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Abstract 

Biofilm formation is an important virulence factor that contributes greatly to 

Candida species pathogenicity. This virulence factor is dependent on several 

environmental factors including the available nutrients. Candida species survive in the 

oral environment through the catabolism of sugars, as glucose, and nitrogen 

assimilation, through the absorption of certain aminoacids as L-glutamine. There are 

several genes related with biofilm formation. The FKS1 gene encodes an membrane 

bound enzyme that produces β-1,3 glucan, a component of the biofilm matrix, from 

glucose. BCR1 gene is a fungal transcription factor that regulates the expression of 

important Candida adhesins. Thus, the aim of this study was to understand the effect 

of the glucose concentration variation as well as the presence of a nitrogen source 

(glutamine), in the biofilm formation by several Candida species. 

 Total biomass quantification by crystal violet showed that only the oral isolates 

of Candida albicans and Candida parapsilosis biofilm production dependent upon the 

glucose level in the medium. The oral isolate of Candida tropicalis produced more 

biofilm for smaller amounts of glucose, whereas, C. glabrata strains were less able to 

form biofilm than any other studied strain. Analyzing the effect of glutamine on 

biofilms in terms of total biomass, only the oral isolate of C. parapsilosis was affected 

by the absence of glutamine from the medium. Scanning-Ellectron microscopy of the 

biofilms formed by C. albicans and C. parapsilosis, showed that the complexity and 

overall structural size of the biofilm increased when the glucose concentration was 

higher. It also showed, that glucose presence enhanced the development and growth 

of hyphal/filamentous forms. Genetic expression assessment through Real time PCR, 

showed that FKS1 gene expression was glucose dependent for both C. albicans and C. 

parapsilosis, and overall higher for C. albicans, hinting at a greater β-1,3 glucan 

incorporation on biofilm of this specie. BCR1 gene expression increased for higher 

glucose levels in the medium. However, when glucose was replaced by an equal 

amount of glutamine, the expression of this gene didn’t decrease for any of the 

studied strains, hinting that cell adhesion is not dependent on the presence of glucose, 

but may be dependent on nutrient concentration. 
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Sumário 

A formação de biofilmes é um importante factor de virulência que contribui 

para a patogenicidade de espécies do fungo Candida. Este factor de virulência está 

dependente de vários factores ambientais incluindo os nutrientes disponíveis. As 

espécies de Candida sobreviveram no ambiente oral através do catabolismo de 

açucares, como a glucose e assimilação de nitrogénio, através da absorção de certos 

aminoácidos como L-glutamina. Vários genes estão relacionados com a formação de 

biofilmes. O gene FKS1 codifica uma enzima da membrana celular que produz β-1,3 

glucano, um componente da matriz dos biofilmes. O gene BCR1 está relacionado com a 

capacidade de adesão a superfícies das células. Assim sendo, o objectivo deste estudo 

foi entender a forma pela qual a variação da concentração de glucose bem como a 

presença de uma outra fonte de nitrogénio (glutamina), pode afectar a capacidade de 

formação de biofilmes por várias espécies de Candida. 

 A quantificação da biomassa total mostrou que a produção de biofilme de só os 

isolados orais de Candida albicans e Candida parapsilosis foi dependente da  

quantidade de glucose no meio. O isolado oral de Candida tropicalis produziu mais 

biofilme para concentrações de glucose mais baixas. As estirpes de Candida glabrata 

foram as piores produtoras de biofilme. Analizando o efeito da glutamina na produção 

de biofilmes, foi possível verificar que só o isolado oral de C. parapsilosis foi afectado 

pela sua ausência do meio. A visualização dos biofilmes formados por microscopia 

electrónica de varrimento mostrou que tanto a complexidade como o tamanho das 

estruturas, a nível geral, aumentou com o aumento da concentração de glucose no 

meio, para estirpes de C.albicans e C. parapsilosis. Também mostrou que o aumento 

da concentração de glucose no meio fomentou o desenvolvimento de hifas /estruturas 

filamentosas para as estirpes destas espécies. A avaliação da expressão do gene FKS1 

através de Real-time PCR mostrou que a expressão deste gene está dependente da 

glucosa em C. albicans e C. parapsilosis, sendo, em geral, superior para as estirpes de 

C. albicans. Isto aponta para a existência uma maior quantidade de β-1,3 glucano nas 

matrizes dos seus biofilmes. A expressão do gene BCR1 aumentou com a concentração 

de glucose, mas no entanto não parece ser afectada com a substituição da glucose por 

uma quantidade equivalente de glutamina no meio. 
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This chapter consists on a general introduction in which is given a detailed context to the aim 

of the work developed under this thesis. The latest information concerning Candida species 

biology, epidemiology and biofilm formation is presented. 
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1.1 - Oral candidosis  

Oral candidosis or oropharyngeal candidosis is an opportunistic mycosis of the oral 

mucosa that, in more extreme cases, can evolve from a superficial infection to a 

systemic and life threatening infection known as candidaemia (Murray, 1995). The 

symptoms of candidosis often include local discomfort, an altered taste sensation, 

dysphagia from esophageal overgrowth. Therefore, it results in a poor nutrition, slow 

recovery and prolonged hospital stay. In extreme cases, the infection can spread 

through the bloodstream or upper gastrointestinal tract leading to severe infection 

with a significant morbidity and mortality rate. Moreover, immunocompromised 

patients, such as HIV or cancer patients, and diabetes mellitus patients are also 

specially proponent to candidosis in general (Akpan et al., 2002; Epstein, 1990; Guida, 

1988; Hoeql et al., 1998).  There is a diverse number of oral candidosis types. The most 

common, and most easily diagnosed, is the pseudomembranous candidosis (Figure 1.1 

A) or thrush, which accounts for at least a third of the cases. It is characterized by 

extensive white pseudomembrane consisting of desquamated epithelial cells, fibrin, 

and fungal hyphae (Akpan et al., 2002). 

 

 

 

 

Figure 1.1 – Different aspects of Oral candidosis. A) Aspect of acute Pseudomembranous Candidosis or trush, the most easily 

identifiable type of oral candidosis and tradicionally associated with this disease; B) Candida albicans colonies aspect seen 

under light microscopy (adapted from Akpan et al. 2002). 
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 Accutic atrophic candidosis is associated with a burning sensation in the mouth 

or on the tongue and is of difficult diagnosis, which is helped by a swab of the tongue. 

Chronic hyperplastic candidiasis, is characterized by several white lesions that occur in 

the buccal mucosa or lateral border of the tongue. However, because Candida species, 

are not frequently isolated from clinical sites of the disease, it is believed that this 

condition may be confused with others. Chronic atrophic candidiasis also known as 

denture stomatitis is characterized by localized chronic erythema of tissues covered by 

dentures. Lesions can also occur on the palate, upper jaw and mandibular tissue. 

Median rhomboid glossitis is a chronic symmetrical area on the tongue anterior to the 

circumvallate papillae. It is made up of atrophic filiform papillae. Angular cheilitis is an 

erythematous fissuring at one or both corners of the mouth and is usually associated 

with an oral candida infection.(Akpan et al., 2002) 

 

1.1.1 – Causative agents of oral candidosis 

Oral candidosis is caused by the overgrowth or infection of the oral mucosa by 

a Candida fungus. Several species of Candida, like C. albicans, C. tropicalis, C. 

parapsilosis and C. glabrata, among others, have been identified in the isolates of 

clinical infection. These, however, are also commensal microorganisms that can be 

found in the normal flora of humans, as the oral, gastrointestinal or rectal cavities, and 

generally causes no problems to healthy people (Akpan et al., 2002; Hoeql et al., 1998; 

Murray, 1995). They can also be found in environmental surfaces, and infections can 

also originate from exogenous sources (Lass-Flörl, 2009). From sampling and isolation, 

it has been determined that, in healthy adults and children, there was a median 

carriage frequency of 34.4% in  general of yeasts and from those, 17% were from C. 

albicans alone. C. tropicalis, C. glabrata and C. parapsilosis followed in dominance 

(Odds, 1988). Almost 50% of healthy and disease humans carrie commensally C. 

albicans (Shimizu et al., 2007). 
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1.1.2 – Predisposing factors 

Clinical observations suggested that nutritional factors can affect, either locally 

or systemically, the pathogenicity of oral candidosis (Akpan et al., 2002; 

Samaranayake, 2006).  According to various studies, the presence of certain dietary 

carbohydrates in the growth medium, can influence the superficial adhesion of the 

yeasts, the development of biofilms, morphogenesis, enzyme production and activity 

and growth over time (Samaranayake et al., 1982; Santana et al., 2013). Population 

based surveillance of candidosis conducted in USA, Canada and Europe revealed that 

the highest rates of the desease were registered to infants with less than 1 year of age 

and in adults over the age of 65 have been reported in the US studies. It is also 

documented a high incidence of candidosis among cancer patients and adults with 

diabetes as well as the near universality of central venous catheters among patients 

diagnosed with candidaemia (Pfaller et al., 2007). The widespread use of 

broadspectrum antibiotics and invasive medical devices, the rising number of 

immunocompromised and HIV patients, and the increase of the elder population have 

contributed to the increase in the incidence of candidosis infections (Fanello et al., 

2001; Kojic et al., 2004; Silveira et al., 2007). The breach of the mucosal barrier or the 

insertion of contaminated syringes can cause infection, by giving hematogenous access 

to fungus. An insufficient salivary flow, for example, due to drug action, radiotherapy 

or Sjgnören’s syndrome, diminishes  the dilutional effect of saliva, and so, the removal 

of these microorganisms from the mucosa as well as the effect of antimicrobial 

proteins like lactoferrin, sialoperoxidase, lysozyme, hisitidine-rich polypeptides, and 

specific anticandida antibodies that can be found in saliva (Akpan et al., 2002). Drugs, 

such as inhaled steroids, are suspected of suppressing cellular immunity and 

phagocytosis of the local mucosa (Akpan et al., 2002; Ellepola et al., 2001). The use of 

dentures provides a microenvironment, in the denture fitting, with low oxygen, low pH 

and an anaerobic environment, in which there is a reduced salivary flow. This, aided by 

the great affinity of Candida species to acrylic and poor oral hygiene leads to 

overgrowth and infection (Akpan et al., 2002; Henriques et al., 2004).  
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Table 1.1 – Predisposing factors to oral candidosis 

Factor Description References 

Age Under 1 year and above 65 

years; 

(Akpan et al., 2002) 

(Douglas, 2003) 

Immunodeficiency HIV patients; 

Cancer patients including the 

ones under chemotherapy; 

Drugs; 

Reduced salivary flow; 

(Akpan et al., 2002) 

(Douglas, 2003) 

(Odds, 1988) 

Invasive treatments Syringes; 

Catheters; 

Trauma cirurgy patients; 

(Akpan et al., 2002) 

(Wisplinghoff et al., 2004) 

(Negri et al., 2011) 

Oral sugars Reduced salivary flow; 

Radiotherapy; 

Signören’s syndrome; 

Xerostemia; 

Diabetes; 

(Akpan et al., 2002) 

(Hill et al., 1989) 

(Silva et al., 2012) 

(Andrés et al., 2008) 

 

Dentures High adhesion to denture 

surfaces; 

Environment with low oxygen 

and pH; 

(Akpan et al., 2002) 

(Henriques et al., 2004) 

(Douglas, 2003) 

 

 

1.1.3– Incidence rates 

In the last decades, there has been a rise in the incidence of Candida infections. 

The report of Epidemiologic surveillance of bloodstream infections, of 2010 by the 

health quality department in Portugal, stated that 61.9% of all bloodstream fungal 

infections were related to Candida alone (Pina et al., 2010). In the United States, 

Candida infections are the fourth most common cause of all nosocomial bloodstream 

infections, representing 8 to 10% of all bloodstream acquired in the hospitals (Pfaller 

et al., 2007; Wisplinghoff et al., 2004). Population-based surveys, conducted in the US, 

between 1996 and 2003, in several major cities as San Francisco, Atlanta showed an 
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incidence of 8 per 100000 population, while surveys conducted in Iowa, Baltimore and 

Connecticut reported a incidence of 24 per 100000. Rates of 6-14 per 100000 have 

been reported in average, across the country. In Europe, among the Nordic countries, 

Norway, Finland and Sweden reported incidence of candidaemia around 3 per 100000 

population whereas Denmark reports 11 per 100000 population. In the middle and 

southern parts of Europe the UK, Scotland, Spain and Italy reported 1.2-6.4 per 100000 

population. The results showed not only that the incidence rates are significantly more 

superior in the United States than in Europe, but also that generally there was an 

increase in the incidence rates over the years (Arendrup, 2010; Pfaller et al., 2007).  

 

1.1.4 – Emergence of Candida Non-Candida albicans as pathogens 

  Despite of most of the candidosis infections being attributed to Candida albicans, 

in the last three decades there has been an increase of cases caused by Non-Candida 

albicans Candida (NCAC) species, such as C. parapsilosis, C. tropicalis and C. glabrata. 

Brachiesi et al. reported that the frequency of isolation of NCAC from clinical sites, 

raised from 3-4% in 1988-1989 to 16-18% 1990-1991 (Brachiesi et al., 1993). Masiá et 

al realized that 21% of HIV patients with diagnosed candidiasis, were infected with 

NCAC (Masiá et al., 1999). More recently, Ventura et al. while studying the species and 

susceptibility in several candidaemia cases in a large Brazilian hospital, realized that 

51.6% of the cases was caused by a NCAC pathogen (Ventura et al., 2004). Lass-Flörl, J 

in a review about the changing epidemiology of fungal infections in Europe, reported 

that despite of Candida albicans still be responsible for more than half the cases of 

candidaemia in Europe, the number of NCAC species-related candidaemia cases are 

rising. 14% of the cases were caused by C. glabrata or C. parapsilosis each and 7% of 

them by C. tropicalis.(Lass-Flörl, 2009). Globally, C. albicans is still the major pathogen, 

being related to 50-70% of the cases of invasive candidaemia worldwide, although 

these values are lower than a few decades ago (Arendrup, 2010).  

The causes for this change in Candida epidemiology may be related to an increase 

in the incidence of Candida oral infections due to the advent of immunodeficiency 

virus infection (AIDS), as well as immunosuppressive treatments for certain diseases, 

as cancer, which debilitated the host immune control of commensal Candida 

populations, leading to overgrowth. The advent of new medical procedures, the rise in 
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the use of invasive medical procedures and devices and the widespread use of broad-

spectrum antibiotics also contributed to an increase in Candida incidence.(Odds, 1988) 

On the other hand, the development of new diagnostic technics that implemented 

molecular and serological techniques into the identification of Candida, lead no only to 

a more accurate diagnosis of the disease, which was mistaken for other similar 

conditions, as well as a more accurate identification of Candida specie and 

strain.(Calderone, 2002; Suzuki, 2002) 
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1.2 - Candida species: growth and metabolism 

There are about 350 different species in the genus Candida, which belongs to the 

Fungi kingdom. From those, however, only a small percentage is pathogenic to 

humans, being 65% unable to grow at a temperature of 37˚C. Over the years, many 

taxonomic changes led to not only the rename of some Candida species into new ones, 

but also the addition of more elements to the family, recently discovered or 

reclassified into new taxonomic branches. Initially, Candida species without a sexual 

stage were classified as Deuteromycota. The species with a sexual stage, on the other 

hand, belonged to the phylum of the Ascomycota. Later genetic studies proved a 

phylogenetic relationship between the organisms that presented or not a sexual stage, 

thus validating the alignment of Candida spp. among the Ascomycota. Besides the 

genetic approach, there were other characteristics that distinguished Candida species 

as Ascomycota, as the fact that they are urease negative, non-encapsulated, 

fermentative, and non-inositol assimilative and the production of β-glucans into their 

cell wall (Calderone, 2002; Kourkoumpetis et al., 2010; Odds, 1988). 

 

1.2.1 – Growth forms of Candida species 

Candida species generally grow as yeasts and most of them can also produce 

hyphae or pseudohyphae (filamentous type of growth). The main difference between 

hyphae and pseudohyphae is related to the way in which they are formed. 

Pseudohyphae are formed form yeast cells or from hyphae by budding, but the new 

growth remains attached to the parent cell and is elongate, resulting in filaments with 

constrictions at the cell-cell junctions. There is no internal cross walls (septa) 

associated with pseudohyphae. Pseudohyphae are chains of more or less elongated 

yeast cells joined end to end.  Budding occurs laterally, just behind the septa, the latter 

of which are perpendicular to the main axis. True hyphae, however, forms from 

existing cells or branches and grows by apical extension, firstly as a germ tube, and 

later, cross walls are formed behind the growing tip of the hyphae (Calderone, 2002; 

Gow, 2002).  

Candida albicans is able to grow in yeast form but also to produce pseudohyphae 

and/or true hyphae, being  truly polymorphic (Calderone, 2002; Gow, 2002). Candida 
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parapsilosis cannot produce true hypha, being able to grow only as yeast or as 

pseudohypha (Laffey et al., 2005). However, Candida parapsilosis pseudohypha are 

large and curved when compared to other Candida species. Candida glabrata is 

reportedly able to grow only as yeast. These species used to be classified in the genus 

of Torupsis precisely due to the lack of a pseudohyphal phenotype, before being 

assigned to the genus Candida (Fidel et al., 1999). Csank et al., however proved that 

Candida glabrata was able produce pseudohypha when grown in a solid nitrogen 

starvation media (Csank et al., 2000). Candida tropicalis grows in yeast form, producing 

oval blastospores, and also in pseudohyphal form. It is also capable of producing true 

hypha (Calderone, 2002; Moralez et al., 2013; Okawa et al., 2006).  

 Several studies have been made in order to identify the factors that induce 

morphogenesis in Candida species. It is known that at a temperature of 37˚C, at a 

neutral pH, and in the presence of specific nutrients in the growth medium, are 

implicated in the dimorphic regulation (Gow, 2002). Candida albicans, at a 

temperature above 35˚C, a pH greater than 6.5 and in situation of nitrogen and/or 

carbon starvation, can produce true hypha. Besides these factors, other parameters as 

low oxygen concentration, non-fermentable carbon sources and the presence of a 

wide range of components as proline and other aminoacids, some human hormones or 

certain alcohols have been identified as factors that promote true hypha development. 

Yeast cell growth, by the other hand is promoted with an inoculum superior to 106 

cell/ml-1, a temperature below 35˚C, a pH inferior to 6.5, glucose and ammonium salts 

(Brown, 2002). A summary of the morphologic difference between Candida species  is 

presented below (Calderone, 2002). 

 

Table 1.2 – Morphologic characteristics of Candida species (adapted from Calderone, 

2002) 

Species Germ tube True hyphae/Pseudohyphae Yeast size (µm) 

Candida albicans + +/+ 4-6 X 6-10 

Candida parapsilosis - -/+ 2.5-4 X 2.5-9 

Candida glabrata - -/- 1-4 

Candida tropicalis - ±/- 4-8 X 5-11 
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1.2.2 – Metabolism of Candida species 

 Candida is a fungus and like other fungus, they are non-photosyntetic, 

eukaryotic organisms, which obtain their energy by metabolizing several chemical 

compounds. Glucose is the main carbon source of Candida spp. although they all are 

capable of metabolizing others sugar as galactose and fructose (Calderone, 2002; Gow, 

2002; Murray, 1995). Therefore polymeric sugars as lactose, sucrose and maltose, can 

equally be metabolized by Candida spp. The breakdown of these organic compounds 

allows the fungus to obtain energy in the form of ATP. Candida albicans is able to 

assimilate and ferment a wide variety of sugar, except sucrose. Candida glabrata 

ferments and assimilates only glucose and trehalose. C. tropicalis has the ability to 

ferment and assimilate sucrose and maltose. Curiously, C. parapsilosis was firstly 

include as a specie of Monilia, due to its inability to ferment maltose (Odds, 1988; 

Trofa et al., 2008). 

 Candida metabolism happens mainly in two distinct pathways, in which occurs 

conversion of glucose to pyruvate, with associated glucose formation. In the presence 

of oxygen, pyruvate, enters the mitochondrial organelle and is decarboxylated in the 

citric acid cycle, producing both ATP and CO2. In the absence of oxygen, pyruvate is 

decomposed, by pyruvate decarboxylase in ethanol, CO2 and oxaloacetate. Candida 

cells populations grow in aerobic conditions but cannot grow in anaerobic conditions.  

However, grown populations of Candida species can adapt to anaerobic conditions 

(Gow, 2002). 

 Glutamine is an aminoacid that plays an essential role for a variety of cell types 

of the human organism, and a large number of tissues in the body. It acts as a 

precursor for neurotransmissors, immune-function and acid-base balance, among 

others. Is the most abundant extracellular aminoacid in vivo, being principally found, at 

high concentrations, in the blood plasma and skeleton-muscle. It is used as alternative 

energy source for several fast growing cells, as tumoral cells. (Aledo, 2004; Newsholme 

et al., 2003) In Candida species, glutamine can act as nitrogen source, and is required 

as a prominent precursor in several important pathways as the synthesis of 

tryptophane, asparagine, histidine, phosphate, CTP, AMP, GMP and NAD (Gow, 2002; 

Odds, 1988). 
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1.3– The oral cavity and the oral environment  

In the oral cavity, there are several habitats characterized by different 

physicochemical factors, in which proliferates a wide range of microbial communities. 

This is partly due to the great anatomical diversity of the oral cavity and the 

interrelationship between the different anatomic structures. The oral cavity possesses 

both hard and soft tissues, namely, the tooth and the mucosa and in general, is a moist 

environment at a relatively constant temperature (34 to 36˚C) and a pH close to 

neutrality in most areas. The tooth is a hard surface, that offers many sites of 

colonization, both above and below the gingival margin. The oral mucosa, on the other 

hand, is a soft surface characterized of undergoing constant desquamation, which 

allows the rapid elimination of adhering microorganisms. The mucosa covers the 

cheek, the tongue, the gingiva, the palate and the floor of the mouth. However, it 

varies according to the anatomical site. For example, in the palate the epithelium is 

keratinized while in gingival crevice, it is not. The mucosal surfaces are bathed by 

saliva, with the exception of the gingival crevice which is bathed by another 

physiological fluid, the gingival crevicular fluid, which is an exudate originated from 

plasma that baths only tooth and gingival from the junctional epithelium in gingival 

crevice   (Marcotte et al., 1998). 

 

1.3.1 – Ecology of the oral cavity 

The oral microbiota of the human mouth is composed by a wide and complex 

variety of species. There are more than 300 species of bacteria alone, to which must be 

added protozoa, yeasts, and mycoplasmas. This so high diversity of microorganisms 

may be due to the great anatomical diversity of the mouth, which contributes to the 

existence of a diverse number of different physicochemical niches. Specie distribution 

varies quantitatively according to the habitat (Marcotte et al., 1998). 

On the teeth, microorganisms form a dense mass called a dental plaque, which 

consists of microbial communities organized in a complex matrix composed of 

microbial extracellular products and salivary compounds. This plaque forms 

preferentially on surfaces protected from friction as the area between two adjacent 

teeth, the gingival crevice, or the bits and fissures on the upper surfaces of the tooth, 
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responsible by biting. The majority of the organisms isolated from dental plaque are 

fermentative anaerobic gram-positive bacteria. Gram-negative bacteria may also be 

isolated but in lower proportions (Marcotte et al., 1998). 

The oral mucosa of the gingiva, palate, cheeks and mouth floor is colonized 

with few organisms. Streptococci constitutes the highest portion of them. On the 

mucosa of the tongue, a higher bacterial density and diversity is found (Marcotte et al., 

1998). Candida albicans primarily colonizes the tongue, flowing into the oral mucosa, 

tooth surfaces, the biofilm and the saliva. Its pathogenic action is favored by local or 

systemic changes (Silva et al., 2012). Comparatively, Candida glabrata has lower 

keranocyte-adherence capacity, but higher adherence ability to surface of dentures, 

thus possessing a lower capacity of adhesion and invasion of the oral mucosa (Li et al., 

2007). However, it has already been reported a high capacity of co-infection of human 

oral epithelium of this specie with C. albicans (Silva et al., 2011). Both Candida 

parapsilosis  and Candida tropicalis have a great adherence and invasion capacity to 

the oral epithelium (Meurman et al., 2007). 

 

1.3.2 – Microbial growth-influencing factors 

The growth of microorganisms, including Candida species in the oral cavity is 

influenced by a great number of factors. These include temperature, oxidation-

reduction potential, pH and the availability of nutrients (dietary sugar intake), water, 

the anatomy of oral structures, salivary flow, and antimicrobial substances. Each factor 

in a given oral habitat influences the selection of oral microorganisms (Meurman et al., 

2007). 

1.3.2.1 – Temperature 

  The temperature of the oral mucosa is relatively constant (34 to 36˚C), which 

allows a wide range of microorganisms to grow. The temperature may be more 

variable on the mucosal and tooth supragingival surface. During food intake, 

microorganisms colonizing these sites are exposed to hot and cold meals and probably 

must adapt to these extreme variations of temperature (Meurman et al., 2007).  
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1.3.2.2 - pH 

The pH or hydrogen ion concentration of an environment affects 

microorganisms and microbial enzymes directly and also influences the dissolution of 

many molecules that indirectly influence microorganisms. Microorganisms generally 

cannot tolerate extreme pH values. In the oral cavity, the pH is maintained near 

neutrality (6.7 to 7.3) by saliva. The saliva contributes to maintenance of the pH by two 

mechanisms. First, the flow of saliva eliminates carbohydrates that could be 

metabolized by bacteria and removes acids produced by bacteria. Second, acidity from 

drinks and foods, as well as from bacterial activity, is neutralized by the buffering 

activity of saliva. Bicarbonate is the major salivary buffering system of saliva, but 

peptides, proteins, and phosphates are also involved. Increases in pH also result from 

bacteria that metabolize saline and urea into ammonia. Acids that are produced by the 

microbial metabolism of carbohydrates may accumulate in dental plaque because of 

the slow diffusion of saliva through it. Following sugar intake, the pH of dental plaque 

may decrease to below 5. A high concentration of sugar in the oral environment, due, 

for example, to frequent sugar intake leads to the growth of acidosis bacteria whose 

carbon metabolism may result in a decrease of the environment pH (Marcotte et al., 

1998). Candida species carbohydrate metabolism also result in acid production 

(Samaranayake, 2006). 

1.3.2.3 – Dietary sugar intake 

 Microorganisms living in the supragingival environment have access to nutrient 

from endogenous sources or exogenous sources. Several components in saliva, as 

water, carbohydrates, glucoproteins, proteins, aminoacids and various ions as 

potassium, calcium, chloride, bicarbonate and phosphate, are important nutrients to 

Candida species development. Moreover, exogenous, dietary carbohydrates and 

proteins have the greatest influence on the composition of the oral microbiota 

(Marcotte et al., 1998). Exogenous glucose is rarely found in food in its single 

molecular form, being found in most dietary carbohydrates, either as their only 

building block, which is the case of starch and glycogen, or associated with other 

monosaccharides as fructose and galactose, forming respectively sucrose and lactose. 

Grain product such as bread, past, cereals and rice, fruits and vegetables, milk and 
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duiary products, meat, table sugar, honey among others are foods that contain glucose 

(Konig, 2000; Samaranayake, 2006). Glutamine can also be found in the composition of 

the aforementioned foods, besides existing on saliva, in residual concentrations, due 

to the contributions of the crevicular fluid from blood. 

Glucose concentration in saliva may vary due to several factors that may 

include food intake, mastication, salivary flow, oral hygiene and diabetes. Salivary 

glucose concentration after the drinking of a glass of water is around 1.38% a value 

that increases on diabetics to 3.37%, in gram per liter, to man and woman alike. During 

physiologic operations in the mouth as mastication, the salivary flow increases and the 

glucose concentration of saliva in the oral environment may decrease or even increase 

(Jurysta et al., 2009). In fasting conditions, the glucose level in saliva is estimated to be 

1.23% for healthy individuals, and 4.22% in diabetic individuals. Age and gender do not 

appear to be relevant. However, the blood-serum glucose concentration has a direct 

relation to the salivary glucose concentration (Abikshyeet et al., 2012). Panchbhai et al. 

estimated a glucose concentration of 6.66% for individuals with controlled diabetes, 

8.11% for individuals with uncontrolled diabetes and 1.98% for healthy individuals 

after saliva swallowing (Panchbhai, 2012). A decreased salivary flow rate in diabetes 

mellitus individuals, can lead to an higher accumulation of sugars in the oral cavity 

(Jawed et al., 2011). Cases of xerostemia, or dry mouth, are common among diabetic 

individual, and are directly associated with low salivary flow rates. The normal 

unstimulated flow rates are about 0.3 to 0.4 ml/min. In stimulated flow rate, as in 

mastication, the flow rate increases to 1 to 2 ml/min in normal conditions and in 

diabetes patients without xerostomia, those values decreased considerably to 0.12 

ml/min in unstimulated conditions, being equal to the minimum acceptable to the 

stimulated flow. In such conditions, healthy people, would complain of dry mouth. In 

the cases of xerostemia diabetic patients, the salivary flow rates were abnormally low, 

with values from 0 to 0.05 ml/min (Sreebny et al., 1992).  
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1.4 - Candida species biofilm formation 

Pathogenic Candida species have an already known number of virulence 

factors. The ability to adhere to medical devices and/or host cells, biofilm formation, 

dimorphism and secretion of hydrolytic enzymes, such as proteases, phospholipases 

and lipases, and haemolysins (Silva et al., 2009; Yanq, 2003). This allows the 

microorganism to colonize the tissue, to degrade it, and to gain access to the blood 

stream and nutrients. Biofilm formation, particularly, occurs after initial attachment of 

the fungus to the host cells and/or medical devices. Cells then divide, proliferate and 

subsequently, biofilm is formed. Biofilms are described as surface associated 

communities of microorganisms embedded within an extracellular matrix. It confers 

significant resistance to antifungal therapy by limiting the penetration of substances 

through the matrix and protecting cells form host immune responses. High mortality 

rates have been associated with strains of C. albicans, C. parapsilosis, C. tropicalis, and 

C. glabrata capable of forming biofilms, when compared with strains incapable of 

forming biofilms (Silva et al., 2011). 

 

1.4.1 – The first steps of biofilm formation 

 Cell adherence to the host cell, or abiotic medical device surface is the first step 

in the infection by Candida spp. From surface adhesion, the cell proliferates and can 

potentially form biofilms. It is in the cell wall of the Candida spp. that physicochemical 

interactions with some specific components with host/abiotic surface can occur. Some 

cell wall glycoproteins or polyssacharides are directly involved in surface adhesion 

(Calderone, 2002; Silva et al., 2011). In C. albicans there is a family of nine proteins, 

encoded by genes of the ALS family, that can adhere to endothelial and epithelial 

cells.(Hoyer, 2001)  Hwp1, is a hypha cell wall protein linked by a GPI anchor to the cell 

wall, that is capable of linking small proline rich proteins, found in the surface of C. 

albicans, to the keratinized surface of the human mucosa (Hoyer, 2001).  C. glabrata 

possesses a family of 23 proteins, that is encoded by the EPA gene family, and that are 

capable of mediating adherence to epithelial cells (Kaur et al., 2005). 

 Hydrophobicity of the yeast cell surface is another determining factor for a 

successful surface adherence.  The initial adhesion of C. parapsilosis cells is associated 
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with surface hydrophobicity. It was demonstrated that these species had a greater 

ability to adhere to epithelial cells and acrylic than C. albicans (Panagoda et al., 2001).  

Hazen et al. demonstrated that there was comparable degree of hydrophobicity 

between, a limited number of isolates of C. albicans and C. glabrata when grown in 

specific conditions (Hazen et al., 1986). Contradictorily, however, Kikutaní et al. 

demonstrated that in some growth conditions there was a high variability of the 

hydrophobicity of C. albicans while the hydrophobicity of several isolates of C. glabrata 

remained relatively constant (Kikutani et al., 1992). Once adhered to the epithelium, 

Candida species have the ability to secrete enzymes, proteases and phospholipases 

that contribute to tissue invasion by this species. Secreted aspartyl proteinases 

possessed the capability of degrading important immunological and structural defense 

proteins, disrupting the host mucosal barrier and invading the human epithelium. 

Phospholipases are capable of degrade phospholipid into fatty acids, damaging also 

host-cells membranes and increasing the ability to invade and damage the human 

tissues (Silva et al., 2011). 

 

1.4.2 – Biofilm formation 

 Biofilm formation is a virulence factor of Candida albicans, Candida 

parapsilosis, Candida glabrata and Candida tropicalis species and is linked to the high 

mobility and mortality (Negri et al., 2012; Negri et al., 2011; Silva et al., 2009; Silva et 

al., 2010; Silva et al., 2011). Biofilm formation begins by the adhesion of the cells to a 

surface, through the mechanisms previously described. The cells proliferate, and not 

much later, distinct microcolonies are formed. If the species are able to form true 

hyphae, then the first germ tubes start forming after 3-6h (Chandra et al., 2001; 

Hawser et al., 1994). After 12-14h, the cell colonies, who have grown and aggregated, 

began to be covered by the extracellular matrix (ECM) produced by the cells (Chandra 

et al., 2001). After 18-24h, the population increased to high number being composed 

by yeats, pseudohypha, or hypha. Until 48h the biofilm is considered mature, 

producing higher quantities of the ECM (Hawser et al., 1994). It is assumed that the 

formation of mature biofilms and subsequent production of extracellular matrix is 

strongly dependent upon species, strain, and environmental conditions as pH, medium 

composition and oxygen availability. 
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 Candida albicans biofilm formation is associated with the dimorphic switch 

from yeast to hyphal growth (Donlan et al., 2002). Invasive C. albicans strains form 

more biofilm than non-invasive strains, but the metabolic activity of the biofilms of 

non-invasive strains is higher. Candida albicans has a greater ability to form biofilm 

than other Candida species, such as Candida parapsilosis. Candida parapsilosis biofilms 

in general are smaller and produce less ECM than C. albicans biofilms. In contrast to C. 

albicans, C. parapsilosis biofilms are thinner, less structured, and consist exclusively of 

aggregate blastospores (Kuhn et al., 2002). Interestingly, however, biofilms formed by 

several different clinical-isolated strains of C. parapsilosis presented a great 

heterogeneity in biofilm formation. Oral isolates of C. parapsilosis are actually more 

capable of forming biofilms than several strains of C. tropicalis and C. glabrata (Silva et 

al., 2009). Candida parapsilosis cells are able to form biofilms in a diversity of clinical 

medical devices when exposed to higher glucose concentration, having a great 

prevalence in bloodstream infections and parental nutrition patients (Kuhn et al., 

2002; Trofa et al., 2008). Therefore, in growth media containing higher concentrations 

of glucose and/or lipids, C. parapsilosis has an expeditious capacity of forming biofilms. 

The selective preference of this species for plastic medical devices is of particular 

interest, as biofilm formation enhances the capacity of the organism to colonize 

catheters and intravascular cellular lines (Trofa et al., 2008). Candida tropicalis clinical 

isolates have been classified as being strong biofilm formers, and the biofilm formation 

seems to be homogenic between different strains (Negri et al., 2011; Silva et al., 2009). 

Candida glabrata biofilm formation ability has been reported to be more reduced 

when compared with other Candida species, when grown in rich culture media. Biofilm 

formation ability also appears to be homogeneous between different strains of this 

specie (Silva et al., 2009). 

 

1.4.3 – Candida species biofilm structure and composition 

The biofilm matrix is composed, in generally by carbohydrates, glucose, 

proteins, hexosamine, phosphorus and uronic acid. Candida albicans biofilms are 

composed mainly by carbohydrates and glucose, and small amounts of protein, 

hexosamine, phosphorus and uronic acid.  C. tropicalis biofilms consisted mainly in 

hexosamine, with small amounts of carbohydrates and glucose, protein and 
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phosphorus (Al-Fattani et al., 2006). Comparatively to other NCAC species, C. tropicalis 

has the lower amount of both protein and carbohydrate. However, the quantitative 

composition of the biofilm for this specie is strain dependent. Candida parapsilosis 

biofilms composition is strain dependent having, in general, high amounts of 

carbohydrates, and low amounts of protein (Silva et al., 2009).  Candida glabrata 

biofilms have relatively high amounts of carbohydrates and protein, being the protein 

levels several times higher than those from C. albicans and C. parapsilosis (Silva et al., 

2009). 

Candida albicans biofilm structure involves, generally, two distinct layers: a 

thin, basal yeast layer and a thicker, less compact hyphal layer (Donlan et al., 2002).  

The basal layer is covered by a thick, biphasic matrix consisting of extracellular 

components comprised of cell-wall like compounds and abundant hyphal elements. C. 

parapsilosis biofilms are shallower, less thick and less compling than C. albicans 

biofilms (Kuhn et al., 2002). They consisted only on a non-continuous aggregate of 

cells.  However, the biofilm structure for this species is highly strain dependent, and 

some oral isolates biofilms, not only are constituted by a thick layer of aggregated 

yeast and pseudohyphal cells, but also presented a multilayered and compact 

structure that covers the entire surface(Silva et al., 2009). C. tropicalis biofilms were 

also strain dependent with some strains possessing a thick biofilm of co-aggregated 

cells, sometimes with particularly long hyphal elements, while for other strains 

biofilms were a discontinuous monolayer of yeasts anchored to the surface. Candida 

glabrata biofilms were either a thick multilayer biofilm structure or clusters of several 

cells. This one was valid for C. glabrata ATCC 2001 strain and C. glabrata D1 strain 

(Silva et al., 2009). 
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1.6 - Genes BCR1 and FSK1 

One key component present in Candida albicans and Candida parapsilosis 

biofilms is β-1,3 glucan. It is one of the main components of the cell wall of Candida 

species, being synthesized by a membrane-bound enzyme, the β-1,3 glucan synthase 

from UDP-D-glucose (Chauhan et al., 2002). The UDP-D-glucose forms from glucose 

combination with phosphate and later with urydil transferase (Lee et al., 2003). β-1,3 

glucan synthase is a transmembranar, multisubunit enzyme complex, which is 

activated by GTP, and has been fractionated into two components, the GTP-bound 

component and the membrane bound component, also known as catalytic 

component. The catalytic component is encoded by two isogenes, the FKS1 and the 

FKS2 (Chauhan et al., 2002). 

Three enzymes are involved in the delivery and incorporation of β-1,3 glucan 

from the cell wall to the biofilm matrix. BGL2p glucanosyltransferase, the PHR1p 

glucnaosyltransferase e a XOG1p glucanosyltransferase. It is supposed that these 

enzymes release and modify cell wall glucan for deposition in the extracellular space. 

An alternative explanation is that the enzymes act in the extracellular space, 

contributing to steric changes in glucan that are important for mature matrix 

organization and function. Deletions in the PHR1 gene reduce cell adhesion and biofilm 

formation. Deletion in the genes PHR1, XOG1 and BLG2 reduce up to 10-fold the 

glucan concentration in the matrix. It also, augments biofilm susceptibility to 

antifungal agents, and fluorescence test proves that in the gene deletion cases the 

biofilm capability to sequester the drugs, which supports the idea that this proteins 

have a key role in glucan incorporation (Taff et al., 2012). 

The pathway is ilustrated in figure 2. Basically, the three enzymes, Bgl2, Xog1 

and Phr1 have a complementary role in glucan modification. The process of glucan 

modification involves glucan hydrolysis and the formation of new branch linkages. This 

enzymes act independently of previously identified Zap1, a transcription factor known 

to function in matrix production. The overall expression of the ZAP1 gene have no kind 

of relation with XOG1, PHR1 or BGL2 gene expression (Taff et al., 2012). 
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Figura 1.2 – Model for glucan matrix production and delivery to the biofilm matrix. β-1.3-glucan production 
occurs at the FSK1p cell membrane-bound protein.. The glucan is then modified and incorporated into the cell 
wall and extracellular matrix. It is proposed that PHR1p, BGL2p and XOG1p act in complementary form and 
indenpendently from another described pathway form glucan incorporation in the biofilm matrix, the  ZAP1p 
matrix pathway. Matrix glucan are highlited in purple. The cell wall glucan are grey  colored The balck arrows 
represent the pathway taken by glucan from synthase product to the modified sugars that are incorporated into 
the biofilm matrix. Circles represent modification or production enxymes (adapted from Taff, et al.). 

 

BCR1, or Biofilm Cell wall Regulator 1, is a fungal transcription factor required 

for biofilm formation in C. albicans and C. parapsilosis. The expression genes that 

encode some important adhesins as proteins of the ALS family or protein from the 

HWP family, are regulated by the BCR1 gene. Thus gene is involved in the initial 

adhesion of the cell to the surfaces. Gene deletion studies were performed in both C. 

albicans and C. parapsilosis strains. As referred previously, C. parapsilosis can form a 

thick layered biofilm. When the BCR1 gene is deleted, biofilm formed is very sparse 

and thin. In Candida albicans the same phenomenon was observed. Thus it was safe to 

conclude that BCR1 gene expression is directly related to the biofilm forming ability of 

C. albicans and C. parapsilosis (Ding et al., 2011).  
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1.7 – Aim 

 Oral candidosis is an opportunistic infection of the oral cavity caused by the 

overgrowth of Candida species on the oral mucosa. This infection can develop into a 

systemic and very dangerous disease named candidaemia, being a most common case 

in immunocompromised patients. C. albicans is regarded as the most prevalent species 

involved in oral candidosis. However in the last three decades, there has been a rise in 

the prevalence of Non-Candida albicans Candida species in clinical sites with C. 

parapsilosis, C. glabrata and C. tropicalis being identified as other common pathogens. 

Candida species normally exists as commensal organisms in the oral epithelium but 

some predisposing factors such as diet, age, diabetes among others, can, somehow, 

turn those commensal microorganisms into pathogenic agents.  

 The oral cavity is a warm and moist environment, constituted by different 

structures that create very different habitats in which a large a diverse community of 

microorganisms lives.. Candida species use glucose as main carbon source, although 

they can survive in the presence of nitrogen-only sources as glutamine. These 

elements can be provided either from endogenous sources, by saliva, or exogenous 

sources through food. When food is being processed in the mouth, glucose levels 

present in the environment can increase up to 10 times. Generally a healthy salivary 

flow reduces glucose concentration, overtime, but in some diseases, as diabetes, the 

salivary flow is significantly reduced and glucose basal oral concentration increases. 

The ability to form biofilm is one of the most important virulence factors of 

Candida species as it allows the cell to survive in protected communities against 

starvation, host immunological action and drug therapy. BCR1 is a transcription factor 

required for biofilm formation. One of the components of the biofilm structure is β-1,3 

glucan, produced by a cell-membrane bound enzyme encoded by the FKS1 gene. 

Therefore, the aim of this work was to understand the effect of glucose concentration 

and presence of the aminoacid L-glutamine on Candida species biofilm formation, and 

its effect in the mentioned biofilm related genes expression. 
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2 – Materials and Methods 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter addresses the techniques and conditions used in this work. Firstly the selected 

species and strains of Candida are enumerated, as well as, the growth conditions for each 

assay. Then the analysis techniques and procedures are described, from biofilm biomass 

quantification, to cell viability assays, structure study and genetic expression. 
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2.1 - Organisms 

 A total of 8 strains, a reference strain and an oral isolate of Candida albicans, 

Candida parapsilosis, Candida glabrata and Candida tropicalis were used under this 

work (Table 2.1). The oral isolates (Candida albicans 324 LA/94, Candida parapsilosis 

AD, Candida tropicalis T2.2 and Candida glabrata D1), were obtained from the  Biofilm 

group of the Center of Biological Engineering, and were originally isolated from Clinic 

of Dentistry, Congregados, Portugal. The reference strains used belonged to the 

American Type Culture Collection. 

 

Table 2.1 – Species and strains (reference and oral isolate) used under this work. 

Specie Strain 

Candida albicans 
Candida albicans ATCC 90028 

Candida albicans 324 LA/94 

Candida parapsilosis 
Candida parapsilosis ATCC 22019 

Candida parapsilosis AD 

Candida glabrata 
Candida glabrata ATCC 2001 

Candida glabrata D1 

Candida tropicalis 
Candida tropicalis ATCC 750 

Candida tropicalis T 2.2 

 

 

2.2 - Growth conditions and media 

For each assay, strains were subcultured on sabouraud dextrose agar (SDA) 

(Merck, Darmstadt, Germany) for 48h at 37˚C, and then inoculated in sabouraud 

dextrose broth (SDB) (Merk, Darmstadt, Germany) for 18h at 37˚C under agitation at 

120 rpm (overnight). After incubation, cells were harvested by centrifugation at 3000 g 

for 10 min, and washed twice in PBS (Phosphate-buffered saline 0.1 mM pH 7).  

Pellets were ultimately ressuspended in RPMI medium (SIGMA-Aldrich), and 

cellular concentration adjusted to 1x107 cells/ml using a Neubauer counting chamber. 

The RPMI medium used changed depending on the condition tested.  Ten different 

RPMI mediums were used. To study the effect of the increase of glucose concentration 

on biofilm formation by the referred species of Candida the mediums used were RPMI 

with 0.3% of glutamine and increasing concentrations of glucose: 0.2%, 

1%,2%,3%,4%,5% and 10% (w/V). To acess the role of glutamine on biofilm formation 

RPMI medium with 0.3% of glutamine and no glucose and RPMI with no glutamine and 

with 0.2% and 10%of glucose were also tested. 
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2.3 - Biofilm formation 

The 1x107 cell/ml suspensions previously prepared, were plated into selected 

wells of  96-wells polystyrene microtiter plates (Orange Scientific, Braine-l’ Alleud, 

Belgium) and incubated at 37˚C on a shaker at 120 rpm for 24 h. The medium was then 

aspirated and non-adherent cells removed by washing the biofilms twice with PBS.  

 

2.3.1 - Biofilm quantification 

Quantification of total biomass was used to access the biofilm forming ability of 

each strain, at a given condition. Total biomass was quantified by cristal violet (CV) 

staining. Briefly, after washing with PBS, the biofilms were fixed by pipeting 200µl of 

methanol into each well. After 15 minutes of contact, the methanol was removed and 

the wells were allowed to dry at room temperature. Then, 200µl of CV (1% v/v) were 

added to each well, and the plates incubated for 5 min. The CV was removed, and the 

wells were gently washed twice with distilled water, and 200 µl of acetic acid was 

added to each well, to release and dissolve the stain. The absorbance of the obtained 

solutions were read in triplicate in a microtiter plate reader (Bio-Tek, Synergy HT, Izasa, 

Lisbon, Portugal) at 570 nm. Three or more (when necessary) assays were performed. 

The results were presented as abs values/cm2. 

 

2.3.2 - Biofilm cells viability 

 Cell viability was determined by counting colony formation units (CFUs) 

following the ressuspension of biofilm cells. After washing the plate wells with PBS, for 

each condition, biofilm was detached by scraping with a sterile pippete tip and 

ressuspended in 200µl of PBS. After biofilm detachment, the PBS from all 3 wells was 

collected into a single collecting tube and another 100µl of PBS were pipetted into 

each well, for further scraping. The ressuspended biofilm (900 µl), was vigorously 

vortexed for 5 min to disrupt the biofilm matrix and serial decimal dilutions were 

plated onto SDA. The agar plates were incubated for 24 h at 37˚C (overnight), and the 

colonies enumerated. The results were presented as the total CFU per area unit (Log 

CFU/ cm2). Three or more, whenever necessary, independent assays were performed. 
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2.3.3 - Biofilm structure analysis 

 To examine the structure of biofilms by scanning electron microscopy 2 ml of 

the cell suspensions of Candida albicans and Candida parapsilosis strains(1x107 cell ml 

in the several previously referred RPMI mediums) was introduced into 24-wells 

polystyrene plates (Orange Scientific) and incubated for 24 h at 37  C. Then, the 

medium was aspirated and non-adherent cells removed by washing the biofilms twice 

with PBS. Samples were dehydrated with alcohol (using 70% ethanol for 10 min, 95% 

ethanol for 10 min and 100% ethanol for 20 min), air dried and kept on a desiccator. 

The base of the wells were then removed from the plate and mounted onto aluminum 

stubs, sputter coated with gold and observed with an S-360 scanning electron 

microscope (Leo, Cambridge, USA). 

 

2.4 - Gene expression analysis 

 BCR1 and FSK1 gene expression was assessed for Candida albicans ATCC 90028, 

Candida albicans 324 LA/94, Candida parapsilosis ATCC 22019 and Candida 

parapsilosis AD cells from biofilms grown in RPMI medium with 0.2% and 10% glucose 

and 0% of glutamine, and in RPMI medium with 0.3% of glutamine and 0% of glucose. 

 

2.4.1 - Primer design 

Real-time PCR was used to determine the relative expression level of FSK1 and 

BCR1 gene comparatively to the ACT1 used as a candida housekeeping gene, in RNA 

transcripts. The primers were designed using Primer 3 web-based software 

(http://fokker.wi.mit.edu\cgibin\primer3\primer3_www.cgi) and are listed in table 2.2. 

In order to verify the specificity of each primer pair for its corresponding target gene, 

PCR products were firstly amplified from C. albicans ATCC 90028 and C. parapsilosis 

ATCC 22019 genomic DNA. Control ACT1 primers were also used to detect human 

recombinant DNA. 

 

 

 

 

 



26 
 

Table 2.2 – Primers for Real-time PCR 

Species Sequence (5’→3’) Primer Target Product  
size (bp) 

 
Candida 

parapsilosis 

5’-ATCTGCGTTACCCGCAATAC-3’ Forward 
ACT1 228 

5’-ATGTCGTCCACAAACAACGA -3’ Reverse 

5’-CCATTAACCGGGTTGCTATT-3’ Forward 
BCR1 177 

5’ - GAGTCCGTTATCGCCAATGT-3’ Reverse 

5’- CGACATCCACATGTCCAATC- 3’ Forward 
FSK1 151 

5’-CATTGCTGTTGCAACTTTGG-3’ Reverse 

Candida  
albicans 

 

5´-AATGGGTAGGGTGGGAAAAC-3’ Forward 
ACT1 168 

5’-AGCCATTTCCATTGATCGTC-3’ Reverse 

5’-GGCTGTCCATGTTGTTGTTG-3’ Forward 
BCR1 206 

5’-GAGCACGCATCTATGGCTTA-3’ Reverse 

5’-TGCTTGCCAATGAGAAACTG-3’ Forward 
FSK1 169 

5’-ACTGATTTGACCGTTGGT-3’ Reverse 

 

 

2.4.2 - Candida species DNA extraction 

 For genomic DNA extraction, the Candida strains were grown for 18h, at 37˚C, 

in SDB, following initial subculture and incubation, from stock, in SDA, for 24h at 37˚C. 

Prior to the DNA extraction, sorbitol buffer, Lysozime buffer and PBS were prepared. 

The sorbitol buffer is composed by 1.2 M sorbitol, 10 mM CaCl2 0.1 Tris-HCl (pH 7.5) 

and 35 mM β-meraptoethanol. The lysozyme buffer was prepared immediately prior to 

use with the following composition: 20 mg/ml Lysosyme; 20 mM Tris-HCl (pH 8); 2 mM 

EDTA and 1% of Triton X-100. PBS composition is the same as described above.  

Candida cells were harvested by 10 min centrifugation, at 12500g, and the 

supernatant discarded. Then, 600 µl of sorbitol buffer were added and, after new 

centrifugation (10 min, 12500g), the pellet was then ressuspended in 1 ml of 1M 

Sorbitol, 50mM KH2PO4, 0.1% β-mercaptoethanol and 0.2 mg/ml Zymolase 100T. After 

incubation (30 min, 30˚C), the resulting spheroblasts, were collected by centrifugation 

(10 min, 12500g ) and again ressuspended in 0.5 ml of 50 mM of sodium EDTA (pH 8.5) 

and 2 mg ml of SDS, and incubated at 70˚C for 30 min. After that, 50µl of potassium 

acetate was added to the mixture, which was then vortexed and incubated for more 

30 min at 0˚C. The supernatant, obtained by centrifugation (12500g, 10 min), was 

decanted into 1 ml of ethanol and mixed by vortexing. After double centrifugation 

(12500g, 10 min), the pellet was allowed to dry and then was ressuspended in 0.1 ml 

of 10 mM tris-chloride-buffer (pH 7.5) and 1mM EDTA (TE buffer containing 10 µg de 

RNA). After 15 min of incubation at room temperature, 200 µl of 2 – propyl alcohol 



27 
 

was added and the mixture was clarified by centrifugation. The pellet was 

ressuspended in TE buffer, and stored at -70˚C, for further use. 

 

2.4.3 – Primer specificity assessment 

 To access primer specificity, a traditional PCR was run for the DNA previously 

extracted (see section 2.4.2) and for all selected genes (Table 2.1). Briefly, to each gene 

and each strain of the respective specie, 1µl of DNA sample was collected and  1µl of 

primer reverse, 1µl of primer forward as well as 12,5µl of Nzytech® Master Mix (2x) 

were added. Then the following PCR protocol was run: an initialization step at a 

temperature of 95˚C during 5 min, then the denaturation step at 95˚C during 30 sec, 

following the annealing step 55˚C for 30 sec and the elongation step at 72˚C during 

another 30 sec. The last three steps were repeated thirty times. Meanwhile, an 1% 

agarose gel was prepared in 100 ml of TAE buffer (1x) with 2.5 ml of SYBR® Safe. After 

PCR conclusion and sample cooling, to selected wells of the agarose gel was added 5µl 

of sample (PCR amplification product) and 1µl of SYBR® Green. For each strain a 

negative control was made. Electrophoresis was run on an horizontal lucite slab gel 

apparatus. The results were accessed using the Nzytech® V DNA molecular weight 

marker. 

 

2.4.4 - Candida species RNA extraction  

For RNA extraction, biofilm cells were cultured in the above referred RPMI 

mediums. Those cells were then collected: the biolfilm cells by washing with PBS and 

scraping; the planktonic by centrifugation (8000g, 5 min). Cells were disrupted by 

sonication (velocity 6.5 of intensity during 35 seconds, twice), in RNAase free 

eppendorfs in presence of glass beads. After centrifugation (14000 rpm, 5 min), the 

supernatant was collected and an equal volume of etanol 70% (v/v) RNase-free was 

added. RNA was purified with PureLink RNA Mini Kit®(Invitrogen). Briefly, 500 µl of the 

mix was transferred for the “Spin Cartridge” column, of the Mini Kit, and then 

centrifuged at 12000g for 15 sec. This was repeated and then the column was washed 

with wash buffer I (700 µl).The collection tube, was discarded and replaced by a new. 

The column was then washed with wash buffer II (500 µl) and the content of the 

collection tube was discarded (this step repeated one more time). After centrifugation 
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(12000g, 1 min) at room temperature, the column dried and was transferred for the 

“recovery tube” supplied with the Mini Kit. About 50 µl of RNase-free water was 

added, directly on the center of the column, which incubated at room temperature for 

2 min, being later centrifuged (12000g, 1 min). The RNA, now diluted in the recovery 

tube in RNase free-water, was treated with DNase I treatment (Deoxyrybonuclease I, 

Amplification Grade, Invitrogen), being added to each 10µl of sample 1µl of DNase I, 

Amplifiation grade. The sample was then inubated for 15 min, at room temperature. In 

order to deactivate DNase, 1µl of EDTA 25 mM (for each 10µl of sample) was added 

and the mixture was incubated for 10 min at 65˚C. RNA concentration was determined 

by optical density measurement, in the reason 260/280 in a nanodrop apparatus 

(NanoDrop 1000 Spectrophotometer Thermo Scientific®). 

 

2.4.5 - cDNA synthesis 

From the RNA obtained, cDNA was produced by adding 8 µl of 5x iscript 

Reaction Mix, 2µl of iScript reverse transcriptase and 20µl of Nuclease-free water, with 

a final reaction volume of 40 µl. The synthesis of cDNA was performed at 42˚C for 30 

min and the reaction was stopped by heating at 85˚C.  

 

2.4.6 - Quantitative Real-time PCR 

 In order to optimize the temperature, the cDNA previously obtained was 

diluted ten times in RNAase free water, and added (4µl), of an 96-wells microtiter 

plate, in which there already was 10 µl of Supermix (SYBgreen), 4.8 µl H2O RNAase 

free, 0.6 µl primer forward and 0.6 µl primer reverse. For each cDNA sample added, an 

RNA sample, from the same source, was added too, for negative control (NRT). Then a 

RealTime-PCR protocol was run and the optimal annealing temperature determined, 

with a difference between the threshold value of cDNA and RNA superior to 10 cycles. 

 Each reaction mix consisted of the working concentration of Power SYBR® 

Green master mix (Applies Biosystems), 300 nM of forward and reverse primers, and 1 

µl of cDNA, in a final volume of 20 µl. Negative control (water), were included in each 

run, as well as NRT controls, and genomic DNA decimal dilutions. The relative 

quantification of FSK1 and BCR1 gene expression was performed by ACT (threshold 

cycle) method, using the values for the housekeeping gene to normalize the data. Each 
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reaction was performed in triplicate and mean values of relative expression analyzed, 

through the PFAFFL method of quantification, for each gene and condition. 

 

2.5 - Statistical Analysis 

 Results from the several assays were compared using One-Way analysis of 

variance (ANOVA)  by applying Sidak’s multiple comparisons test, using Prism® 

software (Graphpad Inc., San Diego, California). All tests were performed with a  

confidence level of 95%. 
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3 - Results 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter presents the obtained results from the worked developed. First total biomass 

values are presented along with colony formation units counts to understand the effect of 

glucose variation in the growth medium. The same is done later relatively to the 

presence/absence of glutamine in the medium. Then, SEM biofilm structure visualization is 

presented, and lastly the genetic expression results, beginning with the evaluation of primer 

desing and specificity and ending with the expression results, for different mediums. 
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3.1 – Assessment of the effect of glucose in Candida species biofilm forming ability 

and cell viability 

Figure 3.1, 3.2, 3.3 and 3.4 presents the results of the total biomass 

quantification through CV staining as well as the respective cell viability values, for 

Candida biofilms formed in RPMI medium with 0.3% of glutamine and supplemented 

with increasing percentages of glucose 0.2% to 10% of  glucose. All values obtained 

were statistically compared with the values obtained for the condition RPMI 

supplemented with 0.2% of glucose. 

All the studied Candida species and strains were able to form biofilms in all 

conditions, although differences occurred depending on species, strains and conditions 

tested. In fact, in general, no similarities were found in each condition, between the 

total biomass values for different strains of the same species. Moreover, no direct 

correlation was observed concerning the values of total biomass and the CFUs number 

obtained. 

Candida albicans biofilm forming ability was different between the two strains 

tested (Figure 3). Concerning, C. albicans ATCC 90028 the quantity of the biofilm 

formed does not seem to be dependent of the amount of the glucose present in 

medium regarding total biomass quantification. It is important to highlight that the 

number of cultivable cells increased significantly for percentages of glucose of 1% 

(p<0.01), 2%(p<0.0001) and 5%(p<0.0001). In the case of C. albicans 324 LA/94, the 

total biomass values remained constant for values of glucose between 0.2% and 1%, 

but was observed an increase (0.8 times more) in the case of biofilms grown in RPMI 

supplemented with 2% of glucose (p<0.001). Morevoer, for percentages above 3% of 

glucose, the pattern of biofilm formation decreased significantly for values of 

absorbance similar to that observed in RPMI supplemented only with 0.2% of glucose. 

No statistical differences were observed concerning CFUs count for any of the 

conditions tested. 
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Figure 3.1 – Candida albicans biofilm formation ability in presence of different percentages of glucose. Total 
biomass quantification (1) and number of CFUs (2) values obtained from 24h biofilms at 37º C grown in RPMI 
medium supplemented with 0.2%, 1%, 2%, 3%, 4%, 5% and 10% of glucose with 0.3% of glutamine. ( ●  reference 
strain and   ●  oral isolate). Error bars represent standard deviation. Statically differences obtained when 
compared with 0.2% of glucose with 0,3% of glutamine (* p<0.1, ** p<0.01, ***p<0.001, ****p<0.0001). 

 

For C. parapsilosis strains were observed a clear difference between the oral 

isolate and the reference strain, with the oral isolate being a more capable biofilm 

producer (Figure 4). Moreover, It was possible to observe a slight increase in values of 

total biomass for glucose concentration from 0.2% to 3% in the case of the oral isolate, 

and a decrease for percentages above 5%. Additionally the biomass values presented a 

decrease from 3% to 10% of glucose. For C. parapsilosis ATCC 22019 was not observed 

any variability with the increase of the glucose in medium. No correlation was 

observed between the number of CFUs obtained and the values of total biomass for 

both C. parapsilosis under study. 

 

 

 

 

 

 

 

 

 

Figure 3.2 – Candida parapsilosis biofilm formation ability in presence of different percentages of glucose. Total 
biomass quantification (1) and number of CFUs (2) values obtained from 24h biofilms at 37º C grown in RPMI 
medium supplemented with 0.2%, 1%, 2%, 3%, 4%, 5% and 10% of glucose with 0.3% of glutamine. ( ●  reference 
strain and   ●  oral isolate). Error bars represent standard deviation. Statically differences obtained when 
compared with 0.2% of glucose with 0.3% of glutamine (* p<0.1, ** p<0.01, ***p<0.001, ****p<0.0001). 

1 2 

1 2 
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 As for the other two species, the values of total biomass were different 

between the two strains of C. glabrata analyzed (figure 4). Again, in the case of the 

oral isolate, the values of total biomass decreased with the increase of glucose in the 

medium, specifically for upper of 1%. Concerning the reference strain it was observed 

an increase in values of total biomass for concentration from 1% to 4% of glucose in 

the medium it is important to stress that for values above 5% a decrease in capability 

to form biofilm was notorious. On the other hand, the CFUs values were more 

constant without relevant oscillations observed. 

 

 

 

 

 

 

 

 

 

Figure 3.3 – Candida glabrata biofilm formation ability in presence of different percentages of glucose. Total 
biomass quantification (1) and number of CFUs (2) values obtained from 24h biofilms at 37º C grown in RPMI 
medium supplemented with 0.2%, 1%, 2%, 3%, 4%, 5% and 10% of glucose with 0.3% of glutamine. ( ●  reference 
strain and   ●  oral isolate). Error bars represent standard deviation. Statically differences obtained when 
compared with 0.2% of glucose with 0.3% of glutamine (* p<0.1, ** p<0.01, ***p<0.001, ****p<0.0001). 

 

Candida tropicalis reference strain presented less ability to form biofilm than 

the oral isolate (figure 6) The values of total biomass produced in medium with 3% 

(p<0.01), 4% (p<0.001), 5% (p<0.1) and 10% (p<0.01) of glucose were significantly 

lower than the values obtained for medium with 0.2% of glucose, in the case of C. 

tropicalis reference strain. Moreover analyzing the pattern of the C. tropicalis 

reference strain no significant changes were observed. On the other hand, the number 

of CFUs remained homogenous for all conditions tested and both strains, with 

exception of the 5% (p<0.001) in both strains and 10% of the glucose (p<0.0001) only 

in case of the ATCC 750 strain. 

 

 

1 2 
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Figure 3.4 – Candida tropicalis biofilm formation ability in presence of different percentages of glucose. Total 
biomass quantification (1) and number of CFUs (2) values obtained from 24h biofilms at 37º C grown in RPMI 
medium supplemented with 0.2%, 1%, 2%, 3%, 4%, 5% and 10% of glucose with 0.3% of glutamine. ( ●  reference 
strain and   ●  oral isolate). Error bars represent standard deviation. Statically differences obtained when 
compared with 0.2% of glucose with 0,3% of glutamine (* p<0.1, ** p<0.01, ***p<0.001, ****p<0.0001). 

 

3.2 – Assessment of the effect of the glutamine on Candida albicans and Candida 

parapsilosis biofilm formation and in cell viability. 

Candida albicans and Candida parapsilosis strains were grown with 0.2% and 

10% of glucose in RPMI mediums with and without 0.3% of glutamine, as well as in 

RPMI medium supplemented with 0.3% glutamine and without of glucose (Figure 3.5 

and 3.6).  

 

Figure 3.5 – Influence of glutamine in Candida albicans biofilm formation ability. (1) Total biomass quantification 
(1) and number of CFUs (2) values obtained from 24h biofilms at 37º C grown in RPMI medium supplemented 
with 0.3% of glutamine without glucose and 0.2% and 10% of glucose in presence(glucose) and absence (glucose 
SG) of 0.3% of glutamine. ( ●  reference strain and   ●  oral isolate). Error bars represent standard deviation. 
Statically differences obtained when compared with 0.2% of glucose with 0.3% of glutamine (* p<0.1, ** p<0.01, 
***p<0.001, ****p<0.0001). 

1 2 

1 2 
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Figure 3.5 presents the results obtained concerning the effect of glutamine in 

biofilm formation of C. albicans strains. As it was possible to observe, the reference 

strain presented lower capability to form biofilm in only in presence of glutamine and 

in total absence of glucose, as could be confirmed for the values of CV (p<0.1) and 

CFUs (p<0.01) obtained. In case of the oral isolate were not observed significant 

difference between all conditions tested. 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 – Influence of glutamine in Candida parapsilosis biofilm formation ability. (1) Total biomass 
quantification (1) and number of CFUs (2) values obtained from 24h biofilms at 37º C grown in RPMI medium 
supplemented with 0.3% of glutamine without glucose and 0.2% and 10% of glucose in presence (glucose) and 
absence (glucose SG) of 0.3% of glutamine. ( ●  reference strain and   ●  oral isolate). Error bars represent 
standard deviation. Statically differences obtained when compared with 0.2% of glucose with 0.3% of glutamine 
(* p<0.1, ** p<0.01, ***p<0.001, ****p<0.0001). 

Candida parapsilosis presented a significant difference between the two strains 

tested contrarily to C. albicans strains. In fact, as in the other assays performed, 

Candida parapsilosis ATCC 22019 formed less biofilm than the oral isolate (figure 3.6). 

Specifically, concerning the reference strain were not observed any statistically 

significant difference, in terms of total biomass. However, it was possible to observe an 

increase in the number of CFUs in the presence of 10% of glucose with 0.3% of 

glutamine (p<0.0001). The oral isolate formed also lower quantity of biofilm in RPMI 

supplemented with 0.2% and 10% glucose (p<0.01), without glutamine, and with only 

0.3% glutamine, without glucose (p<0.0001). In terms of CFUs, there was no observed 

statistically significant difference between any conditions tested. 

 Once again, it was noticeable a discrepancy, through the several conditions, 

between Candida species and strains biofilm forming ability concerning biofilm 

1 2 
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forming ability. Moreover, the glucose seems to be a principal role in biofilm than the 

glutamine, once the biofilms formed in absence of glucose and in the presence of 

glutamine presented in general lower values of total biomass.  

3.3 –Influence of glucose and glutamine in Candida albicans and Candida parapsilosis 

biofilms structure.  

 The biofilm structure and the cells morphology of the Candida albicans and 

Candida parapsilosis strains were analyzed through SEM. For that, 24h biofilms of C. 

albicans ATCC 90028, C. albicans 324 LA/94, C. parapsilosis ATCC 22019 and 

C.parapsilosis AD, were grown in 0.3% glutamine medium RPMI medium without 

glucose and in RPMI medium supplemented with 2% and 10% of glucose without 

glutamine (Figure 9). 

Candida albicans ATCC 90028 biofilms consists of a network of cells of a variety 

of morphologies(figure 9 A). Biofilms formed in RPMI only supplemented with 

glutamine, presents as a thin, shallow layer of yeast and filamentous forms (figure 9 A - 

1). Moreover, when grown in glucose RPMI medium, the biofilm showed a more dense 

structure, with thicker and longer hyphal forms. The increase for 10% of glucose in 

medium, results in an increased amount of hyphal filamentous forms in a more dense 

network (figure 3.7 A - 3). 

Candida albicans 324 LA/94 biofilms grown in RPMI glutamine free of glucose, 

presented more quantity of ECM covering layers of yeast and hyphal forms, relatively 

to the other strains. As the glucose in the medium increases (from 0.2% to 10%) a 

higher number of hyphal forms appears in the biofilms.  

C. parapsilosis ATCC 22019 biofilm structure (Figure 3.7 C and D) formed micro 

communities of yeasts anchored to surface. However, it is important to address an 

increase in size of the micro communities with the increase of the percentages of 

glucose in medium. C. parapsilosis AD, in the absence of glucose, forms only 

agglomerates of yeast cells. Interestingly, it was observed that in the presence of 

glucose, the size of this clusters increase and pseudohyphal structures emerge (see 

arrows (Figure 3.7 D - 3). An alteration on RPMI composition is able to influence the 

structure of C. parapsilosis and C. albicans biofilms as well as its cell morphologies. 
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Figure 3.7 – Scanning electron microscopy of Candida species. biofilms after 24 h. a) Candida albicans ATCC 
90028, b) Candidas albicans 324 LA/94, c) Candidas parapsilosis ATCC 22019 and d) Candidas parapsilosis AD in 
RPMI medium 1) 0.3% of glutamine and 0% glucose, 2) 0.2% of glucose and 3) 10% of glucose. The bar in the 
images corresponds to 20 µm. Magnification 1000x. 

 

3.4 – Assessment of the expression level of BCR1 and FSK1 gene in biofilm cells in 

presence of glutamine or glucose. 

 To access the genetic effects of glucose percentage and presence/absence of 

glutamine in the growth medium, the relative expression levels of two Candida 

biofilm-related genes was determined. The studied genes were: FSK1 gene, who 

codifies a cell-membrane enzyme that produces β-1,3 glucan, from glucose,  which will 

be incorporated into the biofilm matrix; and the BCR1 which codifies a regulator 

A 

B 

C 

D 

1 2 3 
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protein important for encoding biofilm matrix proteins. The ACT1 gene, that is 

constitutively expressed, codifies for the actin and for that was selected as the 

housekeeping gene (the normalize gene). 

Figure 3.8, presents the results of the traditional PCR with genomic DNA 

extracted from the 4 strains relatively to the 3 genes under study. This was performed 

in order to access the correct design of the primers and its specificity (Table 2.2). 

 

 

Figure 3.8 – Results of primer specificity , in DNA gel 1% of agarose,  relatively to the genes A) ACT1, B) FKS1 and 
C) BCR1 for the strains: 1) Candida albicans ATCC 90028, 2)Candida albicans 324  LA/94, 3)Candida parapsilosis 
ATCC 20019 and D) Candida parapsilosis AD.  

 

As it is possible to observe, all primers were well designed, once that all the 

products of amplification presented the expected size. Namely, for C. parapsilosis with 

a product of amplification for BCR1 and FKS1 between the 100 bp and 200 bp marker 

bands, with the correct size of 177 bp and 151 bp respectively. The ACT1 gene 

amplification product appeared above the marker of 200 bp, also in accordance with 

the dimension of the target expected, 228 bp. Regarding C. albicans, the gel showed 

that ACT1 and FKS1 amplification product appeared at the same level, between the 

marker’s bands of 100 bp and 200 bp, in accordance with the target dimension of 168 

bp and 169 bp, respectively. The BCR1 amplification product appears slightly above the 

200 bp marker’s band, also in accordance with the target dimension expected of 206 

bp.  

The work followed with the genes expression studies by quantitative real time 

PCR for the FKS1 and BCR1. For that, all four Candida strains biofilms grown during 24h 

in RPMI supplemented with 0.2% of glucose, 10% of glucose (both with 0% of 
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glutamine) and in  RPMI medium supplemented with 0.3% of glutamine but without 

glucose. The expression of FKS1 and BCR1 gene levels values were normalized by the 

values of the expression obtained for the housekeeping selected gene, ACT1. 

Figure 3.9 and 3.10 presents BCR1 and FSK1 gene expression levels for all 

conditions and strains under studied. It was possible to observe an up-regulation of 

BCR1  gene from 0.2% to 10% of glucose in both C. albicans strains. Additionally, it was 

also observed that the oral isolate expressed in higher intensity the BCR1 than the 

reference strain in both conditions (0.2% and 10% glucose). The levels of expression of 

BCR1 were higher in the presence of glutamin (p<0.1) than for biofilm grown in RPMI 

supplemented only with 0.2% of glucose. 

 

 

 

 

 

 

 

Figure 3.9 – Results of BCR1 gene expression for (1) Candida albicans and (2) Candida parapsilosis.( ● 
stands for reference strain and ● stands for oral isolate). Error bars represent standard deviation. 
Statically significant differences obtained when compared with the expression levels for 0.2% of 
glucose RPMI medium (* p<0.1, ** p<0.01, ***p<0.001, ****p<0.0001). 

 

 

The levels of BCR1 expression concerning C. parapsilosis were statistically 

different from other conditions in case of 10% of glucose(2 fold over) for the clinical 

isolate (p<0.0001). No statistical differences in the expression levels of this gene for C. 

parapsilosis  were detected. Thus, it is possible to assume that BCR1 gene expression is 

were glucose concentration dependent for C. parapsilosis e C. albicans species, but its 

expression does not depend on the presence of glucose in the medium, since its 

substitution by glutamine, does not cause a decrease in the expression of this gene. 

The FKS1 levels of expression for both species are presented in figure 3.10. 

Downregulation of the expression of FKS1 was observed for C. albicans grown in RPMI 

medium supplemented with 0.3% of glutamine for both strains (p<0.01 and p<0.1, 

1 
2 



40 
 

respectively for reference and clinical isolate). Interestingly it was to observe an over-

expression of FKS1 in biofilms formed by C. albicans ATCC (P<0.01) and C. albicans oral 

isolate (p<0.0001) in presence of 10% of glucose. 

 

 

 

 

 

 

 

 

 

Figure 3.10 – Results of FSK1 gene expression for (1)Candida albicans and  (2)Candida parapsilosis  
normalized by the ACT1 housekeeping gene expression for each strain ( ● stands for reference strain 
and ● stands for oral isolate). Error bars represent standard deviation. Statiscally significant 
differences obtained when compared with the expression levels for 0.2% of glucose RPMI medium (* 
p<0.1, ** p<0.01, ***p<0.001, ****p<0.0001). 

 

 An over-expression of FKS1 gene was also detected in the cells from 10% of 

glucose biofilms formed by both C. parapsilosis strains (p<0.0001). Curiously, it was 

also observed in C. parapsilosis ATCC 22019 a slight up-regulation for biofilm grown in 

presence of 0.3% of glutamine without glucose (p<0.1). 

 The expression levels of both gene was strain, specie and condition tested 

dependent. For C. albicans, it seems to strictly glucose dependent. For C. parapsilosis 

the expression increases as the glucose concentration rise from 0.2% to 10% of 

glucose, but the expression does not decrease when glucose is replaced by glutamine. 
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4 - Discussion 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter consists on a thorough analysis on the results presented in the previous section. 

The values are compared with the theoretical expected results and possible discrepancies are 

addressed, as well as explanatory hypothesis  
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Biofilm formation is an important virulence factor of Candida species, 

contributing to its pathogenicity and associated with high morbidity rates in cases of 

oral candidosis (Fanning et al., 2012; Yanq, 2003). It confers Candida species significant 

resistance to both antifungal agents and host immune response, allowing the cells to 

resist to several environmental stress factors, such as host defense mechanism and 

competitive pressure from other microorganisms. In biofilms, cells are aggregated in 

communities embedded within a complex ECM, which limits the penetration of 

substances hindering them to reach the cells, which is the case of  antifungal 

agents.(Silva et al., 2011) Biofilm formation ability of Candida species is dependent 

upon several environmental factors including the available carbon or nitrogen source, 

and respective concentration.(Hawser et al., 1994) In the oral environment, the 

concentration of the  glucose levels in saliva can vary greatly from values, in terms of 

mass per volume,  around 1.38% to values around 8%, in terms of weight per volume,  

or higher depending on food intake, oral higiene, salivary flow and 

diabetes.(Abikshyeet et al., 2012; Panchbhai, 2012)  Thus, the aim of this work was to 

sutdy the influence of glucose and glutamine in Candida species biofilm formation 

ability. 

 

4.1 - Assessment of the effect of glucose in Candida species biofilm forming ability 

and cell viability 

 In this study, the biofilm formation ability of several Candida species (Table 2.1)  

in media with different concentrations of glucose was evaluated and the results 

(Figures 3.1, 3.2, 3.3 and 3.4) showed that all strains were able to form biofilm in all 

studied conditions, although at different amounts depending on species, strain and 

condition. These results are in accordance with previous studies that showed that the 

ability of the Candida species and strains in forming biofilms in vitro is strain and 

species dependent  (Negri et al., 2012; Negri et al., 2011; Silva et al., 2012; Silva et al., 

2009; Silva et al., 2011).  

As previously described by Silva et al. Candida parapsilosis AD, was the best 

biofilm forming strain, which biofilms exhibited the greates ability to retain crystal 

violet for all studied conditions (figure 3.2). Curiously, C. parapsilosis ATCC 22019, had 
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a very low capacity of forming biofilm, being almost equivalent to that of C. glabrata 

(figure 3.3). Glucose percentage variation had little effect on the biofilm formation 

ability for the reference strain; though a slight and not significant successive increase 

in the amount of biofilm formed can be noticed as the glucose levels increase from 

0.2% to 3% for the oral isolate (figure 3.2). Therefore, biofilm formation appears to be 

glucose dependent only for the C. parapsilosis oral isolate, and considering the 

decrease in the amount of biofilm biomass registered for glucose percentages above 

5%, this seems to be the maximum peak concentration supported by this strain before 

stress is induced. These results are in accordance with the previously reported 

tendency of C. parapsilosis isolates being normally isolated from glucose-rich 

environments such as parental nutrition devices, in clinical cases (Trofa et al., 2008).  

In the case of C. albicans, the amount of biofilm formed by the reference strain 

seemed to slightly vary across some conditions, although no direct relation can be 

made with the amount of glucose present in the formation medium. The oral isolate, 

on the other hand, formed more biofilm as the glucose percentage increased to 2% 

and decreasing above that value. Thus, it seems that also for C. albicans, the oral 

isolate biofilm formation capacity is more glucose dependent than the reference 

strain. This is corroborated by earlier studies that showed a great preference of oral 

isolates of C. albicans for glucose relatively to alternative carbon sources (Jin et al., 

2004), and also a strong dependence of biofilm formation to carbon source 

concentration (Kuhn et al., 2002). 

Regarding C. glabrata, these species formed the lowest amounts of biofilm 

comparatively to other species, as showed by Silva, et al.(figure 3.3) (Silva et al., 2009). 

The reference strain produced more biofilm in the medium as the concentration of 

glucose increased (from 0.2 to 4%), while for the oral isolate, the amount of biofilm 

produced decreased significantly above 1% until 10% of glucose. In opposition to what 

was observed for C. albicans and C. parapsilosis, the C. glabrata reference strain 

biofilm forming ability seems to be more glucose dependent than the oral isolate, 

which in fact do not tolerates high glucose percentages. This results are in accordance 

with previous reports in which C. glabrata isolates formed biofilm preferentially in 

mediums with low concentrations of glucose over mediums with higher concentrations 

of other carbon sources (Hawser et al., 1994). 
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Candida tropicalis oral isolate biofilm formation capacity presented the same 

behavior as the C. glabrata oral isolate, for glucose percentages above 3% to 10% of 

glucose. From 0.2 % to 2%, it remained relatively constant, being 1.5 times greater 

than the values obtained for the reference strain. The peak of the glucose value seems 

to be at 2% of glucose concentration in the medium. Before that start forming less 

biofilms as the glucose percentage increases, but its biofilm formation capacity does 

not seem to be glucose dependent. The amount of biofilm formed by the reference 

strain was relatively homogeneous through all conditions and so, biofilm formation 

capacity by this strain is not dependent on the amount of glucose present in the 

medium.  

 The variation of glucose concentration in the biofilm formation medium was 

also tested in terms of biofilm cell viability, after 24h. For all the conditions, there was 

not a direct relation between the amount of biofilm formed and the number of viable 

cells. In general, the differences in the amount of formed biofilm between strains of 

the same species did not correspond to a similar difference in the number of CFUs, for 

each condition. In figure 3.2, is possible to observe that the amount of CFUs is similar 

between the two strains of C. parapsilosis, despite of the great difference registered in 

terms of biofilm forming ability. The same is valid for several conditions in the other 

species and strains under studied (figures 3.1, 3.3 and 3.4). Glucose variation effect in 

biofilm also did not correspond in a similar variation in terms of number of viable cells 

in case of C. albicans. While the oral isolate amount of formed biofilm increased when 

glucose varies from 0.2% to 2%, the number of viable cells remained constant. In 

contrast, the reference strain amount of formed biofilm remained constant through 

that condition, but the number of viable cells significantly increased from 0.2% to 2% 

of glucose (figure 3.1). Similar observations were made in the case of the other strains 

(figures 3.3 and 3.4), and so, is reasonable to assume that the number of viable cells in 

the medium does not correlate with the amount of biofilm biomass measured by 

crystal violet. Indeed, crystal violet uptake on cell morphology and size and this stain 

can also be entrapped in the biofilm matrix, therefore it cannot be used to access the 

number of cells in the biofilm but, roughly, the amount of total biomass. 
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4.2 - Assessment of the effect of the glutamine on Candida albicans and Candida 

parapsilosis biofilm formation and in cell viability 

 The aminoacid L-glutamine can act as a nitrogen source for Candida species 

allowing them to survive through the production of essential proteins, in the absence 

of a carbon source. However, due to the high amounts of carbohydrates present in the 

biofilm, the question is raised about the capacity of biofilm formation by Candida in 

mediums without glucose and the effect that glutamine has in the presence of glucose 

(Holmes et al., 1989). Considering the previous results discussed in section 5.1, only for 

C. parapsilosis and C. albicans oral isolate strains the total biofilm biomass values 

increased, with the increase of the percentage of glucose in the growth medium. Thus, 

is reasonable to say that this two species oral isolate strains were the most glucose 

dependent in terms of biofilm formation ability, in regards to all the studied strains.  

For that reason, the next described studies and results will focus only on these two 

species.  

 From the results present in figure 3.5 for C. albicans, it seems that the 

presence or absence of glutamine in mediums supplemented either with low or high 

amounts of glucose is insignificant for biofilm formation or cell viability. The biofilm 

formation capacity for this species for the medium supplemented only with 0.3% of 

glutamine, was lower in the case of the reference strain and similarly in the case of the 

oral isolate, when compared to the amount of formed biofilm for the medium with 

0.2% of glucose and 0.3% of glutamine. In terms of CFUs, the same was observed, 

being the number of viable cells of the reference strain also lower, for the medium 

with only glutamine, when compared to those from the reference medium. Thus it 

seems that the oral isolate can adapt well to the total absence of glucose from the 

medium, while the reference strain cannot. These results are in opposition with 

previous reports that revealed that glucose is the carbon source that allowed to C. 

albicans to form biofilm (Hawser et al., 1994; Jin et al., 2004). 

For C. parapsilosis (figure 3.6), the great difference between the two strains in 

terms of biofilm formation are still valid for all the conditions. In the mediums with 

only glucose and without glutamine, the oral isolate formed statistically less biofilm 

when compared to the amount of biofilm formed for the medium with 0.2% of glucose 

and 0.3% of glutamine. However, the difference was greater for the medium with only 
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glutamine. The oral isolate cell viability was not affected by the absence/presence of 

glucose or glutamine in the medium. The same was observed for the reference strain 

biofilm formation capacity and biofilm cell viability. Therefore, C. parapsilosis oral 

isolate seems to be more affected by the alterations in terms of energy source in both 

strains. 

 

4.3 – Influence of glucose and glutamine in Candida albicans and Candida 

parapsilosis biofilms structure. 

SEM processing is a method that has an inherent destructive capacity , but can 

provide useful information in both biofilm structure and cell morphology (Silva et al., 

2009). In the present work, SEM processing revealed structural differences in 24h 

biofilms of C. albicans ATCC 90028, C. albicans 324 LA/94, C. parapsilosis ATCC 22019 

and C. parapsilosis AD formed in RPMI mediums with 0.3% glutamine and without 

glucose or with 0.2% or 10% of glucose without glutamine, depending on specie, strain 

and condition. 

 Biofilm structure and cell morphology are dependent on several environmental  

factors including growth conditions.(Hawser et al., 1994) Biofilms of Candida albicans 

(figure 9 A and B) are composed by yeast and filamentous forms, in accordance with 

earlier reports (Brown, 2002; Gow, 2002). The hyphal forms are larger as the glucose 

percentage increases, as well as the biofilm overall structure complexity. In C. albicans 

ATCC 90028 (figure 9 A) the biofilms grows structurally as the glucose concentration in 

the medium increases, from 0.2% of glucose to 10% of glucose, with the appearance of 

more interconnected and thick hyphal forms. The structure of C. albicans 324 LA/94 

biofilms presents high amounts of ECM covering layers of yeast and filamentous forms. 

The presence of glucose and its percentage increase in the medium leads to an 

increase in the number of hyphal forms and respective size resulting in a more 

complex structure. 

Regarding C. parapsilosis, the reference strain biofilms showed (figure 9 C), 

microcommunities of yeast cells anchored to the surface, which increased in size as the 

percentage of glucose in the medium increased. The oral isolate biofilms consisted of 

agglomerates of yeast cells in RPMI medium with only glutamine, and in the presence 



47 
 

of glucose not only the cells and clusters increased in size but also pseudohyphal 

structures emerged.  

 In general, except for C. parapsilosis reference strain (figure 3.6), the results for 

viable cells did not increased with the increase of glucose percentage, contradicting 

the increase of biofilm density in observed through SEM. As this raised was followed 

also for a rise in the number of filamentous forms for both species, this discrepancy  

may be due to the nature of the cell viability assay method, that cannot access  

correctly the number of clustered cells or hyphal forms. 

 

4.4 - Assessment of the expression level of BCR1 and FSK1 gene in biofilm cells in 

presence of glutamine or glucose 

In order to access in more detail the effect on biofilm formation of the variation 

of glucose percentage in the growth medium as well as the presence or absence of 

glutamine, the expression levels of two Candida genes related with biofilm formation 

were assessed.  Before being able to form biofilms, Candida yeasts must first adhere to 

the surface. Several cell wall glycoproteins and polysscharides are involved in this 

process such as proteins encoded by aglutinin-like sequence gene family or Hyphal cell 

wall-specific protein gene (Chauhan et al., 2002; Hoyer, 2001; Silva et al., 2011). The 

expression of this genes are regulated by the BCR1 gene, a fungal transcriptional 

factor. Studies have proved a direct relationship between the expression of this gene 

and biofilm formation.(Ding et al., 2011) BCR1 expression for strains C.albicans was 

higher in both strains for the medium with 10% of glucose, comparatively to the 

medium with 0.2% of glucose, as well as in the medium supplemented only with 0.3% 

of glutamine, especially in the case of the reference strain. Given that no statistical 

differences were observed in terms of biofilm biomass values for those conditions 

(figure 3.5), was surprising to observe such difference in terms of gene expression. In 

case of C. parapsilosis, BCR1 expression was similar between the two strains, being 

significantly lower in the medium without glucose and significantly higher in the 

medium an increased glucose concentration (figure 3.10). Although the gene 

expression obtained was expected for the RPMI medium with only glutamine, in which 

both strains formed less biofilm, the increase in expression for the medium with 10% 

of glucose and the similarity in the expression values between strains were 
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unexpected. (figure 3.6 and figure 3.7 C). Therefore, and given the CFUs results in 

figure 3.6, it seems the great differences obtained in the absorbance values of crystal 

violet  between the two strains for all studied conditions was due to an higher capacity 

in ECM production of the oral isolate. 

An active element of the biofilm matrix, responsible for drugs capture is β-1,3 

glucan, which is synthesized from UDP-D-glucose through the β-1,3 glucan synthase, a 

membrane-bound enzyme, constituted by two subunits, one of them being genetically 

encoded by the FKS1 gene. (Taff et al., 2012) In Candida albicans FSK1 gene expression 

was significantly lower in the medium without glucose and significantly higher in the 

medium with an increased glucose percentage, as expected. For C. parapsilosis the 

gene expression was also higher lower in the mediums with 10% of glucose, being 

similar between the other conditions. Overall, FKS1 expression values in C. albicans 

were higher than the expression values in C. parapsilosis, through all conditions. These 

results hint that C. albicans biofilms may have more β-1,3 glucan included in its cell 

wall and  biofilm matrix that C. parapsilosis, considering the fact that the oral isolate of 

this species was the one that formed more biofilm, of all studied strains. These results 

are in accordance with what was observed through SEM images of the biofilms. As 

described in the previous section, C. albicans oral isolate presented more extracellular 

matrix in its biofilm than any other strain. 
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5 – Concluding remarks 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter presents the major conclusion taken from the obtained results and posterior 

discussion, addressing all aspects of the developed worked. 
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 Oral candidosis is a common opportunistic infection of the oral cavity caused by 

the overgrowth of Candida species that can develop into a deadly systemic infection 

known as candidaemia. The high pathogenicity of Candida species is related to biofilm 

formation. An high carbohydrate diet, an impaired salivary function, diabetes, are 

some factors related to incidence of candidosis and can lead to a rise in the glucose 

concentration in the mouth. Therefore, the aim of this study was to access the effect 

of glucose and glutamine in biofilms formation by Candida species. 

 All the studied Candida strains formed biofilms in all the selected conditions, 

and the glucose concentration variation as well as the presence/absence of glutamine 

in the medium had different effects on the amount of biofilm formed, although 

depending on specie and strain. Candida albicans and Candida parapsilosis oral 

isolates were able to augment their biofilm formation abilities in the presence of 

increasing concentrations of glucose until a maximum value level of glucose, above 

which, the amount of produced biofilm started to decrease. The biofilm formation 

ability of the reference strains of both species remained indifferent to the glucose 

percentage variation in the medium. Both Candida glabrata strains were less able to 

form biofilms in all conditions. Thus, although an increase was noticed in the amount 

of biofilm produced for the reference strain, overall the amount of biofilm produced 

was not significant when compared to the other strains The biofilm formation ability of 

the Candida tropicalis reference strain was indifferent to glucose concentration 

increase and the oral isolate formed more biofilm in lower glucose values, being less 

able to do it when the glucose concentration increased. Therefore, only C. albicans and 

C. parapsilosis strains were tested for the effect of glutamine in the growth medium. 

Moreover, the huge differences observed in terms of biofilm forming ability did not 

correlate with the values obtained for the number of cultivable cell, for different 

conditions, strains and species, hinting at big differences in terms of ECM production 

ability.  

Glutamine absence in the growth medium, for mediums supplemented with 

glucose, had a significant effect for Candida parapsilosis oral isolate, which formed less 

biofilm. In regards to the other strains, their biofilm formation ability was not 

disturbed by the lack or presence of glutamine when glucose was present. Substitution 

of glucose by glutamine, led to a decrease in biofilm formation only for C. albicans 
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reference strain and C. parapsilosis oral  isolate, hinting at physiological differences of 

strains of the same species. 

 SEM images revealed structural differences between biofilms of strains and 

species of C. albicans and C. parapsilosis. In general, C. albicans 324 LA/94 biofilms 

presented a more extracellular matrix as well as bigger, thicker and more 

interconnected hyphal forms. C. parapsilosis biofilms were composed solely by 

aggregates cell and filamentous forms which increased in size as the glucose 

concentration increased.  

 FKS1 gene expression increased for both C. albicans and C. parapsilosis strains 

as the glucose level in the medium increased, being more expressed, in general, in the 

first specie. Thus, these results support that FKS1 gene expression is glucose 

dependent which suggest a high glucan content in the ECM of C. albicans. BCR1 gene 

expression was not glucose dependent, being expressed similarly in the total absence 

of glucose for both C. albicans and C. parapsilosis strains. Suggesting that cell adhesion 

may be independent, to some level, of the glucose or glutamine present in the growth 

medium. However, its expression did increase for all strain with the increase in 

glucose, suggesting that an increase in the nutrient concentration can influence the 

amount of surface adhered cells.  

 Briefly, this work highlights the heterogeneous susceptibility of different 

Candida species and respective strains to glucose concentration variation and 

glutamine presence/absence in the growth medium, in terms of biofilm formation 

ability. It showed that, even when forming low amounts of biofilms, the number of 

adhered live cells to the surface remains unaltered for most conditions, proving that an 

increase in glucose from 0.2% to 10% does not affect cell viability negatively. The 

presence of glutamine is not vital to the growing cells in RPMI medium, but the 

absence of glucose can be, especially in the case of oral isolates. Further work is 

necessary to exactly understand the mechanisms behind biofilm formation, in different 

concentrations of glucose and the diverse nature of the structure of the formed 

biofilms, in order to better understand the mechanisms that allow to Candida cells to 

survive in such different conditions.  
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6 – Future perspectives 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter describes the further directions that can be taken in order to more completely 

understand the effect of glucose variation and glutamine presence in the growth medium 
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This work provided a clear perspective of the diverse nature of several Candida 

species, highlighting different susceptibilities and hitting at different metabolic 

processes and physiologies. A few suggestions that could be taken into consideration 

for further studies are: 

 

a) Further exploration of biofilm forming ability by several Candida 

species, in mediums with higher concentrations of glutamine, 

comparatively to the biofilms formed in mediums with only an 

equivalent amount of glucose; 

 

b) Assessment of biofilm ECM and cell wall composition of several 

Candida species  in mediums with different glucose concentration 

and in the absence/presence of glutamine for a better understanding 

of the differences between the biofilms formed between the studied 

species, by a proteomic approach; 

 

c) Assessment of antifungical resistance of biofilms of several Candida 

species formed in the studied conditions; 

 

d) Evaluation of the effects of glucose variation in the browth medium 

as well as its substitution by glutamine in the Zap1 alternative 

pathway for glucan incorporation in biofilm matrix, by Real-time PCR 

determination of the gene; 

 

e) Assessment of the effect glucose and glutamine in the expression of 

FKS1, BCR1 and ZAP1 genes, in mutant created strains of several 

Candida species; 

 

f) Assess the effect of glucose in colonization and invasion of 

reconstituted human oral epithelium, , for several Candida species. 
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Science, my lad, is made up of mistakes, but they are mistakes which it is 

useful to make, because they lead little by little to the truth. 

In  A journey to the center of the earth 

Julius Verne, 1864 
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