J. LOGIC PROGRAMMING 1996:12:1-199 1

MAGIC SETS WITH FULL SHARING

PAULO J AZEVEDO

> In this paper we study the relationship between tabulation and goal ori-
ented bottom up evaluation of logic programs. Differences emerge when one
tries to identify features of one evaluation method in the other. We show
that to obtain the same effect as tabulation in top-down evaluation, one
has to perform a careful adornment in programs to be evaluated bottom-
up. Furthermore we propose an efficient algorithm to perform forward
subsumption checking over adorned magic facts. <

1. Introduction

Much has been said about the relationship between goal oriented bottom-up and
tabulated top-down evaluation of logic programs, see for instance [18, 17, 19, 11].
To give an example of these relations, we mention the equivalence between magic
facts of bottom-up and subgoals in top-down evaluation. The order in which magic
facts are derived is commonly referred to in the literature as the “order of subgoal
evaluation”.

Another example is the equivalence between the facts that can be derived by a
specific magic fact and the stored solutions in memo tables for a specific subgoal.
In the semi-naive procedure [2] a subsumption check is included which prevents the
derivation of duplicate facts. Seki [16] observed that subsumption checking in this
procedure has a counterpart in tabulated top-down evaluation in two ways:

e When subsumption is applied in magic facts it corresponds to the subsump-
tion test of tabulation (admissibility test of SLD-AL).

e Subsumption applied in facts (non magic) derived during bottom-up evalua-
tion corresponds to the duplicate elimination performed in tabulation when
a new solution is inserted in the tables.

Address correspondence to Paulo J Azevedo, Departamento de Informatica, Universidade do
Minho, Campus de Gualtar, 4710 Braga, Portugal, E-mail: pja@di.uminho.pt

THE JOURNAL OF LOGIC PROGRAMMING

©Elsevier Science Publishing Co., Inc., 1996
655 Avenue of the Americas, New York, NY 10010 0743-1066/93/$3.50

We investigate the use of subsumption, as described in the first case, to eliminate
redundancy in the derivation of magic facts.

In this paper we are concerned with the recomputation that arises in the bottom-
up evaluation of magic rewritten programs [4]. The starting point is to observe what
features of tabulation appear in goal-oriented bottom-up evaluation. We will show
that not all the desirable features of top-down appear entirely in bottom-up evalua-
tion. Namely, we observe that a magic atom that does not subsume another magic
atom can have its subgoal representative subsuming the subgoal representative of
the latter. Since the adornment process yields syntactically different variants of the
same predicate, the traditional implementation of subsumption cannot cope with
adorned magic atoms. Consequently, the derivation of facts triggered by the magic
fact mag_p*®(a, a) is repeated by the derivation of facts triggered by mag_p®/(a).
Thus, goal-oriented bottom-up evaluation does not exhibit the full benefits of tab-
ulation. We propose forms of overcoming this fault in Magic Sets by introducing
two new techniques.

e First we suggest a different way of dealing with adornments.

e Secondly, we propose a new forward subsumption checking algorithm for
detecting redundancy among adorned magic facts.

Although in this paper we only consider magic sets, future work will expand
these proposals to more general techniques, e.g. magic templates [11].

2. Magic Sets & Tabulation

In the Magic Sets method [3] each rule has assigned a sideways information passing
(STP) strategy. This strategy represents a decision about the order in which the
conditions of the rule will be evaluated and how values for variables are passed from
conditions to other conditions during evaluation. There are two techniques for the
implementation of these SIP strategies: One is the generation of magic rules. The
other i1s the adornment process, where through a set of strings a representation of
the expected pattern is attached to each literal. Adornments also ensure that range
restriction is preserved.

Following [4], an adornment is a string from the alphabet {b f} that represents the
expected pattern of bound (b) and free (f) variables in the arguments of a predicate.
Intuitively, an adorned occurrence of a predicate corresponds to a computation
of that predicate with some arguments bound to constants and other arguments
free. For instance, pPf corresponds to computing p with the first argument bound
and the other two free. Notice that each SIP implicitly determines a pattern of
bound/unbound arguments for each predicate to be evaluated. The task of the
adornment process is to make this implicit pattern explicit.

As previously identified in the literature, e.g. [16, 18, 11], one consequence of the
magic rewriting is that calls in top-down are represented in bottom-up by magic
facts. In terms of adornments, the head of a magic rule has the same adornment
as the literal that gives rise to the magic rule. Consequently, the adornments in a
magic fact represent the pattern of bound and free arguments of a call.

Several authors observe that the well known features of tabulated top-down
proof procedures also appear in goal-oriented bottom-up evaluaters. In [16], more
detailed relations between these two forms of computation are put forward. The
author identifies relations between SLD-AL [20], a tabulated proof procedure, and
the Alexander Templates rewriting which is a variant of Supplementary Magic Sets
without adornments. Magic predicates are call predicates in Alexander templates
and derived facts are sol facts. Supplementary Magic Sets [4], avoid redundant
joins by deriving supplementary relations. Seki establishes the relation between
the admissibility test and the subsumption checking in a bottom-up evaluation.
The latter subscribes the need in bottom-up evaluation (for instance in the semi-
naive strategy) to check whether a newly derived fact is subsumed by a previously
derived one. This subsumption checking can be reduced to simple duplicate elimi-
nation if only ground facts are derived. If a goal < q is admissible (is not subsumed
by a call stored in the tables) then correspondingly the subsumption checking in
bottom-up determines that the fact mag.q (or call_q in Alexander templates) is a
newly derived one. On the other hand a newly derived lemma L in SLD-AL corre-
sponds to a newly derived fact in Alexander Templates sol_L or simply L in Magic
Sets. The conclusion that one should draw from these two remarks is that sub-
sumption checking in bottom-up has a counterpart in top-down in two ways. First,
in the admissibility test on calls and second in the duplicate elimination performed
on lemmas. However, one should notice that the introduction of adornments can
corrupt these relations. Consider the case where the fact mag_q was previously
derived and it is ‘compared’ with the fact mag.q®. Since syntactically they are
unrelated, one cannot establish any subsumption relation between the two magic
facts.

It is interesting to notice that tabulation systems like XSB [15] do not incorpo-
rate a subsumption checking mechanism but rather perform variant checking'. For
reasons related to the way the answers to a call (and the stored call) are indexed,
XSB uses a much simpler method to eliminate redundancy. Apart from efficiency
purposes there are other reasons for checking for identity based on variance. Among
them one can include the combination of negation and tabulation and the support
of meta-programming facilities [5]. The price to pay is that not all recomputation
is eliminated. For instance if the call ?p(a,Y) is stored then only variants of this
call e.g. ?p(a,Z) are considered as having their answers in the tables. Thus if a
call that is an instance of our stored one is derived e.g. 7p(a,b) it is not identified
as having answers in the table and consequently is recomputed in the program.
Notice however that this phenomenon is equivalent to the one that arises within
magic sets and semi-naive evaluation. The calls 7p(a, Y) and 7p(a, Z) are equivalent
to the magic fact mag_p® (a). Thus, when the latter call (magic fact) is derived it
is identified as already answered. Consequently it is eliminated by the subsump-
tion checking performed on derived facts by the semi-naive procedure. However,
the second described case corresponds in magic sets to derive first the magic fact
mag_p°f(a) and then mag_p®(a,b). Applying subsumption checking between these
two facts returns failure because they are syntactically unrelated. Therefore, the
magic fact mag_pbb(a, b) is derived and the computation associated with it is redone.
The aim of the following section is to explore the details involved with adornments
and the desirable feature of sharing answers among computations of related magic
facts.

1One atom is a variant of another if they are the same up to variable renaming.

3. Adornments and ‘Sharing’

Consider in top-down evaluation the following order of calls: first 7p(X,Y) and then
?p(a,Z). In tabulated top-down the admissibility (subsumption) test would force
the second call to reuse the answers that were computed and stored by the first.
In the bottom-up evaluation of the corresponding magic rewritten program, the
fact mag_p® would be generated first which would lead to the computation of the
complete extension of predicate p i.e. all its solutions. Then, mag_p® (a) would
be generated leading to the computation of p facts that have a as first parameter.
Notice that, according to the described subgoals, the magic fact mag_p® (a) is re-
dundant in relation to mag p': the facts ‘computed’ by mag_p®f(a) are included in
the facts ‘computed’ by mag_p.

In magic adorned programs, apart from duplicate elimination, subsumption must
also prevent redundant computation by eliminating the derivation of redundant
magic facts. However, subsumption does not work on adorned programs because
syntactically differently adorned magic facts are unrelated. Furthermore, following
the earlier example, the computed answers for the predicate p cannot be shared
with predicate p® since both are now different predicates. Thus due to adornments,
in semi-naive evaluation of magic programs, the subsumption test cannot check that
answers derived with the first magic fact should be used to answer the requirements
of the second fact. In this way, adornments remove from bottom-up one of the most
desirable features of tabulation: the sharing of answers between similar calls.

Our aim is to have a bottom-up evaluation that preserves the sharing of solutions
among common calls, as it happens in top-down evaluation. To achieve this, a
program will be adorned in a different way. Adornments are used in several query
optimization techniques, helping to cut down the relevant search space, e.g. [10, 6,
8]. But for the magic rewriting it is only necessary to consider adornments in the
magic literals. In this way all adorned versions of a predicate will generate answers
that potentially can be used by all the different adorned literals present in the body
of rules. An implicit adornment is considered instead of an explicit ‘renaming’ of
literals in rules. Consider the following rule.

p(X,Y) « a(X,Z) & b(Y,Z)

Assuming the query 7p(a,Y) and a left-to-right SIP strategy, standard adornment
together with magic rewriting produces:

pbf(X,Y) — abf(X,)& bfb(Y,)& mag_pbf(X)

However, according to our idea of implicit adornments, it is sufficient to adorn the
magic predicate only, which leads to:

P(X,Y) + a(X,Z) & b(Y, Z) & mag_p"f(X)

On generating magic rules the same idea applies. For instance, the magic rules for
a and for b are:

mag_a® (X) « mag_p®f(X)
mag_b®(Z) + mag_p® (X) & a(X, Z)

In this way we gain a generation of facts of the same predicate that enables the
sharing of answers between literals of the same predicate in the body of rules.

A single rule can still generate several different adorned versions as happens in
the standard adornment, since the information provided by the SIP strategy is
still followed. Furthermore the main aim of adornments is still considered i.e. to
implement the SIP strategy. Observe that by omitting adornments from literals in
the body of rules we do not lose the benefits provided by the adornment process.
The adornment is implicit in the way that rules are processed.

Combined with this new rewriting we need a subsumption test on the generated
magic facts capable of identifying redundant magic facts. In the next section, an
efficient algorithm for performing this task will be described.

4. Subsumption Checking over Adorned Atoms

Consider the following example, which is a recursive definition of ancestor.

anc(X,Y) < par(X,Y).
anc(X,Y) « par(X,Z) & anc(Z,Y).

The predicate par corresponds to the following chain: ¢ — b6 — ¢ — d, which
is the EDB:

par(a, b).
par(b, c).
par(c,d).

The transformed program according to the standard adornment process and the
query anc® is:

anc®(X,Y) « par(X,Y) & mag_anc®(Y).
anc®(X,Y) < par(X,Z) & anc®(Z,Y) & mag-anc®(Y).
mag_anc®®(Z,Y) « par(X,Z) & mag_anc™(Y).

anc®®(X,Y) « par(X,Y) & mag_anc®® (X, Y).
anc®® (X, Y) « par(X,Z) & anc®®(Z,Y) & mag_anc®®(X,Y).
mag_anc®®(Z,Y) « par(X,Z) & mag_anc®®(X,Y).

X X

If the query is ?anc(X,d) then we add the magic fact mag_anc®(d). The semi-naive
evaluation is:

T! = EDB U {mag_anc®(d)}

T2 = T' U {anc(c,d), mag_anc® (b, d), mag_anc®®(c,d), mag_anc®(d, d)}
T3 = T2 U {anc®®(c,d)}

T4 = T2 U {anc®®(b,d), anc™ (b, d)}

T® = T* U {anc(a,d)}

Notice that all the derived magic facts in step 2 (T?) are redundant in relation to the
magic fact representing the initial query, because they are subsumed by the latter.
Furthermore, the anc® fact derived at step 2 cannot be used by the ancb® literal
in the body of the second rule defining anc®. Although syntactically anc®®(c,d) is
different from anc® (c,d), both represent that c is an ancestor of d.

A new algorithm is required to identify subsumption relations between the
adorned magic facts. This is analogous to the admissibility test for top-down tabula-
tion referred to in [20]. As shown in the example, although syntactically unrelated,
semantically (based on the information contained in the adornments) one adorned
magic fact can subsume another. For instance, the magic fact mag_p®®(a) subsumes
the fact mag_ p®® (a,b), since the former corresponds to a goal ?p(a,Y,Z) and the
latter to 7p(a, b, X). Without such a subsumption test, the full benefits associated
with tabulation cannot be obtained in bottom-up evaluation.

4.1. A new definition of subsumption

First, we define subsumption in adorned magic facts. We rely on a translation from
magic facts into the corresponding subgoals in top down evaluation. Since we are
dealing with magic sets, we assume that no aliasing of variables [19] occurs (i.e. all
magic facts represent atoms with distinct variables) and no derived fact contains
function symbols in its arguments.

Definition 4.1. The translation of a magic fact mag_S®(¢), where « is the adorn-
ment sequence of ‘b’s and ‘f’s; is the term S(Z) where ¥ is composed of the
constants that appear in ¢ for the parameters that are ‘b’ in « and a distinct
variable for each parameter that are f” in a.

For instance, the magic fact
mag_p**7 (a, b, c)
is translated into the term
p(a, X,b,¢,Y).

Subsumption between two magic facts is reduced to the subsumption between the
corresponding subgoals resulting from the translation described above.

Definition 4.2. A magic fact My subsumes a magic fact M if the corresponding
term S7 of M; subsumes the term S5 of My 1.e. S7 3O 5.

The idea is that instead of translating adorned magic facts into corresponding
atoms and checking subsumption between these atoms, one can make use of the
information in the adornments to directly determine whether an adorned magic
fact subsumes another. Since adornments in magic facts represent the pattern of
bound/free variables in their arguments, subsumption checking can be reduced to
operations over adornment sequences (‘bf’ sequences).

Recall that G subsumes S (denoted G' O S) if there is a substitution ¢ for the
variables in (G such that G8 = S. Thus, the subsumption test should check if such

a substitution & exists, succeeding if it does, failing otherwise. An alternative way
to define subsumption is the following [9]:

Definition 4.3. G 35 if 30 = m.g.u(G,S) and SO = S.

This is equivalent to say that G subsumes S if the most general unifier (m.g.u) of
S and G does not bind any variable in S. Considering definition 4.3 of subsumption
we can think of subsumption checking as reduced to operations with arguments of
the atoms to be checked. Notice that since we are dealing with magic sets, all
the described programs are Datalog and no aliasing of variables occurs. Removing
aliasing is straightforward through the program transformation proposed in [19]. To
optimize the operation with adornments we translate the ‘bf” adornment sequences.

Definition 4.4. The translation of an adornment sequences is a binary number
obtained through the following substitution:

e cach position ‘6’ in the original adornment is substituted by the digit ‘1’.

e and each ‘f” by the digit ‘0’.

Thus, an initial adornment has now a translation into a sequence of bits (binary
number), e.g. the sequence bfbf is translated into the sequence of bits ‘1010°. The
advantage of such a translation is that one can reduce the operations over argu-
ments that occur in subsumption checking into logical operations on bits i.e. logical
operations with binary numbers. For convenience and since we are operating with
the adornment sequences, each adornment is an extra argument of the correspond-
ing magic fact. For instance, the original magic fact mag_p®/*/ (c,a) is now the
term mag_p(1010, ¢, a) where the adornment sequence is the first argument of the
magic fact. The full new rewriting can now be presented:

Definition 4.5. Let P2 be the adorned version of program (database) P following
a given SIP-strategy and a query q(X).

1. create a new predicate mag p(bit,t?) for each p?d(t) in P*d; t» means the
bound arguments of t and bit is the translation of the adornment ad following
definition 4.4.

2. for each rule in P®! add the modified rule to P™2& which is the original rule
with the body extended with the literal mag_p(bit, t?) if the head is p2(t)
(i.e. only the bound (b) arguments are in the magic literal).

3. For each rule p®(t) « qidl (t1) & ... & g% (t,) in P24 generate several magic
rules:
mag_qi(biti,ﬂ’) — mag_p(bito,fb) & ql(fl) & ... & qi_l(fi_l) 1s added to

Pmagic for each 1 < i < n and the order of i respects the order on the SIP.
Again bit; is the translation of the adornment ad;,

4. add the seed fact mag_q(bits,x°) representing the query q(X), where bits is
the translation of the adornment associated with X.

The following theorems are stated without proof. Full proofs can be found in [1].

Theorem 4.1. (Preservation of answers) Let < p®, P24 > be a query and an adorned
program transformed by standard magic sets rewriting [{]. Let < p®, P** > be
the same query and program transformed following definition 5. < p®, P >
and < p®, PY** > are equivalent i.e. the two programs produce the same answer
for the resulting queries on p.

This can be proved by considering the correspondence between the binary num-
bers and the adornment sequences.

Theorem {.2. (Efficiency) Let P be a program and q a query. Let P™9 be P and
q with the original magic rewriting applied [4]. Let P*"** be P and q with the
rewriting of definition 5 applied. Let Sn(P) be a function that determines the
number of facts derived during Standard Semi-Naive evaluation [2] of program

P. Sn(PY%) < Sn(PM9).

The proof of this theorem is straightforward by considering that now elimination
of duplicated facts can be truly obtained.

To check whether G 1O .S one must check whether the variables of S are bound
by any of the ground parameters of G. Considering adornments as binary numbers
one can implement this procedure through a simple logical operation on sequences
of bits. Bearing in mind that ‘0’ represents a position of free variable, performing
an binary or operation over two adornment sequences yields another adornment
sequence that represents the bound/free position in the parameters of both atoms
after being unified. If a position is bound in one atom then after unification the
same position is bound on both atoms. Recall that subsumption can be reduced
to checking whether the m.g.u between GG and S does not bind any variable in S.
Thus, if the resultant adornment sequence of the logical or operation matches the
sequence representative of S then G J S.

Consider the following example; the atoms p(a, Y, Z) and p(a, b, ¢) have as m.g.u
the substitution {Y/b,Z/c}. The atoms after unification are both p(a, b, c) which
corresponds to the adornment ‘111°. The first atom is represented by the adornment
‘100” and the second by ‘111°. Performing 100 or 111 yields 111. The first fact
subsumes the second, because the resulting adornment sequence obtained from the
or operation is equal to the sequence of the second fact. The fact that these two
sequences are equal means that the m.g.u. does not perform any substitution on
the variables of the second atom. Since Magic Sets are used, no aliasing of variables
occurs (all terms with distinct variables). This justifies why binary numbers can
be used to check subsumption.

We can summarize the subsumption algorithm in the following way. Consider
that we want to check whether G J S?, where a and 3 are the adornments. Then
subsumes 1s defined as:

subsumes(G®, SP) < or(«, 3, B) & match(G, S).

When two magic facts succeed in the logical or test, one has to confirm whether
the bound positions of both facts that coincide represent parameters that match. In
other words, one has to perform pattern matching between the bound parameters of

both facts. Since we are dealing with adorned magic facts, the parameters in these
facts are all ground, corresponding to the bindings to be passed. In the definition
described above this corresponds to the predicate match. However, this procedure
match must be adjusted because we need to know the adornments to determine
again which arguments in GG correspond to which in S. Consider two magic facts
mag®? (5) and mag9°(§), of which the first is more specific and the second more
general. To perform pattern matching one compares the adornments ge and sp.
From this comparison one matches only the positions on § and g that have ‘1’
on both sp and ge, assuming that we already work with the translated sequences.
As an example, consider the magic facts magp(0010,a) and mag_p(1011,j,a,c).
Comparing the adornment sequences tells us that it is only necessary to match the
third position in both facts. This is equivalent to comparing the first (and only)
argument from the former (which is the constant a) with the second argument of
the latter fact (constant a also).

We can also determine the positions to be compared through binary operations
with the translated adornment sequences into binary numbers. Checking the bits
in both sequences that are on i.e. assigned with 1, can be performed by succes-
sive operations of shifting and binary conjunctions. A variable is assigned with a
binary number that has the same number of bits as the adornment sequences and
all the bits turned off (i.e. 0) except the left-most one. Thus, for five bits the
variable is assigned with ‘10000’. We assume that there is a pointer for each magic
fact pointing to the list of parameters. Two binary conjunctions between the two
adornment sequences and the variable are done. Matching between the pointed
parameters is only performed if both conjunctions yield non-zero results. Now, for
each conjunction that gives non zero result the respective pointer is incremented.
Finally a one bit right shifting operation on the used variable is performed. This
process is repeated while the pointer of the most general fact does not point to nil
i.e. the list of parameters is not totally visited. This ensures that the number of
comparisons between arguments of the two magic facts coincides with the number
of parameters of the most general magic fact.

Let us consider an example with the magic facts mag_p(001, c) and mag_p(101, a, c).
The auxiliary variable is assigned with ‘100°. Initially the pointer of the first magic
fact points to the parameter ¢ and the second to the parameter a. The conjunction
‘100 & 001 = 000’ and ‘100 & 101 = 100’ do not respect the first requirement.
Thus no matching is performed and only the pointer for the second magic fact is
incremented, pointing now to the constant c. Shifting the variable gives the binary
number ‘010°. Both conjunctions yield zero as result. Therefore no matching is
performed and no pointer is incremented. After the shifting, the variable has the
value ‘001°. The operations are repeated and this time both conjunctions yield non
zero results i.e. ‘001 & 001 = 001" and ‘001 & 101 = 001°. Thus, matching between
pointed parameters is performed, which corresponds to apply matching between the
constant ¢ from the first magic fact with the constant ¢ from the second magic fact.

4.2. The Algorithm

Finally, we are in position to present the complete subsumes algorithm. We use
or and & to denote the binary operations of disjunction and conjunction, respec-
tively. Two adorned magic facts, mag_p*?(5) and mag_p9°(§F), participate in the

10

algorithm. The original magic facts are translated into respectively mag_p(sp’, §)
and mag_p(ge’, §). Py is the pointer to the list of parameters in ¢ and P, is the
pointer to the list of parameters in §. Initially both point to the first argument of

each magic atom. The algorithm checks whether mag_p?¢(7) 3 mag_p*? (5).
Algorithm Subsumes

1. if sp’ # sp’ or ge’ then fail and exit.

2. else check pattern matching between s and ¢.

{The algorithm goes through ge’ and sp’, from left to right, to determine
the positions to be matched.}

Auz :=1 << (n—1) where n is the number of bits in the sequences sp’ and
ge’. {shift to the left n — 1 times the number 1 in binary format}

Do while P, # nil {does not point to nil}

G = ge' & Aux;

S = sp & Auz;

if G # 0 and S # 0 then

if not match(P,, Ps) then fail and exit;

if G # 0 then make Py point to next position;

if S # 0 then make P point to next position;

Aux >> 1 {shift once to the right};
Endwhile

3. succeed.

The first step of the algorithm works as a preliminary test. The second step
performs pattern matching. Note that the algorithm stops when all the arguments
of the more general atom are visited (§).

Let us consider some examples in the application of subsumption to the elimination
of redundant magic facts derived during semi-naive evaluation: The calls ?p(a, Y, Z)
and ?p(a, b, Z) correspond to the magic facts mag_p®®(a) and mag_p®(a, b), respec-
tively. Suppose the former is a previously derived fact and the latter is a new fact.
We want to check whether mag_p°™(a) O mag p®®f(a, b). Performing ‘100 or 110’ re-
sults in ‘110" which is equal to the sequence in the new fact. Next, both sequences
of arguments match since the first binding of the first fact (a) matches the first
binding of the second (a). Therefore mag_p°™(a) O mag_p®(a,b). In a semi-naive
evaluation the new fact would be eliminated, meaning that redundant computation
associated with this fact would be avoided.

Consider the case where neither of the atoms subsumes the other. For instance
the queries ?p(a,Y) and ?p(X,a), are represented by the magic facts mag_p®f(a)
and mag_p'(a). The operation ‘10 or 01” gives ‘11’ as result. Thus, the algorithm
returns failure. Consider finally an example with different bindings. Assume the
magic facts mag p™ (c) and mag_p™?(a,c). The adornments checking succeeds since
010 or 011 = 011. However comparing the bindings gives failure because ¢ # a.

11

The algorithm complexity is characterized by a O(m) behaviour where m is the
number of arguments of the more general magic atom i.e. m = length(§). Here,
m also represents the number of comparisons performed during pattern matching
i.e. the second step of the subsumption algorithm. The logical operations over
adornments are negligible because they can be implemented at a machine register
level. Proofs of soundness and completeness of the algorithm can be found in [1].

In practical terms the problem that one has to address is how to efficiently
perform subsumption between one newly derived adorned magic fact and a set
of previously derived adorned magic facts. Thus, we have to extend the proposed
algorithm to include a proper mechanism for the indexing of derived adorned magic
facts. In [13] a trie-like structure was proposed to index calls and their computed
answers in a tabulated top-down procedure (XSB Prolog). Given a fixed order of
term traversal, tries can be used to index terms (in our case magic facts). The major
advantages of these structures is that it gives a collapsed check/insert operation. In
our case, performing subsumption requires one traversal for each binary sequence in
the trie that satisfies step 1 of our algorithm. Insertion is collapsed with one of these
traversals performed during subsumption checking. The traversal is the one where
failure occurs during step 2 of our algorithm and where the adornments sequences
coincide. When traversing the trie, the described bit operations of our algorithm are
executed: Step 1 of the subsumption algorithm is performed according to the first
parameter of each term (which is the adornment sequence). For the terms where
this step succeeds the remaining path is traversed according to the bits operations
described in step 2.

5. Examples

We take the previous ancestor example of section 4 for demonstrating the benefits
of the proposed adornment process and the new subsumption checking algorithm.
The example will be executed by semi-naive evaluation incorporating the new sub-
sumption checking to determine whether newly generated magic facts should be
eliminated. These two proposals overcome the redundancy in the evaluation ob-
served in section 4. Applying the rewriting of definition 5 to this example yields:

anc(X,Y) < par(X,Y) & mag.anc(01,Y).
anc(X,Y) < par(X,Z) & anc(Z,Y) & mag-anc(01,Y).
mag.anc(11,Z,Y) « par(X,Z) & mag-anc(01,Y).

anc(X,Y) « par(X,Y) & mag-anc(11,X,Y).
anc(X,Y) « par(X,Z) & anc(Z,Y) & mag-anc(11,X,Y).
mag.anc(11,Z)Y) « par(X,Z) & mag-anc(11, X,Y).

Semi-naive evaluation, which includes our subsumption checking algorithm, for the
same query 1s:

T! = EDB U {mag-anc(01,d)}

T%efore

T2, = T* U {anc(c,d)}

after

= T' U {anc(c,d), mag_anc(11, b,d), mag_anc(11,c,d), mag_anc(11l,d,d)}

12

T3 = T2 U {anc(b,d)}
T4 = T3 U {anc(a,d)}

We split the relevant steps of the semi-naive evaluation into Tpefore and Tager, mean-
ing respectively the facts derived before and preserved after subsumption checking
is applied.

In the evaluation of the second version of the program only the first two rules
are fired. Redundant computation of step 2 in the evaluation of the first version
of this example is eliminated because the redundant magic facts are subsumed by
the initial query. One consequence of this checking and of the way adornments are
performed is that derivation of duplicate facts for anc is eliminated. This derivation
of duplicates appears in the semi-naive evaluation of the first version of this program
(section 4), on steps 3 and 4.

Consider the same example but now for a cyclic graph which is represented by the

EDB:

Evaluation of the original magic rewriting of the same program for the query
7anc(X,e) is:

T! = EDB U {mag_anc®(e)}

T2 = T' U {anc(d, e), mag_anc®® (b,), mag_anc®®(c, e), mag_anc®®(d, e),
mag_anct® (e, e), mag_anc®®(a,e)}

Semi-naive evaluation with our subsumption checking algorithm for the same query
is:

T! = EDBU {mag-anc(01,e)}

T2 e = TH U {anc(d, e), mag_anc(11, b, e), mag_anc(11,c, e), mag_anc(11,d,e),
mag.anc(11, e ,e), mag_anc(1ll,a,e)}
Tgfter = Tl U {anc(d’ e)}

T3 = T2 U {anc(c,e)}
T4 = T3 U {anc(b,e)}

13

T5 = T* U {anc(a,e)}
Té = T5 U {anc(e,e)}

Again, in step 2, subsumption checking prevents the use of redundant magic
facts, namely the ones with the mag_anc®® adornment. Consequently and due to
the way we apply adornments, the repeated answers for anc with the different
adornments are not derived.

6. Discussion

In [14], it is shown that within Magic Sets the idea that more bound parameters in a
query is always better than fewer is not correct. In other words, computing 7p(a, b)
is not always better than computing the query 7p(a,Y) and checking whether b is
in the answer. Sagiv shows that in some examples having the first query with the
adornment p®? leads to the appearance of the adornment p?/ in the body of the rules
defining p. However, this implies the derivation of magic rules to the adornment
pPf and also to the adornment p®®. Thus, recomputation will arise. Furthermore
the same answers will be generated for the adornment p? and pb/. This seems to
be an evidence that our work and [14] address a similar problem. Sagiv proposes a
new program transformation to factorize predicates into new ones that correspond
to the bound and free arguments described in the adornments. We address the
same problem by simply introducing a new subsumption checking algorithm with
an adornment process that is only applied to magic literals.

It is generally accepted by the Deductive Databases community e.g. [14], that
the number of derived facts in a computation is a good indication of the rela-
tive efficiency of the evaluation method. With the examples of the last section,
we have shown that the efficiency of the bottom-up evaluation is improved. Our
proposal can reduce evaluation from Q(n?) complexity to O(n), where n is the
number of EDB facts (which is actually what happens in the presented examples
of transitive closure), for non subsumption-free? [7] magic programs. Obviously,
with subsumption-free programs our techniques perform poorly and worst than the
standard combination of semi-naive evaluation and magic sets rewriting due to the
burden of the new “semantic subsumption” of magic facts. Another important over-
head is introduced by the removal of adornments from the literals in the bodies of
rules. Without adornments no indexing of answers can be applied and consequently
irrelevant facts can be tried in the bodies of rules.

Other techniques exist to improve standard magic sets as for instance factoring
[8] and the proposal in [6]. In general, factoring a program is an undecidable
problem and the application of the proposal in [6] is restricted to left- right- and
multi-linear programs. Actually, factoring could not be applied to the ancestor
example of section b with a fb query. However, it remains to be investigated what
1s the inter-relation between these proposals and ours.

With our proposal an efficient tabulation technique is obtained in bottom-up
evaluation, since now the total reuse of previous computation occurs. Our bottom-

2Subsumption-free programs are defined in [7]. Here we assume magic rewritten programs
according to definition 5 where subsumption is defined through the algorithm of section 4.2

14

up mechanism can be related to the OLDT proof procedure [17] but where no index-
ing of answers occurs. The proposed subsumption checking algorithm is equivalent
to the mnstance checking included in the OLDT procedure.

7. Conclusions

In this paper we identified that the characteristic features of tabulation were not
present in bottom-up with goal orientation. Namely, we observed that subsump-
tion checking between subgoals (magic facts) was not implemented and sharing of
derived facts between literals of the same predicate was not obtained. The desirable
features of tabulation were rectified by proposing a new adornment process and an
algorithm for checking subsumption over adorned magic facts. Clearly, perform-
ing subsumption checking carries additional costs. However, as previously shown,
first in the literature for the case of subsumption checking in tabulated top down
evaluation e.g. [20, 17], and here with the examples, these overheads are negligi-
ble when compared with redundant computation that can (possibly) be avoided.
Furthermore, the proposed algorithm was shown to have a reasonable complexity
which indicates that it is efficient enough to overcome the burden associated with
subsumption checking.

The proposed algorithm should be implemented in a way that enables the switch-
ing on/off of the subsumption checking, before an evaluation is performed. This
implementation policy follows, for instance, the way other optimization techniques
appear in the deductive database system CORAL [12]. In this way, one could switch
on in situations where different instances of the same magic fact are derived and
switch off for subsumption-free programs.

Acknowledgements: The author would like to thank to anonymous referees for the
valuable comments and suggestions. Thanks to Mario Florido, Alipio Jorge, Jorge
Sousa Pinto and Ian Mackie for the comments given in earlier drafts of this paper.
This work was partially supported by Junta Nacional de Investigacao Cientifica e
Tecnolbgica - Programa PRAXIS XXI grant number BD/2832/94.

REFERENCES

1. Azevedo P. J., Magic Sets with Full Sharing, Technical Report, Departamento de
Informatica, Universidade do Minho 1995.

2. Balbin I., Ramamohanarao K., A Generalization of the Differential Approach to
Recursive Query Fvaluation in Journal of Logic Programming 1987, pp 259-262.

3. Bancilhon F.;, Maier D., Sagiv Y., Ullman J. Magic Sets and other strange ways to
Implement Logic Programs in Proceedings of the 5" Symposium on Principles of
Databases Systems, (PODS) 1986.

4. Beenri C., Ramakrishnan R. On the Power of Magic in Journal of Logic Programming
vol 10, pp 255-299, 1991.

5. Chen W., Warren D.S., Query FEvaluation under the Well Founded Semantics in
Proceedings of the 12" Symposium on Principles of Database Systems, (PODS)
1993.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

15

Kemp D., Ramamohanarao K., Somogyi Z., Right-, left- and multi-linear rule trans-
formation that maintain context information in Proceedings of the 16'" International
Conference on Very Large Databases (VLDB), Australia 1990.

Maher M., Ramakrishnan R. Deja Vu in Fizpoints of Logic Programs in Proceedings
of the North American Conference on Logic Programming, Cleveland, Ohio 1989.

Naughton J., Ramakrishnan R., Sagiv Y., Ullman Argument Reduction Through Fac-
toring in Proceedings of the 15" International Conference on Very Large Databases

(VLDB), Amsterdam 1989.

Pereira F., Shieber S., Prolog and Natural Language Analysis in Language & Infor-
mation no. 10, Stanford, CA: Center for Study of Language and Information, 1987.

Ramakrishnan R., Beeri C., Krishnamurthy R., Optimizing Existential Datalog
Queries in Proceedings of the 7*" Symposium on Principles of Databases
Systems (PODS), Austin 1988.

Ramakrishnan R., Magic Templates: A Spellbinding Approach to Logic Programs in
Journal of Logic Programming pp 189-216, vol 11, 1991.

Ramakrishnan R., Srivastava D., Sudarshan S., CORAL - Control, Relations and
Logic in Proceedings of the 18" Very Large DataBases Conference, Vancouver,
Canada 1992.

Ramakrishnan 1., Rao P., Swift T., Warren D.S., Efficient Tabling Mechanisms for
Logic Programs in Proceedings of the Twelfth International Conference on Logic
Programming, pp 697-711, Kanagawa, Japan, 1995.

Sagiv Y., [Is There Anything Better than Magic? 1in Proceedings of the North
American Conference on Logic programming, 1990.

Sagonas K., Swift T., Warren D.S.; XSB as an Efficient Deductive Database Fngine
in Proceedings of SIGMOD 1994 Conference ACM.

Seki H. On The Power of Alexzander Templates in Proceedings of the 8** Symposium
on Principles of Databases Systems, (PODS) 1989.

Tamaki H., Sato T., OLD Resolution with Tabulation in Proceedings of the 3"
International Conference on Logic Programming, London U.K. 1986, pp 84-98.

Warren D. S., Memoing for Logic Programs in Communications of the ACM Vol 35,
No 3, March 1992, pp 93-111.

Ullman J., Bottom-up beats Top-down for Datalog in Proceedings of the 8% Sympo-
sium on Principles of Databases Systems, (PODS) 1989.

Vieille L., Recursive Query Processing: The Power of Logic in Theoretical Computer
Science, vol 69, Elsevier Science Publishing 1989, pp 1-53.

