
Combined Mutation Differential Evolution
to Solve Systems of Nonlinear Equations

Gisela C.V. Ramadas∗ and Edite M.G.P. Fernandes†

∗Department of Mathematics, School of Engineering, Polytechnic of Porto, 4200-072 Porto, Portugal
†Algorithm R&D Center, University of Minho, 4710-057 Braga, Portugal

Abstract. This paper presents a differential evolution heuristic to compute a solution of a system of nonlinear equations
through the global optimization of an appropriate merit function. Three different mutation strategies are combined to generate
mutant points. Preliminary numerical results show the effectiveness of the presented heuristic.

Keywords: Nonlinear Equations, Differential Evolution, Combined Mutation
PACS: 02.60.Pn

INTRODUCTION

The primary goal of the paper is to show that an evolutionary heuristic – the differential evolution – very popular in
global optimization can be effective and as efficient as classical methods in solving systems of nonlinear equations.
We examine the behavior of different mutation strategies in the differential evolution context to solve a system of the
form:

f (x) = 0, f (x) = (f1(x), f2(x), . . . , fn(x))T (1)

where each fi : Ω ⊂ Rn→ R and Ω is a closed convex set, herein defined as [l,u] = {x : −∞ < li ≤ xi ≤ ui < ∞, i =
1, . . . ,n}. We assume that all functions fi(x), i = 1, . . . ,n are continuous in the search space although differentiability
may not be guaranteed. The motivation of this work comes mainly from the detection of feasibility in nonlinear
optimization problems. The most famous techniques to solve nonlinear equations are based on the Newton’s method
[1, 2]. They require analytical or numerical first derivative information. Newton’s method is the most widely used
algorithm for solving nonlinear systems of equations. It is computationally expensive, in particular if n is large, since
the Jacobian matrix and the solution of a system of linear equations are required at each iteration. On the other hand,
Quasi-Newton methods avoid either the necessity of computing derivatives, or the necessity of solving a full linear
system per iteration or both tasks [3]. Thus, Quasi-Newton methods have less expensive iterations than Newton, and
their convergence properties are not very different from the Newton one.

Problem (1) is equivalent to

min
x∈Ω⊂Rn

M (x)≡
n

∑
i=1

fi(x)2, (2)

in the sense that they have the same solutions. These required solutions are the global minima, and not just the local
minima, of the function M (x), known as merit function, in the set Ω. Problem (2) is similar to the usual least squares
problem for which many iterative methods have been proposed. They basically assume that the objective function is
twice continuously differentiable. However, the objective M in (2) is only once differentiable if some, or just one,
of the fi, (i = 1, . . . ,n) are not differentiable. Thus, methods for solving the least squares problem cannot be directly
applied to solve (2). When a global solution of a nonlinear optimization problem is required, Newton-type methods
have some disadvantages, when compared with global search methods, because they rely on searching locally for the
solution. The final solution is heavily dependent on the initial approximation of the iterative process and they can be
trapped in a local minimum.

Preventing premature convergence to a local while trying to locate a global solution of problem (2) is the goal of
the present study. Here, we aim to investigate the performance of a new version of the differential evolution (DE)
algorithm when globally solving problem (2). DE is a population-based evolutionary algorithm introduced in 1997 by
Storn and Price [4]. It is a simple, efficient and robust metaheuristic to search for promising regions and locate a global
solution. Our proposal joins three mutation strategies. It combines two classic mutation strategies aiming to explore

the search space and makes use cyclically of another strategy to exploit a promising region and accelerate convergence.
Although other metaheuristics have been proposed to solve systems of nonlinear equations, the computational effort
to achieve a solution is huge. Further, the quality of the solution is not in general satisfactory. A genetic algorithm is
proposed in [5]. Other stochastic approaches have been used to compute a root of the system (1) by solving the global
optimization problem (2). A tabu search based framework has been implemented together with a local search strategy
to enhance the search about a promising region and improve the quality of the solution [6, 7]. In [8], a new technique
for solving systems of nonlinear equations reshaping the system as a multiobjective optimization problem is proposed.
A technique of evolutionary computation is then applied to solve the multiobjective problem.

The remaining paper is organized as follows. Firstly, the main steps of the basic DE algorithm as well as the ideas of
the proposed combined mutation strategy are described. Afterwards, a discussion about the obtained numerical results
is included.

DIFFERENTIAL EVOLUTION

DE is a simple evolutionary algorithm for global optimization problems introduced by Storn and Price [4]. The
initial population is randomly generated in the search space Ω. After initialization DE employs three operations –
mutation, crossover and selection – until a global solution is reached. Based on the current population of m points,
x j, j = 1, . . . ,m, called target points, DE generates new solutions by combining the current solutions and several other
solutions of the same population. DE has three parameters: i) amplification factor of the differential variation, F ; ii)
crossover control parameter, CR; iii) population size, m. The above three operations are repeated until a termination
criterion is reached. A survey with an experimental study concerned with variants of DE is found in [9]. In this section,
we describe the main steps of the basic DE and a modified operation of mutation that combines three classic mutation
strategies. The below presentation already takes into consideration the global optimization problem that we aim to
address (2).

Basic DE

Algorithm 1 contains the pseudocode of the basic DE algorithm. The most commonly used mutation is referred to

Algorithm 1 DE algorithm
Step 0. Set values to the parameters. Set k = 0.
Step 1. Randomly generate the (population) target points xi ∈Ω, i = 1 . . . ,m.
Step 2. Evaluate the population and select xbest .
Step 3. Perform mutation to generate the mutant points.
Step 4. Perform crossover to generate the trial points. Check with the bounds and project if necessary.

Evaluate the trial points.
Step 5. Perform selection to define the target points for the next population and select xbest .
Step 6. If xbest is sufficiently accurate then STOP else increase k and go to Step 3.

as DE/rand/1 and defines the mutant point, v j, as follows:

v j = xr1 +F(xr2 − xr3) (3)

with uniformly chosen random indices r1,r2,r3 from the set {1,2, . . . ,m}, mutually different and F is a real parameter
∈ [0,2] which controls the amplification of the differential variation, xr2−xr3 . The indices r1, r2 and r3 are also chosen
to be different from the index j. xr1 is called the base point. This version is denoted hereafter by DErand . There are
other frequently used mutation strategies, for instance, the DE/best/1, herein denoted by DEbest , which uses the best
point of the population as the base point:

v j = xbest +F(xr1 − xr2) (4)

where xbest is the best point in the current population. The crossover operator aims to increase the diversity on the
components of the mutant point. Thus, the crossover point, called trial point, y j, is formed as:

y j
i =

{
v j

i if rand()≤CR or i = s j

x j
i otherwise

(5)

for i = 1, . . . ,n, where rand() denotes a random number in [0,1] and aims to perform the mixing of the component i
of the points, CR ∈ [0,1] is the parameter for crossover, and the index s j, randomly selected from {1, . . . ,n}, ensures
that y j gets at least one component from v j. When generating the mutant point, some components can be generated
outside the domain Ω. Thus, each component should be checked and a projection to the bounds is to be carried out:

y j
i = max

{
li, min

{
y j

i ,ui

}}
, for i = 1, . . . ,n.

To perform selection, the trial point is then compared with the target and if the merit function value of the trial point
is better than that of the target, the trial will be the target for the next population. DE performance depends on the
amplification factor of differential variation, F , and crossover control parameter, CR. It is not an easy task to set
appropriate values for the parameters F and CR, since they depend on the nature and size of the optimization problem,
A self-adaptive technique to control the parameters and generate a different set of F j,CR j for each point has been
implemented in DE [10]. Other frequently used mutation strategies can be found in [11].

Combined mutation DE

The performance of DE depends mostly on its ability to explore the entire search space as well as to exploit around
the neighborhood of a reference point, that could be the best point of the population. The DE/rand/1 mutation strategy
has an exploratory effect but it slows down the convergence of DE. On the other hand, DE/best/1 is good at accelerating
convergence but may be poor at exploring the space and a local solution may be obtained before the global solution can
be reached. Thus, a proper balance between exploration and exploitation is required for an effective mutation operation.
A modified mutation that mixes three mutation strategies is presented. The first mutation strategy is a combination of
two different strategies with a weight factor and the second is concerned with a cyclical use of DE/best/1 strategy.
This combined mutation DE version will be called comb-DE. Firstly, three points are randomly chosen from the target
population and the first mutant point, v̄ j, is created using (3). Secondly, the DE/current-to-best/1 mutation strategy is
used to create the second mutant point:

ṽ j = x j +F(xbest − x j)+F(xr4 − xr5) (6)

where uniformly chosen random indices r4,r5 from the set {1, . . . ,m} are mutually different and also chosen to be
different from r1,r2,r3 (see (3)) and the index j. Finally, the actual mutant point v j is obtained by combining the above
two mutant points using a scalar weight factor w ∈ [0,1]

v j = wv̄ j +(1−w)ṽ j. (7)

We note that m must be greater or equal to six to allow for this condition. Furthermore, at every R iterations, we use
(4) to define the current mutant point.

NUMERICAL RESULTS AND DISCUSSION

In this comparative study, four well-known small-dimensional problems and two large-dimensional problems, using
different values of n, are used [12]. The results of these experiments were obtained in a personal computer with an
AMD Turion 2.20 GHz processor and 3 GB of memory, and all program codes were written in MATLAB R2010b.
During the experiments, we set m = min{3n,20}, F = 0.9, CR = 0.9, and tested the sets w = {0.15,0.5,0.85} and
R = {10,50}.

Table 1 contains a summary of the results, in terms of number of function evaluations of the best run, ‘n f ebest ’,
among 10 independent runs for each problem. The algorithms in comparison were terminated when ‖ f (xbest)‖2≤ 10−6

(or, M (xbest) ≤ 10−12 equivalently) is satisfied for the best of the m points, or the number of function evaluations
reached the target value ‘n f emax’. The algorithm was allowed to run for a maximum of 10 000 function evaluations,
when solving the problems Reactor and Steering, a maximum of 1 000 function evaluations when solving
Merlet and Floudas and 100 000 function evaluations, when solving Yamamutra (n=10, 20, 30, 40) and Bratu
(n=10, 20, 30). We observe that apart from the DEbest , the pairs (0.15,10), (0.85,10), (0.15,50) and (0.85,50) for
(w,R) in the comb-DE context are the most effective strategies for solving the reported test problems, and the versions
comb-DE with w = 0.15 require in general less function evaluations than the other versions in comparison.

These preliminary results are very encouraging and future research will be focused on the sensitivity analysis of the
comb-DE algorithm to the values of some parameters, like F and CR. Furthermore, this proposed comb-DE algorithm
will be applied to solve systems of inequalities and equalities, as well as nonlinear complementarity problems.
TABLE 1. Results of n f ebest .

Prob. n Ω DErand DEbest comb-DE as a function of (w,R)
(0.15,10) (0.5,10) (0.85,10) (0.15,50) (0.85,50)

Reactor 2 [0,1]2 678 606 438 (3e-3) (3e-3) (3e-3) (3e-3)
Steering 3 [0.06,1]3 936 486 (6e-8) (6e-8) (6e-8) (6e-8) (6e-8)
Merlet 2 [0,2π]2 12 12 12 18 18 24 24
Floudas 2 [0.25,1]× [1.5,2π] 642 444 324 258 450 282 576
Yamamutra 10 [0,1]10 19320 5920 2640 2900 8340 3900 8820

20 [0,1]20 48240 17380 9700 (3e-7) 18260 8760 17900
30 [0,1]30 85720 31920 15560 (1e-5) 29400 16420 29600
40 [0,1]40 (2e-11) 43600 27920 (1e-3) 44520 29660 41740

Bratu 10 [0,1]10 45000 24220 14980 (1e-9) 18660 19460 23360
20 [0,1]20 (8e-5) (1e-4) (8e-5) (5e-3) (3e-5) (6e-5) (3e-6)
30 [0,1]30 (3e-5) (3e-5) (5e-4) (1e-2) (7e-5) (6e-4) (4e-4)

NOTE: values in parentheses correspond to M (xbest) after n f emax function evaluations.

ACKNOWLEDGMENTS

This research has been supported by CIDEM (Centre for Research & Development in Mechanical Engineering,
Portugal), FCT (Foundation for Science and Technology, Portugal) and FEDER COMPETE (Operational Programme
Factors of Competitiveness) under projects PEst-OE/EME/UI0615/2011 and FCOMP-01-0124-FEDER-022674.

REFERENCES

1. J.E. Dennis, R.B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice-Hall Inc.,
1983.

2. A. Friedlander, M.A. Gomes-Ruggiero, D.N. Kozakevich, J.M. Martínez, S.A. Santos, Solving nonlinear systems of equations
by means of Quasi-Newton methods with a nonmonotone strategy, Optimization Methods and Software 8, 25–51 (1997)

3. J.M. Martínez, Practical Quasi-Newton methods for solving nonlinear systems, Journal of Computational and Applied
Mathematics 124, 97–122 (2000).

4. R. Storn, K. Price, Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces,
Journal of Global Optimization 11, 341–359 (1997).

5. C.H. Chen, Finding Roots By Genetic Algorithms, in 2003 Joint Conference on AI, Fuzzy System and Gray System, Taipei,
Taiwan, 4–6 (2003).

6. G.C.V. Ramadas, E.M.G.P. Fernandes, Self-adaptive combination of global tabu search and local search for nonlinear equations,
International Journal of Computer Mathematics 89(13–14), 1847–1864 (2012).

7. G.C.V. Ramadas, E.M.G.P. Fernandes, Nonmonotone hybrid tabu search for inequalities and equalities: an experimental study,
Applied Mathematical Sciences 7(11), 503–525 (2013).

8. C. Grosan, A. Abraham, A new aproach for solving nonlinear equations systems, IEEE Transactions on Systems, Man and
Cybernetics - Part A: Systems and Humans 38(3), 698–714 (2008).

9. F. Neri, V. Tirronen, Recent advances in differential evolution: a survey and experimental analysis, Artificial Intelligence Review
33(1-2), 61–106 (2010).

10. J. Brest, S. Greiner, B. Bošković, M. Mernik, V. Žumer, Self-adapting control parameters in differential evolution: a
comparative study on numerical benchmark problems, IEEE Transaction on Evolutionary Computation 10, 646–657 (2006).

11. R. Mallipeddi, P.N. Suganthan, Q.K. Pan, M.F. Tasgetiren, Differential evolution algorithm with ensemble of parameters and
mutation strategies, Applied Soft Computing 11, 1679–1696 (2011).

12. I.G. Tsoulos, A. Stavrakoudis, On locating all roots of systems of nonlinear equations inside bounded domain using global
optimization methods, Nonlinear Analysis: Real World Applications 11, 2465–2471 (2010).

	Introduction
	Differential Evolution
	Basic DE
	Combined mutation DE

	Numerical Results and Discussion

