. Eventually, some optimizations could be done about this problem,
specially when there are sequential store operations, which could be simplified
into only one operation.

Most part of this work was part of a research grant inserted in the european
SMART (Secure Memories and Applications-related Technologies) project, which
aims to develop a new generation of portable and small smart secure devices,
with focus on performance. A CAO2C compiler tool is being developed in the
scope of this project, which can reuse components from the CAO2Cryptol com-
piler such as the CFG and the SSA form, in order to generate an optimized com-
piler.
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Appendix A

T-box

Listing A.1: Calculation of the T0-box table
1 T0_table : [256][32];
2 T0_table = [
3 0xa56363c6 0x847c7cf8 0x997777ee 0x8d7b7bf6 0x0df2f2ff 0xbd6b6bd6 0xb16f6fde 0x54c5c591
4 0x50303060 0x03010102 0xa96767ce 0x7d2b2b56 0x19fefee7 0x62d7d7b5 0xe6abab4d 0x9a7676ec
5 0x45caca8f 0x9d82821f 0x40c9c989 0x877d7dfa 0x15fafaef 0xeb5959b2 0xc947478e 0x0bf0f0fb
6 0xecadad41 0x67d4d4b3 0xfda2a25f 0xeaafaf45 0xbf9c9c23 0xf7a4a453 0x967272e4 0x5bc0c09b
7 0xc2b7b775 0x1cfdfde1 0xae93933d 0x6a26264c 0x5a36366c 0x413f3f7e 0x02f7f7f5 0x4fcccc83
8 0x5c343468 0xf4a5a551 0x34e5e5d1 0x08f1f1f9 0x937171e2 0x73d8d8ab 0x53313162 0x3f15152a
9 0x0c040408 0x52c7c795 0x65232346 0x5ec3c39d 0x28181830 0xa1969637 0x0f05050a 0xb59a9a2f

10 0x0907070e 0x36121224 0x9b80801b 0x3de2e2df 0x26ebebcd 0x6927274e 0xcdb2b27f 0x9f7575ea
11 0x1b090912 0x9e83831d 0x742c2c58 0x2e1a1a34 0x2d1b1b36 0xb26e6edc 0xee5a5ab4 0xfba0a05b
12 0xf65252a4 0x4d3b3b76 0x61d6d6b7 0xceb3b37d 0x7b292952 0x3ee3e3dd 0x712f2f5e 0x97848413
13 0xf55353a6 0x68d1d1b9 0x00000000 0x2cededc1 0x60202040 0x1ffcfce3 0xc8b1b179 0xed5b5bb6
14 0xbe6a6ad4 0x46cbcb8d 0xd9bebe67 0x4b393972 0xde4a4a94 0xd44c4c98 0xe85858b0 0x4acfcf85
15 0x6bd0d0bb 0x2aefefc5 0xe5aaaa4f 0x16fbfbed 0xc5434386 0xd74d4d9a 0x55333366 0x94858511
16 0xcf45458a 0x10f9f9e9 0x06020204 0x817f7ffe 0xf05050a0 0x443c3c78 0xba9f9f25 0xe3a8a84b
17 0xf35151a2 0xfea3a35d 0xc0404080 0x8a8f8f05 0xad92923f 0xbc9d9d21 0x48383870 0x04f5f5f1
18 0xdfbcbc63 0xc1b6b677 0x75dadaaf 0x63212142 0x30101020 0x1affffe5 0x0ef3f3fd 0x6dd2d2bf
19 0x4ccdcd81 0x140c0c18 0x35131326 0x2fececc3 0xe15f5fbe 0xa2979735 0xcc444488 0x3917172e
20 0x57c4c493 0xf2a7a755 0x827e7efc 0x473d3d7a 0xac6464c8 0xe75d5dba 0x2b191932 0x957373e6
21 0xa06060c0 0x98818119 0xd14f4f9e 0x7fdcdca3 0x66222244 0x7e2a2a54 0xab90903b 0x8388880b
22 0xca46468c 0x29eeeec7 0xd3b8b86b 0x3c141428 0x79dedea7 0xe25e5ebc 0x1d0b0b16 0x76dbdbad
23 0x3be0e0db 0x56323264 0x4e3a3a74 0x1e0a0a14 0xdb494992 0x0a06060c 0x6c242448 0xe45c5cb8
24 0x5dc2c29f 0x6ed3d3bd 0xefacac43 0xa66262c4 0xa8919139 0xa4959531 0x37e4e4d3 0x8b7979f2
25 0x32e7e7d5 0x43c8c88b 0x5937376e 0xb76d6dda 0x8c8d8d01 0x64d5d5b1 0xd24e4e9c 0xe0a9a949
26 0xb46c6cd8 0xfa5656ac 0x07f4f4f3 0x25eaeacf 0xaf6565ca 0x8e7a7af4 0xe9aeae47 0x18080810
27 0xd5baba6f 0x887878f0 0x6f25254a 0x722e2e5c 0x241c1c38 0xf1a6a657 0xc7b4b473 0x51c6c697
28 0x23e8e8cb 0x7cdddda1 0x9c7474e8 0x211f1f3e 0xdd4b4b96 0xdcbdbd61 0x868b8b0d 0x858a8a0f
29 0x907070e0 0x423e3e7c 0xc4b5b571 0xaa6666cc 0xd8484890 0x05030306 0x01f6f6f7 0x120e0e1c
30 0xa36161c2 0x5f35356a 0xf95757ae 0xd0b9b969 0x91868617 0x58c1c199 0x271d1d3a 0xb99e9e27
31 0x38e1e1d9 0x13f8f8eb 0xb398982b 0x33111122 0xbb6969d2 0x70d9d9a9 0x898e8e07 0xa7949433
32 0xb69b9b2d 0x221e1e3c 0x92878715 0x20e9e9c9 0x49cece87 0xff5555aa 0x78282850 0x7adfdfa5
33 0x8f8c8c03 0xf8a1a159 0x80898909 0x170d0d1a 0xdabfbf65 0x31e6e6d7 0xc6424284 0xb86868d0
34 0xc3414182 0xb0999929 0x772d2d5a 0x110f0f1e 0xcbb0b07b 0xfc5454a8 0xd6bbbb6d 0x3a16162c
35 ];
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Appendix B

CAO2Cryptol EC2Double function
output

Listing B.1: EC2Double output using the CAO2Cryptol compilation tool

1 EC2Double : (GFPoint) −> GFPoint;
2 EC2Double (P) = nP_5
3 where {
4 nP : GFPoint;
5 nP = EC2infinity;
6 c : [163];
7 c = (...) // b^(2^(163−2))
8 T1 : [163];
9 T1 = P @ 0;

10 T2 : [163];
11 T2 = P @ 1;
12 T3 : [163];
13 T3 = P @ 2;
14 T4 : [163];
15 T4 = c;
16 P_0, P_1 : GFPoint;
17 P_0 = P;
18 T1_0, T1_1, T1_2, T1_3, T1_4, T1_5 : [163];
19 T1_0 = T1;
20 T2_0, T2_1, T2_2, T2_3, T2_4, T2_5, T2_6 : [163];
21 T2_0 = T2;
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22 T3_0, T3_1, T3_2, T3_3 : [163];
23 T3_0 = T3;
24 T4_0, T4_1, T4_2, T4_3, T4_4, T4_5 : [163];
25 T4_0 = T4;
26 c_0 : [163];
27 c_0 = c;
28 nP_0, nP_1, nP_2, nP_3, nP_4, nP_5 : GFPoint;
29 nP_0 = nP;
30 nP_1 = EC2infinity;
31 T2_1 = mult(T2_0, T3_0);
32 T3_1 = mult(T3_0, T3_0);
33 T4_1 = mult(T3_1, T4_0);
34 T3_2 = mult(T1_0, T3_1);
35 T2_2 = sum(T2_1, T3_2);
36 T4_2 = sum(T1_0, T4_1);
37 T4_3 = mult(T4_2, T4_2);
38 T4_4 = mult(T4_3, T4_3);
39 T1_1 = mult(T1_0, T1_0);
40 T2_3 = sum(T1_1, T2_2);
41 T2_4 = mult(T2_3, T4_4);
42 T1_2 = mult(T1_1, T1_1);
43 T1_3 = mult(T1_2, T3_2);
44 T2_5 = sum(T1_3, T2_4);
45 T1_4 = T4_4;
46 nP_2 = take (0,nP_1) # [T1_4] # drop (0+1,nP_1);
47 nP_3 = take (1,nP_2) # [T2_5] # drop (1+1,nP_2);
48 nP_4 = take (2,nP_3) # [T4_4] # drop (2+1,nP_3);
49 nP_5 = if ((T1_0 == 0b0) | (T3_0 == 0b0)) then (nP_1) else (nP_4);
50 T4_5 = if ((T1_0 == 0b0) | (T3_0 == 0b0)) then (T4_0) else (T4_4);
51 T3_3 = if ((T1_0 == 0b0) | (T3_0 == 0b0)) then (T3_0) else (T3_2);
52 T2_6 = if ((T1_0 == 0b0) | (T3_0 == 0b0)) then (T2_0) else (T2_5);
53 T1_5 = if ((T1_0 == 0b0) | (T3_0 == 0b0)) then (T1_0) else (T1_4);
54 P_1 = if ((T1_0 == 0b0) | (T3_0 == 0b0)) then (P_0) else (P_0);
55 };
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