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Abstract

The resource allocation in the Broadband Integrated Services Dig-
ital Network (B-ISDN) must guarantee the quality of service nego-
tiated with new and existing calls, taking into account the Asyn-
chronous Transfer Mode (ATM) statistical characteristics. A qual-
ity of operation function, characterizing the overall network perfor-
mance, is proposed, and based on this function, it is introduced a
new strategy for the admission control and routing of the ATM call
connections. As it is shown by simulation results, feedforword Neu-
ral Networks trained with the backpropagation algorithm, can learn
the traffic patterns in previous traffic situations, and can be used to
predict the quality of operation changes caused by each new call.

1 Introduction

The transport of B-ISDN services, like interactive video telephony, high
quality video and audio broadcast programs or data file transfer, requires
a call establishment phase. The Asynchronous Transfer Mode provides the
transport and the switching of information flow, generated by B-ISDN ser-
vices, in fixed size data packets called ATM cells which can be transported



in the existent Plesiochronous (PDH) or Synchronous (SDH) Digital Hier-
archies or in the new cell-based transmission systems [1].

At the call establishment, the user has to negotiate with B-ISDN con-
trol entity the traffic characteristics of the call and the quality of service
requested. The network control entity can accept the request and allocate
network resources for the support of the service, or propose a lower quality
of service, and in the limit, rejected the call, if not enough network re-
sources are available. B-ISDN has mechanisms for usage parameter control
by policing the call traffic at user interface and taking appropriate actions
if the usage values of the information flow parameters, namely, the average
and the peak cell rate and the burstiness, are exceeded in a virtual channel.

Neural networks have been proposed to control ATM networks. For
example in reference [7], three hierarchical levels of neural networks are
suggested to implement the control functions. Neural networks can also
be applied in service coding [9] (e.g. video and audio compression), in the
B-ISDN policing function, (e.g. the control of a selective cell discard), in
switching control [2, 8] and in the processing of the operation and main-
tenance (OAM) signals. Neural Networks can learn traffic patterns of the
network operation in previous situations, to be used in the cost prediction
of each new call admission.

This paper discusses the application of neural networks in ATM call
control. Section 2 introduces the network quality of operation function and
describes its use for call control proposes. Section 3 describes and compares
simulation results with different call admission control methods. Section 4
summarizes the main issues of this paper.

2 ATM Call Control Technique

The resource allocation for ATM call connections can be made by taking
the peak bit rate of ATM cells sources as reference, but no statistical gain is
obtained by multiplexing many sources. If the resource allocation is made
by the average bit rate of ATM cell sources, the statistical gain obtained by
multiplexing many sources is maximum but the simultaneous occurrences
of the peak periods of some sources can drastically increase the delay and
cell loss rate. The strategy proposed for call admission control establishes
a compromise between the maximum number of calls accepted and the sat-
isfaction of the quality of services negotiated for calls established.

2.1 Quality of Operation of the B-ISDN

The Quality of Operation concept integrates the parameters of the quality of
service negotiated by the network in the call establishment, the availability



of network resources, and the equilibrium between the call rejection rate of
different ATM service classes. The proposed quality of operation function
(QO) can be written by the following expression:

QO =
∑

j

(αjAj + βjBj − χjXj −

∑

i

δji∆ji) (1)

where αj , βj , χj, and δji are non-negative real control parameters, and
Aj , Bj , Xj , and ∆j are functions. Aj quantifies in terms of quality of
operation the bit rate allocated to each service class j; Bj quantifies the
bit rate free to be allocated to each service class j; and Xj quantifies the
deviation of the call rejection rate of the service class j from the average
call rejection rate of all service classes; ∆ji quantifies the main quality of
service requirements of each service class j, namely the cell loss rate (i=0),
the delay (i=1) and the delay variation (i=2).

The values of the control parameters are dependent of the B-ISDN op-
eration scenarios, the predominant services and the desirable network load.
The variables of the quality of operation functions can be average or accu-
mulated traffic values. The acquisition times of these variables have to be
compatible with the time constants of the services and network.

The bit rate allocated function Aj is taken as a nonlinear function of the
allocated bit rate to the service class j, with an increasing contribution to
quality of operation if the allocated bit rate to that service class does not
reach a certain threshold, and with a decreasing contribution if the allocated
bit rate is bigger than that value. This allows the dynamic partition of band
between service classes.

If a static partition is desired, the sum of the threshold values of the
bit rate allocated to each service class j is smaller than the transmission
capacity; in this case the bit rate free to be allocated function Bj and the
deviation of the calls rejection rate function Xj do not need to be considered
(βj = χj = 0, ∀j).

The Bj and Xj functions produce opposite effects, which allows that in
heavy traffic situations, the resources allocated to narrowband services do
not block the access to broadband services. In reference [6], the proposed
solution for this problem is static partition of band.

The quality of service functions express the contribution of the corre-
sponding factors (the cell loss rate ∆j0, the delay ∆j1, and the delay vari-
ation ∆j2) to the quality of operation. The values of the ∆ji functions for
each service class j, are proportional to the fraction of the bandwidth used
by the class.



2.2 Traffic Prediction by Neural Networks

Patterns of the traffic load in a node or link can be collected during the
operation of the B-ISDN, in different traffic situations, to be used as learning
patterns of neural networks. The delay and the cell loss rate that will be
introduced by the call are not known at the time of the call establishment.
When the resources of the new call connections are established, the vector
of the allocated bit rate of each service class has to be stored and the traffic
load pattern is evaluated later, when the new call is generating traffic.

Neural Network inputs are the allocated bandwidth to each service class,
and the outputs can be the expected delay, cell loss rate, and the maximum
and minimum buffer occupation, the latter leading directly to the delay
variation. Another output is included (the number of arrived cells) to allow
a better behavior of the training process.

2.3 Call Admission Control

When a connection request for resource allocation to a call arrives to a node,
the bit rate requested and the maximum delay and error rate are declared,
and the connection is integrated in a suitable service class. The decision if
the connection request can be accepted or has to be rejected is based in the
network quality of operation expected in each node of the call route.

Each node processor asks the neural network the expected traffic load
pattern for the node and the outgoing link, with and without the inclusion
of the new connection. The network answers with the expected patterns,
then the quality of operation is evaluated in both cases, and the resources
are allocated to the call if the expected quality of operation in every B-ISDN
node and link of the call route is higher if the new connection was accepted.

2.4 Routing of the ATM Calls

In case where a call has available alternatives routes, every network node
and link of all available call paths is inquired about the network quality of
operation expected for the call. This allows to discard unacceptable routes.

The cost function of the routing algorithm can be obtained from the
quality of operation expected in the nodes and in the links of each call
path, with suitable values of the control parameters. For instance, to route
calls through paths less loaded, the control parameters of the allocated bit
rate have to be set with a small or even null value.

If the number of alternative routes, and the number of nodes of each
route, is small, the best path of each call can be found in real time for each
call, otherwise the best routing can be determined periodically and all calls
within the same time interval follow the established route.



3 Performance Simulation

The B-ISDN components (transmission links and switching nodes), traffic
sources and procedures (routing and flow control) are simulated according to
the model presented in reference [4], while the ATM traffic is described and
simulated by the Markovian model described in reference [3]. Transmission
links and switching nodes are represented by delay, error rate, throughput
and buffer length. Each ATM traffic source is defined by two Markovian
state space processes. The call birth of different services and users are
calculated by one Markovian process with different duration and average
time between call birth, in each state. The cells of each call are generated,
with the appropriate parameters for each service, by the other state space
process of the same traffic model. Table 1 shows the peak and the average
cell rate and the burstiness of the service classes used in our simulations.
The minimum interval between cells is taken equal to the simulation time
unit (2.7 µs, for 53 byte cells at 155.52 Mbit/s).

Table 1: Main service characteristics

Service Cell Rate (KCell/s) Burst
Class (SC) Average Peak (%)

SC0 1.604 10.000 13.36
SC1 3.750 5.000 50.00
SC2 20.000 20.000 100.00

The prediction of the traffic patterns for each call has been made by a 3
layer neural network with 7 neurons in the hidden layer, and a hyperbolic
tangent activation function in the internal neurons. The neural network
has been trained with 3500 traffic patterns generated by timing reports
produced, with an interval of 5 ms, during previous simulations of the B-
ISDN operation. For training the neural network, the backpropagation
algorithm was used with adaptive learning rate parameters [5] and the sum
of squared errors as cost function.

Figure 1 shows the allocated bandwidth during the 20 seconds of sim-
ulation time in one node of a network loaded by calls from the services
introduced in table 1. The results are normalized to the node capacity and
are shown in four cases: (a) without rejection; (b) allocation based on av-
erage cell rate; (c) allocation based on the peak cell rate; (d) allocation
based on the proposed technique, with the following values for the control
parameters: αj = 1.0, δj1 = 0.3, and βj = χj = δj0 = δj2 = 0.0, ∀j. As
seen in the figure if the resource allocation is made without call rejection,



an overflow is reached in most of the simulation time. With the allocation
by the average and the peak cell rate only the narrowest band service class
(narrowest average and narrowest peak, respectively) can access the net-
work resources, namely during the significantly loaded periods. With the
proposed technique, the figure shows that all the service classes can share
the available resources even when demand is higher.
Table 2 shows the effectiveness of the model to control the delay in the
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Figure 1: Normalized allocated bandwidth to each service class

network, by adjusting properly the delay control parameter. The output
of the simulation is presented in tabular form for nine cases; for each one,
the results shown are the normalized maximum allocated bit rate to each
service class, and the average and maximum delay, normalized to the max-
imum buffer occupancy, obtained during the 20 seconds of simulation time.
The network was loaded by calls from the services characterized in table 1,
and generated with the same statistical distributions of the simulations re-
ported in figure 1. Cases (a), (b), (c) and (d) of table 2 correspond to
the simulation presented in figure 1. In cases (a) and (b), the table shows
that a full buffer situation is reached (and indeed overflow!); in case (c) no
overflow occurs, but the network is lightly loaded due to the peak cell rate
allocation; case (d) gives good control on the delay. In case (e) and (f)
the control parameter is increased with respect to case (d), which causes
a corresponding reduction in the delay. Finally in the last three cases, the



delay control parameter is significantly reduced for each of the three service
classes. The results show that the network maximum delay found in the
node is controlled in case (h) and (i), but not in (g). The explanation for
this is the fact that in (g), service class 0 was lightly controlled with respect
to the delay, and being a bursty service, it escapes from the network con-
trol capabilities. It is noted that other control parameters of the quality of
operation function could be effective to control the delay, but in an indirect
way, such as cell loss and delay variation.

Table 2: Call control: Allocated bandwidth and delay

Delay Control Normalized Max. Normalized
Case Parameter Alloc. Bandwidth Delay (%)

δ01 δ11 δ21 SC0 SC1 SC2 Ave. Max.

a 0.0 0.0 0.0 2.32 1.48 1.74 0.96 1.00
b 0.0 0.0 0.0 0.99 0.17 0.05 0.53 1.00
c 0.0 0.0 0.0 0.13 0.71 0.05 0.07 0.19
d 0.3 0.3 0.3 0.61 0.50 0.49 0.36 0.85
e 0.5 0.5 0.5 0.52 0.49 0.38 0.26 0.74
f 0.7 0.7 0.7 0.63 0.67 0.33 0.27 0.64
g 0.1 0.7 0.7 0.89 0.31 0.38 0.46 1.00
h 0.7 0.1 0.7 0.79 0.64 0.33 0.28 0.59
i 0.7 0.7 0.1 0.55 0.64 0.16 0.33 0.68

4 Conclusions

The Quality of Operation incorporates the total amount of traffic, the cell
loss rate, the delay and the delay variation, as well as the availability of
network resources related to the free transmission capacity that can be
allocated to each service, and the equilibrium between the call rejection
rate of different ATM services. During the operation of the B-ISDN in
different traffic situations, patterns of the traffic load in the node or link are
memorized to be used as training patterns of a neural network.

When a request for resource allocation to a call arrives to the B-ISDN
control entity, the neural networks associated to the B-ISDN nodes and
links of the path are inquired about the traffic patterns expected with and
without the new connection, and the resources are allocated to the call if
the overall quality of operation is expected to increase if the new connection
is accepted. Simulation results show that the use of neural networks within



this technique lead to a high flexiblity, allowing the control of network pa-
rameters according to specific service needs.
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