Um novo modelo para a análise não linear e diferida de estruturas evolutivas. Parte II: Formulação do pré-esforço.

Paulo J. S. Cruz

Departamento de Engenharia Civil, Universidade do Minho, Guimarães, Portugal

O desenvolvimento e vulgarização da técnica do pré-esforço tem sido de tal magnitude que se pode afirmar, sem grande risco, que a sua utilização está generalizada à grande maioria de sistemas estruturais e de métodos construtivos. Este aspecto, em conjunto com a potencial complexidade da geometria e do comportamento mecânico dos cabos de pré-esforço, torna aconselhável o desenvolvimento de técnicas de análise específicas para o efeito. No presente modelo o pré-esforço é estudado mediante elementos finitos unidimensionais, embebidos nos elementos de viga, com traçado contínuo rectilinear ou curvilíneo. É considerada a contribuição de cada cabo para a matriz de rigidez e para o vector solicitação da estrutura. Convém destacar ainda que, em qualquer fase, a avaliação da acção equivalente ao pré-esforço é conseguida de uma forma directa.

Este artigo pretende constituir uma síntese global dos aspectos numéricos mais importantes relacionados com esta técnica. Será dado especial ênfase à caracterização dos distintos tipos e fases de pré-esforço (armaduras pré-tensionadas e pós-tensionadas, aderentes ou não aderentes), à apresentação da formulação do elemento de cabo adoptada e à descrição detalhada das expressões e procedimentos numéricos usados na avaliação das perdas instantâneas por atrito e penetração das cunhas.

1. INTRODUÇÃO

Ao longo das últimas décadas foram desenvolvidos vários tipos de pré-esforço. Estes podem ser agrupados em dois grandes grupos, o do pré-esforço exterior e o pré-esforço interior, dependendo de se o contacto entre cada cabo e a estrutura é pontual ou, se pelo contrário, ocorre em todos os pontos do seu traçado (os cabos estão embebidos na estrutura). Dentro deste último grupo distinguem-se normalmente os casos de armaduras pré-tensionadas e pós-tensionadas. As armaduras pós-tensionadas poderão ser classificadas em aderentes e não aderentes.

Neste trabalho é descrita uma técnica para modelar os distintos casos de pré-esforço interior. Convém no entanto referir que é possível adaptar esta formulação para a análise de pré-esforço exterior. Este é um dos actuais temas de investigação do autor.

1 Professor Auxiliar
2. TIPOS E FASES DE PRÉ-ESFORÇO

Para que se consiga uma distinção adequada entre estes diferentes tipos é essencial a definição de quatro instantes relacionados com as operações de aplicação do pré-esforço, de transferência, de ancoragem e de aderência.

No caso de armaduras pós-tensionadas os instantes de aplicação e transferência costumam ser considerados os mesmos. As perdas instantâneas devidas ao atrito e à penetração nos dispositivos de ancoragem têm de ser calculadas para se conhecer o campo de tensões inicial. O efeito activo do pré-esforço deve ser considerado através da introdução de forças nodais equivalentes. No entanto, até que não exista aderência a rigidez do cabo não será considerada na avaliação da rigidez estrutural. A aplicação do pré-esforço num novo cabo induz perdas nos cabos já ancorados devido ao encrutamento que a estrutura experimenta. Desde o instante de aplicação deverão ser consideradas, em cada cabo, as perdas diferidas devidas à relaxação do aço. No caso de armaduras pré-tensionadas, os instantes de aplicação, aderência e transferência são diferentes. Neste caso deverá ser considerada a contribuição da rigidez do cabo desde o instante de início de aderência (antetor ao instante de transferência).

3. FORMULAÇÃO DO ELEMENTO DE CABO

3.1. Definição geométrica

A geometria de qualquer cabo é definida com base na utilização dum número conveniente de tramos. Em cada tramo, no caso mais genérico, o traçado é aproximado por quatro parábolas, definidas a partir da imposição das seis condições representadas na figura 1. Desta forma consegue-se gerar automaticamente os casos mais frequentemente utilizados em projecto.

![Figura 1. Geração automática do traçado dum cabo.](image)

Conhecidas as excentricidades \( y_i \) do cabo, nos nós \( i \) de um determinado elemento de viga \( i = 1, 2, 3 \), o traçado dos segmentos de cabo compreendidos entre esses nós é obtido mediante a utilização das mesmas funções de forma usadas para o elemento de viga, ou seja:

\[
y(x) = \sum_{i=1}^{n} N_i(x) y_i
\]  

(1)

Da mesma forma obtém-se a coordenada curvilínea \( x' \) de um ponto genérico do cabo. Esta aproximação é utilizada nos modelos propostos por Roca (1988), Henriques (1991) e Póvoas (1991). Num ponto genérico, o diferencial do vector de posição \( r \) do cabo vem expresso por:
onde $\xi$ é a coordenada axial do elemento normalizado, medida sobre o eixo de referência tal como se ilustra na figura 2.

Figura 2. Geometria de um segmento de cabo.

Utilizando a equação (2) a distância $x'_{ij}$ entre os pontos nodais $i$ e $j$ obtém-se da seguinte forma:

$$x'_{ij} = \int_{i}^{j} |dr(\xi)| = \int_{i}^{j} \sqrt{\left(\frac{dx(\xi)}{d\xi}\right)^2 + \left(\frac{dy(\xi)}{d\xi}\right)^2} d\xi$$

onde $dx(\xi)/d\xi$ e $dy(\xi)/d\xi$ são os elementos da matriz Jacobiano, de transformação entre o referencial local e global. Para a avaliação de $x'_{12}$ considera-se uma nova coordenada local $\xi^*$ associada aos pontos nodais 1*, 2* e 3* identificados na figura 2 (Henriques, 1991).

3.2. Campo de deslocamentos

Com base na observação da figura 3, o deslocamento axial $u'$ de qualquer ponto do cabo está relacionado com as respectivas componentes ($\theta$, $w$ e $u$) do deslocamento no elemento de viga correspondente, mediante a relação:

$$u'(\xi) = \theta(\xi) y \cos \alpha(\xi) + w(\xi) \sin \alpha(\xi) + u(\xi) \cos \alpha(\xi)$$
Relacionando, através das funções de forma, as componentes $\theta(\xi)$, $w(\xi)$ e $u(\xi)$ com as respectivas componentes dos deslocamentos nodais, a expressão (4) pode reescrever-se como:

$$u'(\xi) = \begin{bmatrix} -y(\xi)N_i'(\xi)\cos \alpha & |N_i(\xi)\sin \alpha & |N_i'(\xi)\cos \alpha \end{bmatrix}^T \begin{bmatrix} \theta_i w_i u_i \end{bmatrix}_{i=1,2,3}$$

(5)

onde $\alpha$ é o ângulo entre a tangente ao cabo nesse ponto e a directriz do elemento. O valor de $\alpha$ é dado pela expressão:

$$\alpha = \arccos \frac{dx(\xi)}{d\xi}$$

(6)

3.3. Estado de deformação

A deformação axial $\varepsilon_p$ duma dada secção do cabo, no caso mais geral de comportamento não linear geométrico, é definida como:

$$\varepsilon_p = \varepsilon_{p,L} + \varepsilon_{p,N} = \frac{du}{dx} + \frac{1}{2} \left[ \left( \frac{du}{dx} \right)^2 + \left( \frac{dw}{dx} \right)^2 \right]$$

(7)

No caso de os deslocamentos de segunda ordem serem desprezáveis (comportamento linear geométrico) a deformação axial reduz-se à primeira parcela de (7). Combinando as expressões (5) e (7) obtém-se a expressão (8) onde $B_{p,L}$ e $B_{p,N}$ representam, respectivamente, as matrizes de deformação linear e não linear do elemento de cabo e $d$ é o vector de deslocamentos nodais desse elemento.

$$\varepsilon_p = \varepsilon_{p,L} + \varepsilon_{p,N} = \left( B_{p,L} + B_{p,N} \right) d$$

(8)
onde

\[ \varepsilon_{p,L} = B_{p,L} \ d = \begin{bmatrix} B_{p1,L} & B_{p2,L} & B_{p3,L} \end{bmatrix} \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix} \]  \hspace{1cm} (9)

com

\[ B_{p1,L} = \left[ \begin{array}{c} \frac{dy(\xi)}{d\xi} - N_i(\xi) \cdot \frac{y(\xi)}{d\xi} N_j(\xi) \\ \cos \alpha \end{array} \right] \begin{bmatrix} \frac{dN_i(\xi)}{d\xi} \sin \alpha \\ \frac{dN_j(\xi)}{d\xi} \cos \alpha \end{bmatrix} \frac{d\xi}{dx} \]  \hspace{1cm} (9a)

e

\[ \varepsilon_{p,N} = \frac{1}{2} \ G dG \ d = \frac{1}{2} \ \mathbf{A} \ G \ d = \frac{1}{2} \ B_{p,N} \ d \]  \hspace{1cm} (10)

sendo as matrizes \( \mathbf{A} \) e \( \mathbf{G} \) obtidas da seguinte forma:

\[ \mathbf{A} = \begin{bmatrix} A_1 & A_2 & A_3 \end{bmatrix} \hspace{1cm} \mathbf{G} = \begin{bmatrix} G_1 & G_2 & G_3 \end{bmatrix} \]  \hspace{1cm} (11)

com

\[ G_i = \frac{d\xi}{dx} \left[ \begin{array}{c} \frac{dy(\xi)}{d\xi} - N_i(\xi) \cdot \frac{y(\xi)}{d\xi} \frac{dN_j(\xi)}{d\xi} \cos \alpha \sin \alpha \\ \frac{dN_j(\xi)}{d\xi} \cos \alpha - \sin \alpha \end{array} \right] \begin{bmatrix} \frac{dN_j(\xi)}{d\xi} \cos \alpha \sin \alpha \\ \frac{dN_j(\xi)}{d\xi} \cos \alpha - \sin \alpha \end{bmatrix} \]  \hspace{1cm} (12)

\[ A_i = \frac{d\xi}{dx} \left[ \begin{array}{c} \frac{dy(\xi)}{d\xi} - N_i(\xi) \cdot \frac{y(\xi)}{d\xi} \frac{dN_j(\xi)}{d\xi} \cos \alpha - \sin \alpha \theta_i \\ \frac{dN_j(\xi)}{d\xi} \cos \alpha + \sin \alpha \theta_i \end{array} \right] \begin{bmatrix} \frac{dN_j(\xi)}{d\xi} \cos \alpha + \sin \alpha \theta_i \\ \frac{dN_j(\xi)}{d\xi} \cos \alpha - \sin \alpha \theta_i \end{bmatrix} \]  \hspace{1cm} (13)

Convém destacar que para um elemento de viga a matriz de deformação obtém-se por um processo semelhante. No entanto, nas vigas de dimensões correntes, os deslocamentos axiais costumam ter um valor bastante inferior aos deslocamentos transversais, sendo assim habitual adoptar a seguinte expressão simplificada para a deformação axial:

\[ \varepsilon_b = \varepsilon_{b,L} + \varepsilon_{b,N} = \frac{du'}{dx'} + \frac{1}{2} \left( \frac{dw'}{dx'} \right)^2 \]  \hspace{1cm} (14)

3.4. Matriz de rigidez

A matriz de rigidez do elemento de cabo é calculada segundo o processo habitual em elementos finitos. Resulta assim a expressão:
3.5. Forças nodais

As forças nodais equivalentes produzidas por um segmento de cabo sobre um elemento de viga determinam-se de acordo com a expressão:

\[
F_p = \int_{-l}^{l} \mathbf{B}^T_p \sigma_p \mathbf{B}_p A_p \frac{dr}{d\xi} d\xi
\]  

que resulta de tratar os efeitos do pré-esforço como os devidos a uma tensão inicial de valor \( \sigma_p \) e utilizar os procedimentos próprios de elementos finitos para converter o seu efeito em forças nodais.

4. PERDAS INSTANTÂNEAS

4.1. Introdução

Devido à reduzida rigidez à flexão dum cabo, as únicas forças que normalmente se consideram actuantes sobre este são: uma força tangente e distribuída por unidade de comprimento \( p_t \), uma força normal distribuída \( p_n \), coincidente em cada ponto com o raio de curvatura e forças concentradas nos extremos do cabo e nos pontos onde ocorram modificações bruscas na pendente (figura 4).

Figura 4. Forças aplicadas sobre um cabo.

Impondo as condições de equilíbrio de forças num segmento de cabo de comprimento diferencial na vizinhança dum dado ponto, obtém-se as seguintes condições:

\[
p_n(s) = -\chi(s) p(s)
\]  

\[
p_t(s) = -\frac{dp(s)}{ds}
\]
onde $\chi(s)$ e $P(s)$ são respectivamente a curvatura e a força axial do cabo nesse ponto.

4.2. Perdas por atrito

No caso de não existir aderência entre o cabo de pré-esforço e o betão envolvente, a conexão entre os dois materiais deve-se exclusivamente a forças de atrito entre o cabo e as paredes da bainha assim como a forças de interação nas ancoragens. As forças tangentes de atrito relacionam-se com as forças normais segundo a expressão:

$$p_t = \pm \mu p_n$$  \hspace{1cm} (18)$$

onde o sinal $\pm$ depende do sentido do movimento relativo entre o betão e o cabo. Combinando as expressões (17) e (18) obtém-se a equação diferencial de equilíbrio:

$$\frac{dp}{ds} = \pm \mu \chi p$$  \hspace{1cm} (19)$$

que tem por solução:

$$P(s_2) = P(s_1) \exp \left[ \pm \mu \int_{s_1}^{s_2} \chi \, ds \right]$$  \hspace{1cm} (20)$$

Mesmo quando a geometria de uma cabo for rectilínea, produzem-se forças de atrito devidas a pequenas incorreções do traçado e ondulações parasitas. O efeito dessas forças de atrito pode ser simulado considerando uma curvatura adicional. Assim, na equação anterior introduz-se um coeficiente empírico de ondulação $k$ por unidade de comprimento ($\chi^* = \chi + k$). Considerando o coeficiente de atrito parasita definido como $\kappa = \mu k$, e designando a variação acumulada por:

$$\Delta \alpha = \int_{s_1}^{s_2} \chi \, ds$$  \hspace{1cm} (21)$$

e sendo $\Delta s$ a distância entre as secções $s_1$ e $s_2$, a equação (20) pode reescriver-se como:

$$P(s_2) = P(s_1) \exp \left[ \pm \kappa \Delta \alpha + K \Delta s \right]$$  \hspace{1cm} (22)$$

Figura 5. Perdas por atrito.
Na figura 5 representa-se a distribuição da força de pré-esforço, na situação genérica de um cabo tensado desde os dois extremos. Como se observa nessa figura, a distribuição da força de pré-esforço coincide com a envolvente das curvas 1 e 2 obtidas considerando independentes as operações de aplicação do pré-esforço em cada extremidade.

4.3. Perdas por penetração nos dispositivos de ancoragem

Nesta designação incluem-se as perdas instantâneas que se produzem nos dispositivos de ancoragem, por penetração das cunhas, no instante em que se libertam os extremos do cabo. Sendo \( \Delta \varepsilon \rho(s) \) a deformação do cabo originada pela penetração \( \Delta d \) ocorrida na ancoragem \( A \) e que afecta o comprimento de cabo \( l \), verifica-se que:

\[
\Delta d = \int_0^l \Delta \varepsilon \rho \, ds
\]  

(23)

expressão que também pode escrever-se em função da variação de força introduzida no cabo:

\[
\Delta d = \frac{l}{E_p A \rho} \int_0^l \left[ P_1(s) - P'_1(s) \right] ds
\]  

(24)

onde \( A \) é a área do cabo; \( E_p \) é o módulo de elasticidade do aço e \( P_1 \) e \( P'_1 \) são respectivamente as distribuições da força de pré-esforço anterior e posterior à penetração das cunhas, dadas pelas expressões (25a) e (25b) e que são representadas na figura 6.

\[
P_1(s_2) = P_1(s_1) \exp \left[ -\mu \int_{s_1}^{s_2} \chi^* \, ds \right]
\]  

(25a)

\[
P'_1(s_2) = P'_1(s_1) \exp \left[ \mu \int_{s_1}^{s_2} \chi^* \, ds \right]
\]  

(25b)

Figura 6. Perdas por penetração nos dispositivos de ancoragem.
Considerando o mesmo coeficiente de atrito em descarga e em recarga, e tendo em conta o sentido de movimento na zona de influência $l_A$, de acordo com a expressão genérica (20) a força $P_A'$ na ancoragem $A$, depois da penetração de cunha, está relacionada com a força inicial $P_A'$ nessa mesma ancoragem, segundo a expressão:

$$P_A' = P_A \exp \left(-2 \mu \int_0^s \chi' \, ds\right)$$  \hspace{1cm} (26)

No entanto existem alguns resultados experimentais (Ripoll y Martí, 1976) que evidenciam (Montobbio e Aguado, 1990) a diferença de comportamento nas fases de tesado e destesado.

Combinando as expressões (24), (25) e (26), o comprimento de influência $l_A$ obtém-se como solução da seguinte equação:

$$\Delta d = \frac{P_A}{E_p A_p} \int_0^s \left[ \exp \left(-\mu \int_0^s \chi' \, ds\right) - \exp \left(-2 \mu \int_0^s \chi' \, ds\right) \times \exp \left(\mu \int_0^s \chi' \, ds\right) \right] \, ds$$  \hspace{1cm} (27)

Para a resolução da equação (27) adopta-se o seguinte processo iterativo proposto por Mari (1984) que se representa na figura 7:

- Em cada ponto de integração do cabo calcula-se o valor de $\Delta d'$, considerando que o comprimento da zona de influência é igual à distância entre esse ponto e a ancoragem.
- O comprimento da zona de influência determina-se por interpolação quando em dois pontos de integração consecutivos $i-1$ e $i$ se satisfaça a condição:

$$\left(\Delta d'_{i-1} - \Delta d\right) \left(\Delta d'_{i} - \Delta d\right) \leq 0$$  \hspace{1cm} (28)

![Figura 7. Determinação do comprimento de influência da penetração.](image)
Se as perdas por penetração das cunhas afectam todo o comprimento \( L \) do cabo, a distribuição da força de pré-esforço \( P' \), representada na figura 8, obtém-se com a equação (29) uma vez que se determine o valor da força \( P' \) na ancoragem:

\[
\Delta d \quad E_p \quad A_p = P_s \int_0^L \exp \left( -\mu \int_0^s \chi * ds \right) ds - P'_s \int_0^L \exp \left( \mu \int_0^s \chi * ds \right) ds \quad (29)
\]

Figura 8. Perdas que afectam toda a longitude do cabo.

A penetração de cunha na outra extremidade do cabo (extremidade \( B \)) estudava-se pelo mesmo processo descrito para a ancoragem \( A \).

4.4. Perdas por encurtamento

No instante de transferência de pré-esforço, tanto no caso de armaduras pré-tensadas como pós-tensadas, produz-se uma descarga do nível de pré-esforço devido ao encurtamento da estrutura. A formulação adoptada para modelação do pré-esforço e a natureza incremental e iterativa do presente modelo permitem reproduzir estas perdas de forma automática.

5. ASPECTOS ESPECÍFICOS DO PRÉ-ESFORÇO NÃO ADERENTE

Num cabo não aderente, o cálculo do incremento de deformação num dado ponto \( \Delta \epsilon_p \) exige um procedimento não local baseado no conhecimento do campo de deslocamentos nodais em todos os elementos atravessados por aquele. A formulação desenvolvida neste trabalho baseia-se na técnica proposta por Roca (1988) e é semelhante ao método seguido por Hofstetter (1987).

Tendo como ponto de partida a equação de equilíbrio (19) e sendo \( \Delta P = A_p \quad E_p \quad \Delta \epsilon_p \), resulta a seguinte equação diferencial:

\[
\frac{d \left( E_p \quad A_p \quad \Delta \epsilon_p \right)}{ds} = \pm \mu \chi \left( E_p \quad A_p \quad \Delta \epsilon_p \right) \quad (30)
\]

cuja solução geral é:
\[ \Delta \varepsilon_p(s) = \frac{C}{E_p(s)} \exp \left( \int_{s_i}^{s} \pm \mu \varepsilon^* ds \right) = C \ g(s) \] 

(31)

onde \( C \) é uma constante obtida a partir das condições de contorno nas ancoragens que define a grandeza do incremento de deformação \( \Delta \varepsilon_p \), e \( g(s) \) é uma função que caracteriza a variação desse incremento ao longo do cabo (figura 9). O valor de \( C \) obtém-se ao impor a igualdade entre o alongamento total do cabo e o alongamento total do betão adjacente, resultando a condição:

\[ C = \frac{\int_{0}^{L} \Delta \varepsilon_{c,p} (s) ds}{\int_{0}^{L} \Delta g(s) ds} \] 

(32)

Figura 9. Variação do incremento de deformação ao longo de um cabo não aderente.

O sinal do expoente da equação (31) coincide com o sinal do deslocamento relativo \( u_r(s) \) que, em cada ponto, é a diferença entre os deslocamentos do cabo \( u_p \) e os deslocamentos do betão adjacente \( u_{c,p} \), medidos segundo a direção tangente ao cabo:

\[ u_r(s) = u_p(s) - u_{c,p}(s) = \int_{s_i}^{s} \Delta \varepsilon_p(s) ds - \int_{s_i}^{s} \Delta \varepsilon_{c,p}(s) ds \] 

(33)

A combinação das equações (31) e (32) permite escrever:

\[ \Delta \varepsilon_p(s) = \frac{\int_{0}^{L} \Delta \varepsilon_{c,p}(s) ds}{\int_{0}^{L} g(s) ds} g(s) \] 

(34)

Neste trabalho utiliza-se o seguinte esquema para a quantificação dos incrementos de deformação:

- Em cada ponto de integração calcula-se o incremento de deformação no betão, na direção tangente à armadura, de acordo com a expressão (8).
- Em cada ponto determina-se o alongamento do cabo por acumulação dos incrementos de deformação \( \Delta \varepsilon_{c,p} \) desde a origem.
- Cálculo em cada ponto da função \( g(s) \). Numa dada iteração atribui-se ao coeficiente de atrito o

*Engenharia Civil* • *UM*  Número 3 1996 13
sinal do deslocamento relativo na iteração anterior. Este passo pode ser complementado com um processo iterativo para determinar a localização dos pontos de atrito nulo, seguido da eventual correção da função \( g(s) \) (Roca, 1988).

- Cálculo do integral \( \int_0^L g(s) \, ds \).
- Em cada ponto determina-se o incremento de deformação de acordo com (34).

6. CONCLUSÕES

No presente artigo apresentou-se uma formulação para a modelação do pré-esforço, que contempla os casos de elementos pré-tensionados e pós-tensionados e distingue as armaduras aderentes das não aderentes. Com esta formulação é possível simular a contribuição da armadura de pré-esforço para o equilíbrio global da estrutura, as perdas instantâneas e diferidas, bem como ter em conta as fases de aplicação, transferência, ancoragem e aderência.

7. REFERÊNCIAS


