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Abstract 

The concrete compressive strength is the most used mechanical property in the design 

of concrete structures. Therefore, the use of rational models to its prediction, to simulate 

the effects of its different constituents and its properties can play an important role in 

the achievement of the safety-economy required. Models to forecast the concrete 

compressive strength have already been presented before by some researchers. 

However, the comparison of different rational models and the application of models to 

predict the importance of the different constituents in the concrete behaviour have not 

yet been approached. Therefore, developing these models will be necessary namely to 

take into account the quality, i.e. the activity, of the most used mineral addition in 

concrete: fly ash. This study compared different Data Mining techniques to predict the 

compressive strength of fly ash concrete along time. The presented models are able to 

learn the complex relationships between several variables like the uniaxial compressive 

strength, the different concrete compounds and its mix design, the different properties 

of the fly ash used and the relative influence of its. 

 

Keywords: concrete strength, fly ash, data mining, artificial neural networks, support 

vector machines  
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1. Introduction 

The concrete compressive strength is the most used mechanical property in the design 

of concrete structures. The prediction of concrete strength before its placement allows 

engineers to improve planning and quality control. Moreover, a well defined concrete 

strength prediction can save time, accelerating the overall construction, mainly in large 

constructions with a lot of concreting stages. However, environmental concerning and 

the need of higher performance concretes have lead to more complex mixes than the 

traditional ones. Nowadays the recycled industrial wastes available leads to the quasi-

systematic use of mineral addition in concrete, namely fly ash from electrical power 

plants. Therefore, the factors that affect the concrete compressive strength have 

increased in number and complexity leading to non linear relationships. These 

relationships are usually empirical ones or based on correlation analysis due to the fact 

that until today there is no general law describing the phenomena and explaining this 

hugely complex system. In this context the traditional methods based on generalization 

of previous experience are not enough accurate to provide satisfactory relationships. 

That’s why intelligent models with the capability of learning with examples have been 

applied in the prediction of the concrete compressive strength (Gupta, 2007, Kim et al., 

2002, Lai and Serra, 1997, Saridemir, 2009 and Topçu and Saridemir, 2008). 

In this study the forecasting of concrete strength was carried on using Data 

Mining (DM) techniques taking into account the properties of the most used mineral 

addition in concrete: fly ash (FA). These techniques are powerful intelligent tools that 

learn with examples and experiences and were applied successfully to predict concrete 

strength by other authors (Gupta, 2007, Kim et al., 2002, Lai and Serra, 1997, Saridemir 

2009 and Topçu and Saridemir, 2008). However, these predictions didn’t take into 
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account the quality of the FA used. In fact, to the best of our knowledge, the physical 

and the chemical parameters of the FA have never been used before in these predictions. 

In this research work one compared the predictive capacity of several DM 

techniques to forecast the concrete compressive strength taking into account physical 

and chemical parameters of the FA used in order to quantify its activity and its influence 

on the compressive strength. Therefore the main characteristics of the FA, usually 

determined and currently available, were considered as input variables in the DM 

models.  

This paper begins to present a brief description of FA properties effect on 

concrete strength. Then it is presented a definition of the data mining techniques and its 

application on prediction of concrete behaviour. It is also explained how to evaluate the 

different algorithms of DM. Finally the results, discussion and conclusions are 

presented. 

 

2. Influence of FA characteristics on concrete compressive strength 

The incorporation of FA in concrete is not new, began in the 1930s in the USA (ACI 

Committee 232, 1996), and the effects of FA in concrete performance are sufficiently 

understood and well documented (Wesche, 1991, Malhotra and Ramezanianpour, 1994, 

ACI Committee 232, 1996, Joshi and Lohtia, 1997 and Camões, 2002). Therefore, in 

this section we only intend to address the main aspects directly related to the present 

work, namely the effect of physical and chemical characteristics of FA on concrete 

performance, mainly on compressive strength. 
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Unless physical and chemical properties of FA can vary considerably depending on 

their origin and even between different supplies from the same Power Station some 

properties can be generalized. 

 

2.1 Physical properties 

FA particles have spherical shape, are essentially vitreous (80 %), and have a high 

fineness. Certain FA has also irregular or angular particles. Most of the particles have a 

diameter of less than 1 m and 150 m, and can be thinner or thicker than cement ones. 

The average diameter of FA particles is usually similar to cement ones, between 7 m 

and 12 m (Joshi and Lohtia, 1997). The Blaine specific surface ranges frequently from 

250 m
2
/kg to 550 m

2
/kg (Alonso and Wesche, 1991). 

Broadly, the physical characteristics of FA have an appreciable variation with 

respect to its origin. According to Malhotra and Ramezanianpour, 1994, the FA source 

is not related to its fineness or its specific surface. The authors consider that there is a 

very slight correlation between thinness, as measured by percentage retained on sieve of 

45 m and Blaine specific surface. 

FA particles larger than 125 m are very porous. The occurrence of these 

particles is associated with large amounts of carbon. This unburned material is 

responsible for the high specific surface typically found in FA. As a result, high levels 

of carbon imply greater demand for water in concrete containing FA with high loss on 

ignition (LOI). The carbon content also affects the strength of concrete actions to 

freeze-thaw: the higher the carbon content of FA, the lower the resistance of concrete 

(Alonso and Wesche, 1991). 
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 According to these authors, FA should have a particle size and specific surface 

similar to or lower than the cement to avoid variations in physical properties of concrete 

particularly in workability. This recommendation is linked to the presence of carbon in 

FA, avoiding high amounts of particles larger than 125 m, endowed with high porosity 

and with greater concentration of carbon particles. 

It is commonly accepted that more fineness leads to greater pozzolanic activity. 

Like most chemical reactions occur more rapidly with increasing fineness of the 

particles it is expected that the pozzolanic activity of fly ash must be dependent on the 

area available for reaction (Jalali, 1991, Neville, 1995). 

Furthermore, the spherical shape of FA particles is particularly advantageous 

from the point of view of the water demand and high specific surface indicates that the 

material exhibits high reactivity with calcium hydroxide (Neville, 1995). 

In this context, it is supposed that the higher specific surfaces and the lower LOI 

the better the activity of FA on concrete will be. 

 

2.2 Chemical properties 

The chemical constituents of the majority of FA particles are compounds and crystals of 

silica, SiO2, alumina, Al2O3, ferric oxide, Fe2O3, and lime, CaO. In substantially lower 

amounts there are other components such as MgO, Na2O, K2O, SO3, MnO and TiO2. FA 

also contains carbon particles not consumed in the combustion (Alonso and Wesche, 

1991, Malhotra and Ramezanianpour, 1994 and ACI Committee 232, 1996). The 

alluded four main components of FA record appreciable change, and may have 

understood values, according to the ACI Committee 232, 1996, between the following: 

SiO2 – 35 % to 60 %; Al2O3 – 10 % to 30 %; Fe2O3 – 4 % to 20 %; CaO – 1 % to 35 %. 
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The FA pozzolanic activity is closely related to the SiO2 content, as it is the 

amorphous silica that will combined with the free lime and water giving resulting in the 

formation of additional quantities of calcium silicate hydrates. According to Alonso and 

Wesche, 1991, FA with SiO2 content less than 35 % are virtually inactive as pozzolans 

and should not be used in concrete. However Halstead, 1986, Mehta, 1985 and Joshi 

and Lohtia, 1997, have a different opinion and consider that in terms of chemical 

composition, with the exception of calcium content, the variation of FA constituents 

does not affect significantly the cementitious or pozzolanic properties. Alonso and 

Wesche, 1991, also indicate that FA with high content of lime (15 % to 40 %) can have 

hydraulic and binder properties and its inclusion in concrete should be avoided. 

The role played by the oxides is not consensual. ACI Committee 232, 1996, 

refers the failure of studies aimed at establishing relations between the amount of oxides 

- SiO2, Al2O3, Fe2O3 - and the performance of the FA. Although the content of SiO2 

appear to be related to the pozzolanic activity, reduced levels of this product do not 

imply negative effects on the behavior and characteristics of fresh or hardened concrete 

(Camões, 2002). The establishment of minimum values for the total amount of oxides 

(SiO2 + Al2O3 + Fe2O3) is criticized by several authors (Swamy, 1993, ACI Committee 

262, 1996 and Joshi and Lohtia, 1997). While it may be understandable attempt to 

ensure the presence of sufficient glassy constituents (according to Mindess, 1994, the 

higher the glass phase is the better FA will be), one should not confuse the reactivity of 

the glassy phase with increasing resistance, because the development of mechanical 

characteristics is always achieved by the combined effect of several other factors, such 

as the fineness and the properties of cement. Malhotra and Ramezanianpour, 1994, 

mention the existence of a good correlation between the amount of SiO2 + Al2O3 and 
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the pozzolanic activity at long term. The same authors also reported that the amount of 

Fe2O3 presented in almost FA occurs in the form of hematite and magnetite non 

reactive. These aspects should be the reason why researchers have been obtained low 

correlations between the pozzolanic activity index (measured by the ratio between the 

compressive strength) and the amount of SiO2 + Al2O3 + Fe2O3. 

The sulphates, SO3, may affect the optimum FA content as it can influence its 

mechanical properties and setting time. A maximum level must be considered to avoid 

an excess of SO3 in hardened concrete that can contribute significantly to a worse 

performance particularly when the concrete is subjected to sulphates attack (Jalali, 

1991). 

The carbon in FA is the result of incomplete combustion of coal and organic 

additives used in the process of ash collection. In general, the carbon is not measured 

directly but using the determination of LOI content. LOI includes, besides the free 

carbon, losses of combined water and carbon dioxide from the hydrates and carbonates 

present in the FA. However LOI is assumed, without committing a great error, as 

approximately equal to the carbon content. 

The contribution of the amount of carbon in FA is decisive in the water demand 

of pastes, mortars and concretes. The total water needed to obtain a paste with the same 

consistency is greater the higher the carbon content. The carbon contained in FA has 

high porosity and large specific surface, being able to absorb not only significant 

amounts of water as well chemical admixtures dissolved during the mixing of concrete, 

including superplasticizers, air entraining agents or setting time retardants. 

According to Alonso and Wesche, 1991, in general, the lower the carbon content 

the better the FA for use in mortar and concrete. ACI Committee 363, 1992, states that 
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when used in high strength concretes the desirable LOI should be less than 3 %, 

although higher values are considered in standards, enabling its acceptance. Day, 1995, 

states that the carbon content should not exceed 8 %, much lower levels are preferred. 

However, Malhotra and Ramezanianpour, 1994, concluded that the carbon does not 

significantly affect the pozzolanic activity index, determined by the relationship 

between the compressive strength. 

 

3. Data Mining 

3.1 Definition and applications to the concrete behaviour 

The process of Knowledge Discovery in Databases encompasses three main stages: pre-

processing, Data Mining and pos-processing. In the Data Mining stage an algorithm is 

applied for extraction of patterns from the data (Fayyad et al., 1996). Generally, in all 

Data Mining techniques there are a set of training examples and a set of testing 

examples. The algorithms learn with the training examples and are tested with the 

testing examples. During the learning process the several parameters of the algorithms 

are adjusted to optimize the results. To assess the accuracy of the algorithms some 

metrics can be used most of them based on errors. After the validation of the algorithms 

they can be used as models for forecasting the values of the output variables.  

Many authors have been succeeded with the application of intelligent tools. 

Several researchers (Kasperkiewicz et al., 1995, Lai and Serra, 1997, Ni and Wang, 

2000, and Kim and Kim, 2002) used neural networks to predict 28-day compressive 

strength of concrete for different mixes. Topçu and Saridemir, 2008, developed neural 

networks and fuzzy logics for predicting the 7, 28 and 90 days compressive strength of 

concretes containing high-lime and low-lime fly ashes. Zarandi et al., 2008, developed 
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fuzzy polynomial neural networks (FPNN) to predict the 28-day compressive strength 

of concrete. They constructed six different FPNN architectures and used experimental 

data of 458 different concrete mixes collected from three distinct sources. They were 

well succeeded in predicting the compressive strength of concrete mixes. Saridemir, 

2009, based on several experimental results gathered from the literature used neural 

networks to predict the compressive strength of concretes containing metakaolin and 

silica fume for different concrete mixes and several curing days. Özcan et al., 2009, 

carried on experimental works and applied artificial neural network and fuzzy logic 

models to predict the compressive strength of silica fume concrete. They obtained good 

results using several concrete mixes at five different ages. Yang et al., 2003, applied 

neural networks to predict compressive strength, slump value and mix portions of 

concrete. The networks were trained using standard tables of two companies. 

Ruan Xiang, 2009, and Zhitao et al., 2008, applied support vector machine 

(SVM) to predict concrete carbonation. Chen et al., 2009, have shown that the SVM has 

a good performance for estimating the exposed temperature of fire-damaged concrete 

structures. Gupta, 2007, applied the SVM to predict the compressive strength of high 

performance concrete.  

 

3.2 DM algorithms 

The DM algorithms used in this study were Regression Trees (RT), Multiple 

Regressions (MR), Artificial Neural Networks (ANN), Support Vector Machines 

(SVM) and k-Nearest Neighbours (k-NN). 

The Decision Trees (Quinlan, 1986) have an inverted tree structure composed of 

nodes and descendent branches. The result of a test performed at each node indicates the 
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branch to continue the process. This process is repeated until the final decision can be 

drawn and a class is attributed to the register. The regression trees are a particular case 

of the decision trees where the classes are replaced by values (Figure 1). 

The multiple regressions are similar to simple regressions but with several 

independent variables instead of one independent variable. 

The artificial neural networks are based on the architecture of the human brain. 

They are based on process units named neurons that have a large number of 

interconnections that allow the communication between them. Each neuron has a set of 

input and output connections that have an associate weight. The level of activation of a 

neuron is determined by an activation function (Haykin, 1999 and Cortez, 2010). The 

neuron receives signal from the input connections and calculates a new activation value 

which is send through the output connections. The value is a result of the calculation of 

the value of the neuron activation using the activation function that has as input 

argument the value of the weighted sum of the input values. In this study it was used the 

multilayer perceptron configuration (Haykin, 1999) composed by an input layer, a 

hidden layer and an output layer (Figure 2). 

 The Support Vector Machines were developed by Cortes and Vapnik, 1995, for 

binary classification. The basic idea was to separate the dataset in two classes or 

categories. To do so, a hyperplane in a multidimensional space separates the examples 

in sets of the same category. The optimal separating hyperplane between the two classes 

by maximizing the margin between the closest points of the two classes (Meyer, 2010). 

The points lying in the boundaries are called support vectors and the optimal separating 

hiperplane is at the middle of the margin. The points lying on the wrong side are 

weighted down to reduce there influence (Meyer, 2010). When a linear separator cannot 
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be found there is a transformation via kernel techniques to a higher dimensional space 

(Figure 3) (Meyer, 2010). The Radial Basis Function kernel was adopted in this study 

(Cortez, 2010): 

  0   ,'xxexp'x,xK
2






                                            (1) 

 The performance is affected by a penalty parameters, C, the width of the ε-

insensitive zone and the kernel parameter, γ (Cortez, 2010).  

 The k-Nearest Neighbour (Hechenbichler and Schliep, 2004) is a simple 

supervised learning algorithm that can be used in classification and regression 

problems. In classification problems an instance query is classified according to its 

neighbours’ classes (Figure 4). The class in majority among the nearest neighbours is 

attributed to the query instance. In regression problems the property value for the 

instance query is obtained as the average of the weighted values of the k nearest 

neighbours. This implies the calculation of the distance between the target and its 

neighbours in the multidimensional space. Generally, the weights are attributed 

according to the distance. The closest neighbours are more weighted than the more 

distant neighbours. 

The training process of this study used 2/3 of the total dataset and included the 

optimization of the parameters involved in the different techniques (H, γ and k). It was 

used a grid search for the number of hidden nodes H [0, 2, 4, 6, ..., 20], the parameter of 

the kernel γ [2
-15

, 2
-13

, ..., 2
3
] and the number of nearest neighbours k [2,3,4,...,12]. To 

access the predictive performance of the models, the 5-fold cross-validation (Effron, 

1993) was used, where the data was divided into 5 partitions of equal size. 

The testing process used the remaining part of the total dataset and the best parameters 

(H, γ and k) of the training phase. 
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To evaluate the performance of the regression models the coefficient of 

determination (R
2
), the mean absolute deviation (MAD) and the root mean squared error 

(RMSE) were used. The last two metrics are given by: 

 


N

1i ii ŷy
N

1
MAD                                                       (2) 

 

N

ŷy
RMSE

N
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2
ii 


                                                      (3) 

where N denotes the number of examples, yi the real value and iŷ
 the value estimated 

by the model.  

 The complexity of the models imposes not only the analysis of the metrics but 

also careful interpretation of the results. To help this interpretation it is also important to 

evaluate the relative importance of the input parameters in the model. Therefore, it is 

necessary to carry on a sensibility analysis (Kewley et al., 2000). This analysis is 

applied after the training phase and allows analysing the response of the model when 

the input parameters are changed from its minimum to its maximum value. During the 

process each parameter is changed while the others remain with their middle values. 

When the parameter is relevant it is obtained a high variance at the model output. A 

higher variance means a greater importance. 

 

4. Materials and concrete compositions 

The data used in this study was collected from Kim et al., 1992, Naproux, 1994, and 

Camões, 2002, where the used mix-designs as other details, namely concerning the 

production and fresh behaviour of concrete, can be seen.  
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All the compositions were produced with cement, sand as fine aggregate, coarse 

aggregate and water. Air entraining agents were not used and some mixtures were made 

including FA and superplasticizer. 

Naproux, 1994, has used 7 different types of FA because it was his intention to 

study the effect on concrete properties derived from reducing FA particle size. So he 

used brut FA as received and enhanced ones by grinding or sieving. 

Observing Table 1 one can see the chemical composition of the FAs used in the 

different concrete compositions. 

All the compressive strength results were measured on cylindrical specimens 

with a slenderness ratio of 2. 

 

5. Data mining used data 

As already mentioned the compressive strength results were gathered from Kim et al., 

1992, and Naproux, 1994, and compiled by Waller et al., 1997. Results from Camões, 

2002, were also used. Kim et al., 1992, have performed 26 different concrete 

compositions and have tested 24 at 6 ages and 2 at 3 ages. Naproux, 1994, have 

performed 13 concrete compositions and have tested all of them at 3 different ages. 

Camões, 2002, have performed 11 compositions and have tested all at 6 distinct ages. 

 The database analysed here was composed of 255 records being 150 extracted 

from Kim et al., 1992, 39 from Naproux, 1994, and 64 from Camões, 2002. Instead of 

using only one DM model, one intends to use several models to compare their 

performances and to include the quantification of the importance of the different 

components of the concrete mixture, namely the chemical and physical characteristics 

of FA. 
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 In order to simplified the model one intends minimize the amount of input 

parameters as possible. Therefore, among the known physical and chemical 

characteristics of FA described in Table 1, one as chosen for DM input parameters only 

those known to affect the compressive strength of concrete as mentioned in 2. 

Furthermore, the content of SO3 was not taking into account because there is a lack of 

information on this parameter in Kim et al., 1992. 

 The data were separated in two sets. The training set composed of 169 records 

and the testing set composed of 84 records. The input parameters are: FA replacement 

ratio (% of total cementitious material, TCM, i.e. TCM = C + FA + SF); FA 

characteristics (SiO2, Al2O3, Fe2O3, CaO, LOI, in % and Blaine, in m
2
/kg); silica fume 

replacement ratio (SF - % of total cementitious material), total cementitious material 

(TCM), water/TCM ratio (W/TCM); fine aggregate (ssa), coarse aggregate (ca), high 

rate water reducing agent (HRWRA - % of solid content related to TCM) and age of 

samples (Age). The output parameter is the compressive strength of concrete (fc). 

Tables 2 and 3 present some statistical data of the parameters used in the training and 

testing databases, respectively. The coefficient of variation of the parameters for 

training and testing set is quite similar. This means that the variability is similar in both 

datasets. The SF has the higher variability while the coarse aggregate (ca) has the lower 

variability. 

 

6. Results and discussion 

With the built database the predictive models were trained to forecast the concrete 

compressive strength.  Tables 4 show the errors and the coefficient of determination 
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obtained in the training phase. It can be seen that the ANN and the SVM models have 

the best predictive capacity with lower errors and higher coefficient of determination. 

However, it is also important to see if the importance given by the models to the input 

variables is according to the experience. The importances for all the models are 

presented in Table 5. 

 As it was earlier explained the models are based on different algorithms. 

Therefore, the importance attributed to the input parameters differs from model to 

model.  

 It seems that the RT model should not be considered because of the null 

importance attributed to the majority of the input variables. The MR model also seems 

to be not applicable since it concentrates almost half of the total importance on only two 

parameters (SiO2 and Al2O3) and does not consider a reasonable importance to the age 

(only 3 % of importance).  

 Considering the three remaining models, ANN model gave a non expectable and 

an apparently exaggerated importance to CaO content (31 %), only the SVM and k-NN 

attributes reasonable importance to age and only the SVM model attributes a significant 

importance to W/TCM ratio (17 %). Furthermore, the k-NN model attribute null 

influence to two parameters (SiO2 and SF) and only the SVM model attributes a 

significant importance to FA content. 

 Thus, analyzing the results and comparing them with the experience, i.e. with 

what is expected, it seems that the SVM was the best model for the tested data, 

demonstrating sensitivity to parameters known to affect the compressive strength. 

 It is also important to note that, according to the SVM model, the influence of 

FA characteristic parameters in the compressive strength of concrete proved to be 
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marginal. Even the LOI or the Blaine reveals little influence (0.8 % and 1.1 % 

respectively). 

 Figures 5 and 6 shows the comparison between the measured and predicted 

concrete compressive strengths for the SVM model using the training and the testing 

set, respectively. These figures confirm the good predictive capacity of the SVM model. 

 

7. Conclusions 

The data mining techniques have the capacity of learning with examples. In this study 

several data mining techniques were use to predict the 3, 7, 28, 56, 90 and 180 days 

compressive strength values of concrete mixes containing several percentages of cement 

replaced by FA. The training phase indicates the ANN and the SVM as the best 

predictive capacity models. However the importance attributed by the ANN model to 

the input parameters is not according to the experience. On the contrary, the SVM 

model has not this shortcoming, because it demonstrates sensitivity to parameters 

known to affect the compressive strength. This sensitivity associated to predictions very 

close to the experimental results makes the SVM model the best one. 

According to the SVM model, the influence of FA physical and chemical characteristics 

in the analysed data concerning compressive strength of concrete seems to be marginal. 

Based on the analysed data the compressive strength values of concretes 

containing fly ash can be accurately predicted using SVM without spending much time. 
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Table 1: FA chemical composition (%) and Blaine specific surface (m
2
/kg). 

Table 2: Statistical of the input and the output parameters (training set). 

Table 3: Statistical of the input and the output parameters (testing set). 

Table 4: Mean values of the metrics obtained in the training phase. 

Table 5: Importance of the input variables in the evaluation of fc (%). 
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Table 1: FA chemical composition (%) and Blaine specific surface (m
2
/kg). 

 
K

im
 e

t 
al

. 
Naproux 

C
am

õ
es

 

SiO2 55.1 56.7 54.5 55.1 55.8 56.6 57.3 58.1 50.3 

Al2O3 34.9 27.1 28.2 28.1 27.9 27.3 27.0 26.5 26.8 

Fe2O3 3.7 5.8 5.9 5.5 5.1 5.8 5.8 6.1 6.3 

CaO 3.6 2.9 3.2 3.0 2.8 2.9 2.9 3.0 5.4 

MgO 1.2 0.6 0.9 0.8 0.8 0.7 0.6 0.6 1.6 

K2O 0.7 1.9 2.3 2.1 2.0 1.8 1.6 1.5 1.9 

Na2O 0.4 0.1 0.3 0.2 0.2 0.1 0.1 0.0 0.6 

SO3 - 0.6 0.3 0.4 0.5 0.6 0.7 0.8 0.6 

LOI 6.8 2.5 3.5 3.2 2.9 2.5 2.1 1.8 7.4 

Blaine 332 680 667 569 450 310 232 158 388 
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Table 2: Statistical of the input and the output parameters (training set).  

Parameters Min. Mean Max. Standard 

Deviation 

Coefficient of 

variation (%) 

Inputs      

FA 0 89.12 360 83.43 93.61 

SiO2 0 51.39 58.10 11.70 22.76 

Al2O3 0 30.41 34.90 7.76 25.52 

Fe2O3 0 4.404 6.320 1.53 34.78 

CaO 0 3.825 5.425 1.21 31.63 

LOI 0 6.203 7.440 1.95 31.38 

Blaine 0 341.8 680 103.55 30.29 

SF 0 0.5207 44 4.77 916.49 

TCM (kg/m
3
) 271 460.2 600 91.67 19.92 

W/TCM 0.25 0.3979 0.7343 0.11 28.86 

ssa (kg/m
3
) 223 622.6 788 143.91 23.11 

ca (kg/m
3
) 936 1057 1256 91.01 8.61 

HRWRA 0 0.6674 5 0.99 148.91 

Age (days) 3 88.12 365 107.82 122.35 

      

Output      

fc (MPa) 7.043 47.604 96.8 19.69 41.37 
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Table 3: Statistical of the input and the output parameters (testing set).  

Parameters Min. Mean Max. Standard 

Deviation 

Coefficient of 

variation (%) 

Inputs      

FA 0 86.8 360 83.93 96.69 

SiO2 0 51.4 58.1 11.77 22.90 

Al2O3 0 30.43 34.9 7.80 25.64 

Fe2O3 0 4.393 6.320 1.53 34.91 

CaO 0 3.816 5.425 1.21 31.74 

LOI 0 6.196 7.440 1.96 31.57 

Blaine 0 341.6 680 104.11 30.48 

SF 0 0.5238 44 4.80 916.52 

TCM (kg/m
3
) 271 461.1 600 92.03 19.96 

W/TCM 0.25 0.3973 0.7343 0.12 29.14 

ssa (kg/m
3
) 223 623.1 788 144.77 23.24 

ca (kg/m
3
) 936 1056 1256 90.96 8.62 

HRWRA 0 0.6663 5 1.00 150.20 

Age (days) 3 84.82 365 109.26 128.81 

      

Output      

fc (MPa) 7.20 47.54 93.60 20.47 43.07 
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Table 4: Mean values of the metrics obtained in the training phase. 

 RT MR ANN SVM k-NN 

MAD 7.486 7.026 4.380 5.610 7.722 

RMSE 9.354 8.418 7.414 7.435 9.861 

R
2
 0.776 0.817 0.867 0.858 0.750 

 

Table 5: Importance of the input variables in the evaluation of fc (%). 

 RT MR ANN SVM k-NN 

FA 0 0.33 1.51 19.49 2.68 

SiO2 0 22.21 5.19 1.06 0 

Al2O3 0 31.24 10.64 1.82 16.31 

Fe2O3 0 0.92 5.07 1.93 4.55 

CaO 0 9.41 31.33 1.01 1.17 

LOI 0 11.56 4.82 0.79 17.78 

Blaine 0 0.7 5.98 1.09 13.98 

SF 0 0.09 2.65 0.98 0 

TCM 19.92 9.93 1.22 17.16 6.07 

W/TCM 0 0 3.58 16.98 9.73 

SSA 0 6.15 1.71 0.37 1.49 

CA 9.73 1.68 4.59 1.35 6.12 

HRWRA 37.16 2.29 14.97 1.05 2.63 

Age 33.19 3.49 6.74 34.92 17.49 
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Figure captions: 

 

Figure 1: Example of a regression tree. 

Figure 2: Example of a multilayer perceptron. 

Figure 3: Example of a SVM transformation. 

Figure 4: Example of k-nearest neighbours. 

Figure 5: Performance of the SVM model using the training data set. 

Figure 6: Performance of the SVM model using the testing data set. 
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Figure 1: Example of a regression tree. 

 

 

Figure 2: Example of a multilayer perceptron. 

 

Input layer 

Input 1 Input 2 Input 3 Input 4 

Hidden layer 

Output layer Output layer 

Output 

A > A1? 

B ≤ B1? B > B1? 

Value 1 Value 2 Value 3 Value 4 

Yes No 

Yes No 
Yes No 



30 

 

 

 

Figure 3: Example of a SVM transformation. 

 

 

Figure 4: Example of k-nearest neighbours. 
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Figure 5: Performance of the SVM model using the training data set. 

 

 

Figure 6: Performance of the SVM model using the testing data set. 


