
Evaluation of a programming toolkit for interactive public
display applications

Jorge C. S. Cardoso1,2
1CITAR/School of Arts

Portuguese Catholic University
Rua Diogo Botelho, 1327
4169-005 Porto, Portugal

jorgecardoso@ieee.org

Rui José
2Centre Algoritmi

University of Minho
Campus de Azurém

4800-058 Guimarães, Portugal
rui@dsi.uminho.pt

ABSTRACT
Interaction is repeatedly pointed out as a key enabling element
towards more engaging and valuable public displays. Still, most
digital public displays today do not support any interactive
features. We argue that this is mainly due to the lack of efficient
and clear abstractions that developers can use to incorporate
interactivity into their applications. As a consequence, interaction
represents a major overhead for developers, and users are faced
with inconsistent interaction models across different displays.
This paper describes the results of the evaluation of a widget
toolkit for generalized interaction with public displays. Our
toolkit was developed for web-based applications and it supports
multiple interaction mechanisms, automatically generated
graphical interfaces, asynchronous events and concurrent
interaction. We have evaluated the toolkit along various
dimensions - system performance, API usability, and real-world
deployment - and we present and discuss the results in this paper.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques –
Software libraries, Modules and interfaces;

General Terms
Design, Experimentation, Human Factors

Keywords
Public display applications; interaction abstraction; toolkit

1. INTRODUCTION
Public digital displays are moving towards open display networks
"that are open to applications and content from many sources"
[5]. This movement entails a shift in the focus from single-
purpose public displays that are developed with a single task or
application in mind, to general-purpose displays that can run
several applications, developed by different vendors. Applications
are a central aspect in the concept of open display network and
have been the focus of recent research that addresses challenges
such as the distribution [4], allowing users to control them on the
public display [19], and dealing with privacy [13]. Another

challenge is providing application developers with appropriate
tools to create interactive public display applications. This work is
concerned with this latter challenge.
Interaction with public displays can be very diverse and use many
types of interaction mechanisms. SMS [14], Bluetooth naming
[11], touch-screens [1], gestures [21], mobile apps [13], and other
mechanisms have been used to interact with public displays. In an
open display network, applications will be developed by third
parties, which will want to distribute them via application stores
[4], or other channels, so that applications can be selected to run
on a variety of public displays, managed by different display
owners. Interactive applications will need to take advantage of the
locally available interaction resources, which may vary between
displays. Developers need tools that help them incorporate
interaction features irrespective of the concrete interaction
mechanisms that will be available in a given display. While
interaction can easily be achieved for a specific display system
with a particular interaction modality, the lack of proper
interaction abstractions means that there is too much specific
work that needs to be done outside the core application
functionality to support even basic forms of interaction. This
usually leads to inconsistent interaction models across different
displays and, as a result, people are not able to develop any
expectations and practices regarding their previous experiences
with public displays.

It seems reasonable to make an analogy between this situation and
the time when desktop computer programmers had to make a
similar effort to support their interaction with users. This problem
was addressed with the emergence of reusable high-level
interaction abstractions, such as the WIMP model and its
associated controls, that provided consistent interaction
experiences to users and shielded application developers from
low-level interaction details [18]. Nowadays, developers benefit
from toolkits that provide user interface widgets that deal with
input, and encapsulate behaviour and visual appearance. Users
have also benefited, because they have learned to interpret the
affordances of these widgets in a way that enables them to more
easily tackle new interfaces by building on previous experiences.

An interaction toolkit for public displays should thus provide
appropriate high-level controls for public displays and
corresponding graphical representations for those controls. In this
work, we assume that public displays may exist in a multi-user
interaction environment [20] and so a toolkit must support
concurrent interactions. To cope with the various input
possibilities, it should also support and abstract input from
multiple heterogeneous interaction mechanisms. We have built a
toolkit for web-based interactive public display applications that
meets those requirements, and simplifies the incorporation of
interactive features into applications.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.
MUM '13, December 02 - 05 2013, Luleå, Sweden
Copyright 2013 ACM 978-1-4503-2648-3/13/12�$15.00.
http://dx.doi.org/10.1145/2541831.2541834

The main contribution of this paper is an evaluation of this toolkit
along various dimensions. First, we evaluate the system’s
performance. Then we evaluate the API’s usability from the
perspective of independent programmers. Finally, we evaluate the
system in a real-world deployment of a public display running
various applications built with the toolkit. Results show that
programmers are able to understand the concepts behind the
toolkit and apply them to create interactive public display
applications, and that users are able to understand the interaction
with those applications.

2. RELATED WORK
Interactive public displays have motivated much research in the
last years that has sought to explore the possibilities of public
displays in various application areas. We first present work on
interaction mechanisms for public displays, giving an idea of the
plethora of possibilities for interaction and of the challenge of
integrating such disparate forms of interaction into an interaction
toolkit for public displays. We then present existing middleware
and toolkits that provide already some form of interaction
abstraction.

2.1 Interaction mechanisms
Many interaction mechanisms have been proposed for public
displays. For example, Rohs [17] has implemented a set of
widgets for visual marker-based interaction that allows users to
activate actions or select options encoded in a visual marker and
send it via SMS (using a custom mobile application). The visual
marker encodes the type (menu, radio or check button list, sliders,
etc.) and layout (vertical or horizontal menu, number of options,
etc.) of the widget, so that the mobile phone application can
immediately superimpose graphical information about the
currently selected item or value. Dearman & Truong [7]
developed Bluetone: a widget that is activated through dual tone
multi-frequency (DTMF) over Bluetooth (BT). Users interact
with an application by changing the BT name of their device to a
system command, wait for the display to pair with the user’s
phone as an audio gateway, and then pressing the keys on the
keypad of their phone. Bluetone supports several users, being
limited only by the BT protocol. This widget is limited to the
DTMF interaction mechanism, and has been developed for an
environment where a single application executes at a time.
Graphically, it consists of a single widget that encapsulates all the
interactive features of the application. Cheverst et al. [3] explored
the file exchange functionality of the BT protocol (OBEX) to
allow users to exchange photos with office door public displays
by sending and receiving files from their mobile phones. SMS
interaction has also been used frequently with public display
applications. Jumbli [14], for example, is a word puzzle game that
allows users to form words with the letters presented on the
public display and send those words, via an SMS message with
the word sent to a pre-defined number. Bluetooth naming is
another approach for providing interactivity to public displays.
Lancaster University’s e-Campus display system [6] or Instant
Places [11] explored Bluetooth naming as an explicit input
mechanism. BT scanners on each display continually discover
devices in the vicinity and send these sightings information to a
content scheduler. To interact, users need only to change the BT
name of their personal mobile device using a pre-defined
command structure and wait for the BT scanner in the place to
pick up the change.

All these are good examples of how to provide users with specific
interaction mechanism to interact with public displays. However
they do not address the question of providing interaction

abstractions to applications so that developers don't have to deal
with the particularities of each interaction mechanism. In all the
previous examples, the assumption was that a specific mechanism
would be available.

2.2 Input Middleware and Toolkits
There has also been some work on input middleware for
ubiquitous systems that aims at providing some level of
abstraction. Magic Broker [9], for example, is an event-based
input infrastructure that allows applications to subscribe to input
from different sources such as SMS, Voice (using Voice XML),
and web interactions. However, it provides a lower level of
abstraction than the one we wish to achieve. For example, it does
not define how users can address individual applications or
interactive features. Other input middleware, such as ICON [8],
allow the dynamic mapping of input devices to applications.
However, these mappings are created for individual applications,
and they work only for local input devices. Also, it does not
define high-level controls suitable for public display applications.
The Proximity Toolkit [15] can be used to rapidly prototype
proxemic interactions of users with various kinds of displays. It
provides high-level proxemic measures, such as orientation,
distance, motion, identity, and location of users and devices in the
environment. Being oriented towards proxemics, the toolkit
provides abstractions such as "is pointing at", "is facing", "is
touching", which can be used to support various forms of
interactions. It does not address, however, interactions such as
sending text, downloading or uploading files, or the integration of
mobile devices to interact with applications. Additionally, the
toolkit relies on specific infrastructure equiment such as a motion
capture system. Hardy & Alezander [10] have developed a toolkit
for projected displays that supports the creation of multiple virtual
displays that can be mapped to various surfaces. Users can
interact with the individual displays by touching, gesturing, or
placing objects on the surface. Interaction is detected with a
Kinect device. The content projected on a surface consists of
standard web content, possibly augmented with the toolkit's code
for detecting interactions. This toolkit is targeted at a very
specific interaction style and, thus, does not provide many of the
high-level controls that are generally required for public displays.

3. DESIGN AND IMPLEMENTATION
3.1 Requirements
A toolkit for interactive public display applications must address
a number of requirements that are specific to the interaction
environment where these applications will run. In previous work
we have thoroughly investigated this [2], but for convenience, we
briefly outline those requirements here.

Public display interaction controls. The toolkit should provide
developers with various types of controls specifically designed to
support the interaction tasks that are relevant for public display
interaction.

Standard graphical representations. The toolkit should provide
graphical cues so that users can easily understand that a public
display is interactive and understand its affordances.

Concurrent and shared interaction. The toolkit should support
multiple, concurrent, interactions from different users.

Multiple interaction mechanisms. The toolkit should support and
abstract several heterogeneous interaction mechanisms.

Ubiquitous interaction. The toolkit should allow users to interact
with an application at any time, regardless of whether the
application is currently showing content on the public display.

Additionally, while designing the API of the programming
library, we had a number of design goals in mind:

Low learning threshold. We wanted an easy to program system,
integrated into the regular application development cycle. We did
not want to introduce additional steps in the typical development
process, nor change too much the existing ones.

Dynamic interfaces. We wanted to allow applications to have
dynamic interfaces where widgets can be created, changed, and
removed at any time. We did not want to introduce compile time
mechanisms that would, for example, force programmers to
produce separate interface descriptions with the only purpose of
being used for generating the web GUI (an automatically
generated mobile user interface for interacting with the display
applications).

Flexible. We wanted an easy to program system, where
developers could focus on the high level aspects of the
interaction, but also have control over fine details of the interface,
such as the graphical appearance of the widgets.

3.2 Architecture and Implementation
We targeted our toolkit – PuReWidgets – at web-based public
display applications. Even though the central concepts could be
applied to other platforms, the web has a number of advantages
including the ease of deployment, distribution and updating, easy
access to extensive web content, and multi-platform support. Web
applications also have some limitations but given the continuous
advances in browser technology, we can expect that these will
continually decrease.

Figure 1. Physical components of the system's architecture.

The PuReWidgets system was designed to support displays in
various independent administrative places, running various
applications developed by third-party developers. Figure 1 depicts
the main physical components of a network of public displays.
From the perspective of a public display, a PuReWidgets based
public display application is a standard web application that is
downloaded from a third-party web server and runs in a standard
web browser component in the public display. Interaction with a
public display application is accomplished through an Interaction
Manager (IM) server that is part of the PuReWidgets toolkit. A
single IM supports various independent applications and displays.

The PuReWidgets toolkit is composed of a widget library that
programmers include in their application’s code, and a web
service that handles interaction events (see Figure 2). When the
application is on-screen, the library receives input events from the

IM and passes them on to the widgets being used by the
application.

Figure 2. Logical components of the toolkit.

The development process of a public display application that uses
PuReWidgets is similar to the development of a regular web
application: developers include the library in their projects and
use the available functions of the library to code the application,
instantiating widgets and registering interaction event callback
functions. The set of HTML, CSS, and Javascript files are then
deployed to a standard web server.

3.2.1 Interaction manager
The IM server mediates all user interaction with the public
display applications. The IM keeps a database of every widget
created and in use by applications and is capable of routing the
various interactions to the correct application. It is also capable of
dynamically generating web-based graphical user interfaces for
desktop and mobile platforms (GUI generator), QR codes for
individual widget interaction (QR code generator), and accepting
input from various text-based mechanisms such as SMS and
email (I/O module). The PuReWidgets library communicates with
the IM via an HTTP/REST protocol service, for submitting and
receiving widget information and input events. The IM is
structured around the following set of concepts:
Place. A place is an administrative area defined by the display
owner. A place can have different levels of granularity: it can
refer to something small like a specific cafeteria, with a single
public display, or to a wider place like a university campus, with
various public displays. A single IM server can handle multiple
independent places, each identified by a unique place id.

Application. An application is a web application, identified by its
URL, which uses the PuReWidgets library. Display owners may
associate several applications with a single place. Each
association is an application instance in the IM, identified by an
instance id. When an application instance is running on the public
display and showing its content, it is said to be on-screen,
otherwise it is off-screen. Off-screen applications can still receive
input, but are not able to react immediately on the public display.
One of the uses for off-screen applications is to support
customization at any time, similarly to [13]: users can send input
to off-line applications to convey their preferences; when later the
application appears on the display it can reflect those preferences.

Widget. A widget represents an interaction feature of an
application. Applications instantiate widgets at runtime, and give
them unique (in the scope of the application) widget ids. When
widgets are instantiated, they are automatically registered in the
IM, i.e., their description is sent to the IM. The registration
process itself is hidden from the application and is done by the
PuReWidgets library. Widget instances may be on-screen, or off-
screen (visible on the public display, or invisible); in either case,
the widget instances are able to receive input and trigger an event.

Widget Option. Widget options are independently actionable
items within a widget. Most widgets have a single option, but
some, for example list boxes, may have various options that users
can independently select. Each widget option must have a unique
widget option id in the scope of a widget.

Reference code. The IM assigns a unique (within the scope of a
place) textual reference code to each widget option. Reference
codes are human-readable identifiers to be used in text-based
interactions, allowing users to address individual options within a
widget. Additionally, places also have reference codes assigned
by the display owner that, together with the reference code of the
widget option, uniquely identifies an interactive feature across all
places and applications of the IM.

Web GUI. The web GUI is a web-based interface that the IM
dynamically generates for all applications in a given place,
allowing users to interact with any widget of any application
through a standard web interface.

3.2.2 PuReWidgets library
The PuReWidgets library is the toolkits’ interface with
programmers. It is a web client library for the Google Web
Toolkit (GWT) platform that offers programmers various widgets
that abstract user interaction into high-level interaction events to
applications. The library transparently handles communication
with the IM for various bookkeeping operations, including
registering the widgets, receiving user input, and forwarding input
to the correct widget. It also generates system-level graphical
input feedback on the public display.

Widgets are capable of receiving simultaneous input from
multiple users using diverse interaction mechanisms. We have
studied interaction features across a large number of public
display systems, and developed widgets to support the most
common interaction scenarios. The following widgets are
currently provided:

Button. A button allows users to trigger actions in the public
display application (Figure 3a).

List box. The list box allows users to select among a set of related
items (Figure 3e).
Text box. A text box allow users to input free text (Figure 3f).

Upload. An upload widget allows users to submit media files to
the public display application (Figure 3c).
Download. A download widget allows the application to provide
files that users can download to their personal devices (Figure
3b).
Check-in. Check-in widgets allow users to signal the application
that they are present (Figure 3d).

Figure 3. Default graphical representations for widgets.

3.2.3 Interaction mechanisms
In its current version, PuReWidgets supports four kinds of input
that allow users to interact with applications: text-based input, a
web GUI, QR codes, and touch-screen interaction.

Text-based interaction includes various different input
mechanisms such as SMS, instant messaging, email, Bluetooth
naming, and other mechanisms where the communication is made
mainly via text messages. We use an approach similar to the one
used by Paek et al. [16] where the IM server is composed of a set
of I/O modules that can receive raw input from different sources
and interpret the interaction commands that are present. We
define a simple command structure to address a specific widget
on an application and pass it additional parameters: <place
reference code>.<widget reference code> <additional
parameters>. The additional parameters are widget-specific and
not all widgets require them. For example, to send a poll
suggestion to the text box of Figure 3.f, in the UCP place, a user
would send “ucp.u10 How often do you read books?” to the
address (SMS number, email address, etc.) of the display system,
which must somehow be advertised to users.
PuReWidgets also dynamically generates a web-based GUI for
desktop and mobile devices. For each place, the IM server
provides a web GUI that allows users to see the available
applications in that place, and interact with any widget currently
in use by any application. The information registered when the
application instantiated the widget is used to determine what web
controls are needed to render the widget in the web GUI. The web
GUI allows users to interact anonymously, or logged in via one of
several authentication providers (Google, Facebook, Twitter,
LinkedIn, etc.).

PuReWidgets also creates QR codes for individual widget
options, allowing interaction with specific application features
simply by scanning a visual code. Applications can use the library
to create and show QR codes on the public display for any widget
they have created. Display owners also have access to the QR
codes through a web interface. For example, display owners may
want to draw attention to a specific feature of an application, or to
a new application, by printing and distributing the QR codes
associated with those features. QR codes embed the place id,
application id, widget id, and option id in an URL that points to
the IM server. When accessed, the IM generates a web interface
for interaction with the specified widget.
Widgets in PuReWidgets are also touch-enabled. In this case,
interaction is always anonymous and the widgets must be on-
screen in order to be interacted with. Currently, PuReWidgets
supports touch interaction with buttons, list boxes, and text boxes.

4. EVALUATION
Given the novelty of the application area of our toolkit, we
performed an evaluation with the aim of covering various
dimensions, making sure we had a generally viable system. We
evaluated PuReWidgets along three major dimensions. First, we
looked at the system’s performance to determine if the current
implementation had any evident bottlenecks or limitations. Then,
we evaluated the API’s usability to determine if programmers
faced any major difficulties in understanding the toolkit's
concepts and structure. Finally, we performed a real-world
deployment of a public display to determine what issues might
arise for users of applications built with our toolkit.

4.1 System Scalability
The IM is a central component of the PuReWidgets toolkit
because it handles all the interactions that happen with a public

display application. It is, therefore, important to determine if its
implementation has any performance bottlenecks or limitation
when handling various simultaneous places and applications.

4.1.1 Procedure
We measured the resource usage and the execution time of the
various requests to the IM for an increasing number of
applications. The IM is implemented over Google’s Appengine1
which measures the amount of resources that an application uses
– CPU, API calls, bandwidth, and storage are the general resource
types measured by Google. For the IM, the most relevant
resources to measure are the frontend instance hours – the sum of
the running time of the various server instances that Appengine
automatically creates to handle the server load; datastore write
and read operations – the number of low-level operations over
the application’s datastore; channels – the number of persistent
connections between a Javascript client and an Appengine server
application. Appengine assigns each resource a daily free quota
above which applications are billed for the resources they
consume.

To estimate the resource needs of the IM, we developed a testing
public display application, which executes the following steps: 1)
creates five button widgets (immediately after startup); 2)
sends/receives one input to one randomly chosen widget (30
seconds after startup); 3) optionally, deletes one of its own
widgets (60 seconds after startup); The base load consisted in one
place running 10 application instances, scheduled to run
consecutively, giving each application 3 minutes of display time,
during a period of 10 hours. Five of those applications were
configured to not delete any widget in step 3. This simulates a
fairly loaded display with 10 interactive applications that
continually create and delete widgets, and receive input. This has
impact on the performance of the IM because the PuReWidgets
library needs to make requests to the IM to carry out these
operations.

We simulated an increasing number of places, up to 24, with the
same application configuration. At the beginning of each
simulation, we reset all the data in the IM server. In addition to
the resource usage, we also measured the time it took for each
request to the IM to execute.

4.1.2 Results
The results for the quota usage for the various resources and the
request execution time, during the 10-hour simulation period, are
shown in Figure 4 and Figure 5. Quota usage results are indicated
as a percentage of the daily free resource quota provided by
Appengine.

The plot of Figure 4 shows a linear increase in the datastore write
and read operations and on the number of channels, with the
increase of the number of places. The instance-hours resource
usage remained fairly constant and near the real time percentage
of the simulation time relative to the number of hours in the free
quota (10 hours equals 36% of the 28 hours of the free quota).
This means that the server was below its CPU capacity and was
able to handle most of the requests with a single application
instance.

Figure 5 shows the box plots of the execution time of the various
requests. Visual inspection of the box plots shows that the
execution time did not vary much with the number of places. This

1 http://code.google.com/appengine/

is congruent with the instance-hour usage and indicates that CPU
is not greatly affected by the number of places.

Figure 4. Resource usage.

Figure 5. Request execution time.

4.2 API Usability
The second dimension in our evaluation was the usability of the
toolkit's API. We conducted a usability evaluation of the API by
asking a group of programmers to use our toolkit through a series
of pre-defined programming tasks in a lab environment. We were
interested in assessing if programmers understood the application
life-cycle and associated callback methods, the various widget
related tasks (creating, deleting, extending, and styling widgets),
and the various input feedback tasks (changing the default
behaviour, and styling the feedback panels). We also wanted to
find out possible problems with the online documentation
(programmer’s guide, and API javadocs) and how to improve it.

4.2.1 Participants
Six programmers participated in our study, selected from a
computer-engineering course. All participants were male, aged
between 21 and 24 years. All participants were experienced
programmers with at least four years (six, on average) of
experience. They all had experience with the Java programming
language, Eclipse IDE, and web technologies (HTML, CSS,
Javascript), but none was familiar with the Google Web Toolkit
framework for web development. Participants were rewarded
monetarily for their collaboration.

4.2.2 Procedure
The session had three phases: an introduction to the toolkit, a set
of programming tasks, and a final questionnaire. In total, the
session lasted for about 4 hours. In the introduction, we presented
the study and its purpose, and we introduced participants to the
toolkit. This presentation followed roughly the sequence of topics
of the Getting Started section of the wiki documentation on the
toolkit’s Google code web page2, which explains: the main
concepts around PuReWidgets, how to setup the development
environment, a HelloWorld application, and how to test and

2 https://code.google.com/p/purewidgets/wiki/TableOfContents

● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ●

Instance
Hours

Datastore
Reads

Channels

Datastore
Writes

0

100

200

300

1 7 10 20 24
Number of places

Pe
rc

en
ta

ge
 o

f f
re

e
qu

ot
a

us
ag

e

0

500

1000

1500

2 3 4 5 6 7 8 9 10 12 14 16 18 20 24
Number of places

R
eq

ue
st

 ti
m

e

deploy a PuReWidgets application. Participants were not required
to set up their development environment, as this was done
previously for them in the laboratory computers, but they were
asked to import, run and test a HelloWorld application during this
presentation.

In the next phase, we asked participants to perform four
programming tasks using our toolkit. These tasks were designed
so that participants would have to use particular features of the
toolkit such as creating and removing widgets, using the web GUI
to test the interaction with their application, deal with input from
different users, deal with on-screen and off-screen widgets, and
customize the input feedback messages of the toolkit. Task 1 –
HelloWorld, was a warm up task that consisted in changing the
existing HelloWorld application. The HelloWorld application
consisted of a single button placed in the centre of the screen,
which toggles the background colour between white and black,
when activated. The task consisted in adding a listbox widget
with several colour options so that users could first select the
background colour from the listbox and then activate the button to
effectively change the background colour of the application. Task
2 – SlideShow, and subsequent tasks consisted of creating a
picture slide show application, based on a given skeleton project
that included functions to fetch pictures from a picture service,
and functions to display a set of thumbnail images on the screen,
but no user interaction code. In task 2, participants were asked to
add a button to each thumbnail so that the corresponding photo
was displayed in large view, the thumbnail was removed from the
list, and a new thumbnail added, when the button was activated.
In task 3 – Multi-user, participants should change the previous
application in order to only display the large view image after two
different users had selected the same thumbnail. In task 4 –
Enhanced feedback, participants were asked to change their
previous implementations so that the slideshow application would
display specific input feedback messages when users interacted.
We asked participants to complete the tasks using the wiki and
javadoc documentation whenever needed, but also to freely ask
the researcher for help. This step was video-recorded for later
analysis of the main difficulties and comments made during the
programming tasks.

In the last phase of the study, we asked participants to fill in a
questionnaire about the PuReWidgets toolkit and the tasks they
had just completed.

4.2.3 Results
We collected three main sources of data regarding this study: the
participants’ source code, the results from the final questionnaire,
and comments from the video recording of the session.

4.2.3.1 Source code
Inspection of the source code produced by the various participants
revealed that in general all participants were able to accomplish
the tasks. However, tasks 3 and 4 revealed some difficulties.

Task 3 required participants to count the number of different
interacting users for each button, and make the application react
only after two different users had activated the button of a given
thumbnail. Four participants mistakenly used the getNickname()
method instead of the getUserId() method from the input event
object to get the id of the user. The nickname is not guaranteed to
be unique, so using that method would cause the application to
behave incorrectly in some cases, although this was hard to detect
during the short coding session. Ignoring this mistake, only one
participant was unable to complete the task. This participant
correctly used the getUserId() method, but did not complete the

logic to count the number of users that had activated a given
button.

In task 4, three of the participants called the feedback
configuration methods inside the button event callback, causing
the first feedback to be displayed with default messages (for the
subsequent inputs, the feedback messages would have been set
correctly). The correct point to call these methods would be right
after instantiating the button widgets.

4.2.3.2 Questionnaire
The questionnaire was meant to assess if participants felt they
understood the various concepts and functions of the toolkit, their
opinion regarding the documentation, and their confidence about
using the toolkit to create a public display application.

We asked participants to rate on a 1 (strongly disagree) to 5
(strongly agree) scale how much they agreed with a set of
statements, distributed by 4 groups:

A) "I understood the concept of [Place, Application, Widget,
Feedback] as used in PuReWidgets."

B) "I understood how to [Create, Delete] widgets", "I understood
how to modify input feedback."

C) "I think the documentation was sufficient", "I think the
Javadoc was clear", "I think the Wiki was clear".

D) "I believe I could create a public display application using
PuReWidgets by myself."

Results are presented as box plots in Figure 6. The left and right
of the boxes represent the first and third quartiles, the band inside
the box represents the median, the whiskers represent the lowest
and highest values within 1.5 IQR of the lower and higher
quartile, and dots represent outliers. Colours are used to represent
the four groups of questions. Results clearly indicate a general
positive assessment of the toolkit by programmers.

4.2.3.3 Comments and observations
The third source of data from the API usability study was the
various comments made by the participants during the
programming session (comments were collected from the
transcription of the video recording and from written comments
requested at the end of the session). We analysed and grouped the
comments into 3 categories: documentation improvement, new
toolkit features, and confusing aspects of the toolkit.

Figure 6. Box plots of the answers to the questionnaire.

Regarding the documentation improvement, some comments
focused on very specific aspects such as “there should be a

●

●

●

●

D __

C
__

__
__

__
__

B
__

__
__

__
__

_
A

__
__

__
__

__
__

__
_

Develop by myself

Wiki was clear

Javadoc was clear

Documentation
was sufficient

Modify input feedback

Delete widgets

Create widgets

Feedback

Widget

Application

Place

1 2 3 4 5

reference that the ’delete’ operation needs to be explicit”, “the
input feedback on/off screen is automatic, and there should be a
reference to that”, and “the documentation should indicate which
characters are valid for the widget ids”. Other comments were
more general, requesting more examples and tutorials: “The
’getting started’ section of the wiki should have one more
example besides the hello world (a more complex example) . . .”,
and “Regarding the general documentation, the wiki could me
more enlightening. . . . it would be useful to have one tutorial that
covered these more common operations (creating widgets,
removing them, inspect the input and produce output)”

Regarding the toolkit features, participants wished the toolkit
offered things such as automatic widget removal “there should be
something like a garbage collector”, automatic widget id
sanitization: “It would be also interesting that, when an invalid id
was entered, that id was ’cleaned’ internally . . . to avoid
problems during development.”, a loading indicator on the
dynamically generated web GUI: “[the web GUI could be
improved by] show a loading status . . . just to let users know that
it’s refreshing [the list of widgets]”.

Participants also expressed their confusion with some aspects of
the toolkit, particularly about two related aspects: the
configuration of the feedback messages and the concept of on-
screen and off-screen widgets: “About task 4 I was a bit confused
about how to call the setOnScreenFeedback or the
setOffScreenFeedback [methods] because I thought it was
necessary to detect if the widget was on screen or off. However,
after I found out you just call the two and that the toolkit does the
rest I thought it was interesting.”

4.3 Real-World Deployment
The final part of our evaluation involved a public display
deployment. The goal of this study was to find out what problems
would arise during a real-world deployment of interactive
applications developed with PuReWidgets. In this phase, we were
particularly interested in finding out any issues related to the user
interaction process: finding out that an application was
interactive, interacting through various mechanisms, and
determining the result of the interaction.

4.3.1 Display configuration
We developed three interactive public display applications during
this phase: the Public YouTube Player, Everybody Votes, and
"Wrod Game".
The Public YouTube Player is an application that searches for,
and plays YouTube videos. It provides several interaction features
to users such as “liking” videos that have been recently played;
getting the URL of a recently played video to play it in their
devices; selecting a video to be played next from the list of search
results; and reporting inappropriate videos. The application is

composed of four screens which iterate sequentially: the selected
video played in full screen, the recently played, a tag cloud of the
current keywords used for searching, and a list of videos available
to play next (Figure 7a). The display owner can customize this
application using a web interface that allows setting various
parameters such as the duration of each screen, the list of initial
search keywords, the maximum duration of the videos, and other
YouTube search parameters.

The Everybody Votes application allows users to vote on polls
created by display owners. It is composed of three screens: a
screen that iterates through the open polls (Figure 7b), showing
the poll question, possible answers, and time left before the poll
closes; a screen that iterates through the closed polls and shows
their voting results; and a suggest box screen enticing users to
suggest their own polls (which will be moderated by the display
owner).

The Wrod Game application displays anagrams of words and
invites users to guess what the word is (Figure 7c). When players
guess the correct word they earn points proportionally to the word
size and can see the definition of the word they guessed correctly.
For this study, we used an existing display placed at a bar of the
School of Arts - Portuguese Catholic University, which was being
used only for non-interactive content. We created a content
schedule that included the three interactive applications
developed with PuReWidgets described previously, and some
non-interactive applications.

4.3.2 Participants
In order to have a group of users interacting periodically with the
display, we asked a group of people from the School of Arts to
interact with the display whenever they went to the bar, during a
two-week period. Four people answered our email request for
participants: two teachers, and two PhD students.

4.3.3 Procedure
We had an initial meeting with each participant where we
explained the purpose of the study and the procedure. We told
participants that the display had three interactive applications and
asked them to interact with those applications as much as possible
during their normal visits to the bar. We asked participants to try
to use at least two interaction mechanisms (SMS, Web page,
Email, or QR codes). We also asked them to take notes of
problems they found during their interactions with the display,
suggestions of things to improve, or just general comments.

We did not explain to participants how to interact with the display
system. During the study, we distributed at the bar printed flyers
with interaction instructions. We also distributed two QR code
flyers for two specific polls of the EveryBody Votes application:
one about the best city to live in Portugal, and another about
which team would win the championship that year. These flyers

a) b) c)

Figure 7. Sample screens of the public display applications.

were distributed regularly – usually every other day – at the bar.
These flyers, in addition to the public display application that
shows how to interact, were the only source of interaction
instructions for the participants of the study.

At the end of the two-week period, we met again with participants
and interviewed them. The interview was unstructured but we had
a set of probe questions (did you understand how to interact with
the display?, with which applications did you interact?, which
mechanisms did you use to interact with the display?, which one
did you prefer?, which problems did you encounter?) to get
participants to elaborate on the difficulties they encountered and
on possible solutions. The interviews were audio-recorded and
later analysed.

4.3.4 Results
Altogether, participants used all the available interaction
mechanisms to interact with the display, and they were generally
able to understand and use the display system. Participants
successfully interacted with the existing applications via SMS,
email, web and QR codes to activate buttons, to send text to text
boxes, and choose options from list boxes. However, they faced a
few initial difficulties. There were three main issues identified by
participants during the interaction. We present the main issues
and also some of the suggestions for improving the system.
The first issue was about how to interact. Two participants
reported some difficulty because the display system addresses
(web address, SMS, email) were not always visible. The
Interaction Instructions application was only shown for brief
periods of time, and printed flyers were not always available.
Since participants did not memorize the display system addresses,
on some occasions they were unable to interact. However, after
seeing the instructions, participants said they had no difficulty in
sending input to the display system, as the instructions were clear
and the steps easy to follow.

Another issue was related to the asynchronous interaction model
supported by PuReWidgets. Although users did not express any
difficulty in understanding the reaction of the system in the cases
were they were interacting with an on-screen application, one
participant pointed out his confusion when interacting with off-
screen applications. “Sometimes it [the display] was slow to react.
Sometimes it reacted immediately, other times it took a lot of
time.” This participant’s mental model of the system was that
interacting with a particular application would cause the
application to immediately appear on the public display to react to
his input. This caused him to understand the lack of feedback on
the public display as a system error, and try to send input again.
Another issue was the interaction with public display applications
when away from the public display. Although we did not
encourage participants to interact with the public display
applications from the desktop computers in their offices in the
school, some participants did so. One participant expressed his
confusion about his interactions with the Wrod Game application.
“for one word, I tried ever combination I could think of, but it
didn’t change in the application [web GUI]. I was in doubt about
whether it [the input] really got there”. This happened because
the web GUI does not reflect changes to the application's widgets
immediately.
Participants also had some suggestions to make the system easier
to use. A common suggestion was to put up a poster with printed
instructions permanently next to the public display so that they
would be always accessible, instead of having to rely on the
printed flyers, which were not always available. A final

suggestion by one participant was to have simpler reference codes
for SMS interaction: “for example, on the football championship
poll, instead of having arbitrary references codes, why not simply
use the football team names?”

5. DISCUSSION
The toolkit met its goal of achieving a low learning threshold as
can be attested by the programming study in which programmers
were able to use the toolkit after a short introduction, and by the
real-world deployment, in which users were able to interact with
the developed applications without any major difficulties. It also
met its goal of being flexible, supporting various interaction
mechanisms and giving fine control over the visual appearance
and behavior of the interaction features of public display
applications.

5.1 Programming model
The programming model of PuReWidgets makes it easy for
programmers to start developing public display applications. Even
though some concepts about public display applications are not
familiar to programmers, the fact that the development cycle is
very similar to that of standard web applications makes it easy for
them to start developing. Even after only a very short contact of
about 4 hours with the toolkit, participants in the programming
study were confident that they could create an interactive public
display application by themselves using PuReWidgets.

In general, programmers stated they understood the concepts
behind the toolkit, and the results from the programming tasks
show that they were able to successfully apply them. Perhaps the
most salient problem that the programming study identified was
the confusion about configuring the feedback for on-screen and
off-screen widgets. This confusion was explicitly mentioned by
one participant and is also apparent in the analysis of the source
code for task 4 – only one participant stated he did not complete
the task, but in fact three participants failed to correctly configure
the feedback messages. The main issue to be addressed in a future
version of the toolkit is the documentation regarding the concept
of on-screen and off-screen widget. We did not include in the
questionnaire an explicit question about this concept, but we
believe participants factored it together with the concept of
widget, which accounts for a slightly lower score of the statement
about the concept of widget. Traditional desktop widgets are
associated with graphical objects that can only be interacted with
when they are visible on the display, so participants may have had
some difficulty understanding that invisible widgets can still be
interacted with and generate interaction events. The PuReWidgets
documentation must draw special attention to these differences in
order to facilitate developer’s adaptation to the concept of widget
as used by PuReWidgets.

Another issue is conveying more precisely why the two graphical
states of a widget – on-screen, and off-screen – may require
different input feedback information and how that information
can be configured. Currently, the documentation (wiki and
javadoc) does not provide a clear listing of all input parameters
that can be used in the feedback information, which may account
for some of the participants’ difficulty with task 4. Finally, the
documentation is currently missing a clear explanation of the life-
cycle of an input event. In task 4, three participants used the
correct methods to configure the feedback, but they failed to
successfully complete the task because they invoked those
methods in the wrong place. This mistake may be attributed to by
the lack of documentation regarding at which point the input
feedback is triggered. Currently, input feedback is displayed
immediately before the application receives the event, so

configuring the feedback message inside the callback method has
no effect on the first feedback for that widget.

5.2 Mental models
PuReWidgets introduces some new concepts that application
users must deal with and understand. The fact that participants of
the real-world deployment study expressed no particular difficulty
in using the various interaction mechanisms, and were able to use
different mechanisms to interact with the same application
feature, is a positive result. It supports one of the main functions
of the toolkit: to abstract input from various sources. In addition,
participants did not express any difficulty understanding the
applications' interaction features implemented with the various
widgets. This is also a positive aspect that supports the claim that
the current widgets are generally understood and usable. In this
regard, the mental model that users made of the system seems to
have been enough to interact with the public display.

The on-screen/off-screen application model was a problem for
some users because it introduced a discrepancy between the
system's model and the mental model that those users created.
The system's model is that even if an application is off-screen,
users can still send input to it, but the application will only react
when it comes back on-screen. However, some participants
expected applications to immediately appear on the display if they
interacted with it. This is something that cannot be totally
resolved by an interaction toolkit alone. This behaviour depends
on the specific application scheduler, and possible scheduling
restrictions imposed by the display owner. In our deployment,
applications followed a sequential time-based scheduling, which
did not allow for the behaviour that some participants expected.
Supporting asynchronous interactions imposes fewer restrictions
on the application and interaction models, allowing users to send
input to an application without having to wait for it to be on-
screen. Clearly, however, this behaviour requires additional
capabilities on the display system in order to provide users with
enough information about the behaviour of the display. For
example, telling users how long it will take before the application
is put on-screen, would help users form a better mental model of
the display's behaviour. Currently, we have modified the
generated web GUI to inform the user when the targeted
application is off-screen and that it may take a while for it to react
to the user's input. However, this is a specific solution for the
mobile interface. A more general solution would be to display
additional feedback on the public display itself, but this would
require a different application scheduler, capable of showing
application notifications.

Another issue mentioned by participants in the real-world
deployment was the fact that they had trouble knowing the
various display system addresses for interaction, even though
these addresses were shown periodically on the display, and were
on the paper flyers distributed on the bar. This suggests that
system addresses should be always be available and visible near
or on the public display. We have since created a sticker
application and widget that can be used to display this
information on the display, while taking up only a small screen
space. Another alternative is to provide a mobile application that
supports the various phases of interaction with a public display,
including discovering its address [12].

5.3 Functionality and Flexibility
Developing the applications for the real-world deployment gave
us considerable insight on the functionality that the toolkit should
provide. We used the requirements from these applications to
improve the toolkit and make it more flexible to accommodate the

necessities of various types of public display applications.
Additionally, the programming study and the real-world
deployment allowed us to better understand the current limitations
of the toolkit. Next, we highlight some of the functionality and
flexibility of the toolkit and some of its current limitations.

5.3.1 Application parameters
While developing the Public YouTube Player application, it
became obvious that there were application instance parameters
that display owners should be able to configure. These parameters
are automatically stored in the server of the application and can
be edited through a web interface. Programmatically, parameters
are accessed in a similar way to Javascript's local storage, as key-
value pairs. Although this is not directly related to the interaction
or specific to public display applications, it makes sense to
support application parameters in PuReWidgets because they are
related to a specific instance of an application. This alleviates
programmers from explicitly having to deal with different places
and application instances. Additionally, application parameters
can be overridden by URL parameters, providing more flexibility
in the way that applications can be configured.

5.3.2 QR Codes
In the real-world deployment we used the QR code generation
interface for display owners to create flyers for some of the polls
of the EveryBody Votes application. This interface is generated
automatically for display owners without the need for any
intervention from the application programmer. This proved to be
a valuable functionality as it allows display owners to draw
attention to any interaction feature by using the generated QR
codes in custom flyers that can be distributed on the place.

5.3.3 Custom reference codes
Although one participant suggested that reference codes could be
made simpler to memorize by using words from application
domain, this feature was already implemented in the toolkit
during the real-world deployment, but was not used by any of the
applications. Applications can suggest their own reference codes
to be used in each widget, instead of the randomly generated
ones. If there is no conflict with other already in use reference
codes, the IM will honour the application’s request.

5.3.4 Rapidly changing widgets
The deployment of the Wrod Game application showed one
limitation of the current implementation of the web GUI: its
inability to cope with rapidly changing widgets. To limit the
number of persistent connections to the server, the web GUI uses
a polling approach to periodically ask the IM server for updates
about the application’s widgets. For applications that change their
interface frequently, by adding, removing, or changing the
description of existing widgets, this polling approach results in
temporarily out-of-sync interfaces. This was noticeable in the
Wrod Game application, which changes the description of the text
box widget to reflect the current anagram. Frequently, the
anagram displayed in the web GUI was not the same as the one
displayed in the public display, leading users to submit wrong
guesses. This problem may be addressed with persistent
connections, making sure the web interface is updated at a fast
enough pace.

5.3.5 Delayed synchronization technique
The PuReWidgets library uses a delayed synchronization
technique, where updates to a widget are only propagated to the
IM a few seconds after the last change to the widget. In this
technique, changing a property of a widget marks that widget as
“dirty” and resets a delay timer. When the timer expires, all dirty

widgets are sent to the IM. This allowed us to remove the need to
explicitly send a widget to the IM, simplifying the API and, at the
same time, minimize the network and server overhead.

6. CONCLUSION
We have presented a widget toolkit for the development of web-
based interactive public display applications. This toolkit provides
high-level controls that abstract the input from several
heterogeneous interaction mechanisms, allowing programmers to
focus on the interaction features of their applications, instead of
on the low-level interaction details.

We have evaluated the toolkit along various dimensions – system
performance, API usability, real-world deployment – that
allowed us to cover the various aspects of the system. The
evaluation results are generally positive, and show that the toolkit
reaches its goals. We realize that the abstractions embedded in the
desktop computing model exist at multiple levels and are the
result of many years of evolution in interface design. In this work,
we do not aim to reach anywhere near the equivalent of that for
public displays, but simply to provide a first step in that direction.
Hopefully, this toolkit will inspire the development of other
toolkits and libraries, with different aims and offering different
interaction models, contributing to open up the development of
interactive public display applications.

7. ACKNOWLEDGMENTS
Jorge Cardoso has been supported by “Fundação para a Ciência e
Tecnologia” (FCT) and “Programa Operacional Ciência e
Inovação 2010”, co-funded by the Portuguese Government and
European Union by FEDER Program and by FCT training grant
SFRH/BD/47354/2008.

8. REFERENCES
[1] Alt, F. et al. 2011. Digifieds: Evaluating Suitable Interaction

Techniques for Shared Public Notice Areas. Adjunct
Proceedings of the 9th International Conference on
Pervasive Computing (2011).

[2] Cardoso, J.C.S. and José, R. 2012. PuReWidgets: a
programming toolkit for interactive public display
applications. Proceedings of the 4th ACM SIGCHI
symposium on Engineering interactive computing systems -
EICS ’12 (New York, NY, USA, Denmark, Jun. 2012), 51.

[3] Cheverst, K. et al. 2005. Exploring bluetooth based mobile
phone interaction with the hermes photo display.
Proceedings of the 7th international conference on Human
computer interaction with mobile devices & services -
MobileHCI ’05 (New York, New York, USA, 2005), 47.

[4] Clinch, S. et al. 2012. Designing application stores for public
display networks. Proceedings of the 2012 International
Symposium on Pervasive Displays - PerDis ’12 (New York,
New York, USA, Jun. 2012), 1–6.

[5] Davies, N. et al. 2012. Open Display Networks: A
Communications Medium for the 21st Century. Computer.
45, 5 (May. 2012), 58–64.

[6] Davies, N. et al. 2009. Using bluetooth device names to
support interaction in smart environments. Proceedings of
the 7th international conference on Mobile systems,
applications, and services - Mobisys ’09 (New York, New
York, USA, 2009), 151–164.

[7] Dearman, D. and Truong, K.N. 2009. BlueTone: a
framework for interacting with public displays using dual-

tone multi-frequency through bluetooth. Proceedings of the
11th international conference on Ubiquitous computing -
Ubicomp ’09 (New York, New York, USA, 2009), 97–100.

[8] Dragicevic, P. and Fekete, J. 2002. ICON: input device
selection and interaction configuration. Companion
proceedings of the 15th ACM symposium on User Interface
Software & Technology (UIST’02), Paris, France (2002),
27–30.

[9] Erbad, A. et al. 2008. MAGIC Broker: A Middleware
Toolkit for Interactive Public Displays. 2008 Sixth Annual
IEEE International Conference on Pervasive Computing and
Communications (PerCom) (Mar. 2008), 509–514.

[10] Hardy, J. and Alexander, J. 2012. Toolkit support for
interactive projected displays. Proceedings of the 11th
International Conference on Mobile and Ubiquitous
Multimedia - MUM ’12 (New York, NY, USA, Dec. 2012),
1.

[11] José, R. et al. 2008. Instant Places: Using Bluetooth for
Situated Interaction in Public Displays. IEEE Pervasive
Computing. 7, 4 (Oct. 2008), 52–57.

[12] José, R. et al. 2013. Mobile applications for open display
networks: common design considerations. Proceedings of
the 2nd ACM International Symposium on Pervasive
Displays -- PerDis ’13 (Jun. 2013), 97–102.

[13] Kubitza, T. et al. 2013. Using mobile devices to personalize
pervasive displays. ACM SIGMOBILE Mobile Computing
and Communications Review. 16, 4 (Feb. 2013), 26.

[14] LocaModa App Store: 2010. http://locamoda.com/apps/.
[15] Marquardt, N. et al. 2011. The Proximity Toolkit:

Prototyping Proxemic Interactions in Ubiquitous Computing
Ecologies. Proceedings of the 24th annual ACM symposium
on User interface software and technology - UIST ’11 (New
York, New York, USA, Oct. 2011), 315.

[16] Paek, T. et al. 2004. Toward universal mobile interaction for
shared displays. CSCW ’04: Proceedings of the 2004 ACM
conference on Computer supported cooperative work (New
York, NY, USA, 2004), 266–269.

[17] Rohs, M. 2005. Visual Code Widgets for Marker-Based
Interaction. 25th IEEE International Conference on
Distributed Computing Systems Workshops (Washington,
DC, USA, 2005), 506–513.

[18] Swick, R.R. and Ackerman, M.S. 1988. The X Toolkit: More
Bricks for Building User Interfaces, or Widgets for Hire.
Proceedings of the Usenix Winter 1988 Conference (1988),
221–228.

[19] Taivan, C. et al. 2012. Selection and Control of Applications
in Pervasive Displays. 6th International Conference on
Ubiquitous Computing & Ambient Intelligence (Victoria-
Gasteiz, Spain, 2012).

[20] Terrenghi, L. et al. 2009. A taxonomy for and analysis of
multi-person-display ecosystems. Personal and Ubiquitous
Computing. 13, 8 (Jun. 2009), 583–598.

[21] Vogel, D. and Balakrishnan, R. 2004. Interactive Public
Ambient Displays: Transitioning from Implicit to Explicit,
Public to Personal, Interaction with Multiple Users.
Proceedings of the 17th annual ACM symposium on User
interface software and technology - UIST ’04 (New York,
New York, USA, 2004), 137–146.

