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Significant amounts of wastes are generated by the coffee industry, among of which, coffee silverskin (CS)
and spent coffee grounds (SCG) are the most abundantly generated during the beans roasting and instant
coffee preparation, respectively. This study evaluated the sugars metabolism and production of ethanol
by three different yeast strains (Saccharomyces cerevisiae, Pichia stipitis and Kluyveromyces fragilis) when
cultivated in sugar rich hydrolysates produced by acid hydrolysis of CS and SCG. S. cerevisiae provided the
best ethanol production from SCG hydrolysate (11.7 g/l, 50.2% efficiency). On the other hand, insignificant
(61.0 g/l) ethanol production was obtained from CS hydrolysate, for all the evaluated yeast strains, prob-
ably due to the low sugars concentration present in this medium (approx. 22 g/l). It was concluded that it
is possible to reuse SCG as raw material for ethanol production, which is of great interest for the produc-
tion of this biofuel, as well as to add value to this agro-industrial waste. CS hydrolysate, in the way that is
produced, was not a suitable fermentation medium for ethanol production; however, the hydrolysate
concentration for the sugars content increase previous the use as fermentation medium could be an alter-
native to overcome this problem.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Significant amounts of wastes are generated by the coffee
industry, among of which, coffee silverskin (CS, the tegument that
cover each coffee bean) is the main waste generated during the
beans roasting [1]; and spent coffee grounds (SCG, the solid residue
obtained during the treatment of coffee powder with hot water or
steam) is the main waste generated during the instant coffee prep-
aration [2], with a worldwide annual production of 6,000,000 tons
[3]. Although these wastes are generated in large quantities every
year, few studies have been addressed to their reuse. In some coun-
tries, CS has been used as soil fertilizer or as fuel [4]; while SCG is
normally released to the environment or used as fuel in industrial
boilers of the same industry, due to its high calorific power (ap-
prox. 5000 kcal/kg) [5]. Some studies have evaluated the SCG use
as animal feed, however, the high lignin content (�25% w/w) of
this material was considered a limiting factor for this application
[6]. Based on these facts and considering the large amount of coffee
wastes generated every year, comes the need to find alternatives
for CS and SCG reuse, both from economical and environmental
view points.
ll rights reserved.
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The ethanol production by fermentation has received large
importance in the last few years due to its increased demand as
fuel and complement to gasoline [7,8]. In addition, the ethanol
use as fuel is also of interest because it reduces the dependence
on oil; the air pollution and climate change caused by emissions
of carbon dioxide [9]. Ethanol production by fermentation of
agro-industrial wastes is very attractive because of their low cost
and abundance, and non-competition with foodstuffs [10]. Some
recent studies report that CS and SCG wastes are rich in sugars
[2,11], which could be extracted and used as substrate in fermen-
tation processes.

There is not any published study on the production of ethanol
from coffee industry wastes. For this reason, and considering the
variety of sugars present in these wastes [2,11], it is of importance
to find a microorganism able to consume these sugars and convert
them to ethanol. Saccharomyces cerevisiae is the microorganism
most often used for ethanol production, due to its ability to grow
in media containing high sugars concentration and its high etha-
nol yield. However, this yeast only ferments hexoses, being unable
to produce ethanol from pentoses such as xylose [12]. Xylose is
usually obtained during the hydrolysis of the hemicellulose frac-
tion of agricultural wastes, and its bioconversion is an important
step in the reuse of these materials [13,14]. Yeast strains from
the genera Pichia, Candida, Schizosaccharomyces and Pachysolen,
the filamentous fungi Paecilomyces, Mucor, Monilia and Fusarium,
and bacteria Clostridium, Bacillus, Bacteroides, Thermoanaerobacter,
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and Erwinia, have been reported as able to produce ethanol from
pentoses [15,16]. In our recent studies on ethanol production from
lignocellulosic hydrolysates, Pichia stipitis (NRRL-Y-7124), S.
cerevisiae (RL-11), and Kluyveromyces fragilis (Kf1) were demon-
strated to be good ethanol producers from different sugars
sources [17,18].

The objective of this work was to investigate the possibility of
using coffee industry wastes (CS and SCG) as raw materials for
ethanol production by fermentation. Since the hydrolysates pro-
duced from these wastes contain a mixture of hexose and pen-
tose sugars, the ability of three different yeast strains (P. stipitis
NRRL-Y-7124, S. cerevisiae RL-11, and K. fragilis Kf1) to metabolize
their sugars and convert them to ethanol was evaluated and
compared.
2. Material and methods

2.1. Raw material

Coffee silverskin (CS) and spent coffee grounds (SCG) were sup-
plied by NovaDelta – Comércio e Indústria de Cafés, Lda (Campo
Maior, Portugal). As soon as obtained, the materials were dried at
60 �C to 10% moisture content to be stored. Chemical composition
of CS consisted of (g/100 g): glucan (17.8), xylan (4.7), arabinan
(2.0), galactan (3.8), mannan (2.6), protein (16.2), lignin (30.2),
ashes (4.7), acetyl groups (3.0), and extractives (15.0); while SCG
contained glucan (8.6), arabinan (1.7), galactan (13.8), mannan
(21.2), protein (13.6), lignin (32.1), ashes (1.6), acetyl groups
(2.2), and extractives (5.2).

2.2. Hydrolysates preparation

The reaction conditions used for CS and SCG hydrolysis were
optimized in previous studies, one of which has already been pub-
lished [11]. Reaction conditions consisted in using a sulfuric acid
solution (100 mg H2SO4/g dry matter) in a liquid/solid ratio of
10 g/g, at 163 �C during 45 min, for SCG; and in a liquid/solid ratio
of 14 g/g, at 170 �C during 45 min, for CS. The reactions were per-
formed in 200 ml stainless steel reactors, containing 70 ml of reac-
tion medium. Under the required temperature, the dully-covered
reactors (filled with CS or SCG, and the acid solution) were intro-
duced into a silicone oil bath, were they were maintained during
the desired time. At the end of the reaction, the reactors were
immediately cooled in ice bath. The hydrolysates were then sepa-
rated from the solid residue by centrifugation (6000 rpm, 15 min),
and characterized regarding the concentration of sugars (glucose,
xylose, arabinose, mannose, and galactose) and toxic compounds
(furfural, hydroxymethylfurfural, acetic acid, and phenolic com-
pounds) by HPLC. To be used as fermentation medium, the hydrol-
ysates had their pHs adjusted to 5.5 by addition of NaOH (pellets);
the remaining solid residue was removed by centrifugation
(6000 rpm, 15 min). Sugar losses after this neutralization step were
less than 4%.

2.3. Microorganisms

Three different yeast strains were evaluated, including
P. stipitis (NRRL-Y-7124), S. cerevisiae (RL-11), and K. fragilis (Kf1).
S. cerevisiae was supplied by University of Lavras (Department of
Biology), Brazil. This yeast was selected among other strains due
to its high capacity of producing ethanol [19]. K. fragilis was also
supplied by University of Lavras (Department of Biology), Brazil,
and was isolated from cocoa fermentation. This yeast has been
demonstrated to have great ability for ethanol production from
cheese whey [17].
2.4. Inocula and fermentation conditions

Cultures of the yeasts were maintained at 4 �C on Petri plates
containing malt extract agar medium whose composition con-
sisted in (g/l): yeast extract (3.0), malt extract (3.0), peptone
(5.0), glucose (10.0), and agar (20.0). For the inoculum preparation,
cells of the yeasts grown during 24 h in the maintenance medium
were transferred to 500 ml Erlenmeyer flasks containing 100 ml of
culture medium composed of (g/l): glucose (30.0), (NH4)2HPO4

(3.0), MgSO4�7H2O (1.0), and yeast extract (3.0). Concentrated solu-
tions of each compound were prepared separately and sterilized in
an autoclave at 121 �C for 20 min, with the exception of glucose
and yeast extract that were autoclaved at 112 �C for 15 min. The
solutions were aseptically mixed in order to obtain the desired
concentration of each nutrient in the culture medium.

The inoculated flasks were incubated in a rotary shaker at 30 �C,
200 rpm, for 24 h. After this time, the cells were recovered by cen-
trifugation (5000 rpm, 20 min) and resuspended in the fermenta-
tion medium. Fermentation assays were performed in 250 ml
Erlenmeyer flasks containing 100 ml of fermentation medium
(hydrolysates) inoculated with an initial cell concentration of 1 g/
l. The flasks were incubated in a rotary shaker at 30 �C, 200 rpm
for 48 h. During the experiments, samples were taken for sugars,
ethanol and cell growth determinations. All the assays were per-
formed at least in duplicate.
2.5. Analytical methods

Microbial growth was determined after drying the samples at
105 �C to constant weight. Quantification of total phenolic com-
pounds was carried out using the Folin–Ciocalteu method. Total
sugars were determined by the dinitrosalicylic (DNS) and anthrone
methods.

Ethanol and acetic acid concentrations were determined by
high performance liquid chromatography (HPLC) on a Jasco chro-
matograph equipped with a refractive index detector and a Bio-
Rad Aminex HPX-87H (300 � 7.8 mm) column at 60 �C, using
0.005 M sulfuric acid as eluent in a flow rate of 0.7 ml/min. Con-
centration of glucose, xylose, arabinose, mannose and galactose
was also determined by HPLC using a refractive index detector,
but with a Varian column Metacarb 87P (300 � 7.8 mm) at 80 �C,
and ultrapure water as eluent in a flow rate of 0.4 ml/min. Furfural
and hydroxymethylfurfural (HMF) were determined by HPLC using
a UV detector (at 280 nm) and a Nucleosil 120-5 C18 5 lm
(4.6 � 250 mm) column at room temperature, acetonitrile/water
(1/8 with 10 g/l acetic acid) as the eluent in a flow rate of 0.8 ml/
min. In all the cases, a sample volume of 20 ll was injected.

The ethanol yield factor (YP/S, g/g) was defined as the ratio be-
tween the maximum ethanol concentration (g/l) and total sugars
consumed (g/l). Ethanol volumetric productivity (QP, g/l h) was cal-
culated as the ratio between the maximum ethanol concentration
(g/l) and the respective fermentation time (h). The efficiency of
sugars conversion to ethanol (g, %) was determined as the ratio be-
tween the obtained YP/S (g/g) and the theoretical value (0.51 g/g) of
this parameter [15].
3. Results and discussion

3.1. Hydrolysates composition

The hydrolysates produced from SCG and CS contained signifi-
cant total sugar amounts, correspondent to approx. 50 and 20 g/l,
respectively. For both wastes, the hydrolysis process was per-
formed with high efficiency of sugars extraction (>85%), and the
different values of sugars concentration in the hydrolysates is a
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consequence of the original content present in each raw material,
since SCG is richer in sugars than CS (as can be seen in Section
2.1). Besides the release of sugars from the raw materials struc-
tures, the hydrolysis process also promoted the release and/or for-
mation of some compounds, namely acetic acid, furfural,
hydroxymethylfurfural (HMF) and phenolic compounds, which
can be toxic for the microbial metabolism depending on the con-
centration that they are present in the fermentation medium
[20]. Concentration of these toxic compounds in SCG and CS
hydrolysates are given in Table 1. As can be observed in this table,
the concentration of furfural and HMF (compounds generated from
the degradation of pentose and hexose sugars, respectively) was
low (<1.0 g/l) demonstrating that the hydrolysis conditions were
able to promote a highly efficient sugars extraction with few deg-
radation of the monosaccharides. Acetic acid that is released from
the hemicellulose structure was also present in both hydrolysates,
but in a slightly higher concentration in CS hydrolysate, that is in
agreement with the chemical composition of the wastes, since CS
contains more acetyl groups than SCG (3.0 and 2.2% w/w, respec-
tively). Phenolic compounds were present in similar concentration
in both hydrolysates.

It is expected that furfural, HMF and acetic acid, in the concen-
trations present in SCG and CS hydrolysates, do not cause inhibi-
tion in the yeasts metabolism, since several studies report
inhibition of the microbial metabolism by concentration values
higher than those here found. For example, ethanol production
by P. stipitis CECT 1922 was not affected by furfural concentrations
up to 2 g/l, neither by acetic acid concentrations up to 6 g/l; and
the simultaneous presence of acetic acid (1.5 g/l), formic acid
(0.5 g/l), and furfural (1 g/l) did not affect also the yeast perfor-
mance in converting xylose and glucose to ethanol [21]. On the
other hand, phenolic compounds have been considered the most
toxic compounds present in lignocellulosic hydrolysates, being
toxic for the microorganism even when present at low concentra-
tions [20]. Several works report the use of detoxification processes
previous the hydrolysate use as fermentation medium, to decrease
the concentration of toxic compounds to levels not able to affect
the microbial metabolism. In the present study, CS and SCG hydrol-
ysates were used as fermentation medium as obtained. The inclu-
sion of an additional step of hydrolysate detoxification was
avoided to not increase the costs of ethanol production.
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Fig. 1. Consumption of total sugars (A), galactose (B) and mannose (C) in spent
coffee grounds hydrolysate, during the fermentation for ethanol production by
different yeast strains.
3.2. Fermentation of SCG hydrolysate

The total sugars consumption from SCG hydrolysate varied to
each evaluated yeast (Fig. 1A). S. cerevisiae consumed faster these
compounds than the other strains, with almost total depletion
after 24 h fermentation. P. stipitis also consumed practically all
the sugars present in the medium, but required a longer fermenta-
tion time (36 h). On the other hand, K. fragilis consumed only 22%
of the sugars present in SCG hydrolysate. The difference observed
for the three yeasts is related to the variety of sugars present in this
medium. SCG hydrolysate contains glucose, arabinose, galactose
and mannose sugars; galactose and mannose being the most
Table 1
Concentration of toxic compounds in coffee silverskin (CS) and spent coffee grounds
(SCG) hydrolysates.

Toxic compounds Concentration in the hydrolysate (g/l)

CS SCG

Acetic acid 1.10 ± 0.10 0.80 ± 0.05
Furfural 0.20 ± 0.06 0.70 ± 0.03
HMF 0.30 ± 0.04 0.10 ± 0.01
Phenolic compounds 3.70 ± 0.20 3.50 ± 0.12
abundant, accounting for about 77% of total sugars present [11].
S. cerevisiae is a yeast strain with ability to utilize and metabolize
hexose sugars such as galactose, mannose and glucose [22]. P.
stipitis has been reported as able to consume both kinds of sugars:
hexoses and pentoses like xylose, for example [23]. K. fragilis is a
strain mainly reported as able to consume lactose [24], sugar that
was not present in SCG hydrolysate. Glucose was present in low
concentration (0.81 g/l) in this medium, and was totally consumed
by the three yeasts. On the other hand, galactose and mannose



Table 2
Fermentation parameters obtained during the conversion of spent coffee grounds
hydrolysate to ethanol by different yeast strains.

Yeast YP/S (g/g) QP (g/l h) g (%) Time (h)

Pichia stipitis 0.26 ± 0.01 0.35 ± 0.01 51.9 ± 2.3 30
Saccharomyces cerevisiae 0.26 ± 0.02 0.49 ± 0.01 50.2 ± 3.1 24
Kluyveromyces fragilis 0.13 ± 0.02 0.05 ± 0.01 25.5 ± 3.3 24

YP/S = ethanol yield factor; QP = ethanol productivity; g = ethanol efficiency.
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consumption was clearly different for each yeast strain (Fig. 1B and
C). Galactose and mannose consumption by K. fragilis was really
small, especially when compared with the results observed for
the other two yeasts. Mannose consumption was similar for S.
cerevisiae and P. stipitis; however, S. cerevisiae consumed galactose
faster than P. stipitis, although both yeasts consumed totally this
hexose. Arabinose was not consumed by any of the yeasts, during
the considered fermentation time.

As a consequence of the differences in sugars consumption, bio-
mass formation and ethanol production varied to each yeast strain
(Fig. 2). All the yeasts strains were able to grow in SCG hydrolysate,
but S. cerevisiae exhibited the highest and fastest growth results, as
result of its higher and faster sugars consumption compared to the
other strains. Otherwise, K. fragilis had the worst growth results,
since it consumed few sugars amount (Fig. 2A). In terms of ethanol
production, fermentation with S. cerevisiae gave the best results
(11.7 g/l) (Fig. 2B), followed by the fermentation with. P. stipitis,
which produced ethanol concentrations similar to those of S.
cerevisiae, but needed a longer time to achieve the maximum con-
centration of this compound. Ethanol production by K. fragilis was
low throughout the fermentation time. It is evident by these re-
sults that this yeast strain had difficulties in metabolizing the main
sugars present in SCG hydrolysate (mannose and galactose), and
convert them to ethanol.

Table 2 presents the fermentation parameters obtained during
the conversion of SCG hydrolysate by the three yeasts. Note that
the ethanol yield factors (YP/S) were similar for the fermentations
performed with P. stipitis and S. cerevisiae, which shows that both
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Fig. 2. Biomass and ethanol production during the fermentation of spent coffee
grounds hydrolysate by different yeast strains.
yeasts had the same ability to convert the sugars to ethanol. As a
consequence, both yeasts proportioned similar results of efficiency
(g). However, ethanol productivity (QP) was higher for S. cerevisiae
than for P. stipitis, suggesting that S. cerevisiae had greater ability
for ethanol production from sugars present in SCG hydrolysate. K.
fragilis yielded an YP/S value correspondent to half the value ob-
tained for the other yeasts, and a very low QP, as a result of the
low ethanol concentration formed during the fermentation (about
1.1 g/l).

The maximum values of YP/S (0.26 g/g) and QP (0.49 g/l h) ob-
tained in this study are comparable or even better than others
found during the ethanol production from hemicellulosic hydroly-
sates obtained from different raw materials. For example, biocon-
version of brewer’s spent grain hemicellulosic hydrolysate to
ethanol by P. stipitis NRRL-Y-7124 yielded an YP/S of 0.34 g/g [25];
the ethanol production by fermentation of sunflower seed hull
hydrolysate, also using P. stipitis NRRL-Y-7124, gave YP/S and QP

values of 0.32 g/g and 0.065 g/l h, respectively [26]; and the fer-
mentation of sugarcane bagasse hemicellulosic hydrolysate by
Scheffersomyces stipitis UFMG-IMH 43.2 yielded YP/S of 0.19 g/g
and QP of 0.13 g/l h [27]. When compared to the fermentation re-
sults obtained from these raw materials, it can be concluded that
SCG hydrolysate has great potential for use as fermentation med-
ium for ethanol production. Additionally, the sugars content pres-
ent in the original raw material is also an important factor to
support this conclusion, because high ethanol production may be
achieved if high sugars content is available for fermentation. In this
sense, sugars composition in SCG (45.3% w/w) [11], is well compa-
rable to the sugars composition of other raw materials, such as
brewer’s spent grain [28], corn fiber [29], and corn stover [30],
for example.

It is worth mentioning that this is a first study on ethanol pro-
duction from SCG hydrolysate, and the results here obtained may
be improved if the best operational conditions to perform this pro-
cess (for example: initial substrate concentration, pH, addition of
nutrients, oxygen availability, and others) are established. Addi-
tionally, studies about the influence of the inhibitory compounds
(mainly the phenolic compounds) present in this hydrolysate on
yeast metabolism could be useful to verify if the yeast performance
is improved when using the detoxified hydrolysate as fermentation
medium.

3.3. Fermentation of CS hydrolysate

Unlike the observed in the fermentation of SCG hydrolysate,
where S. cerevisiae consumed the highest sugar amount and faster
than the other yeast strains, P. stipitis was the yeast responsible for
the quickest and highest sugar consumption from CS hydrolysate
(Fig. 3A). This fact is also related to the chemical composition of
this medium. CS hydrolysate contains xylose, pentose sugar that
was not present in SCG hydrolysate. Xylose account for 20% of total
sugars present in this medium and is metabolized by P. stipitis but
not by S. cerevisiae and K. fragilis [22–24], explaining the lower in-
take of sugars observed for these other two yeasts.

In terms of cell growth (Fig. 3B) K. fragilis exhibited the highest
values of biomass from CS hydrolysate, while the lowest values
were obtained for S. cerevisiae. Note that initially, the biomass
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Fig. 3. Total sugars consumption (A), biomass (B) and ethanol production (C) during
the fermentation of coffee silverskin hydrolysate by different yeast strains.

Table 3
Fermentation parameters obtained during the conversion of coffee silverskin
hydrolysate to ethanol by different yeast strains.

Yeast YP/S (g/g) QP (g/l h) g (%) Time (h)

Pichia stipitis 0.11 ± 0.02 0.04 ± 0.01 21.0 ± 3.0 24
Saccharomyces cerevisiae 0.13 ± 0.03 0.02 ± 0.01 24.9 ± 5.1 24
Kluyveromyces fragilis 0.01 ± 0.00 0.00 ± 0.00 2.2 ± 0.3 48

YP/S = ethanol yield factor; QP = ethanol productivity; g = ethanol efficiency.
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formation was similar for P. stipitis and S. cerevisiae, however, after
30 h of fermentation P. stipitis increased its biomass in larger ex-
tends than S. cerevisiae, probably due to the consumption of pen-
tose sugars, which are not metabolized by S. cerevisiae, as
mentioned before. The highest values of biomass obtained with
K. fragilis are related to the no production of ethanol by this micro-
organism (Fig. 3C), as a consequence, the yeast would have used
the entire consumed carbon source only for the cell growth.

Among the studied strains, P. stipitis produced the highest eth-
anol amount from CS hydrolysate. However, the ethanol concen-
tration values obtained in all these fermentations were very low
(61.0 g/l) due to the low initial sugars concentration in CS hydro-
lysate (�22 g/l). Since part of the carbon source is used by the
microorganism for the cell growth, few amounts would have been
available for use on product formation. Table 3 shows the fermen-
tation parameters obtained during the conversion of CS hydroly-
sate by the three yeast strains. Note that the values of ethanol
yield factor (YP/S) and productivity (QP) were low, even for P. stipitis
that provided the highest ethanol concentration. In fact, the initial
substrate concentration in the fermentation medium is directly re-
lated to the product formation, and influences the YP/S and QP val-
ues, as a consequence [18,31,32]. The initial sugars concentration
in SCG hydrolysate (�54 g/l) was twice the initial concentration
in CS hydrolysate, which certainly had a positive effect on the fer-
mentation results obtained. It has been demonstrated in other bio-
conversion studies that the yield and productivity of the process
are improved when the initial sugars concentration is increased,
of course, up to a certain limit [18,31,32]. Establishing the initial
substrate concentration to be used in a fermentation process is
important to attain elevated product formation [18,31,32]. There-
fore, a possible alternative to improve the low ethanol production
results obtained from CS hydrolysate could be to submit it to a con-
centration process previous the use as fermentation medium, to in-
crease the sugars concentration. This will be the focus of our future
studies.

4. Conclusions

SCG is an agro-industrial waste of large potential for use as raw
material for ethanol production, since interesting results of ethanol
yield (YP/S = 0.26 g/g), productivity (QP = 0.49 g/l h) and efficiency
(g = 50.2%) were obtained when the sugar-rich hydrolysate pro-
duced from this material was used as fermentation medium (with-
out any detoxification procedure) by S. cerevisiae. Such results
could be even improved by establishing the operational conditions
that maximize the product formation. On the other hand, fermen-
tation of CS hydrolysate did not yield significant ethanol amounts,
probably due to the low concentration of sugars in this hydroly-
sate, which were used primarily for the microorganisms’ growth.
However, this hydrolysate acted as an efficient medium for the
yeasts’ growth, suggesting that it may also be of interest for use
in fermentation processes. Concentrating the CS hydrolysate previ-
ous its use as fermentation medium could be an alternative to im-
prove the ethanol production results.
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