Glycerol metabolism and transport activity regulation in *Saccharomyces cerevisiae*

Fernanda Lages, Rui Oliveira and Cândida Lucas

Dep. de Biologia/ Centro de Ciências do Ambiente
Universidade do Minho
PORTUGAL
gut 1 Δ

gut 2 Δ

Glucose grown cells

CCCP 50 μM

U.M. Braga Portugal
gut 1 Δ

Ethanol grown cells

- CCCP 50 μM

gut 2 Δ
Ethanol grown cells

CCCp 50 μM

gut 1 Δ

100% Efflux

[Glíc] in / [Glíc] out

Incubation period (min)

gut 2 Δ

80 - 90% Efflux

[Glíc] in / [Glíc] out

Incubation period (min)

wt

No Efflux

Incubation period (min)

U.M. Braga Portugal
Glycerol transport kinetic parameters

Glucose grown cells

<table>
<thead>
<tr>
<th>Growth phase</th>
<th>Exponential</th>
<th>Pre-stationary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strain</td>
<td>Km (mM)</td>
<td>Vmax (μmol h⁻¹ g dwt⁻¹)</td>
</tr>
<tr>
<td>wt IGC 3507</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>gut1 Δ</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>gut2 Δ</td>
<td>Nd</td>
<td>Nd</td>
</tr>
</tbody>
</table>

In red - Lages and Lucas 1997

Absence of saturation kinetics

U.M. Braga Portugal
Kinetic parameters from glycerol transport

Mutants from glycerol metabolic pathway

Ethanol grown cells

<table>
<thead>
<tr>
<th>Strain</th>
<th>Km (mM)</th>
<th>Vmax (μmol.h⁻¹.g dwt⁻¹)</th>
<th>Kd (μmol.h⁻¹.g dwt⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>wt 3507</td>
<td>1.1 ± 0.3 (5)</td>
<td>310±92 (5)</td>
<td>N.d.</td>
</tr>
<tr>
<td>wt W303</td>
<td>2.0±0.4 (3)</td>
<td>253±46 (3)</td>
<td>0.006 (2)</td>
</tr>
<tr>
<td>gut1Δ</td>
<td>1.0±0.3 (3)</td>
<td>165±25 (3)</td>
<td>0.019±0.001 (3)</td>
</tr>
<tr>
<td>gut2Δ</td>
<td>1.5±0.7 (3)</td>
<td>212±48 (3)</td>
<td>0.008±0.002 (3)</td>
</tr>
<tr>
<td>gpp1Δ</td>
<td>1.6±0.7 (3)</td>
<td>326±62 (3)</td>
<td>0.011±0.002 (3)</td>
</tr>
<tr>
<td>gpp2Δ</td>
<td>1.9±0.2 (2)</td>
<td>318±20 (2)</td>
<td>0.009±0.001 (2)</td>
</tr>
<tr>
<td>gpp1Δgpp2Δ</td>
<td>1.3±0.3 (3)</td>
<td>226±27 (3)</td>
<td>0.009±0.001 (3)</td>
</tr>
<tr>
<td>gpd1Δ</td>
<td>1.3±0.3 (2)</td>
<td>256±27 (2)</td>
<td>0.008±0.001 (2)</td>
</tr>
<tr>
<td>gpd2Δ</td>
<td>1.2 (1)</td>
<td>252 (1)</td>
<td>0.009 (1)</td>
</tr>
<tr>
<td>gpd1Δgpd2Δ</td>
<td>1.6±0.4 (3)</td>
<td>237±30 (3)</td>
<td>0.013±0.001 (3)</td>
</tr>
<tr>
<td>Mean values</td>
<td>1.4±0.4 (22)*</td>
<td>267±73 (19)*</td>
<td>0.012±0.004 (22)*</td>
</tr>
</tbody>
</table>

* Except **wt 3507** and **W303 gut1Δ**

U.M. Braga Portugal
Non-induced cells
Exponentially growing
Glucose present
Catabolic repression

Non-induced cells
Pre-stationary
Glucose exhausted
Ethanol present
Partial derepression

U.M. Braga Portugal
Cells under glucose repression

Derepressed cells

Induced cells

U.M. Braga Portugal
Glycerol metabolic pathway in *S. cerevisiae*

Fructose 1,6 biphosphate

- **Dihydroxyacetone phosphate**
 - **G3PDH mit**
 - **Gut2**
 - **Gpd1**
 - **Gpd2**

- **Dihydroxyacetone**
 - **DK**
 - **ATP**
 - **ADP**
 - **NAD(P)H**
 - **NAD(P)**

- **Glycerol-3-phosphate**
 - **G3PDH**
 - **FADH2**
 - **FAD**
 - **NADH**
 - **NAD**

- **Glycerol**
 - **G3P**
 - **Gpp1**
 - **Gpp2**

GDH

U.M. Braga Portugal
Glucose growing cells

Exponential growth phase
Simple diffusion

<table>
<thead>
<tr>
<th>Condition</th>
<th>Kd (M) ± Error</th>
<th>1 h⁻¹ g⁻¹ dry wt.</th>
<th>Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>No salt</td>
<td>0.005 ± 0.001</td>
<td>(5)</td>
<td>100%</td>
</tr>
<tr>
<td>1M NaCl</td>
<td>0.002 ± 0.0004</td>
<td>(3)</td>
<td>40%</td>
</tr>
</tbody>
</table>

Pre-stationary phase

Low affinity saturation kinetics
(Km ≈ 5mM) Fps1...?
and
Simple diffusion

U.M. Braga Portugal
Ethanol grown cells

<table>
<thead>
<tr>
<th>Incubation in</th>
<th>Transport of $[^{14}C]$glycerol</th>
<th>Transport of H(^+) upon glycerol addition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K_m (mM)</td>
<td>V_{max} (μmol.h(^{-1})g d.wt(^{-1}))</td>
</tr>
<tr>
<td>No salt</td>
<td>1.14 ± 0.34</td>
<td>435.8 ± 21.6</td>
</tr>
<tr>
<td>1M NaCl</td>
<td>1.49 ± 0.78</td>
<td>428.9 ± 73.4</td>
</tr>
</tbody>
</table>

Lages and Lucas, 1997

It does not induce the transporter:

- To grow in MM glucose with 1M NaCl
- To grow in MM glucose and transfer to MM glucose + 1M NaCl

Lages and Lucas, 1997
S. cerevisiae

wt W303

Effect of the protonophore **CCCP** over the initial uptake rates of increasing glycerol concentrations

Relative velocity (%)

[Glycerol] (mM)

100% - in the absence of **CCCP**

Sutherland *et al.*, 1997

U.M. Braga Portugal
\textit{S. cerevisiae}

THE STATE OF THE ART

Exponentially growing cells on ethanol

Exponentially growing cells on glucose

Glucose pre-stationary phase culture

\[V / [\text{Glycerol}] (\text{l.h}^{-1} \text{ g}^{-1} \text{ dry wgt.}) \]

Lages and Lucas, 1997

U.M. Braga Portugal
Glucose growing cells

Glycerol kinase activity

wt cells grown on ethanol: 61 (mU/mg protein)
wt cells grown on glycerol: 68 (mU/mg protein)
Comparing glycerol uptake V\text{max} \\
\textbf{Ethanol grown cells} \\

<table>
<thead>
<tr>
<th>Strain</th>
<th>V\text{max} (\mu\text{mol h}^{-1} \text{ g}^{-1} \text{ d.wt.})</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>wt (carrier + channel + glycerol kinase)</td>
<td>267\pm73 (19)</td>
<td>100</td>
</tr>
<tr>
<td>\textit{gup}\Delta (channel + glycerol kinase)</td>
<td>181\pm12 (3)*</td>
<td>\pm67</td>
</tr>
<tr>
<td>\textit{gup}\Delta \textit{fps1}\Delta (glycerol kinase)</td>
<td>137\pm10 (3)*</td>
<td>\pm51</td>
</tr>
<tr>
<td>\textit{gut1}\Delta (carrier + channel)</td>
<td>165\pm25 (3)</td>
<td>\pm62</td>
</tr>
<tr>
<td>\textit{gup}\Delta \textit{gut1}\Delta (channel)</td>
<td>\textbf{No uptake}*</td>
<td>0</td>
</tr>
</tbody>
</table>

\textbf{GUP - Glycerol Uptake Permease putative gene}

* Results obtained by B. H"{o}lst - Carlsberg Laboratory, Denmark

U.M. Braga Portugal
Close collaboration with:

B. Hölst and M. Kielland-Brandt
Carlsberg Laboratory
Copenhagen, Denmark

Our thanks to:
• Lennart Adler and all the Göteborg group and
• B. Rønnov from Danisco Laboratory, Denmark
for supplying some of the mutants used in this work.

Financial support:
EC Cell Factory Program - Project BIOTECH PL 950161

U.M. Braga Portugal