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Abstract

In the present study, six different models based on artificial neural networks have been developed to predict the compressive strength

of different types of geopolymers. The differences between the models were in the number of neurons in hidden layers and in the method

of finalizing the models. Seven independent input parameters that cover the curing time, Ca(OH)2 content, the amount of

superplasticizer, NaOH concentration, mold type, geopolymer type and H2O/Na2O molar ratio were considered. For each set of these

input variables, the compressive strength of geopolymers was obtained. A total number of 399 input-target pairs were collected from the

literature, randomly divided into 279, 60 and 60 data and were trained, validated and tested, respectively. The best performance model

was obtained through a network with two hidden layers and absolute fraction of variance of 0.9916, the absolute percentage error of

2.2102 and the root mean square error of 1.4867 in training phase. Additionally, the entire trained, validated and tested network showed

a strong potential for predicting the compressive strength of geopolymers with a reasonable performance in the considered range.

& 2012 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
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1. Introduction

During recent years, the preparation of a geopolymeric
matrix, an artificial synthetic aluminosilicate material,
mainly three kinds of aluminosilicate sources were used
including (i) natural metakaolin (calcined kaolin), (ii) fly
ash and (iii) chemically synthesized metakaolin are used.
The resultant geopolymers possess excellent properties
including impressive acid and fire resistance, low produc-
tion cost, environmentally friendly nature and good heat
resistance properties [1,2].

Ash-based geopolymers are a main group of geopolymeric
materials. These are synthesized from various sources includ-
ing fly ash [3–6], rice husk bark ash [7], slags [8,9], mine waste
mud [10]. Although high strength is achieved by considering
fly ashes as aluminosilicate source, their uncertain mixture
(together with the altering reactive portion of these materials)
make their use sensitive for critical purposes. However, the
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low final cost and waste management achievements could
compensate this deficiency.
It has been reported that there is a large increase in the

compressive strength of geopolymers formed from meta-
kaolin through the addition of large quantities of silicon in
a sodium-based alkali activating solution. The improve-
ment in mechanical properties, correlated with the increase
in the volume of geopolymeric gel at a relatively constant
nominal density, resulting in a more homogenous micro-
structure. The change in microstructure is linked to the
chemical processes occurring in the solution phase during
reaction. It is known that geopolymers based on different
alkali cation exhibit structural differences [11–14].
In the last years, artificial neural networks (ANNs)

technology, a family of massively parallel architectures
that solve difficult problems via the cooperation of highly
interconnected but simple computing elements (or artificial
neurons), is being used to solve a wide variety of problems
in civil engineering applications [10,15]. ‘‘The most impor-
tant property of ANNs in civil engineering problems is
their capability of learning directly from examples. The
ll rights reserved.
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other is their correct (or relatively correct) response to
incomplete tasks, their extraction of information from
noisy or poor data, and their production of generalized
results from the novel cases. These mentioned capabilities
make ANNs a very powerful tool to solve many civil
engineering problems, particularly in situations, where
data may be complex or in an insufficient amount [15]’’.

‘‘The basic strategy for developing ANNs systems based
models for material behavior is to train ANNs systems on
the results of a series of experiments using the material in
question. If the experimental results contain the relevant
information about the material behavior, then the trained
ANNs systems will contain sufficient information on the
material’s behavior to qualify as a material model. Such
trained ANN systems not only would be able to reproduce
the experimental results, but they would be able to
approximate the results in other experiments trough their
generalization capability [16]’’.

Numerous studies have been made concerning the
prediction of the compressive strength of concrete using
ANNs. For example, Özcan et al. [10] developed ANNs for
the prediction of long-term compressive strength of silica
fume concrete. Sarıdemir [15], predicted the compressive
strength of concretes containing metakaolin and silica
fume through ANNs. Topc-u and Sarıdemir [16] used
ANNs for evaluating the compressive strength of concrete
containing fly ash. ANNs were also employed in Bilim
et al. [17] work to investigate the compressive strength of
ground granulated blast furnace slag concrete.

The authors’ literature surveys show that the utilization
of ANNs for predicting the different properties of geo-
polymers is limited to the applications revealed in the
previous works, [18–20] for instance. Because of the limited
research existing in the prediction of geopolymers proper-
ties through soft-computing techniques, the aim of this
work is to develop suitable ANNs models for evaluating
the compressive strength of different types of geopolymers.
A total number of 399 pairs of input-target values were
collected from the previous works [12,21,22]. The input
parameters include the curing time, Ca(OH)2 content, the
amount of superplasticizer, NaOH concentration, mold
type, geopolymer type and H2O/Na2O molar ratio. The
compressive strength of geopolymers was considered as a
single output parameter. Six different ANNs models were
proposed for the prediction of the compressive strength
of geopolymers. All of which had different numbers of
neurons in hidden layers methods of finalizing. The entire
models were trained, validated and tested by randomly
divided 279, 60 and 60 input-target pairs, respectively.

2. Data collection

The input-target values were collected from the previous
works [12,21,22]. The data collected in some manner that
they contain different sources and mixture proportions of
the constituent materials. In addition, a similarity between
the collected data was considered so that they have waste
materials as aluminosilicate source. The first series of data,
with a total number of 180, were the compressive speci-
mens made from tungsten mine wastes [21]. Tungsten mine
waste mud used was subjected to a thermal treatment at
950 1C during 2 h. The fine aggregate used was a crushed
sand from the same mine with a specific gravity of 2.7, 24 h
water absorption of 0.9%, and a fineness modulus of 2.8.
Distilled water was used to dissolve the sodium hydroxide
flakes to avoid the effect of unknown contaminants in the
mixing water. The alkaline activator was prepared prior to
use. The sand, mine waste mud and calcium hydroxide
were dry mixed before adding the activator. To produce a
workable mix extra water was added, and the mass ratio of
water/dry solid content being 4%. Compressive strength
data was obtained using 50� 50� 50 mm3 cubic speci-
mens, according to ASTM C109. The fresh mortar was
cast and allowed to set at room temperature for 24 h
before being removed from the moulds and kept at room
temperature until tested in compression. The compressive
strength for each mortar mixture was obtained from the
average of 3 cubic specimens.
Metakaolin-based geopolymers investigated in Ref. [21]

were the second source of this study, with 144 series of
data. The metakaolin used in this study was subjected to a
thermal treatment at 650 1C during a few seconds using a
flash calcination apparatus. The factors considered in this
investigation led to the manufacture of different mixes.
The factors analyzed were, sodium hydroxide concentration
(10, 12, 14 and 16 M), the superplasticizer content (0%, 1%,
2% and 3%) and the percentage substitution of metakaolin
by calcium hydroxide in the mixture (5% and 10%). The
mass ratio of sand/metakaolin/activator used was 2.2/1/1.
The alkaline activator was prepared prior to use. An
activator with sodium hydroxide and sodium silicate solution
(Na2O¼13.5%, SiO2¼58.7%, and water¼45.2%) was used
with a mass ratio of 1:2.5. Again, distilled water was used to
dissolve the sodium hydroxide flakes [12]. Alkali-activated
mortars were a mixture of aggregates, metakaolin, calcium
hydroxide and alkaline silicate solution. The sand, metakao-
lin and calcium hydroxide were dry mixed before added to
the activator. No extra water was added. The compressive
strength data was obtained using 160� 40� 40 mm3 cubic
specimens according to EN 1015-11. The preparation method
for compressive strength tests was similar to that of the
previous work [12].
Finally, the third group of data was collected from

geopolymers tungsten waste mud. The method of prepara-
tion of this waste material was similar to that of the previous
work [12]. The mortar was a mixture of aggregates, waste
mud, calcium hydroxide, alkaline silicate solution and water.
The mass ratio of mine waste mud: activator was 1:1.
Calcium hydroxide was used with a percentage substitution
of 10%, because it was found that this percentage leads
to the highest compressive strengths. An activator with
sodium hydroxide (24 M) and sodium silicate solution
(Na2O¼8.6%, SiO2¼27.8%, Al2O3¼0.4% and water¼
63.2%) was used with a mass ratio of 1:2.5. Again, distilled



Table 1

The range of input and output variables considered for ANN-I to ANN-

VI models.

Variable Range

Curing time (days) 1–90

Ca(OH)2 content (wt%) 0–22.5

The amount of superplasticizer (wt%) 0–3

NaOH concentration (M) 6–24

Mold typea 1–2

Geopolymer typeb 1–3

H2O/Na2O molar ratio 8.9–19.1

Compressive strength (MPa) 1.5–75.2

a‘‘1’’ and ‘‘2’’ were used for cubic mold type in accordance to ASTM C

109EN 1015-11 standards, respectively.
b‘‘1’’, ‘‘2’’ and ‘‘3’’ were employed for geopolymer type used in Refs.

[12,21,22], respectively.

Table 2

Summary of ANNs for compressive strength value prediction.

Designation Number of neurons in hidden layers

Hidden layer 1 Hidden layer 2

ANN-I 8 6

ANN-II 10 8

ANN-III 12 10

ANN-IV 8 6

ANN-V 10 8

ANN-VI 12 10
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Fig. 1. The system used i
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water was used to dissolve the sodium hydroxide flakes
[12,21]. Compressive strength tests were conducted in a
similar way to the method described earlier for Ref. [12]
according to ASTM C 109 standard.
Termination epoch Termination state

1000 1

1000 1

1000 1

823 2

549 2

471 2

N21 

N22 

N23 

N24 

N25 

N26 

N27 

N28 

FS

Output 
Layer

Hidden
Layer 2  

n the ANN-II model.

Table 3

The values of parameters used in neural network model.

Parameters ANN

Number of input layer units 7

Number of hidden layer 2

Number of output layer units 1

Momentum rate 0.88

Learning rate 0.70

Error after learning 0.000050

Learning cycle 30.000
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3. Artificial neural networks architecture

‘‘An artificial neural network (ANN) is a massively
parallel, distributed information processing structure con-
sisting of processing elements and many interconnections
called connection weights between them. It resembles the
brain in two respects; knowledge is acquired by the
network through a learning process and interneuron
connection weights known as synaptic weights are used
to store the knowledge [10]’’.

According to Kong et al. [23], an artificial neuron is
composed of five main parts: inputs, weights, sum func-
tion, activation function and outputs. The weighted sums
of the input components (net)j are calculated using Eq. (1)
Fig. 2. The correlation of the measured and predicted compressive strength va
as follows [24]:

ðnetÞj ¼
Xn

i ¼ 1

Wijxiþb ð1Þ

where (net)j is the weighted sum of the jth neuron for the
input received from the preceding layer with n neurons, Wij

is the weight between the jth neuron in the previous layer,
xi is the output of the ith neuron in the previous layer [24],
b is a fix value as internal addition and

P
represents sum

function. The activation function is one that processes the
net input obtained from the sum function and determines
the neuron output. The output of the jth neuron (out)j is
computed using Eq. (2) with a sigmoid activation function
lues in (a) training, (b) validating and (c) testing phase for ANN-I model.
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as follows [24]:

Oj ¼ f ðnetÞj ¼
1

1þe�aðnetÞj
ð2Þ

where a is a constant used to control the slope of the semi-
linear region.

‘‘Typical neural network is reinforced with an advanced
training algorithm named as Levenberg–Marquardt back-
propagation. The input values to a neuron are obtained by
multiplying the output of the connected neuron by the
synaptic strength of the connection between them. In this
paper, the Levenberg–Marquardt backpropagation (LMBP)
algorithm is utilized as a training algorithm instead of the
commonly used standard BP method for its robustness in the
computing process [25].’’
Fig. 3. The correlation of the measured and predicted compressive strength va
4. Artificial neural networks parameters and structure

2-Layer ANNs models, in this research, had seven
neurons in the input layer and one neuron in the output
layer. The values for input layers were curing time (T),
Ca(OH)2 content (C), the amount of superplasticizer (S),
NaOH concentration (N), mold type (M), geopolymer type
(G) and H2O/Na2O molar ratio (H). The value for the
output layer was the compressive strength (FS) values of
different geopolymers. Table 1 shows the range of each
input parameters and that of the output parameter. A total
of six ANNs models were developed by changing the
number of neurons in the two considered hidden layers.
Table 2 shows the considered number of neurons in each
model and Fig. 1 typically shows the structure of ANN-II
model. Two-layer terminology was selected because of its
lues in (a) training, (b) validating and (c) testing phase for ANN-II model.
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minimum absolute percentage error values for training,
validating and testing sets as observed in the author’s
previous works [26–28]. The neurons of neighboring layers
were completely interconnected by weights. Finally, the
output layer neurons produce the network prediction as a
result.

In this study, the backpropagation training algorithm
has been utilized in feed-forward two hidden layers. The
backpropagation algorithm, as one of the most well-
known training algorithms for the multilayer perceptron,
is a gradient descent technique used to minimize the error
of a particular training pattern in which it adjusts the
weights by a small amount at a time [29]. The non-linear
Fig. 4. The correlation of the measured and predicted compressive strength val
sigmoid activation function was used in the hidden layer
and the neuron outputs in the output layer. Momentum
rate and learning rate values were determined and the
model was trained through iterations. The trained model
was only tested with the input values and the predicted
results were close to that of the experiment results. The
values of the parameters used in neural network models
are given in Table 3.
A total of 399 values from compressive strength tests in

different conditions were collected from the literature
[12,21,22] and then trained, validated and tested by means
of ANNs. Among the 399 experimental sets, 279 sets were
randomly chosen as a training set for the ANN-I to ANN-VI
ues in (a) training, (b) validating and (c) testing phase for ANN-III model.
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modeling, 60 data sets for validating the constructed net-
works and the remaining 60 sets were used as testing the
generalization capacity of the proposed models.

To make a decision on the completion of the training
processes, two termination states are declared: state 1
(ANN-I, ANN-II and ANN-III models) means that the
training of neural network was ended when the maximum
epoch of process reached (1000) while state 2 (ANN-IV,
ANN-V and ANN-VI models) means the training ended
when minimum error norm of network gained as indicated
in Table 2.

The performance of an ANN model mainly depends
on the network architecture and the parameter settings.
One of the most difficult tasks in ANN studies is to find
Fig. 5. The correlation of the measured and predicted compressive strength val
this optimal network architecture, which is based on the
determination of numbers of optimal layers and neurons
in the hidden layers by a trial and error approach.
The assignment of initial weights and other related para-
meters may also influence the performance of the ANN to
a great extent. However, there is no well defined rule or
procedure to design an optimal network architecture and
parameter settings in which the trial and error method
still remains valid. This process is, nevertheless, very time
consuming [30].
In this study, the Matlab ANN toolbox is used for ANN

applications. To overcome optimization difficulty, a pro-
gram has been developed in Matlab which handles the trial
and error process automatically. The program tries various
ues in (a) training, (b) validating and (c) testing phase for ANN-IV model.
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numbers of layers, and neurons in the hidden layers both
for the first and second hidden layers when the highest
RMSE (root mean squared error) of the testing and
validating sets, as the training set was achieved [30].
5. Results and discussion

In this study, the error arose during the training,
validating and testing in ANN-I to ANN-VI models.
And it can be expressed as absolute fraction of variance
(R2), the absolute percentage error (MAPE) and the
root mean square error (RMSE) which are calculated by
Fig. 6. The correlation of the measured and predicted compressive strength va
Eqs. (3)–(5), respectively [29]:

R2 ¼ 1�

P
iðti�oiÞ

2P
iðoiÞ

2

 !
ð3Þ

MAPE¼
1

n

X
i

ti�oi

ti

����
����� 100 ð4Þ

RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

X
i

ðti�oiÞ
2

s
ð5Þ

where t is the target value, o is the output value and n is the
number of data sets in each of training and testing phases.
lues in (a) training, (b) validating and (c) testing phase for ANN-V model.
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All of the results obtained from the experimental studies
and predicted by using the training, validating and testing
results of ANN-I to ANN-VI models together with their
errors for each data are given in Figs. 2–7, respectively.
The linear least square fit line equation, R2, MAPE and
RMSE values are shown in Table 4 for the training,
validating and testing data. As it is visible in Figs. 2–7,
the values obtained from the training, validating and
testing in ANN-I to ANN-VI models are very close to
that of the experimental results.

As Figs. 2–7 show, the predicted results from models are
compared to the experimental results for training, testing and
validation sets, respectively. Comparing the ANN-I to ANN-
VI approach models prediction with the experimental results
Fig. 7. The correlation of the measured and predicted compressive strength val
for the testing, validating and training stages demonstrates a
high generalization capacity of the proposed models and
comparatively low error values. All of these findings exhibit a
successful performance of the models for predicting com-
pressive strength values of geopolymers in training, validating
and testing stages. Although all of six proposed models show
a suitable compatibility between the predicted compressive
strength and the experimental one by accuracy of more than
70%, ANN-IV, ANN-V and ANN-VI models illustrate this
relationship with more precision. This is due to the method of
modeling in which the training is stopped when the minimum
absolute error has been acquired. In addition, the ANN-V
model reveals better results showing that the number of
neurons could affect the training performance of the network
ues in (a) training, (b) validating and (c) testing phase for ANN-VI model.
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as well as validating and testing. In general, the result of
the testing phase in Figs. 2–7 and Table 4 shows that the
ANN-III to ANN-VI models are capable of generalizing
between input and output variables with reasonably good
predictions.
The performance of the ANN-I to ANN-VI models is

shown in Table 4. The best value of R2 and the minimum
values of MAPE and RMSE are 0.9917, 2.2102 and
1.4867, respectively all in training phase of ANN-IV,
ANN-V and ANN-V, in that order. The minimum value
of R2 and the maximum values of MAPE and RMSE
are 0.8474, 34.424 and 5.8671, respectively all in testing
phase of ANN-I model. Although R2 values of ANN-I to
ANN-VI models show that they are high performance
models, high MAPE and RMSE values show that only
ANN-III to ANN-VI models are suitable for predicting
the compressive strength of geopolymers. On the whole,
modeling the compressive strength of geopolymers mainly
depends on the training method rather than the number of
neurons in hidden layers. However, the number of neurons
in hidden layers could slightly affect the performance of
the trained, validated and tested networks.

6. Conclusions

This study reported a new and efficient approach for the
formulation of the compressive strength of different
geopolymers. Six different ANN-I to ANN-VI approach
models were proposed in order to predict compressive
strength values of different geopolymers. The proposed
models were empirical and based on experimental results
collected from the literature. The models developed in this
study were designed to be different in the number of
neurons in 2-layer feedforward-backpropagation networks
and the method of stopping the training phase. The results
obtained from ANN-III to ANN-VI models showed
reasonable agreement with collected experimental results
from the literature especially when the training phase was
stopped when the minimum percentage of absolute error
was obtained. The statistical values of MAPE, RMSE and
R2 revealed this situation. It was found that ANN-III to
ANN-VI models can be an alternative approach for the
evaluation of the compressive strength of the considered
geopolymers. Comparison between ANN-III and ANN-VI
models in terms of R2, MAPE and RMSE showed that
they are capable of predicting suitable results for compres-
sive strength of geopolymers in the considered range. As a
result, it was shown that the compressive strength values of
different geopolymers can be predicted in ANN-III to
ANN-VI models in a relatively short period of time and
with tiny error rates.
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