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ABSTRACT

The estimation of the Tree of Life, a rooted binary tree rep-
resenting how all extant species evolved from a common an-
cestor, is one of the grand challenges of modern biology.
Research groups around the world are attempting to esti-
mate evolutionary trees on particular sets of species (typi-
cally clades, or rooted subtrees), in the hope that a final “su-
pertree” can be produced from these smaller estimated trees
through the addition of a “scaffold” tree of randomly sam-
pled taxa from the tree of life. However, supertree estima-
tion is itself a computationally challenging problem, because
the most accurate trees are produced by running heuristics
for NP-hard problems. In this paper we report on a study
in which we parallelize SuperFine, the currently most accu-
rate and efficient supertree estimation method. We explore
performance of these parallel implementations on simulated
data-sets with 1000 taxa and biological data-sets with up
to 2,228 taxa. Our study reveals aspects of SuperFine that
limit the speed-ups that are possible through the type of
outer-loop parallelism we exploit.

Categories and Subject Descriptors

D.1.3 [Programming Techniques]: Concurrent Program-
ming—uparallel programming; G.2.2 [Discrete Mathemat-
ics]: Graph Theory—graph algorithms, trees; J.3 [Life and
Medical Sciences]: Biology and Genetics—phylogenetic
reconstruction

General Terms

Algorithms Performance
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1. INTRODUCTION

Phylogeny (i.e., evolutionary tree) estimation is a funda-
mental step in many biological analyses, including protein
structure and function prediction, comparative genomics,
drug design, etc. Most of the phylogenetic estimation meth-
ods that have good accuracy take multiple sequence align-
ments as input and then either attempt to solve an NP-hard
optimization problem (such as Maximum Likelihood [21] or
Maximum Parsimony, the Hamming distance Steiner Tree
problem [10]) or are Bayesian methods (such as MrBayes
[22]) that typically utilize MCMC to search through an ex-
ponentially large space of phylogenetic trees. All these tech-
niques are computationally very intensive, in some cases tak-
ing months of analysis to complete on only moderately large
data-sets [14, 15]. Therefore, alternate estimation tech-
niques have been developed that bypass these inherently
computationally intensive approaches.

Among these techniques are “supertree” methods, which
combine estimated trees on small subsets into a tree on the
full set of taxa. The input to a supertree method is a set of
unrooted! phylogenetic trees (called “source trees”), each on
a subset of the full set of taxa, and the output is an unrooted
tree on the full set of taxa. These source trees are typically
estimated for clade-based subsets (where a clade is a subtree
of the full tree obtained by taking all the leaves below an
internal node in the tree), or for a set of randomly selected
taxa; these two types of source trees are called “clade-based
trees” and “scaffold trees”, respectively. Supertree methods
are studied on simulated data-sets in order to evaluate topo-
logical accuracy. Since the most accurate methods are based
upon NP-hard optimization problems, supertree methods

1The focus on unrooted trees is because locating the root in
a phylogenetic tree depends upon having a carefully selected
outgroup, something which is not always possible; further-
more, the stochastic models of evolution currently used in
phylogenetic estimation are almost all time-reversible, and it
is mathematically impossible to identify the root from such
models.
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Figure 1: Example of an unrooted tree with three
polytomies (each polytomy is highlighted by a
dashed circle).

are computationally intensive. This is even true if all the
source trees are correct, as constructing the true supertree
from unrooted source trees is NP-complete [25]. There is
a rich literature in supertree methods, with an overview of
early methods provided in [5], and active ongoing research
in the area [1, 3, 6, 8, 9, 12, 19, 20, 26, 29, 30].

The most popular supertree method is MRP (Matrix Rep-
resentation with Parsimony) [2, 18], which replaces the set
of source trees by one large “partial binary matrix” (a ma-
trix over {0, 1,7}), and runs heuristics for Maximum Parsi-
mony. Studies evaluating heuristics for MRP in comparison
to other supertree methods have demonstrated its superior
accuracy and feasibility of use on data-sets with more than
a few hundred taxa [29, 30].

Recently, Swenson et al. developed a new supertree method
called “SuperFine” [31], which is both faster than MRP and
also more accurate (as determined on simulated data-sets,
described below). SuperFine has three phases. The first
phase reads the input source trees, and is very fast, tak-
ing much less time than the next phases. The second phase
produces a partially resolved unrooted tree called the “Strict
Consensus Merger” (SCM) tree [11]. The SCM tree has a
mathematical property that results in it typically being only
partially resolved (i.e., it has high degree nodes): it only
contains edges that are in agreement with every source tree.

SuperFine’s third phase refines the SCM tree? by replac-
ing each node of degree greater than three (also known as
a polytomy, see Figure 1) in the tree by a (hopefully fully)
resolved tree; this is called “refining the polytomy”. The
order in which these refinements of each polytomy are per-
formed does not impact the final tree, and hence this phase
is embarrassingly parallel. Refining a single polytomy of de-
gree d is obtained by running an MRP heuristic on a new
set of source trees, each with at most d leaves. Since MRP
heuristics are computationally intensive, especially on large
datasets, refining a polytomy is likely to be computationally
intensive when the degree of the polytomy is large, but may
be fast when the degree is small.

Swenson et al. studied SuperFine in comparison to other
supertree methods (including MRP) on a collection of pre-
viously studied biological supertree data-sets and simulated

2Refining a tree is the inverse of contracting edges in the
tree; thus, a tree T refines tree 7" if 7" can be obtained
from T by contracting some edges in T'.

data-sets [31]. SuperFine was generally faster than MRP:
it never took more than 2.5 minutes on any simulated su-
pertree data-set, and under 35 minutes on the most diffi-
cult biological data-set, while MRP heuristics took up to 2
hours on the simulated data-sets and 14 hours on the most
difficult biological supertree data-set. SuperFine is faster
than MRP because instead of running MRP on one data-set
with a large number of taxa, it runs several MRP analy-
ses on smaller numbers of taxa, where the total number of
taxa over all the data-sets is at most the original number of
taxa. SuperFine also typically matched or improved upon
the topological accuracy of MRP and the other supertree
methods. For example, for the biologically most meaningful
simulation condition (1000 taxa with scaffold trees contain-
ing 20% of the taxa, randomly sampled from the full set of
taxa), SuperFine had 16% missing branch rate, MRP had
20% missing branch rate, and the other supertree methods
had even higher missing branch rates (where the missing
branch rate is the fraction of the internal edges in the model
tree that do not appear in the estimated tree). The rea-
son for this improvement is that the SCM tree only includes
edges that are in agreement with every source tree, and so
these edges tend to be accurate. The restriction imposed by
SuperFine prevents MRP solutions from being found that do
not refine the SCM tree, and results in improved topological
accuracy relative to unconstrained MRP searches.

In this study, we parallelized SuperFine and compared
performance of these parallel versions to that of sequential
SuperFine, using biological and simulated data-sets obtained
from [31]. These biological data-sets consist of:

e CPL (comprehensive papilionoid legumes), 2228 taxa,
39 source trees, studied originally in [16],

e THPL (temperate herbaceous papilionoid legumes), 558
taxa, 19 source trees, studied originally in [33],

e Marsupials, 267 taxa, 158 source trees, studied origi-
nally in [7],

e Placental Mammals, 116 taxa, 726 source trees, stud-
ied originally in [4], and

e Seabirds, 121 taxa, 7 source trees, studied originally in
[13].

The simulated data-sets are based upon mathematical mod-
els of taxon sampling that reflect the best practice of system-
atic biologists, so that each data-set contains several clade-
based trees and one scaffold tree. We indicate the percentage
of the taxa in the scaffold tree by the “scaffold factor”. We
present results for scaffold factors of 20% (the most typical
case) and 100% (much less likely in practice, but gives highly
accurate supertrees).

2. PARALLELIZING REFINEMENT OF THE
SCM TREE

2.1 Profiling of SuperFine Baseline Implemen-
tation

As noted, the first phase in SuperFine is very fast, and we

focus on the last two phases; see Table 1 for average running

times (in seconds) for the last two phases on biological and

simulated data-sets. Thus, SuperFine spends more time on



Table 1: Average Time Spent on the Second (Con-
struct SCM) and Third (Refine SCM) Phases of Su-
perFine.

Average Time (s) Spent to
Data-set Construct SCM | Refine SCM
Sim. 20%-scaffold 6.446 23.866
Sim. 100%-scaffold 18.682 36.553
CPL 90.953 1003.855
Marsupials 12.733 103.801
Placental Mammals 49.669 131.794
Seabirds 0.307 0.924
THPL 2.745 21.583

the third phase than on the other phases. Therefore, we fo-
cus attention on this phase, which refines the SCM tree. Be-
cause the polytomy refinements can be done independently,
parallelizing the refinement phase represents a natural op-
portunity for a substantial speed-up. This paper explores
this possibility.

We performed an exploratory experiment evaluating the
amount of time needed to produce the refinement around
each polytomy. Figures 2 and 3 give results for the simulated
data-sets with 20% and 100% scaffolds, respectively; results
on the biological data-sets are shown in Figures 4-8.

In general we see that running times increased with the de-
gree of the polytomy, and that the refinement of the largest
polytomy could take much more time than any other poly-
tomy (see, in particular, results on the CPL and THPL data-
sets in Figures 4 and 8). However, these observations did
not always hold. For example, on the simulated 1000-taxon
100%-scaffold data-sets, refining the third largest polytomy
took more time than any other polytomy (Figure 3), while
many data-sets had some small degree polytomies that took
more time to refine than many larger degree polytomies (Fig-
ures 2, 3, and 7). Thus, predicting the relative amounts
of time needed to resolve the different polytomies depends
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Figure 2: Time spent to process each polytomy of
the simulated 1000-taxon data-sets (all replicates),
for a scaffold factor of 20%.
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Figure 3: Time spent to process each polytomy of
the simulated 1000-taxon data-sets (all replicates),
for a scaffold factor of 100%.
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Figure 4: Time spent to process each polytomy of
the CPL (biological) data-set, out of 2228 total taxa.

upon factors other than just the degree of the polytomy.
The explanation for this break from the predicted pattern
comes from the nature of the problem that MRP heuristics
are solving. Recall that we resolve each polytomy of degree d
by running an MRP heuristic on a set of source trees whose
leaves are drawn from {1,2,...,d}. When d is small, this
is likely to be computationally fast; however, other factors,
such as the number of source trees (which differs between
polytomies) and how much the source trees conflict with
each other, also contribute to the running time. Also, MRP
heuristics employ randomness in order to search effectively
for good solutions, and to some extent differences in running
time can be due to randomness in the algorithm. Thus,
while generally larger degree polytomies will take more time
to resolve than smaller degree polytomies, there are good
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Figure 5: Time spent to process each polytomy of
the Marsupials (biological) data-set, out of 267 total
taxa.
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Figure 6: Time spent to process each polytomy of
the Placental Mammals (biological) data-set, out of
116 total taxa.

reasons why this is not always the case.

Finally, for three of the biological data-sets (CPL, Placen-
tal Mammals, and Marsupials), the refinement of the largest
polytomy took from 88% to 99% of the total time in the re-
finement phase. These results together suggest that largest
degree polytomy is likely to dominate the running time of
the SCM refinement phase, and in some cases it may limit
the speed-up that is possible through this type of approach.

2.2 Polytomy Refinement Parallelization

We considered two simple shared-memory (SM) dynamic
parallel algorithms, SuperFine SM P1 and SuperFine SM
P2.

The input to each algorithm is an unresolved tree (the
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Figure 7: Time spent to process each polytomy of
the Seabirds (biological) data-set, out of 121 total
taxa.
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Figure 8: Time spent to process each polytomy
of the THPL (biological) data-set, out of 558 total
taxa.

SCM tree computed in the second phase of SuperFine) and
the set of source trees. We let p1,pa, ..., pr denote the poly-
tomies in the SCM tree, and let d; be the degree of p;. Both
algorithms have the same basic structure: the central shared
worklist (CSWL) is a list of the unprocessed polytomies in
the SCM tree, and each processor picks the first polytomy
from the list. The difference between the two algorithms is
whether the list of polytomies is sorted or not: in the first
version, the list is not sorted, and in the second version the
list is sorted according to decreasing polytomy degrees. As
observed earlier, this ordering is likely (though not guar-
anteed) to put the polytomies that will take more time to
process before the polytomies that can be processed quickly.



3. EXPERIMENTAL DESIGN
3.1 Data-sets

We used the biological (i.e., real) data-sets and simulated
data-sets described earlier; all of which were used in earlier
studies to evaluate supertree methods [27, 28]. In all, we had
20 simulated 1000-taxon supertree data-sets and 5 biological
supertree data-sets with up to 2228 taxa. Each supertree
data-set contains many trees, each on a subset of the taxa.

The trees in the simulated data-sets are estimated by
RAxML [24], a very accurate and fast heuristic for maxi-
mum likelihood. The sequence data-sets given to RAxML
were simulated on subtrees of 1000-taxon model trees un-
der GTR4+Gamma. As described earlier, the subtrees for
these sequence data-sets reflect realistic patterns of missing
data, including both biological processes and taxon sampling
strategies used by systematists in phylogenetic studies [27,
28]. These data-sets include clade-based trees and scaffold
trees, as described earlier. Clade-based trees by themselves
cannot be used to assemble a tree on the entire data-set,
but the inclusion of the scaffold tree provides the overlap
that makes this possible. As observed in [31], supertrees are
typically more accurate when scaffold trees are more densely
sampled, but typical practice in systematics produces scaf-
folds containing only a sparse subset of the taxa. We present
results for 1000-taxon model trees with 20% and 100% scaf-
folds, in order to consider both extremes (the case which
is more typical of biological practice, and the case where
the best accuracy is obtained, respectively). We produced
10 replicates for each supertree input condition to obtain
estimates of average performance.

3.2 Refinement Method

The third phase of SuperFine refines each polytomy in the
SCM tree using MRP, which is maximum parsimony on a
partial binary character MRP matrix defined by the SCM
tree and the source trees. We used an effective maximum
parsimony heuristic called the parsimony ratchet [17], as
implemented in PAUP* [32]; this is the same MRP heuristic
used in the sequential version studied in [31], and enables
us to provide a fair comparison. The parsimony ratchet is a
popular technique for maximum parsimony analyses of large
data-sets.

3.3 Multicore Analyses

We used an 8-core Intel Nehalem with 48 GB of shared
memory. For each data-set and for each number of cores, we
performed six runs of each of the three methods of analysis
(sequential or parallel). Thus, for the 1000-taxon data-sets
with 20%-scaffolds, the number of runs involving the sequen-
tial and the parallel versions is 10 X 6+ 10 X 6 x 4 x 2 = 540,
since we made 6 runs per replicate and there are: the base-
line implementation (sequential code) plus two parallel ver-
sions, 10 replicates per data-set, and 4 configurations of
numbers of cores (1, 2, 4, and 8).

4. RESULTS

As explained on Section 2, the only difference between
the two parallel versions, SuperFine SM P1 and SuperFine
SM P2, is that the central shared worklist (CSW L) for Su-
perFine SM P2 is sorted by decreasing polytomy degree (d),
while it is not for SuperFine SM P1.

Figure 9 compares the average running times for the poly-
tomy refinement phase of the sequential code to that of Su-
perFine SM P1 and SuperFine SM P2 on the 1000-taxon
simulated data-sets with scaffold factor of 20%. The two
parallel versions have almost identical running times, but
SuperFine SM P2 has a small advantage. Results (not
shown) for the 1000-taxon data-sets with 100%-scaffolds show
a similar pattern, with a small advantage for SuperFine SM
P2 over SuperFine SM P1. The only difference between the
two conditions is that in absolute terms, all methods take
more time on the 100%-scaffold factor data-sets than on the
20%-scaffold factor data-sets.

Tree Refinement - 20% of Scaffold Factor

R L i i

= Sequential Code
== SuperFine SM P1
¥V SuperFine SM P2

Average Time (s)

1 Core 2 Cores 4 Cores 8 Cores

# Cores

Figure 9: Average running times of sequential code
and the first and the second parallel versions, on
simulated data-sets with 20% of scaffold factor.

Table 2 gives the average speed-up of the two parallel ver-
sions over the sequential code for each biological data-set
and simulated model condition, as a function of the number
of cores. Here we see substantial differences between the

Table 2: Average Speed-ups of the First and the
Second Parallel Versions for Simulated and Biologi-
cal Data-sets.

Data-set | Parallel Version 1Numl:2)er of 4Cores8
Simulated | SuperFine SM P1 | 1.01 | 1.94 | 3.41 | 5.21
20%-scaf. | SuperFine SM P2 | 0.98 | 1.99 | 3.71 | 6.00
Simulated | SuperFine SM P1 | 1.00 | 1.95 | 3.61 | 6.02
100%-scaf. | SuperFine SM P2 | 1.01 | 1.96 | 3.69 | 6.34
CPL SuperFine SM P1 | 0.98 | 1.09 | 1.09 | 1.13
SuperFine SM P2 | 1.05 | 1.14 | 1.07 | 1.13
Marsupials SuperF%ne SM P1 | 0.99 | 1.02 | 1.07 | 1.08
SuperFine SM P2 | 0.99 | 1.04 | 1.13 | 1.12
Placental | SuperFine SM P1 | 0.99 | 1.00 | 1.00 | 1.01
Mammals | SuperFine SM P2 | 0.95 | 0.96 | 0.99 | 1.02
Seabirds SuperF%ne SM P1 | 1.00 | 1.88 | 2.89 | 3.76
SuperFine SM P2 | 1.00 | 1.88 | 3.16 | 4.25
THPL SuperFine SM P1 | 1.01 | 1.53 | 1.63 | 1.63
SuperFine SM P2 | 0.99 | 1.55 | 1.64 | 1.63




biological and simulated data-sets. On the simulated data-
sets we obtain a good but not linear speed-up, but all but
one biological data-sets has a speed-up of less than 2 when
run with 8 cores. At one extreme, the Placental Mammals
data-set shows no speed-up at all (i.e., a speed-up of approx-
imately 1), Marsupials and CPL have speed-ups of approxi-
mately 1.1, THPL has a speed-up of 1.63, and the Seabirds
has a speed-up of 4.25. An examination of the polytomy
sizes and times to resolve these polytomies for each biolog-
ical data-sets reveals why we see these low speed-ups. For
example, the Placental Mammals tree has a polytomy of
degree 115 and only 116 taxa in total; this means that the
SCM tree has only one internal edge, and the refinement step
is essentially starting from scratch. The CPL, THPL, and
Marsupials data-sets are problematic for different reasons.
In each of their cases, the largest degree of any polytomy
in the SCM tree is much less than the full number of taxa
(i.e., the SCM tree is fairly well resolved). However, the
time needed to resolve the largest polytomy dominates the
refinement phase, using at least 88% of the total time in the
sequential implementation, thus keeping the speed-up po-
tential close to 1 (see also Figures 4-8 for the scatterplots of
polytomy degrees and time to resolve each polytomy). Only
the Seabirds data-set has mostly small polytomies, and all
take within a narrow range of running times to resolve (from
0.06 to 0.14 seconds, see Figure 7). Thus, it is not surpris-
ing that the best speed-up is on the Seabirds data-set, and
that the speed-ups on the CPL, Placental Mammals, and
Marsupials are extremely small.

Why do we see better results on the simulated data-sets
than on the biological data-sets? First, we note that the
SCM trees for the simulated data-sets tend to be well re-
solved, with maximum polytomy degrees that are less than
7% of the total number of taxa. This keeps the total time
needed to refine any one polytomy relatively small, and dif-
ferences in time to resolve different polytomies also relatively
small. For the biological data-sets, with the exception of
Seabirds, the maximum degree of any polytomy was at least
17% of the total number of taxa. Thus, the SCM trees for
the simulated and Seabird data-sets are relatively resolved
and do not have very large polytomies that dominate the
running time in the refinement step, but the SCM trees for
the other biological data-sets have at least one very large
polytomy. The question is why we see these differences in
resolution between these datsets?

There are several possible answers, but the most likely
ones are these. First, the supertree data-sets produced in
simulation are based upon maximum likelihood analyses of
true alignments, and are therefore likely to be highly accu-
rate. In contrast, the trees in the biological data-sets were
based upon many different alignment and phylogenetic re-
construction methods, including ones that are now known
to be less accurate (at the time the source trees were con-
structed, the relative performance of methods was not as
well known, and the methods that were then available were
not as accurate as the best current methods). It is well
known that increases in source tree error results in increases
in supertree estimation error; however, here we note an ad-
ditional consequence of source tree error: because the SCM
tree is extremely conservative and only includes edges that
are supported by all source trees, the SCM tree will lose res-
olution when the source trees have high error rates. There-
fore, source tree estimation error not only impacts the accu-

racy of the resultant supertree, it also impacts the running
time of SuperFine and its parallel implementations.

Another factor that results in the SCM tree being un-
resolved is poor taxon sampling in the source trees, espe-
cially the use of random sampling in defining the source
trees [23]. Unfortunately, many supertree studies are de-
signed using random samples of taxa for the source trees.
Optimal taxon sampling strategies are not yet understood,
but this is clearly an area for future research with potential
for substantial impact on estimations of the Tree of Life.

In summary, our parallelization strategy obtains excellent
speed-up for the simulated data-sets, and good speed-ups for
one of the biological data-sets. For the biological data-sets,
speed-ups are limited by two factors: (i) the number of poly-
tomies in an SCM tree can be small, and (ii) the refinement
time for polytomies can vary widely. Further improvements
in speed-up require the parallelization of individual poly-
tomy refinements.
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