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A model with six mutually-exclusive compartments related to dengue is studied. Three vector
control tools are considered: insecticides (larvicide and adulticide) and mechanical control. The
basic reproduction number associated to the model is presented. The problem is studied using
an optimal control approach. The human data is based on the dengue outbreak that occurred
in Cape Verde. Control measures are simulated in different scenarios and their consequences
analyzed.
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1. Introduction

Dengue is a vector borne disease transmitted to humans by the bite of an infected
female Aedes mosquito. Dengue transcends international borders and can be found
in tropical and sub-tropical regions around the world, predominantly in urban and
semi-urban areas. The risk may be aggravated further due to climate changes and
globalization, as a consequence of the huge volume of international tourism and
trade [13].

There are four distinct, but closely related, viruses that cause dengue. Recovery
from infection by one virus provides lifelong immunity against that virus but confers
only partial and transient protection against subsequent infection by the other three
viruses [15]. Unfortunately, there is no specific effective treatment for dengue.

Primary prevention of dengue resides mainly in mosquito control. There are
two main methods: larval control and adult mosquito control, depending on the
intended target [9]. The application of adulticides can have a powerful impact
on the abundance of adult mosquito vector. This is the most common measure.
However, the efficacy is often constrained by the difficulty in achieving sufficiently
high coverage of resting surfaces. Besides, the long term use of adulticide has several
risks: the resistance of the mosquito to the product, reducing its efficacy, and
the killing of other species that live in the same habitat. Larvicide treatment is
done through a long-lasting chemical, in order to kill larvae, preferably with WHO
clearance for use in drinking water [1]. Larvicide treatment is an effective way

∗Corresponding author. Email: tm@dps.uminho.pt

http://dx.doi.org/10.1080/00207160.2013.790536

ar
X

iv
:1

30
3.

69
04

v1
  [

m
at

h.
O

C
] 

 2
7 

M
ar

 2
01

3



2 H.S. Rodrigues, M.T.T. Monteiro, D.F.M. Torres

to control the vector larvae, together with mechanical control, which is related
with educational campaigns. The mechanical control must be done both by public
health officials and by residents in affected areas. The participation of the entire
population is essential to remove still water from domestic recipients, eliminating
possible breeding sites [16]. The SIR+ASI model considered here was studied in a
previous paper [12], but only using the ODE system: an optimal control approach
is here considered for the first time. This provides a new different mathematical
perspective to the subject. Furthermore, a numerical procedure, varying the control
weights in the model, is performed here in order to evaluate the control that is most
effective in the design of optimal strategies.

The paper is organized as follows. Next Section 2 presents the mathematical
model under study. Section 3 is concerned with the basic reproduction number
of the model. The optimal control approach is addressed in Section 4 while the
computational experiments, using different situations, are reported in Section 5.
Finally, some conclusions are carried out in Section 6.

2. Mathematical Model

Mathematical modeling is an interesting tool for understanding epidemiological
diseases and for proposing effective strategies to fight them [6]. Taking into account
the model presented in [3, 4] for the chikungunya disease, and the considerations
of [10, 11], a new model, more adapted to the dengue reality, is proposed. Our
epidemiological model for dengue is similar to models for chikungunya because
the vector is from the same mosquito family: the family of Aedes mosquitoes. In
chikungunya the main vector is Aedes albopictus while in dengue the vector is
Aedes aegypti. However, here some parameter fitting is done, taking into account
the human and the vector populations and their specific features. More precisely,
we use data from Cape Verde, while in [3, 4] the data is from Reunion islands.
Moreover, the models used in [3, 4] only consider the ODE system. In contrast,
here we use the optimal control approach in the epidemiological model.

The notation used in our mathematical model includes three epidemiological
states for humans, indexed by h:

Sh — susceptible (individuals who can contract the disease);

Ih — infected (individuals capable of transmitting the disease to others);

Rh — resistent (individuals who have acquired immunity).

It is assumed that the total human population Nh is constant along time: Nh =
Sh(t) + Ih(t) +Rh(t).

There are three other state variables, related to the female mosquitoes, indexed
by m:

Am — aquatic phase (that includes the egg, larva and pupa stages);

Sm — susceptible (mosquitoes that are able to contract the disease);

Im — infected (mosquitoes capable of transmitting the disease to humans).

Due to short lifetime of mosquitoes (approximately 10 days), there is no resistant
phase. Humans and mosquitoes are assumed to be born susceptible.

To analyze the effect of campaigns in the combat of the mosquito, three controls
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are considered:1

cA — proportion of larvicide (0 ≤ cA ≤ 1);

cm — proportion of adulticide (0 ≤ cm ≤ 1);

α — proportion of mechanical control (0 < α ≤ 1).

The aim of this work is to simulate different realities in order to find the best
policy to decrease the number of infected human. A temporal mathematical model
is introduced, with mutually-exclusive compartments, to study the outbreak of
2009 in Cape Verde islands and improving the model described in [10]. The model
considers the following parameters:

Nh — total human population;

B — average daily biting (per day);

βmh — transmission probability from Im (per bite);

βhm — transmission probability from Ih (per bite);

1/µh — average lifespan of humans (in days);

1/ηh — mean viremic period (in days);

1/µm — average lifespan of adult mosquitoes (in days);

ϕ — number of eggs at each deposit per capita (per day);

1/µA — natural mortality of larvae (per day);

ηA — maturation rate from larvae to adult (per day);

m — female mosquitoes per human;

k — number of larvae per human.

The dengue epidemic is modeled by the following time-varying nonlinear system
of differential equations:

dSh
dt

(t) = µhNh −
(
Bβmh

Im
Nh

+ µh

)
Sh

dIh
dt

(t) = Bβmh
Im
Nh

Sh − (ηh + µh)Ih

dRh
dt

(t) = ηhIh − µhRh

dAm
dt

(t) = ϕ

(
1− Am

αkNh

)
(Sm + Im)− (ηA + µA + cA)Am

dSm
dt

(t) = ηAAm −
(
Bβhm

Ih
Nh

+ µm + cm

)
Sm

dIm
dt

(t) = Bβhm
Ih
Nh

Sm − (µm + cm) Im

(1)

1The control α cannot be zero because it appears in the denominator of a fraction in the ODE system (1).
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with the initial conditions

Sh(0) = Sh0, Ih(0) = Ih0, Rh(0) = Rh0,
Am(0) = Am0, Sm(0) = Sm0, Im(0) = Im0.

(2)

3. Basic Reproduction Number

An important measure of transmissibility of the disease is given by the basic repro-
duction number. It represents the expected number of secondary cases produced
in a completed susceptible population, by a typical infected individual during its
entire period of infectiousness [5]. It can be shown (see [12]) that the basic repro-
duction number R0 associated to (1) is given by

R0 =

(
αkB2βhmβmhM

ϕ(ηh + µh)(cm + µm)2

) 1

2

. (3)

The model has two different populations (host and vector) and the expected basic
reproduction number reflects the infection transmitted from host to vector and
vice-versa. If R0 < 1, then, on average, an infected individual produces less than
one new infected individual over the course of its infectious period, and the disease
cannot grow. Conversely, if R0 > 1, then each individual infects more than one
person, and the disease invades the population.

Assuming that parameters are fixed, the threshold R0 is influenceable by the
control values. Figure 1 gives this relationship. We see that the control cm is the
one that most influences the basic reproduction number to stay below unit. Besides,
the control in the aquatic phase alone is not enough to maintain R0 below unit: it
requires an application close to 100%.

4. Optimal Control Approach

Epidemiological models may give some basic guidelines for public health practi-
tioners, comparing the effectiveness of different potential management strategies.
In reality, a range of constraints and trade-offs may substantially influence the
choice of a practical strategy, and therefore their inclusion in any modeling anal-
ysis may be important. Frequently, epidemiological models need to be coupled to
economic considerations, such that control strategies can be judged through holis-
tic cost-benefit analysis. Control of livestock disease is a scenario when cost-benefit
analysis can play a vital role in choosing between cheap, weak controls that lead
to a prolonged epidemic, or expensive but more effective controls that lead to a
shorter outbreak. In our numerical simulations, the data from human initial con-
ditions was obtained through the Ministry of Health from Cape Verde [7]. Since it
was the first time that an outbreak of dengue occurred in Cape Verde, there was
no time to follow the mosquito evolution. Besides, the Health authorities of Cape
Verde believe that the mosquito came from Brazil, based on the intensive commer-
cial trade and migration between the two countries. Therefore, the vector data was
based on the Brazil reality [14, 17]. Normalizing the previous ODE system (1)–(2),
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(a) R0 as a function of cm and cA
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(c) R0 as a function of cA and α

Figure 1. Influence of the controls on the basic reproduction number R0

we obtain: 

dsh
dt

= µh − (Bβmhmim + µh) sh

dih
dt

= Bβmhmimsh − (ηh + µh)ih

drh
dt

= ηhih − µhrh

dam
dt

= ϕ
m

k

(
1− am

α

)
(sm + im)− (ηA + µA + cA) am

dsm
dt

= ηA
k

m
am − (Bβhmih + µm + cm) sm

dim
dt

= Bβhmihsm − (µm + cm) im

(4)
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with the initial conditions

sh(0) = 0.9999, ih(0) = 0.0001, rh(0) = 0,
am(0) = 1, sm(0) = 1, im(0) = 0.

(5)

A cost functional was introduced,

J [cA(·), cm(·), α(·)] =

∫ tf

0

[
γDIh(t)2 + γScm(t)2 + γLcA(t)2 + γE (1− α)2

]
dt, (6)

where γD, γS , γL and γE are weights related to the costs of the disease, adulti-
cide, larvicide and mechanical control, respectively. In this way, an optimal control
problem is defined:

minimize (6)
subject to (4), (5), 0 ≤ cA ≤ 1, 0 ≤ cm ≤ 1, 0 < α ≤ 1.

5. Numerical Experiments with Three Controls

The simulations were carried out with the numerical values Nh = 480000, B = 0.8,
βmh = 0.375, βhm = 0.375, µh = 1/(71 × 365), ηh = 1/3, µm = 1/10, ϕ = 6,
µA = 1/4, ηA = 0.08, m = 3, k = 3, and initial conditions (5). The optimal control
problem was solved using two different approaches and software packages: DOTcvp
[2] and Muscod-II [8]. In both cases the simulations were similar. Thus, only the
DOTcvp results are reported here. We remark that our results cannot be compared
with those of [3, 4] for several reasons. First, the parameters of both works are
different because they describe two distinct diseases and two different realities.
Second, in [3, 4] the optimal control approach is not considered and, therefore, the
optimal control strategy is not computed (only simulations of some suboptimal
strategies are done). The study of the variation of control weights carried out here
is, due to economical constraints, a very important issue, allowing the decision-
makers (the health authorities) to define bioeconomic strategies.

5.1 All controls with the same weight

To begin, the same weights were considered: γD = γS = γL = γE = 0.25. The
optimal functions for the controls are given in Figure 2.

The adulticide was the control that more influences the decreasing of the basic
reproduction number (3) and, as a consequence, the decreasing of the number of
infected persons and mosquitoes. Therefore, the adulticide was almost the one to
be used. The other controls do not assume here an important role in the epidemic
episode, because all the events happen in a short period of time, which means that
adulticide has more impact. However, the control of the mosquito in the aquatic
phase cannot be neglected. In situations of longer epidemic episodes or even in an
endemic situation, the larval control represents an important tool.

Figure 3 presents the number of infected human. Comparing the optimal control
case with the situation of no controls, the number of infected people decreased
considerably. Besides, in the situation where optimal control is used, the peak of
infected people is minor, which facilitates the work in health centers, because they
can provide a better medical monitoring.
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Figure 2. Optimal control functions (γD = γS = γL = γE = 0.25)
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Figure 3. Comparison of infected individuals under an optimal control strategy with that of no controls.

5.2 Controls with different weights

A second analysis was made, taking into account different weights on the functional
(6). Table 1 summarizes the weights chosen and the associated perspectives. Not
only economic issues (cost of insecticides and educational campaigns) are consid-
ered, but also human issues. In case A all costs are equal. In case B more impact
is given to the infected people, considering that the treatment and absenteeism to
work is very prejudicial to the country, when compared with the cost of insecti-
cides and educational campaigns. In case C, the costs of killing mosquitoes and
educational campaigns are the ones with more impact in the economy.

The higher total costs were obtained when the human life has more weight than
the controls measures (Table 1).

Figure 4 shows the number of infected human in each bioeconomic perspective.
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Values for weights Cost obtained
Case A γD = 0.25; γS = 0.25; γL = 0.25; γE = 0.25 0.06691425
Case B γD = 0.55; γS = 0.15; γL = 0.15; γE = 0.15 0.10431186
Case C γD = 0.10; γS = 0.30; γL = 0.30; γE = 0.30 0.03012849

Table 1. Different weights for the functional (6) and respective values

We conclude that Case A and Case C are similar. It can be explained by the low
weight given to the cost of treatment (cases A and C) when compared with the
heavy weight given in case B. Figure 5 presents the behavior of the controls for
the A, B and C cases. As adulticide is the control that has more influence in the
model, this is the one that most varies when the weights are changed.
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Figure 4. Infected individuals in the three bioeconomic perspectives

5.3 Only one control

A third strategy was tested: the functional was changed in order to study the
effects of each control when considered separately. Therefore, the new functional
also considers bioeconomic perspectives, but just includes two variables: the costs
with infected human (with γD = 0.5) and the costs with only one control (with γi =
0.5, i ∈ {S,L,E}). In Figure 6 the proportion of adulticide (a) and infected humans

(b) are presented, when the functional is
∫ tf

0

[
γDih(t)2 + γScm(t)2

]
dt. Figures 7 and

8 represent the same simulations when the controls considered are larvicide and
mechanical control, respectively. It is possible to see that the use of larvicide and
mechanical control, used alone, do not bring relevant influence to the control of
the disease.

6. Conclusions

Dengue disease breeds, even in the absence of fatal forms, significant economic and
social costs: absenteeism, debilitation and medication. To observe and act at the
onset of the epidemics, can save lives and resources to governments. Moreover, the
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Figure 5. Proportion of control used in the three bioeconomic perspectives

under-reporting of dengue is probably the most important barrier to obtaining an
accurate assessment.

We presented a compartmental epidemiological model for dengue, composed by
a set of differential equations. Simulations based on clean-up campaigns to remove
the vector breeding sites, and also simulations on the application of insecticides
(larvicide and adulticide), were made. It was shown that even with a low, although
continuous, index of control over time, the results are surprisingly positive. The
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Figure 6. Optimal control and infected Ih when all controls are considered (solid line) and only adulticide
control is taken into account (dashed line)
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Figure 7. Optimal control and infected Ih when all controls are considered (solid line) and only larvicide
control is taken into account (dashed line)
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Figure 8. Optimal control and infected Ih when all controls are considered (solid line) and only mechanical
control is taken into account (dashed line)

adulticide was the most effective control, from the fact that with a low percentage
of insecticide, the basic reproduction number is kept below unit and the infected
number of humans was smaller.

However, to bet only in adulticide is a risky decision. In some countries, such
as Mexico and Brazil, the prolonged use of adulticides has been increasing the
mosquito tolerance capacity to the product or even they become completely re-
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sistant. In countries where dengue is a permanent threat, governments should act
with differentiated tools. It will be interesting to analyze these controls in an en-
demic region and with several outbreaks. We believe that the results will be quite
different. This is under investigation and will be addressed elsewhere.
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