
An Evolutionary Artificial Neural Network
Time Series Forecasting System

Paulo Cortez José Machado José Neves
paulo@di-ia.uminho.pt jmac@di-ia.uminho.pt jneves@di-ia.uminho.pt

Departamento de Informática

Universidade do Minho

Largo do Paço, 4709 Braga Codex, PORTUGAL

Voice: +351(53)604470 Fax: +351(53)604471

Keywords: Neural Networks, Genetic Algorithms, Time
Series.

Abstract

Artificial Neural Networks (ANNs) have the ability of learn-
ing and to adapt to new situations by recognizing patterns
in previous data. Time Series (TS) (observations ordered
in time) often present a high degree of noise which diffi-
cults forecasting. Using ANNs for Time Series Forecasting
(TSF) may be appealing. However, the main problem with
this approach is on the search for the best ANN architecture.
Genetic Algorithms (GAs) are suited for problems of com-
binatorial nature, where other methods seem to fail. There-
fore, an integration of ANNs and GAs for TSF, taking the
advantages of both methods, may be appealing. ANNs will
learn to forecast by back-propagation. Different ANNs ar-
chitectures will give different forecasts, leading to compe-
tition. At the end of the evolutionary process the resulting
ANN is expected to return the best possible forecast. It is
asserted that the combined strategy exceeded conventional
TSF methods on TS of high non-linear degree, particularly
for long term forecasts.

1 Introduction

With the emerging of open markets competition between
enterprises will become more and more tough. Winning
means the need of strategic advantages. However, innovat-
ing in an uncertain environment can be disastrous. An or-
ganization may be interested in predicting the future based
on previous data, in terms of the variables that rule its prac-
tice. One possibility is the use of TSF, based only on previ-

ous observations of the same variable, which has the advan-
tage of modeling complex systems as black-boxes [8]. The
goal is to predict the system behavior and not how the sys-
tem works. Organizations normally work with two different
kinds of forecasts: short term predictions, few predictions
ahead, for current management decisions (eg. dealing with
stocks), and long term predictions, for planning (eg. elab-
orating budgets) [8]. Conventional TSF methods base their
models on TS components such as trend and seasonal ef-
fects [11]. Well behaved TS are suited for this kind of ap-
proach but fails when TS present strong noise or non-linear
components.

Optimization algorithms, imitating nature, have be-
come popular in both academy and industry. Studies on the
nervous system and biological evolution influenced the rise
of ANNs and GAs. ANNs have the advantage of learning
from previous data in order to respond to new situations,
specially when one is dealing with incomplete information
or a strong noise component.

In principle ANNs can imitate any computable func-
tion. This is the main reason why ANNs have been applied
so successfully in many different areas: expert systems,
data filtering, computer vision or economy [5]. ANNs seem
to be appropriate for classification or approximation prob-
lems that are tolerant to some errors, with a lot of available
data and where well defined rules can not be applied. ANNs
seem to be a good strategy for TSF. One drawback of using
ANNs is the time required for the search of the best ANN.
This is a heavy empirical process, where intuition, heuristic
rules or random search are often used.

GAs are suited for combinatorial problems, where
the exhaustion of all possible solutions require enormous
computational power. GAs can heuristically find solutions
where other methods seem to fail. Although GAs and ANNs
are both search strategies, empirical studies show that they

1

Table 1: Activation Functions

Name Function
�������

Codomain
linear

� �	��

����

�
sigmoid ��������������

� ���! "�
sigmoid1 #�������$���%�

�& �'�()�* ��
sigmoid2 �����+ �)+

�'�()�* ��
tanh ,.-0/�1 ����� �'�2 3�! "�

differ in range [9]. GAs seem to perform a superior global
search than ANNs with back-propagation, although back-
propagation will reach a better solution [10].

This work reports on the integration of ANNs and
GAs, a Genetic Algorithm Neural Network (GANN) system
[9], leading to TSF. ANNs will learn to forecast by back-
propagation and better ANN architectures will be selected
by evolution.

2 The Artificial Neural Network Ar-
chitecture

There is no known rule that points out to what kind of ANN
one must use. The choice is done by looking at the data, to
the problem, and using intuition or experience [5][14].

One’s approach for TSF supposes the use of feedfor-
ward ANNs. The decision was to use feedforward ANNs
fully connected, with bias, without shortcut connections,
and with one hidden layer, which makes possible to bound
at a certain level the ANN parameters, in order to reduce
the vectorial search space. The initial ANN weights were
randomly generated within the range of

� �4#576 #5 � for a node
with 8 inputs. Standard back-propagation [5] was used for
the ANN training. Table 1 shows the activation functions
used.

The ANN topology will be represented by 9;: � 9;< � 9;=
for an ANN with 9>: input nodes, 9;< hidden nodes and 9;=
output nodes [14]. In this work 9?= is always equal to one.
Empirical tests indicated that, with the same data, ANNs
with one output node gave better forecasts than ANNs with
/ output nodes, even for / prediction steps. The ANN re-
ceives / previous TS values, for / input nodes, and outputs
the forecasted value. The training cases were built as fol-
lows:

�
�
���
#
�!@A@A@A�.��B C �	B

����
#
����D)�!@A@A@A�.��B

���
C �	B

��#@A@A@ C @E@A@
�3F
�
B��*@A@A@E���3F

���
C �)F

where
�
�
�!@A@A@A�.�3F

represent the TS and G the number of the

ANN’s inputs. The cases are trained in this order due to
the temporal nature of the data. The trained ANN can make
short or long term predictions:

�
��H
F(IKJ�L ,�M L ,)�N�)F �

B	�!@A@A@A�.�3F!�
�
#OH
F(IKJ�L ,�M L ,)�N�)F �

B
���
�*@A@A@E���3F)���

�.H
F3�

�*D
H
F(IKJ�L ,�M L ,)�N�)F �

B
��#
�*@A@A@E���3F)���

�.H
F��.�

#OH
F0�

@A@A@
�*P
H
F(I
J�L ,�M L ,)���*P �

B
H
F	�*@E@A@A���*P

�Q�RH
F!�

where
J�L ,�M L , 3��� �

�*@A@E@A���	BS�
caters for the output function of

the ANN, and
� : H T the forecast in the U period to V periods

ahead of U .
One problem that arises with back-propagation train-

ing is overfitting: after some training epochs the ANN starts
to loose generalization. To overcome this situation, early
stopping was considered [14]. The training data was di-
vided into the training set (for the ANN learning) and the
validation set (to test the ANN generalization capacity). By
default the validation set is 10% of the training data, since
the use of the last (recent) values in the training set im-
proves the forecast.

The best ANN architecture for short and long term
forecasts tends to differ. On long term forecasts ANNs seem
to be more affected by overfitting. Thus a special valida-
tion test, Specific Mean Square Error (SMSE), that takes
into consideration the number of forecasts ahead, was im-
plemented:

WYX[Z P
H T
I �]\S^N_ `����*`�a0^��$bR���]\ b _ `S���!`Na b ��b.��cdcdc ���'\SeS_ `O���*`�a0e!�$bP

X[WYXfZ PgIihkj�l e`�m j�lon"l eQpgq3r eS_ `B
where M is the last period of the TS, G the number of valida-
tion cases and / the number of forecasting steps. WYX[Z P

H Tis the error measure for / forecasting steps from U , and / is
an user defined parameter.

3 Combining Genetic Algorithms
with Artificial Neural Networks

When using feedforward ANNs a number of parameters
have to be set before any training: the ANN topology, the
connections between nodes, the activation function, the
training algorithm and its parameters. The search for the
best ANN goes through a long empirical process, of com-
binatorial nature. Some rules are used in order to simplify
the process: the use of only one hidden layer; choosing a
training algorithm that fits to the problem (generally of the
back-propagation family); the use of the standard parame-
ters for the algorithm and the use of fully-connected ANNs
(which avoids the need to define the ANN’s connections).

To set the remaining of the parameters one can use random
search or GAs. The last ones are known of being more ef-
fective and efficient [6].

GANNs systems optimize ANNs in two ways: evo-
lution by the GA and learning by back-propagation [10]
[7]. The back-propagation learning guides the evolution-
ary search. Chromosomes (encoded ANNs) near optimum
will share bit patterns, permitting the GA to exploit them by
hiperplane sampling. GANNs systems use to present seri-
ous drawbacks, in particular when long genomes imply the
use of large ANNs [9]. That is not the situation in this work,
once TSF may be efficiently modelled by small ANNs [4].

When setting the GAs parameters one has to com-
promise between the optimum ANN and the computational
time required. Therefore, some hard decisions were to be
made, namely: the use of a population of 20 individuals;
the selection by the classical fitness-based roulette-wheel;
one point crossover with a crossover rate of 1 and a muta-
tion rate of 0.02. The random seed for the initial population
was 12345. The fitness function uses the SMSE for the val-
idation cases:

� VA,./������ I �q3pgq3r .

The chromosome with the lower SMSE will automati-
cally survive for the next generation. This purification pro-
cess accelerates the search and also warranties that if a op-
timum ANN is reached then it will never be lost. There are
6 (six) factors that affect a good forecast: the number of
input nodes, the learning rate, the activation function, the
number of hidden nodes, the scaling constant and the ran-
dom weights initialization seed. Encoding a chromosome:
the first three factors, the crticial ones, were put at the left
of the chromosome in a direct encoding using base 2 gray
codes.

Input Nodes

+

Function

+

Rate Hidden Nodes

+

Figure 1: Neural Network Encoding

The number of input and hidden nodes were set within
the range

���	�* ��o�
allowing a 4 bits binary encoding. The

learning rate was encoded in 3 bits taking values from the
set � ��@A)���	@�		��
�
�
 �.��@ ���.��@���
 . The 5 (five) activation func-
tions were encoded in 3 bits, which allows for 3 do not care
values, implying that new bits have to be validated upon
creation. The scaling constant is set by the user (which gets
the highest TS value as an indication). The main reason for
this is that forecasts near optimum are archived by scaling
constants that are near the forecasting values. Therefore, if
a series presents a growing trend then the GA would find a
scaling value very close to the validation data. That would
result in forecasts bellow real values. The last parameter
(random weights initialization seed) is not encoded since
its influence in the forecast is random (by definition).

Table 2: GANN’s results for
�
��H
F

forecasting

S Size � � Topology F R pgq3r1 100 81 10 � � � �(� sigmoid1 0.7 138.5
2 130 106 12 ��#�� � # �(� sigmoid2 0.1 1656018
3 144 119 12 � � � �(� sigmoid 0.7 3037
4 369 339 10 � �����(� sigmoid 0.8 62.4

The whole system was developed using the UNIX op-
erating system, the SICStus Prolog and C languages, with a
X-Windows interface, and implemented on a TCP/IP based
network of workstations [2][13][12]. A X-Windows inter-
face was built using the SICStus gmlib library [1].

Before building a model the system checks for series’
randomness. The test uses the autocorrelation coefficient,
which gives a measure of the correlation between a series
and itself, lagged � periods:

� B I h
P
�
B

��� �
��� � � � �S��� � �

B � � �
h
P
��� �

��� � � � �
All autocorrelations values should theoretically be zero for
a random series. In practice a series is considered to be
random if all � lags autocorrelation values are within the
range: �2 3@�� �"!

/
$ � B $ 3@ �%�&!

/
If a series is random them, instead of running the GA, the
system returns the average of the TS (which is the only pos-
sible forecast in this case).

4 The System Results

The results for short term forecasting are shown in table 2,
where X stands for X � � V��'� . The parameters are: (for the
number of series values in the training set and) for the
number of forecasts. Optimum ANN parameters are: * for
the function and + for the learning rate.

The system results were compared with the Holt-
Winters [11] and ARIMA [3] methods (table 3). For series

Table 3: Comparing GANN’s MSE results with conven-
tional methods for

�
��H : forecasting.

S GANN ARIMA Holt-Winters
1 138.5 163.8/256

�
2 1656018

�
1348153

3 3037
�

270
4 62.4 67.2 103.6

and

�
the system outperforms the conventional methods

(ARIMA and Holt-Winters). In series
	

and
�

the Holt-
Winters model performs best results. All the restrictions

Table 4: Comparing the X[WYXfZ
� (or WYX[Z) validation test

with the X[WYX[Z P test for long term forecasts
S � Topology F R � �������
	��

1 1 ��������� sigmoid1 0.7 90 286
1 8 ����������� sigmoid2 0.6 90 235.9
4 1 ��������� sigmoid 0.8 359 133.7
4 10 ����������� sigmoid 0.8 359 105.5

Table 5: The WYX[Z
� � H
F

for each forecasting method.

S GANN ARIMA Holt-Winters
1 235.9 262.4/278.9

�
4 105.5

�
377.9

imposed on the GANN system are probably the main rea-
son for this behavior.

Table 4 shows the validity of the SMSE test on long
term forecasts. Note that the best ANNs for long term fore-
casts are slightly different than the short term ones. Series
2 and 3 don’t appear in this table since the short term sys-
tem errors were higher than long term ones obtained with
conventional methods. Short terms errors are smaller than
the long ones, so there was no need to waste computational
power. For long term forecasts the system results are even
better (see table 5).

5 Conclusions and Future Work

GANN’s systems can be very attractive on TSF for time se-
ries with a high non-linear degree, specially for long term
forecasts. However there are some drawbacks: a high com-
putational cost. One advantage of this system is that it
works with a minimum of human intervention. For future
work one intends to explore different ANN architecture, to
experiment on other genetic algorithm parameters and op-
erators, and develop and apply software agent-based tech-
nology to the GANN approach.

References

[1] J. Almgren, S. Anderson, M. Carlsson, L.Floyd,
S. Haridi, C. Frisk, H.Nilsson, and J.Sundberg. SICS-
tus Prolog User’s Manual. Swedish Institute of Com-
puter Science, Sweden., 1993.

[2] O. Belo and J. Neves. A Prolog Implementation of a
Distributed Computing Environment for Multi-Agent
Systems Based Applications. In Proceedings of The
Third International Conference on Practical Applica-
tion of Prolog, PAP’95, Paris, France, 1995.

[3] G. Box and G. Jenkins. Time Series Analysis: Fore-
casting and Control. Holden Day, San Francisco,
USA, 1976.

[4] P. Cortez, M. Rocha, J. Machado, and J. Neves. A
Neural Network Based Forecasting System. In Pro-
ceedings of ICNN’95 - International Conference on
Neural Networks, Perth, Western Australia, Novem-
ber 1995.

[5] S. Gallant. Neural Network Learning and Expert Sys-
tems. MIT Press, Cambridge, USA, 1993.

[6] D. Goldberg. Genetic Algorithms in Search, Opti-
mization and Machine Learning. Addison-Wesley
Publishing Company, Inc., NY, USA, 1989.

[7] F. Gruau and D. Whitley. Adding learning to the
cellular development of neural networks: Evolution
and the baldwin effect. Evolutionary Computation,,
3(1):213–233, MIT Pres, 1993. MIT Press.

[8] J. Hanke and A. Reitsch. A Business Forecasting.
Allyn and Bancon Publishing Company Inc., Mas-
sachussetts, USA, 1989.

[9] K. Hiroaki. Empirical Studies on the Speed of Con-
vergence of Neural Network Training using Genetic
Algorithms. Eighth National Conference on Artificial
Inteligence Vol. II, pp 788-795, AAAI, MIT Press.,
1990.

[10] P. Koenh. Combining Genetic Algorithms and Neural
Networks. Thesis for master science degree, Univer-
sity of Tennessee, Knoxville, USA., 1994.

[11] S. Makridakis, S. Weelwright, and V. McGee. Fore-
casting: Methods and Applications. John Wiley &
Sons, New York, USA, 1978.

[12] J. Neves, J. Machado, L. Costa, and P. Cortez. A Soft-
ware Agent Distributed System for Dynamic Load
Balancing. In Proceedings of ESM96, European Sim-
ulation Multi-Conference, Modelling and Simulation
1996, Budapest, Hungary, June 1996.

[13] J. Neves, M. Santos, and V. Alves. An Adaptable and
Dynamic Architecture for Distributed Problem Solv-
ing Based on the Blackboard Paradigm. In Proceed-
ings of the 7th Australian Joint Conference on Ar-
tificial Intelligence, pages 378–385, Armidale, New
South Wales, Australia, 1994.

[14] L. Prechelt. PROBEN1 - A Set of Neural Network
Benchmark Problems and Benchmarking Rules. Re-
search Report, Fakulta̋t fűr Informatik, Universita̋t
Karlsruhe Germany, 1994.

