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Abstract

In this paper, we aim to analyze the performance of some variants of the harmony
search (HS) metaheuristic when solving systems of nonlinear equations through the
global optimization of an appropriate merit function. The HS metaheuristic draws its
inspiration from an artistic process, the improvisation process of musicians seeking a
wonderful harmony. A new differential best HS algorithm, based on an improvisation
operator that mimics the best harmony and uses a differential variation, is proposed.
Computational experiments involving a well-known set of small-dimensional problems
are presented.
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1 Introduction

The present study aims to investigate the performance of the harmony search (HS) meta-
heuristic to locate a solution of a nonlinear system of equations of the form

f(x) = 0, f(x) = (f1(x), f2(x), . . . , fn(x))T (1)

where each fi : Ω ⊂ Rn → R is a continuous function in the search space, and Ω is a
closed convex set, herein defined as [l, u] = {x : −∞ < li ≤ xi ≤ ui < ∞, i = 1, . . . , n}.
We do not assume that the functions fi(x), i = 1, . . . , n are differentiable. Thus, the
search for an efficient derivative-free technique that does not assume smoothness, convexity
and differentiability is of great importance in mathematics and engineering. The basic HS
algorithm that emerged in 2001 relies on a population of points and is inspired by natural
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phenomena [5]. It draws its inspiration not from a biological or physical process like most
metaheuristic optimization techniques, but from an artistic one – the improvisation process
of musicians seeking a wonderful harmony.

Some problems in engineering, chemistry, physics, medicine and even economic areas,
aim at determining the roots of a system of equations. In general, these problems are
nonlinear and difficult to solve. The most famous techniques to solve nonlinear equations
are based on the Newton’s method [3, 4, 6, 13, 16]. They require analytical or numerical
first derivative information. Newton’s method is the most widely used algorithm for solving
nonlinear systems of equations. It is computationally expensive, in particular if n is large,
since the Jacobian matrix and the solution of a system of linear equations are required at
each iteration. On the other hand, Quasi-Newton methods avoid either the necessity of
computing derivatives, or the necessity of solving a full linear system per iteration or both
tasks [14]. Thus, Quasi-Newton methods have less expensive iterations than Newton, and
their convergence properties are not very different from the Newton one.

The problem of solving a nonlinear system of equations can be naturally formulated as
a global optimization problem. Problem (1) is equivalent to

min
x∈Ω⊂Rn

M(x) ≡
n∑
i=1

fi(x)2, (2)

in the sense that they have the same solutions. These required solutions are the global
minima, and not just the local minima, of the function M(x), known as merit function, in
the set Ω. Problem (2) is similar to the usual least squares problem for which many iterative
methods have been proposed. They basically assume that the objective function is twice
continuously differentiable. However, the objective M in (2) is only once differentiable if
some, or just one, of the fi, (i = 1, . . . , n) are not differentiable. Thus, methods for solving
the least squares problem cannot be directly applied to solve (2).

When a global solution of a nonlinear optimization problem is required, Newton-type
methods have some disadvantages, when compared with global search methods, because
they rely on searching locally for the solution. The final solution is heavily dependent
on the initial approximation of the iterative process and they can be trapped in a local
minimum. Local optimization techniques guarantee globally only under certain convexity
assumptions. Furthermore, most of the methods require differentiable properties of all the
equations in the nonlinear system, such as, for example, the trust-region Gauss-Newton
method presented in [15].

Preventing premature convergence to a local while trying to locate a global solution of
problem (2) is the goal of the present study. Here, we aim to investigate the performance
of a metaheuristic to solve globally optimization problems without the use of derivative
information. Metaheuristics are general heuristic methods which can be applied to a wide
variety of optimization problems.
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HS has efficient strategies for exploring the entire search space, as well as techniques
to exploit locally a promising region to yield a high quality solution in a reasonable time.
The dynamic updating of two important parameters in the HS algorithm has improved
the efficiency and robustness of the metaheuristic [12]. Here, we combine this improved HS
algorithm with ideas from the global best variant of HS [17], and from the mutation strategy
present in the differential evolution method introduced in [21], to propose the differential
best HS algorithm.

Although other metaheuristics have been proposed to solve systems of nonlinear equa-
tions, the computational effort to achieve a solution is meaningful. Further, the quality of
the solution is not in general satisfactory. A genetic algorithm (GA) is proposed in [2]. In
[7], a new technique for solving systems of nonlinear equations reshaping the system as a
multiobjective optimization problem is proposed. A technique of evolutionary computation
is applied to solve the multiobjective problem. A modified version of the classical particle
swarm optimization (PSO) algorithm is presented in [10] and a tabu search based frame-
work has been implemented together with a local search strategy to enhance the search
about a promising region and improve the quality of the solution in [18, 19, 20]. Multiple
solutions in nonlinear systems have been addressed in the literature. In [8], the authors
propose techniques for computing all the multiple solutions in nonlinear systems and in
[9], a continuous global optimization heuristic, known as C-GRASP, with areas of repulsion
around already detected solutions, is described.

The structure of the remainder of the paper is the following. Section 2 describes the
classic HS algorithm, the improved HS, the global best HS, and the proposed differential best
HS. Section 3 reports the preliminary numerical experiments carried out with the presented
metaheuristic when solving a set of small-dimensional problems. Section 4 contains the
conclusions of this study and some ideas for future work.

2 Harmony search algorithms

The HS algorithm was developed to solve global optimization problems in an analogy with
the music improvisation process where music players improvise the pitches of their instru-
ments to obtain better harmony (see [5, 11]).

The algorithm parameters are:

i) the harmony memory size (HMS), which gives the number of solution vectors in the
harmony memory (HM), and has an equivalent meaning of the population size in GA
and PSO algorithms;

ii) the harmony memory considering rate (HMCR);

iii) the pitch adjusting rate (PAR);
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iv) the number of allowed improvisations (NI), which is similar to the number of genera-
tions/iterations allowed in GA and PSO algorithms.

The HM matrix is a memory location to store all the solution vectors. The HMCR and
PAR parameters are used to find globally and locally improved solutions, respectively.

In the remaining part of this section we present the main steps of the classic HS algo-
rithm, as well as an improved variant of HS containing dynamic updating of parameters,
the global-best version of the HS and the proposed differential best HS. An overview of the
existing variants of the HS is presented by Alia and Mandava in [1].

2.1 Classical HS

The main steps of the classical HS algorithm are represented in Algorithm 1. After genera-

Algorithm 1 HS algorithm

Step 0. Set values to the parameters. Set k = 0.
Step 1. Initialize the HM randomly in Ω: xj , j = 1, . . . ,HMS.
Step 2. Evaluate the HM, select the best, xbest, and the worst harmony.
Step 3. Improvise a new harmony y and evaluate.
Step 4. Update the HM and select xbest and the worst harmony.
Step 5. If xbest is sufficiently accurate then STOP else increase k and go to Step 3.

ting the HM randomly in the search space Ω, xj , j = 1, . . . ,HMS, the vectors are evaluated
and the best harmony, herein denoted by xbest, and the worst in terms of merit function
value are selected (see Step 2). Thereafter, a new harmony is improvised (in Step 3) meaning
that a new vector y is generated using three improvisation operators:

o1. HM operator;

o2. random selection operator;

o3. pitch adjustment operator.

The HMCR parameter varies between 0 and 1 and gives the probability of choosing the com-
ponent of the new harmony/vector from the HM (operator o1). Otherwise, the component
is randomly generated in Ω (operator o2):

yi =

{
xji , j randomly chosen from {1, . . . ,HMS} if rand() < HMCR
li + rand()(ui − li) otherwise

(3)

for i = 1, . . . , n, where rand() represents a random number in the range [0, 1]. The operator
o3 is subsequently applied with probability PAR to refine only the components produced
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by o1, as follows:

yi =

{
min{max{yi ± rand()BW, li}, ui} if rand() < PAR
yi otherwise

(4)

where BW is an arbitrary distance bandwidth. In Step 4 of the algorithm, the HM is
updated. The new harmony is compared with the worst harmony in the HM, in terms of
M values. The new harmony is included in the HM, replacing the worst one if it is better
than the worst harmony.

2.2 Improved HS

The classical HS algorithm uses fixed value for both PAR and BW. Small PAR values with
large BW values can considerably increase the number of iterations required to converge
to the optimal solution of (2). Experience has shown that BW must take large values at
the beginning of the iterative process to enforce the algorithm to increase the diversity of
solution vectors. However, small BW values in the final iterations increase the fine-tuning
of solution vectors. Furthermore, large PAR values with small BW values usually cause the
improvement of best solutions in the final stage of the process. To eliminate the drawbacks
due to fixed values of PAR and BW, the improved HS (I-HS) algorithm proposed in [12]
uses parameter values dynamically dependent on the improvisation/iteration number k, as
shown:

PAR(k) = PARmin + k
(PARmax − PARmin)

NI
(5)

where PARmin and PARmax are the minimum and maximum pitch adjusting rate respec-
tively, k denotes the iteration number, and

BW(k) = BWmaxe
ck, for c =

ln( BWmin

BWmax
)

NI
(6)

where BWmin and BWmax are the minimum and maximum bandwidth respectively.

2.3 Global-best HS

In [17], a new variant of harmony search, called the global-best harmony search (G-bHS),
is proposed. The pitch-adjustment step of the HS is modified in a way that the new
harmony can mimic the best harmony in the HM, adding a social dimension to the HS and
replacing the BW related parameters altogether. Thus, the new pitch adjustment operator,
o3, is applied with probability PAR(k), computed from (5), to refine only the components
produced by o1, in the following way:

yi =

{
min{max{xbestt , li}, ui} , t randomly chosen from {1, . . . , n} if rand() < PAR(k)
yi otherwise

(7)
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where best is the index of the best harmony in the HM.

2.4 Proposed differential best HS

We borrow the ideas from the global best HS algorithm and increase the explorative power
of the classical HS to improvise a new harmony, for the Step 3 in Algorithm 1. Our
proposal then replaces the improvisation operator o1 by another one that mimics the best
harmony and uses a mutation strategy present in the differential evolution method [21].
The differential mutation scheme aims to explore the search space for a promising region
where the global solution of problem (2) lies. Furthermore, the pitch adjustment operator
is maintained and the parameters PAR and BW are dynamically updated according to (5)
and (6) respectively.

Thus, the parameter HMCR sets the probability of choosing the component of the
new harmony from the best harmony in HM adding a differential variation, i.e., for each
i = 1, . . . , n, (3) is replaced by the following equation:

yi =

{
min{max{xbesti + F (xj1i − x

j2
i ), li}, ui} if rand() < HMCR

li + rand()(ui − li) otherwise
(8)

where F is a real parameter from [0, 2] which controls the amplification of the differential
variation, xj1 − xj2 . The indices j1, j2 are uniformly chosen random values from the set
{1, . . . ,HMS}, mutually different. Then, the operator o3, is applied with probability PAR(k)
to refine only the components produced by o1, as previously defined in equation (4), where k
denotes the iteration counter. This variant will be denoted by differential best HS (D-bHS).

3 Computational experiments

In this section, we aim to compare the performance of the above described variants of the
HS algorithm for global optimization when solving systems of nonlinear equations. The
results of these experiments are obtained in a personal computer with an AMD Turion 2.20
GHz processor and 3 GB of memory, and all program codes were written in MATLAB
R2010b. During the experiments, we set HMS= min{2n, 10} and HMCR= 0.95. When
running I-HS, we tested two sets for (BWmin,BWmax), respectively (1e-4, 1) and (1e-6,
5) and set PARmin = 0.35 and PARmax = 0.99. In G-bHS we set PARmin = 0.01 and
PARmax = 0.99 as proposed in [17]. The experiments carried out with D-bHS use both
pairs of (BWmin,BWmax): (1e-4, 1) and (1e-6, 5), and the parameter F was set to 0.9.

The algorithms in comparison were terminated when

‖f(xbest)‖ ≤ τ (9)
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is satisfied for the best point in the HM, for τ = 10−6. However, if this condition is not
satisfied after nfemax function evaluations then the algorithm will stop. The nfemax is an
adequate alternative to the parameter NI to measure algorithms efficiency.

First, we note that in the subsequence tables, the subscript in the notation ‘I-HS1
1e−4’

corresponds to BWmin and the superscript corresponds to BWmax. The tables contain the
results, in terms of number of function evaluations of the best run, nfebest, among the 30
runs. The values in parentheses correspond to M(xbest) when nfemax function evaluations
are attained.

3.1 An illustrative non-smooth problem

Here, we analyze the performance of the described I-HS, G-bHS and D-bHS algorithms on
a non-smooth nonlinear system with two variables [7]:{

x2
1 − x2

2 = 0
1− |x1 − x2| = 0

which has more than one solution. The evolutionary approach in [7] is applied to a popu-
lation of 200 points and converges to a Pareto curve with a set of nine nondominated
solutions after 150 generations and at least 30 000 function evaluations. The least fitness
(sum of the absolute values of the objectives) is around 0.01. We also run fsolve from
MATLABTMand after 20 iterations and 23 function evaluations, the point (1, 1), with merit
function value equals to one, is obtained. (The output parameter ‘exitflag’ is ‘-2’. The
solver stopped due to a very small direction vector.) After trying several initial points, the
solution (−0.5, 0.5) was finally reached (in three iterations and 12 function evaluations).
Considering Ω = [−10, 10]2, the HS variants behave as shown in Table 1. We observe that
the variants I-HS and D-bHS converge to the solution (−0.500000, 0.500000), with merit
function values of order 10−13, and the pair (1e-6, 5) for (BWmin,BWmax) gives a better
performance than the other in comparison. G-bHS stops after 100 000 function evaluations
with a merit function value of 2.8e-6.

Table 1: Results of nfebest for nfemax=100 000.

n I-HS1
1e−4 I-HS5

1e−6 G-bHS D-bHS1
1e−4 D-bHS5

1e−6

non-smooth problem 2 425 278 (2.8e-6) 664 492

3.2 Other small-dimensional problems

In this comparative study, six well-known small-dimensional problems are used, where two
of them are tested with three different search space sizes [22]. Table 2 contains the number of
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function evaluations of the best run when solving the problems Reactor, Steering, Merlet
and Floudas. The algorithms were allowed to run for a maximum of 10 000 function
evaluations, when solving the problems Reactor and Steering, and for 1 000 when solving
Merlet and Floudas. First, we note that the problem Steering has two solutions inside the
feasible set [0.06, 1]3 and the algorithms are not able to decrease the merit function value
below 6.1e-8. Further, although I-HS5

1e−6 requires fewer function evaluations to converge
to the solutions of Merlet and Floudas, with the desired accuracy (see (9)), the variant
D-bHS5

1e−6 outperforms the others since it converges to a solution of Reactor, as well as to
the solutions of Merlet and Floudas, with an acceptable computational effort.

Results concerned with the problems Effati-Grosan1 and Effati-Grosan2, with dif-
ferent search spaces, are reported in Table 3. Here, the algorithms in comparison are allowed
to run for a maximum of 100 000 function evaluations. We observe that the proposed vari-
ant D-bHS with the pair of minimum and maximum bandwidth set to (1e-6, 5) is the most
effective.

Table 2: Results of nfebest for the small problems.

Prob. n Ω I-HS1
1e−4 I-HS5

1e−6 G-bHS D-bHS1
1e−4 D-bHS5

1e−6

Reactor 2 [0, 1]2 (2.1e-4) (2.0e-3) (2.5e-3) 776 550
Steering 3 [0.06, 1]3 (6.1e-8) (6.1e-8) (8.4e-8) (6.1e-8) (6.1e-8)
Merlet 2 [0, 2π]2 437 292 (1.3e-5) 659 504
Floudas 2 [0.25, 1]× [1.5, 2π] 398 278 (7.2e-5) 698 438

Table 3: Results of nfebest for nfemax=100 000.

Prob. Ω I-HS1
1e−4 I-HS5

1e−6 G-bHS D-bHS1
1e−4 D-bHS5

1e−6

Effati-Grosan1 [−2, 2]2 704 517 (9.8e-6) 662 536
[−10, 10]2 696 501 (1.1e-5) 710 523

[−100, 100]2 752 445 (1.9e-3) 726 508
Effati-Grosan2 [−2, 2]2 706 484 (3.1e-7) 755 509

[−10, 10]2 673 463 (1.3e-5) 656 473
[−100, 100]2 (2.0e-4) (4.9e-4) (6.8e-4) 642 482

4 Conclusions

We analyzed the performance of different variants of the harmony search metaheuristic when
computing a solution of a system of nonlinear equations. A new variant, denoted by differ-
ential best harmony search, and based on an improvisation operator that mimics the best
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harmony of the harmony memory and uses a differential variation has been presented. Pre-
liminary computational experiments have been carried out with a set of small-dimensional
problems. We observed that the differential mutation strategy has enforced the algorithm
to increase the diversity. Furthermore, a large range between the minimum and maximum
bandwidth during the pitch adjustment step has increased the effectiveness of the algorithm.

In the coming months, the proposed D-bHS algorithm will be embedded into a multi-
start algorithm based on clustering and regions of attractions for computing multiple roots
of systems of nonlinear equations.
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[6] M.D. González-Lima and F.M. Oca, A Newton-like method for nonlinear system
of equations, Numerical Algorithms, 52(3) (2009) 479–506.

[7] C. Grosan and A. Abraham, A new aproach for solving nonlinear equations systems,
IEEE Transactions on Systems, Man and Cybernetics - Part A: Systems and Humans,
38(3) (2008) 698–714.

c©CMMSE ISBN: 978-84-616-2723-3



Solving Systems of Nonlinear Equations by Harmony Search

[8] C. Grosan and A. Abraham, Multiple solutions for a system of nonlinear equations,
International Journal of Innovative Computing, Information and Control, 4(9) (2008)
2161–2170.

[9] M.L. Hirsch, P.M. Pardalos and M. Resende, Solving systems of nonlinear equa-
tions with continuous GRASP, Nonlinear Analysis: Real World Applications, 10 (2009)
2000–2006.

[10] M. Jaberipour, E. Khorram and B. Karimi, Particle swarm algorithm for solving
systems of nonlinear equations, Computers and Mathematics with Applications, 62
(2011) 566–576.

[11] K.S. Lee and Z.W. Geem, A new meta-heuristic algorithm for continuous engineer-
ing optimization: harmony search theory and practice, Computational Methods and
Applied Mechanical Engineering, 194 (2004) 3902–3933.

[12] M. Mahdavi, M. Fesanghary and E. Damangir, An improved harmony search
algorithm for solving optimization problems, Applied Mathematics and Computation,
188 (2007) 1567–1579.

[13] J.M. Mart́ınez, Algorithms for solving nonlinear systems of equations, in Continu-
ous Optimization: The State of Art, E. Spedicato (Ed.), 81–108, Kluwer Academic
Publishers, 1994.

[14] J.M. Mart́ınez, Practical Quasi-Newton methods for solving nonlinear systems, Jour-
nal of Computational and Applied Mathematics, 124 (2000) 97–122.

[15] B. Morini and M. Porcelli, TRESNEI, a Matlab trust-region solver for systems of
nonlinear equalities and inequalities, Computational Optimization and Applications,
51 (2012) 27–49.

[16] U. Nowak and L. Weimann, A family of Newton codes for systems of highly non-
linear equations, Technical Report. Tr-91-10, K.-Z.-Z. Inf. Berlin, 1991.

[17] M.G.H. Omran and M. Mahdavi, Global-best harmony search, Applied Mathematics
and Computation, 198(2) (2008) 643–656.

[18] G.C.V. Ramadas and E.M.G.P. Fernandes, Combining global tabu search with
local search for solving systems of equalities and inequalities, Numerical Analysis and
Applied Mathematics, ICNAAM 2011 T.E. Simos et al. (Eds.), AIP Conf. Proc. 1389
(2011) 743–746.

c©CMMSE ISBN: 978-84-616-2723-3



G.C.V. Ramadas, E.M.G.P. Fernandes

[19] G.C.V. Ramadas and E.M.G.P. Fernandes, Self-adaptive combination of global
tabu search and local search for nonlinear equations, International Journal of Computer
Mathematics, 89(13–14) (2012) 1847–1864.

[20] G.C.V. Ramadas and E.M.G.P. Fernandes, Nonmonotone hybrid tabu search
for inequalities and equalities: an experimental study, Applied Mathematical Sciences,
7(11) (2013) 503–525.

[21] R. Storn and K. Price, Differential evolution – a simple and efficient heuristic for
global optimization over continuous spaces, Journal of Global Optimization, 11 (1997)
341–359.

[22] I.G. Tsoulos and A. Stavrakoudis, On locating all roots of systems of nonlinear
equations inside bounded domain using global optimization methods, Nonlinear Analy-
sis: Real World Applications, 11 (2010) 2465–2471.

c©CMMSE ISBN: 978-84-616-2723-3


