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Abstract

In this work we solve Mathematical Programs with Complementarity Constraints
using the hyperbolic smoothing strategy. Under this approach, the complementarity
condition is relaxed through the use of the hyperbolic smoothing function, involving a
positive parameter that can be decreased to zero. An iterative algorithm is implemented
in MATLAB language and a set of AMPL problems from MacMPEC database were
tested.
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1 Introduction

Mathematical Programs with Complementarity Constraints (MPCC) is a subclass of more
general Mathematical Programs with Equilibrium Constraints (MPEC). These kind of con-
straints may come in the form of a game, a variational inequality or as stationary conditions
of an optimization problem. 'The main applications areas are Engineering and Economics
[1], 2], [3]. They are so widespread in this areas because the concept of complementarity is
synonymous with the notion of system equilibrium, They are very difficult to solve as the
usual constraint qualifications necessary to guarantee the algorithms convergence fail in all
feasible points [4]. This complexity is caused by the disjunctive nature of the complemen-
tarity constraints. They have been proposcd some nonlinear approaches to solve MPCC,
starting with the smoothing scheme [5], [6], the regularization scheme [7], [8] the interior
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point methods [10], the penalty approaches [11], [12], [13] and the "elastic mode” for nonlin-
car programming in conjunction with a sequential quadratic programming (SQP) algorithm
[14]. On this paper we present the hiyperbolic smoothing strategy [15] and we apply it for
solving MPCC. The proposed method adopts a O differential class function, in order to
overcome the difficulties on solving the complementarity constraints.

This paper is organized as follows. Next section defines the MPCC problem. Some optimal
issues are presented in Section 3. The hyperbolic smoothing technique and the MATLAB
algorithm are described in Section 4. Numerical experiments using the hyperbolic smooth-
ing algorithm are reported in Section 5. Some conclusions and future work are exposed in
Section 6.

2 Problem definition
We consider Mathematical Program with Complementarity Constraints (MPCC):

min  f(a)

st clz)=0,i¢eE, (1)
ci(z)>0,4i€1,
0<m Lagz0,

where f and ¢ are the nonlinear objective function and the constraint functions, respectively,
assuned to be twice continuously differentiable. F and I are two disjoined finite index sets
with cardinality p and m, respectively. A decomposition x = (¥g, x1,32) of the variables is
used where zg € R” {control variables) and (21, %2) € R? (state variables). The expressions
0 < Lag>0:R% - RY are the ¢ complementarity constraints. One attractive way of
solving (1) is to consider its equivalent nonlinear programming formulation:

min  f(w)
st olxy=0, i€ E,
(@) >0, i¢ 1, (2)

where X is a diagonal matrix with z1 as diagonal, On this formulation the complementarity
constraints are replaced by a set of nonlinear inequalities, such as 21;20; <0, 7 =1,...,¢q,
enabling the use of standard NLP solvers to solve the complementary constraints,

3 Optimal issues

This section intraduces some concepts related to stationarvity and first order conditions.
The optimality concepts follow the development of [16] and the corresponding proves can
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be consulted in this work. Consider two index sets: Xy, Xy C {1,...,¢} with X1 U X5 =
{1,...,q}, denoting the corresponding complements in {1,...,¢} by Xi* e X&. For each
pair of index one define the relaxed NLP corresponding to (1):

min  f(z)
st elx)=0,i€E,
Cj(."l,‘) = iel,
@y =0, Vi € X3, (3)
wg; =0, Vi € X{,
14 >0, Vj = XQ}
@95 > 0, Vi € X).

Concepts like constraints qualification, stationarity and second order conditions of the
MPCC problem will be defined in terms of (3). The linear independence constraint cualifi-
cation, LICQ), is extended to MPCC that is MPCC-LICQ:

Definition 1. MPCC-LICQ Consider 1,29 > 0 and define: X = {5 : @y = 0}, Xo =
{4 + w25 = 0}. The MPCC problem verifies the MPCC-LICQ at @ if the corresponding (3)
verifies the LICQ.

If #* is a local solution of (3) and satisfies 237 =% = 0, then 2* is also a local solution of

original MPCC.
There are several kinds of stationarity defined for MPCC problem. Among them, the
strong stationarity is the following one:

Definition 2. Strong stationarity z* is a strong stationary point if exist Lagrange multipliers
A, 1 and T, so that:

0
Vit =[Veihier  Vig),iellA—-| &1 | =0,
/3
g =0,i€E,
¢ 20,i¢el,
x3 > 0, (4)
a1; = 0 or a3; = 0,
N2 0del,
c,-)\;zO,

7 -

&y =0,

X3y = 0,

if 1,’]*3 = .1;§j =0 then #y; > 0 and 735 = 0.
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Note that (4) are the first order optimality conditions of the problem (3) at z*. As
theoretical support, we summarized some known results concerning constraint qualifications
and first order optimality conditions of MPCC, Based on these ideas, a computational imple-
mentation of a hyperbolic smoothing strategy was developed. Details of the corresponding
hyperholic smoothing algorithm are in next section.

4 Hyperbolic smoothing

‘They have been proposed several smoothing approaches, the most obvious smoothing analy-
sed by 9] is to replace Xy29 < 0 by Xyxy < e, and solve a sequence of NLPs, decreasing ¢,
to zero, Another similar approach studied by [7] is to gather the complementarity constraints
into a single constraint by 21 s < ¢. Other alternative is to penalize the complementarity
constraints [12], solving a sequence of NLPs where the objective is modified as

min f(2) + pral o
for a sequence of increasing penalty parameters pp > Q.
g ¥ D %

Another smoothing idea [6] is to replace the complementarity constraints by the smoothed
function,

(@15, w25) = \/(ﬂ»‘lj — @g;)? + 4p — w1y — 29 = 0,

for j=1,...,q, where 1 > (0 is a parameter that decreases to zero,
On this work we consider the following NLP:

min  f(x)

st. cz)=0,i€kE,
ci(z)>0,iel, (5)
iy 0: @ = Oa
Py, 22) <0,

where d(x1,%2) = (pr(1,221),..., 0 (®1g,29)) I a vector and ¢, is the hyperbolic
smoothing function defined as follows:

1
prlTig wa) = 5 (fb‘lj-’b‘zzj + m> ,

for j =1,...,¢ and v —+ 0. An algorithm was implemented (Algorithm 1) to iteratively
solve problem (5) with 7 —» 0. This algorithm has two iterative procedures, the inner one
is performed by fmincon routine from MATLAB Optimization toolbox, that uses the SQP
method.
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Algorithm 1 Hyperbolic smoothing
1: Take initial values xp, 75 > 0 and tolerances €1, €s.
2 for £ =0,1,2,... do
3:  Solve the minimization problem (5} with xz, 7 obtaining zg4;.
4 if || VL(@E41,. . )] < e and Jafzg|| < ep then
5 STOP.
6  else
T: Tl =TT, 0 << < L
8
9

end if
: end for

To evaluate the stop criterium in the algorithm, we consider the following equality in
the solution z*:
m D q
VIL(*, 8,7,6) = Vf(a*) — Zéﬁ?ci(w*) - z'ych,'(:c*) + Z&thm(x*)
i=1 i=1

J=1

where for j =1,...,¢ and z € 8" we have

V(PT,j(:E*) = 1 (V!L‘;jﬂ?gj + a’ljagjva'lja‘gj .
The Lagrange multipliers &, and £ are an output of the fmincon routine from MATLAB.
The tolerances used in the stop criterium ave €; = eg — 1074, The initial choices, 7o = 0.25
and r = 0.25 were considered. Next section reports the numerical results using 45 test
problems,

5 Numerical results

This section describes the numerical experiments with an implementation of the hyperbolic
smoothing scheme for problem (1). The computational experiments were made on & 2.26
GHz Intel Core 2 Duo with 8GB of RAM, MAC OS 10.6.8 operating system. The MATLAB
version used was 7.11.0 (R2010b). The fmincon routine is connected to the modeling lan-
guage AMPL [17] by a MATLAB mex interface and the test problems are from MacMPEC
database [18].

Table 1 reports the numerical results achieved by Algorithin 1, the first colunn indicates
the name of the test problem, from column 2 to 5, the problem dimensions are presented.
Column f* shows the final objective function value and column || VL|| presents the norm of
the Lagrangian function of problem {5). The last three columns give information about the
performance of the algorithim. Column int presents the mumber of internal iterations per-
formed by the fmincon routine from MATLAB, column ext shows the number of external

@CMMSE Page 1033 of 1797 ISBN: 978-84-616-2723-3




HYPERBOLIC SMOOTHING STRATEGY TO Sows MPCC

Problem n 7 P q A A int ext nfc

bardl b 3 1 3 17.000 1.781910e-15 63 10 661

bard3 [ 2 3 1 -12.679 8.149116e-09 19 18 161

bardim G 3 H 3 17.000 9.9159933e-16 40 10 480
bard2m 12 4 B 3 -6598.000 7.831410-006 104 10 2076
bilevel2 16 g 4 8 -6600,300  5.560937-05 229 13 5276
bilevel2m 16 9 o 8 -6600.000  5.560937e-05 229 11 5275
dempe 3 i 1 1 28.258 5.577955¢-06 176 26 3052
desitva 8 2 2 2 -1.000 7.450551e-09 35 13 67T
df1 2 3 4] hH 0,000 $.425165¢-09 13 10 54

ex8.1.1 13 i3 7 & -13,000 1.159107e-15 27 20 419
ex9.1.2 8 2 5 2 -3.000 1.364484e-07 a5 22 B21

ex9.1.4 8 2 5 2 -37.000 4.322747c-15 22 i T 229
ex9,1.6 13 5 T & -1.0068 6.182457¢-15 27 21 421

©x9,1.8 11 4 5 3 -3.250 1.865068c-16 23 19 311

x9,1,10 11 4 5 3 -3.250 4.965068¢-16 23 19 311

ex8.2.9 9 3 5 3 2.000 5.787607e-16 16 10 281
Ap2 4 2 0 2 0.000 1.568410e-07 58 12 706
fipt-1 80 60 4 30 0.000 5.1321350-12 n 10 502
flps-2 110 110 4] G0 0.000 9.162046e-12 11 10 1232
flp4-3 140 170 o] 7o G.000 7.670026e-12 il 10 1562
fipd-4 200 250 0 100 9.000 9.583091e-12 11 10 2322
incid-setl-8 118 54 50 49 0.000 1,147902e-14 15 11 1649
incid-setle-B 117 Gl 49 49 0.600 1,235018e-07 14 10 1844
jrl 2 1 o 1 0.500 2,349058e-08 63 3 457
kthi 2 1 4] 1 0.600 o 3 2 12

kth2 2 1 4] 1 0,000 2.01469%e-03 13 10 53

ktha 2 1 4] 1 0,500 G.552287¢-08 23 0 236
nashla [i] 2 2 2 0,000 1.701382¢-07 13 0 104
nashlb 6 2 2 2 0.000 2.356188e-07 16 it 187
nashle G 2 2 2 0.000 2.359719c-07 14 10 130
nashld G 2 2 b 0.000 2.359995¢-07 16 10 153
cutrata3l 5 4 [0} 4 3.208 2.701044c-08 85 10 203

outratad? i} 4 0 4 3449 2.823092¢-038 139 15 3419
outrata33 5 4 [} 4 4.604 6.415710e-07 144 12 2674
outratad4 5 4 0 4 6.693 4.768317e-07 172 17 2662
gqpecl 30 20 o] 20 §0.000 1.055822¢-14 13 i0 416
scholtesl 3 1 0 1 2.000 5.176421e-08 107 10 2137
scholtes2 3 H 0 1 15.000 1.336380e-07 107 10 2137
scholtes3 2 1 o 1 0.500 2.279238¢-07 36 11 380
scholtesh 3 2 Q 2 1.¢00 7.377520c-08 223 10 1887
scalal 2 1 4] 1 1.C00 0.643328e-05 107 23 824
scalo2 2 1 G } 1.900 1.491230e-06 T4 17 725
scaled 2 1 Ju] 1 1.000 2.210586¢-05 23 1z 177
scalel 2 1 Ju] 1 100.000 7.805362¢-05 43 11 432
sl1 & 3 2 3 0.0001 3.2669390-03 13 10 157
stackelbergl 3 1 1 1 -3266.667 1.101177e-04 45 9 8448

Table 1; Numerical results.

iterations and the last column reports the number of function cvaluations. The solutions
obtained by Algorithm 1 are similar to the ones reported in MacMPEC database with good
accuracy.

6 Conclusions and future work

An iterative algorithm in MATLAB language to solve MPCC was implemented. The algo-
rithm aims to compute a local optimal solution joining the hyperbolic smoothing the SQP
strategy. The algorithin is still in an improvement phase but some conclusions can already
be taken: the promising numerical results present good accuracy of the solutions when com-
pared with the ones provided from the MacMPEC test problem database. As future work,
it is intended to test the mmethod on large scale test problems and compare the hyperbolic
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smoothing strategy with others smoothing methods suggested in literature.
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