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Lactobacillus species constitute one of the dominant and beneficial bacteria in our body and are used in devel-
oped countries as a microbial adjuvant. Identification of these probiotic bacteria is traditionally performed by
culture-based techniques. However, such methods are very time-consuming and can give inaccurate results,
especially when Lactobacillus is present in mixed bacterial complex communities. Our study aimed to accu-
rately identify Lactobacillus spp. using a novel Peptide Nucleic Acid (PNA) Fluorescence In Situ Hybridization
(FISH) probe. The probe (Lac663) was tested on 36 strains belonging to different Lactobacillus species and on
20 strains of other bacterial species. The sensitivity and specificity of the method were 100% (95% confidence
interval (CI), 88.0 to 100.0%) and 95.0% (95% CI, 73.1 to 99.7%), respectively. Additionally, we tested the ap-
plicability of the method on milk samples added with Lactobacillus strains at probiotic range concentrations
and other taxonomically related bacteria, as well as pathogenic bacteria. The Lac663 probe bound exclusively
to Lactobacillus strains and the described PNA-FISH method was capable of directly quantifying Lactobacillus
spp. in concentrations at which these potential probiotic bacteria are considered to have an effective benefit
on human health.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Probiotics are live microorganisms that, when administered in ad-
equate amounts, confer a health benefit to the host (Gaurner et al.,
2008). The addition of probiotics to enhance the nutritive value and
potential health benefits of foods is now a matter of great interest.
Among the most used organisms are those belonging to the genus
Lactobacillus, which are believed to have beneficial effects on human
health (Matsumoto et al., 2006; Saxelin et al., 2005). However, there
is no consensus regarding the minimum number of probiotic bacteria
that need to be consumed to produce a beneficial effect (Farnworth,
2008; Gaurner et al., 2008). The Fermented Milks and Lactic Acid
Bacteria Beverages Association of Japan has set a minimum of 107

bacteria/g or ml (Ishibashi and Shimamura, 1993). Considering that
each dose should not have more than 100 ml, the concentration
should not be lower than 107 CFU/ml (FAO/WHO, 2006; Lourens-
Hattingh and Viljoen, 2002).

The Lactobacillus genus is a heterogeneous group with more than
100 species and subspecies, many of them used as probiotics, silage
inoculants and as starters in fermented food in industrial technology.
Nevertheless, a wide range of important strains remain to be discovered
).

l rights reserved.
and characterizedwhichmaybe used in food and feed biotechnology ap-
plications (Giraffa et al., 2010; Matsumoto et al., 2006). Currently, there
is a great need to improve the experimental detection of Lactobacillus
species, thus the design of screening methods for these microorganisms
is still under development (Satokari et al., 2003).

In food microbiology, the choice of an appropriate technique to
study microbial communities depends on the aims of the research,
the complexity of the community and the required resolution and
sensitivity level. Identification is traditionally performed by culture-
based techniques, but molecular methods are able to detect non-
cultivable microorganisms, providing a more comprehensive picture
of the total community (Bernardeau et al., 2008). One of the most dis-
seminated methods for bacterial community analysis is based on the
extraction of the total community DNA, followed by PCR amplifica-
tion of the nucleotide sequence of interest (Spiegelman et al., 2005).
Nevertheless, the presence of numerous usual compounds such as
polysaccharides, carbohydrates, proteins or even salts may hamper
DNA extraction and affect PCR efficiency during the amplification
stages (Mothershed and Whitney, 2006).

Fluorescence In Situ Hybridization (FISH) is another technique
used for bacterial identification, which combines the simplicity of
microscopy observation and the specificity of DNA/rRNA hybridiza-
tion. This methodology is based on the hybridization of labeled DNA
probes to taxon-specific regions of the bacterial ribosomes (16S and
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Table 1
Bacterial strains used in PNA-FISH assays in the present study. The PNA probe
efficiency was tested in triplicate experiments for each strain, with the following
qualitative evaluation: (−) absent hybridization; (+) poor hybridization; (++)
moderate hybridization; (+++) good hybridization; and (++++) optimal hybrid-
ization. The table shows the average value from the three experiments for each strain.

Code Species Strain PNA probe
efficiency

L1 Lactobacillus (L.) pentosus CECT4023 ++++
L2 L. casei CECT5275 ++++
L3 L. rhamnosus CECT288 ++++
L4 L. coryniformis sub. torquens CECT4129 ++++
L5 L. paracasei CECT227 ++++
L6 L. acidophilus ATCC4356 ++++
L7 L. agilis CCUG 31450 ++++
L8 L. animalis ATCC35046 +++
L9 L. bifermentans ATCC35409 +++
L10 L. brevis ATCC14869 ++++
L11 L. buchneri ATCC4005 +++
L12 L. fermentum ATCC11739 +++
L13 L. crispatus ATCC33820 ++++
L14 L. curvatus sub. Curvatus ATCC25601 ++++
L15 L. delbrueckii sub. delbrueckii ATCC9649 +++
L16 L. delbrueckii sub. Lactis ATCC12315 +++
L17 L. farciminis DSM20182 ++++
L18 L. fructivorans ATCC8288 +++
L19 L. gallinarum CCUG31412 ++++
L20 L. gasseri ATCC9857 ++++
L21 L. graminis DSM20719 ++
L22 L. hamster ATCC43851T +++
L23 L. helveticus ATCC15009 ++++
L24 L. hilgardii NCFB962 +++
L25 L. intestinalis ATCC49335 +++
L26 L. johnsonii ATCC11506 ++++
L27 L. murinus ATCC35020 ++++
L28 L. parabuchneri ATCC12936 ++++
L29 L. paracasei sub. paracasei CCUG27320 +++
L30 L. plantarum NCIMB8827 +++
L31 L. reuteri NCFB2656 +++
L32 L. rhamnosus ATCC7469 ++++
L33 L. ruminis ATCC27781 ++++
L34 L. sakei sub. carnosus CCUG8045 ++
L35 L. salivarius DEVRIESE94/438 +++
L36 L. plantarum NCCB46043 +++
E1 Lactococcus lactis 53 − −/++
E2 Streptococcus thermophilus A − −
E3 Streptococcus thermophilus B − −/+++
E4 Leuconostoc mesenteroides − −/+
E5 Bacillus subtilis DSM 7–10 −
E6 Enterococcus faecium CECT410 −
E7 Enterococcus faecalis CECT184 −
E8 Bacillus cereus − −
E9 Enterobacter aerogenes CECT684 −
E10 Salmonella enterica − −
E11 Escherichia coli O157:H7 NCTC12900 −
E12 Staphylococcus aureus CECT976 −
E13 Staphylococcus aureus CECT86 −
E14 Shigella flexneri ATCC12022 −
E15 Listeria monocytogenes − −
E16 Klebsiella pneumoniae subsp. ozaenae ATCC11296 −
E17 Salmonella typhi − −
E18 Listeria seeligeri CECT917 −
E19 Escherichia coli CECT434 −
E20 Listeria monocytogenes CECT5873 −
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23S rRNA sequences), that are usually detected by fluorescence mi-
croscopy. In addition, the FISH procedure can be accomplished in a
few hours, allowing fast in situ analysis (Amann and Fuchs, 2008;
Justé et al., 2008). After Langer-Safer et al. (1982) developed FISH,
this technique has been used to detect and quantify the presence or
absence of specific DNA/rRNA sequences. FISH fluorescent probes
show a high degree of specificity to complementary sequences and
therefore have been applied in numerous fields of research. In the
specific context of food technology, FISH has been also applied for
the detection of specific lactic acid bacteria (LAB) in natural whey cul-
tures for the production of hard cooked cheeses, a matrix which is
very similar to fermented milks (Bottari et al., 2010; Matte-Taillez
et al., 2001), in wine (Sohier and Lonvaud-Funel, 1998) and for probi-
otic bifidobacteria quantification in fermented food (Kaufmann et al.,
1997; Lahtinen et al., 2005; Shah and Lankaputhra, 1997; Tabasco et
al., 2007). Moreover, FISH is well established as an advantageous
method for cultivation-independent detection of microorganisms in
many different sample types.

However, DNA probes frequently showed low fluorescent responses
in hybridized samples due to numerous factors, such as, low ribosome
content of cells, difficult cell wall permeabilization and the presence of
rRNA secondary and tertiary structures (Justé et al., 2008). Consequently,
peptide nucleic acid (PNA) probes have emerged as an alternative to
DNA probes as a more efficient molecular method for rapid microbial
detection (Stender et al., 2002). PNAs recognize and bind to their
complementary nucleic acid sequences with higher thermal stability
and specificity than the corresponding deoxyribooligonucleotides. PNA
probes targeting specific 16S and 23S rRNA sequences of bacteria with
clinical, industrial and environmental relevance have been successfully
described by several researchers (Almeida et al., 2009, 2010; Guimaraes
et al., 2007; Matte-Taillez et al., 2001).

Our main goal consisted in the design, characterization and evalu-
ation of a new fluorescently labeled PNA probe for the specific de-
tection of the Lactobacillus genus by FISH. To validate our probe, we
determined its specificity and sensitivity against a great variety of
Lactobacillus strains and other related bacterial strains. Subsequently,
the PNA FISH method was evaluated on fresh milk samples to which
lactobacilli were supplemented in concentrations found in several
products after probiotic fermentation.

2. Materials and methods

2.1. Culture of bacterial strains

The bacterial strains used in this study are listed in Table 1. All
strains were maintained on Brain Heart Infusion agar (BHI; Oxoid,
United Kingdom) or de Man, Rogosa and Sharpe agar (MRS; Sigma,
Portugal) at 37 °C (or 30 °C in the case of L. pentosus strains) and
streaked onto fresh plates every 24 h. Plates were incubated at
37 °C or 30 °C under anaerobic conditions (AnaeroGen Atmosphere
Generation system; Oxoid, United Kingdom) for 20–24 h prior to
FISH experiments.

2.2. PNA probe design

To identify Lactobacillus genus potential targets for the probe
design, we used the Primrose program (http://www.cf.ac.uk/biosi/
research/biosoft/Primrose/index.html; Ashelford et al., 2002) coupled
with the 16S rRNA databases from the Ribosomal Database Project II
(version 10.0; http://rdp.cme.msu.edu/; Cole et al., 2009). The com-
plementarity to a lower number of non-target and to the higher num-
ber of target sequences were the main reasons for the PNA probe
design.

The selected sequence was synthesized (Panagene, Daejeon,
South Korea) and the oligonucleotide N terminus was attached to an
Alexa Fluor 488 molecule via a double 8-amino-3,6-dioxaoctanoic acid
(AEEA) linker (PNA Probe: Lac663, Alexa Fluor 488-OO-ACATGGAG
TTCCACT; HPLC purified>90%).

2.3. Theoretical assessment of probe specificity and sensitivity

In order to compare the performance of the PNA probe developed
in the current study with that of other probes previously described
(Table 2), their theoretical specificities and sensitivities were calculated
according to Almeida et al. (2010), using updated databases available at
the Ribosomal Database Project II (RDP II; http://rdp.cme.msu.edu/)
through Primrose software and then confirmed by a BLAST search at
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the National Center for Biotechnology Information (http://www.ncbi.
nlm.nih.gov/BLAST/). Only Lactobacillus strains with at least 1200 base
pairs and good quality sequences were included. Briefly, theoretical
sensitivity was calculated as Ls/(TLs)×100, where Ls stands for the
number of Lactobacillus strains detected by the probe and TLs for the
total number of Lactobacillus strains present in the RDP II (http://rdp.
cme.msu.edu/probematch/, last accession date, March 2012). Theoreti-
cal specificity was calculated as nLs/(TnL)×100, where nLs stands for
the number of non-Lactobacillus strains that did not react with the
probe and TnL for total of non-Lactobacillus strains examined.

2.4. FISH protocol development

Both hybridization procedures (in glass slides and in suspension)
are able to detect and quantify potential probiotic lactobacilli. More-
over, glass slide hybridization is the more commonly used technique
in analytical laboratories (Amann and Fuchs, 2008). While hybridiza-
tion in suspension is usually used to avoid autofluorescence back-
ground in complex matrix samples (Almeida et al., 2009) and it is also
the hybridization technique applied in flow cytometry (Amann et al.,
1990; Amann and Fuchs, 2008).

2.4.1. Hybridization procedure on glass slides and in suspension
Protocols were developed both for hybridization on slides and in

suspension. Even though the FISH protocols on slides and in suspen-
sion herein used are based on the previous work by Almeida et al.
(2009, 2010), optimal fixation and hybridization conditions are cru-
cial for a specific FISH method development. Therefore, these pro-
cedures were optimized considering the following modifications.
Hybridization was done at 60 °C for 90 min and washing (60 °C for
30 min) was prepared less than 24 h before use. The glass slides
were allowed to air dry before microscopy visualization, while sus-
pension samples were stored at 4 °C in the dark for a maximum of
24 h before microscopy visualization.

2.4.2. Hybridization on milk samples
All strains were grown on MRS or BHI plates, for 24–48 h

(see Table 1). Afterwards, strains were suspended in distilled water
and then homogenized by vortexing for 1 min. Then, 1 ml of cell
suspension was pelleted by centrifugation at 10,000 ×g for 5 min,
resuspended in 500 μl of 4% (wt/vol) paraformaldehyde (Fisher Scientific,
United Kingdom) and fixed for 1 h. The fixed cells were washed in sterile
water by centrifugation at 10,000 ×g for 5 min, resuspended in 500 μl of
50% (vol/vol) ethanol, and incubated for 30 min at −20 °C. Following
this, a 100 μl aliquot was pelleted by centrifugation, washed with
sterile water and finally resuspended in 100 μl of hybridization solu-
tion with 200 nM PNA probe. Next, the samples were incubated at
Table 2
Theoretical specificity and sensitivity obtained for probes previously developed for the dete

Probe Type Sequence (5′ 3′) No. of Lactobacillus
strains detecteda

No.
stra

Eub338b DNA GCTGCCTCCCGTAGGAGT 11,842 904
Lab158c DNA GGTATTAGCA(C/T)CTGTTTCCA 11,198 6
LGC354Ad DNA TGGAAGATTCCCTACTGC 11,852 11,
LAB759e DNA CTACCCATRCTTTCGAGCC 10,371 2
LbpV3f DNA CCGTCAATACCTGAACAG 831
Name not
availableg

PNA GAATCTTCCACAATGG 11,873 14,

Lact663 PNA ACATGGAGTTCCACT 11,035 3

a Calculated through ProbeMatch/ (last accession, January 2012) with the following data
b DNA probe for Eubacteria being unspecific for Lactobacillus spp. but useful for compara
c DNA probe also detects members of Enterococcus, Pediococcus, Weissella, Vagococcus, Le
d DNA probe for mainly members of Lactobacillales and Bacillales, such as Lactobacillus sp
e DNA probe also detects members of Ruminococcaceae sp. and Pediococcus sp. used in Q

guanosine, therefore Quevedo et al. (2011) used in fact two DNA probes to detect Lactobac
f DNA probe only hybridizes with certain strains Lactobacillus plantarum.
g PNA probe for the detection of Lactobacillus-related genera.
identical hybridization time and temperature ranges as the ones re-
ferred above (see Section 2.4.1). Subsequent to the hybridization
step, the sample was centrifuged again at 10,000 ×g for 5 min,
resuspended in 500 μl of wash solution and then incubated for
30 min at the same temperature of the hybridization step. The
washed suspension was pelleted by centrifugation and resuspended
in 500 μl of sterile water. The final step consisted of filtering 200 μl
of cell suspension through a 0.2 μm cellulose nitrate membrane
(Whatman, United Kingdom) or alternatively by spreading 20 μl of
the suspension on a microscope slide, allowing then the membrane
or slide to air dry. After hybridization samples were stored at 4 °C
in the dark for a maximum of 24 h before microscopy visualization.

2.5. Microscopic visualization

Before the microscopic evaluation, one drop of non-fluorescent im-
mersion oil (Merck, Portugal) was added to either slides or filters and
covered with coverslips. Microscopy visualization was performed using
anOlympusBX51 (Olympus Portugal SA, Porto, Portugal) epifluorescence
microscope equippedwith onefilter sensitive to the Alexa Fluor 488mol-
ecule attached to the PNA probe (BP 470–490), and an Olympus DP 72
camera. Other filters present in the microscope that are not capable of
detecting the probe fluorescent signal were used to confirm the absence
of autofluorescence (FT 500, LP 516). In each experimental assay, a nega-
tive control was performed simultaneously in which all the steps de-
scribed above were carried out, but where no probe was added in the
hybridization step. All images were acquired using Olympus CellB soft-
ware using a magnification of ×1000.

2.6. Experimental assessment of probe specificity and sensitivity

After the hybridization optimization, the specificity and sensitiv-
ity of the PNA probe were tested using 36 representative strains
from Lactobacillus genus and 20 representative strains from related
genera belonging to the Lactobacillales order (Kandler and Weiss,
1986; Hammes and Vogel, 1995) and common pathogens in food in-
dustry (see Table 1). Specifically, strains from the following genera
were included: Lactococcus, Enterococcus, Leuconostoc, Streptococcus,
Staphylococcus, Shigella, Listeria, Salmonella, Escherichia, Enterobacter,
Bacillus and Klebsiella. All experiments were performed in triplicate at
identical conditions and the experimental specificity and sensitivity
were determined.

2.7. PNA FISH validation against fresh milk samples

For the direct detection of bacterial cells in milk, we selected
a well-known probiotic and an uncommon probiotic Lactobacillus
ction of Lactobacillus spp.

of non-Lactobacillus
ins detecteda

Specificity (%)a Sensibility (%)a Reference or source

,088 5.99 98.22 Amann et al., 1990
,203 99.36 92.88 Harmsen et al., 1999
585 98.80 98.30 Meier et al., 1999
,823 99.72 80.17 Zijnge et al., 2010

4 99.99 6.89 Ercolini et al., 2003
126 98.53 98.47 Burton et al., 2003

,248 99.66 91.52 This work

set options: Strain—Both; Source—Both; Size—>1200 bp; Quality—Both.
tive value.
uconostoc and Oenococcus spp. used in Lebeer et al. (2011).
p., used in Olsen et al. (2008).
uevedo et al. (2011); the R symbol of the DNA probe sequence may be adenosine or
illus spp.

http://www.ncbi.nlm.nih.gov/BLAST/
http://www.ncbi.nlm.nih.gov/BLAST/
http://rdp.cme.msu.edu/probematch/
http://rdp.cme.msu.edu/probematch/
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strain, more precisely, L. casei CECT 4023 (also known as ATCC 393;
Sidira et al., 2010) and L. pentosus CECT 5275 (Lafarge et al., 2004;
Zhu et al., 2007), respectively. These two strains were selected to
demonstrate Lac663 capability for potential probiotic lactobacilli de-
tection in complex matrix samples, such as milk samples. An inocu-
lum of either Lactobacillus pentosus CECT 4023 or L. casei CECT 5275
was prepared in phosphate buffered saline (PBS) and, using a calibra-
tion curve of CFU vs O.D. (at a wavelength of 600 nm), fresh milk
(also known as raw milk) samples were inoculated with microbial
concentrations ranging from 1×102 to 1×108 CFU/ml. Also, we per-
formed a spiked-milk inoculation with a mixture of Lactobacillus
casei CECT 5275 and two non-Lactobacillus strains: Lactococcus
lactis (E1) and Streptococcus thermophilus B (E3; Table 1). This
spiked-milk sample was inoculated with a final concentration of
1×108 CFU/ml of each bacteria. Taking into account the previously
reported detection limit of 2×105 CFU/ml for Cronobacter in pow-
dered infant formula (Almeida et al., 2009), a simple and direct de-
tection approach, after a ten-fold dilution (to avoid the interference
of milk protein autofluorescence), was considered adequate to reach
the desired detection limit. Therefore, all samples were diluted 1:10
and 1 ml aliquots of each dilution were concentrated by centrifugation
as described above. The fresh milk was previously pasteurized at 66 °C
for 30 min (before FISH procedure) to reduce the naturally occurring
microbial load from the initial lactobacilli or related bacterial strain
inoculation in themilk samples. The pasteurization stepwas performed
in our laboratory to ensure an efficient procedure and to maintain the
same bacterial concentration from the initial inoculation, avoiding fur-
ther proliferation of the bacteria in freshmilk samples through temper-
ature inactivation. Hybridization was performed in suspension or on
glass slides, then samples were visualized by epifluorescence micro-
scope and concentrationwas determined by counting a total of 15fields
(1000×) for each sample. Also, the sampleswere plated onMRS agar for
CFU counts.

3. Results and discussion

3.1. Theoretical assessment of probe specificity and sensitivity

The sequence of the selected PNA probe is the shorter from
all probes in Table 2, and it hybridizes between positions 663
and 677 of the Lactobacillus sp. strain MDL2 16S rRNA sequence
(Genebank ID: HM753265.1), consequently it was denominated
as Lac663. According to the consulted database of the RDP II Project,
the Lac663 probe is fully complementary to 11,837 matches that corre-
spond to target sequences. Since the Lactobacillus genus reveals 12,936
target sequences, the Lac663 probe theoretical sensitivity was found
to be 91.52% (see Table 2). Considering a total of 1,018,924 non-
Lactobacillus sequences evaluated (isolates with good quality and se-
quence size>1200 bp) from which 1,015,376 did not react with Lac663
probe, a theoretical specificity of 99.66% was determined.

These sensitivity and specificity equations allowed us to compare
our Lac663 PNA probe with other probes that had previously been de-
veloped to detect and enumerate Lactobacillus spp. strains (Table 2).
Lac663 theoretical performance was quite similar to what had previ-
ously been reported for the other probes mentioned in Table 2, except
for Eub338 and LbpV3, which were designed for the detection of
Eubacteria (Eub338) and Lactobacillus plantarum (LbpV3) and, as
such, are not specific for the Lactobacillus genus. Although probes
Lab158, LGC354A and the probe described by Burton et al. (2003)
detected approximately 1 to 8% more Lactobacillus strains in compar-
ison with our probe, Lac633 was found to be the probe with the low-
est number of false positive hits (Table 2). In fact, the Lac663 probe
does not cross-react with 3,617, 8,781 and 11,332 non-Lactobacillus
strains that are detected with the Lab158, LGC354A and Burton et al.
(2003) probes, respectively. Moreover, 5 of the 22 non-Lactobacillus
genera detected by the Burton et al. (2003) PNA probe belong to
the Carnobacteriaceae family and consequently to the LAB group
(König and Fröhlich, 2009), more precisely, the following genera:
Dolosigranulum; Atopostipes; Alloiococcus; Alkalibacterium; and
Marinilactibacillus. This family of gram-positive, lactic acid-producing
bacteria is used in several food applications, including probiotic milk
and its products (Afzal et al., 2010; Bourdichon et al., 2012). A total of
51.95% of bacterial species from the Carnobacteriaceae family are
detected by the Burton et al. (2003) PNA probe in contrast with only
0.34% detected by our probe. This demonstrates that the Lac663 probe
shows a better specificity and applicability for analysis of fresh milk
samples, which can be contaminated by a huge variety of bacteria.
From Table 2 it can be concluded that only the LAB759 probe
was more specific than the currently developed Lac663 probe. How-
ever, the LAB759 probe shows a clearly lower sensitivity percentage
(80.17%) compared to our probe (91.52%). It is also important to note
that our probe has the shortest oligonucleotide sequence from all the
probes included in Table 2, more precisely 1 and 3 nucleotides less
than the other PNA probe and the shorter DNA probe (LGC354A), re-
spectively. This implies that the Lac663 probe should penetrate better
through the cell wall and that 1 base mismatch can be more easily dis-
criminated. Also, because it's a PNAbased probe, it has higher resistance
against enzymatic activity (such as DNases or proteases) from the bac-
terial cell, enabling superior FISH efficiency as previously discussed by
Cerqueira et al. (2008).

In conclusion, our in silico analysis indicates that the Lac663 probe
is able to induce hybridization more efficiently to Lactobacillus strains
in complex samples than the other probes reported so far.

3.2. FISH protocol development

From the different temperatures and time periods tested, the best
hybridization conditions were found to be 60 °C for 90 min. Hybridiza-
tion conditions revealed strong signal-to-noise ratio from 58 °C to
62 °C, with incubation times ranging from 60 to 120 min. As such, our
FISH protocol can be performed within 3 h, which constitutes a signifi-
cant improvement as compared to previously described similar DNA
probes by Lebeer et al. (2011) (Lab158 DNA probe with overnight hy-
bridization of 12 h). Also, as previously mentioned, all samples were
visualized with other available filters and no autofluorescence was ob-
served (see examples in Fig. 1). Specifically, the absence of autofluores-
cence in L14 and L34 pictures on red filter confirms the specificity of the
Lac663 probe.

3.3. Experimental assessment of probe specificity and sensitivity

As expected by the in silico analysis, the Lac663 probe hybrid-
ized with all Lactobacillus collection strains whereas no hybridiza-
tion was observed for the other species used, except for L. lactis
53, S. thermophilus B and L. mesenteroides, which showed some
cross-hybridization with the probe if a washing step of 15 min was
used. To clarify these results we analyzed in silico 16S rRNA gene
sequences from these three bacterial strains and we found only one
mismatch at positions 670 for L. lactis (T) NCDO607T 16S rRNA gene
sequence (RDPII ID: S000439498) and S. thermophilus (T) ATCC19258
16S rRNA gene sequence (RDPII ID: S000400852), more exactly a single
medium-strength T/C mismatch. However, extending the washing step
to 30 min and using fresh washing solution allowed the removal of the
Lac663 probe poorly bound from all non-Lactobacillus strains with this
single medium-strength T/C mismatch in our bacteria culture collection.
L. mesenteroides (T) NCFB529 (RDPII ID: S000003774) revealed a total
common oligonucleotide sequence identical to Lactobacillus spp., which
was already predicted in the theoretical evaluation and this actually
occurs with all the probes developed for detection of Lactobacillus spp.
described in Table 2. Despite of the cross-hybridization for this species,
its coccus morphology allows differentiation from Lactobacillus spp.,
which have a rod-shaped morphology. Importantly, Lac663 probe



Fig. 1. Fluorescence microscopy pictures of Lactobacillus spp. and other related bacteria by specific PNA probe (Lac663) associated with Alexa Fluor 488 fluorochrome. All images
were obtained using the same exposure time. (a) Green filter (BP 470–490). (b) Red filter (FT 500, LP 516). Code: L14, L. curvatus sub. curvatus ATCC25601; L34, L. sakei sub. carnosus
CCUG8045; E02, S. thermophilus A; E04, L. mesenteroides; E06, E. faecium.
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showed an absence of hybridization with several bacterial species from
the Bacilli class, such as S. thermophilus A, Enterococcus faecium CECT
410, Enterococcus faecalisCECT184,Bacillus subtilisDSM7–10 andBacillus
cereus. In addition, the probe also did not hybridize with several patho-
genic bacteria whichmay contaminate industrial food such as Salmonella
spp., Escherichia coli, Shigella spp. and Listeria monocytogenes. Therefore,
these results support the advantages previouslymentioned about the re-
liable application of PNA probes in FISH methodology and corroborates
the theoretical prediction. Based on this test, experimental sensitivity of
100% (95% confidence interval (CI), 88.0 to 100.0%) and specificity of
95.0% (95% CI, 73.1 to 99.7%) were obtained.

3.4. PNA FISH validation against fresh milk samples

After the optimization of the Lac663 FISH protocol the method
was adapted for the detection and quantification of Lactobacillus
spp. in a milk sample enriched with probiotic strains. According to
Ishibashi and Shimamura (1993), we have defined a desired detec-
tion limit of 1×107 CFU/ml. As expected, after hybridization with
the Lac663 probe, microscopic visualization showed that Lactobacillus
species could be detected up to the concentration of 1×107 CFU/ml
(Fig. 2 and Table 3). The concentration of inoculated bacteria in the
fresh milk samples was determined by conventional plating tech-
niques (as CFU/ml) and by PNA FISH counts (as cell/ml; Table 3). As
expected, PNA FISH counts were higher than CFU, which most proba-
bly was due to the presence of non-cultivable cells. Furthermore, we
performed a spiked-milk experiment with a mixture of L. casei CECT
5275 and the two previously mentioned non-Lactobacillus strains
with one single medium G/T mismatch, more exactly, L. lactis (E1)
and S. thermophilus B (E3; Table 1). The aim of this experiment was
to confirm that Lac663 probe only hybridized to the Lactobacillus
genus using a washing step of 30 min. No unspecific hybridization was
observed in the spiked milk sample hybridization (data not shown),
thus confirming Lac663 probe applicability in the detection and quanti-
fication of Lactobacillus species in complex samples.

Epifluorescencemicroscopy has become awidely used technique for
direct estimation of bacteria in several industrial samples. In fact, many
authors demonstrated the efficiency of FISHmethodology in lactobacilli
analysis (Bernardeau et al., 2001; Lebeer et al., 2011;Matte-Taillez et al.,
2001); however none of them achieved the simplicity and specificity
that our method offers. For example, Bernardeau et al. (2001) success-
fully performed a quantitative analysis of lactobacilli in probiotic feed,
but lactobacilli were counted by an unspecific fluorochrome (DAPI—4′,
6-diaminidino-2-phenylindole–2HCL). Matte-Taillez et al. (2001) also
used DNA and PNA FISH methodology for the detection and identifica-
tion of lactic acid bacteria on milk samples. However, these authors
had to apply multiple PNA probes for lactobacilli identification, which
makes the analysis more expensive and complex.

Regarding the traditional culture method for enumeration of
Lactobacillus spp., it takes at least 48 h, even with a more advanced
PetrifilmTM AC system used by Champagne et al. (2009). Similar
results were obtained by Jackson et al. (2002), who used two se-
lective media for the detection and enumeration of lactobacilli
followed by a PCR for lactobacilli confirmation.



Fig. 2. Examples of fluorescence microscopy pictures of Lactobacillus pentosus CECT 4023 from fresh milk samples by specific PNA probe (Lac663) associated with Alexa Fluor 488
fluorochrome. Total cell counting determined for fresh milk samples with different initial concentrations, such as 109 CFU/ml (a), 108 CFU/ml (b) and 107 CFU/ml (c).
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As regards to molecular methods other than FISH, Collado and
Hernández (2007) used an Amplified Ribosomal DNA Restriction Analy-
sis (ARDRA) and a Randomly Amplified Polymorphic DNA (RAPD)
method that allowed discrimination of lactobacilli from other bacteria
present on milk samples, but both techniques involved a much more
complex protocol and were not capable of enumerating lactobacilli in
the samples. Quantitative Real-Time PCR (qPCR) methods, which allow
a quantitative detection, have been developed by Haarman and Knol
(2006). qPCR methods can be performed at the same time as the FISH
methodology; however they might also suffer from the presence of in-
hibitory substances in food samples, such as the other PCR techniques.

In summary, the Lactobacillus genus is present in probiotic milk
and other-related products, such as cheese and yogurts. Quality as-
surance of the health or technological benefits of these products re-
quires a fast detection and quantification of these bacteria.

The Lac663 probe was found to be a specific and sensitive PNA
probe for Lactobacillus spp. that together with FISH methodology
may be a reliable and fast (approximately 3 h) alternative technique
for potential probiotic lactobacilli detection and/or quantification in
complex matrices, such as the probiotic milk samples. Using this
method, only milk samples with an effective number of probiotic bac-
teria (at least 107 CFU/ml) will show appropriate results. However, if
a lower detection limit is desired, a destabilizing solution may be ap-
plied to the milk samples followed by a filtration step, to concentrate
the samples.

Further studies are necessary to determine if the Lac663 probe
validated here for milk samples, is also useful for other applications
such as the detection and enumeration of Lactobacillus spp. in feed
probiotic samples. It might also be combined with other PNA probes
in multiplex assays, thus allowing the simultaneous detection and
quantification of other bacterial species.
Table 3
Detection level of Lactobacillus spp. species in milk samples by PNA-FISH assay as compared
represent the average±standard deviation.

Concentration of cells
(CFU/ml)

L. pentosus CECT4023

Culturable cells (CFU/ml) FISH count (

1×108 7.00×107±1.96 2.14×108±0
1×107 6.54×106±2.73 6.97×107±1
1×106 7.43×105±1.84 –

1×105 7.56×104±1.79 –

1×104 1.08×104±0.61 –

1×103 6.99×102±0.74 –
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