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Abstract
In this paper, we consider 2-dimensional precubical sets,

which can be used to model systems of two concurrently exe-
cuting processes. From the point of view of concurrency the-
ory, two precubical sets can be considered equivalent if their
geometric realizations have the same directed homotopy type
relative to the extremal elements in the sense of P. Bubenik.
We give easily verifiable conditions under which it is possible to
reduce a 2-dimensional precubical set to an equivalent smaller
one by collapsing an edge or eliminating a square and one or
two free faces. We also look at some simple standard examples
in order to illustrate how our results can be used to construct
small models of 2-dimensional precubical sets.

1. Introduction

It has been known for some time now that precubical sets, i.e., cubical sets with-
out degeneracies, can be used to model concurrent systems (cf. [3], [4], [6], [7], [8],
[9]). These are systems of two or more computational processes which may com-
municate, share resources, and execute in parallel. Let us consider, as an example,
a very simple concurrent system where two processes A and B write to a piece of
shared memory. Each process performes a sequence of three actions: it accesses the
memory, writes its name, and terminates. The processes execute simultaneously but
cannot write to the memory at the same time. This situation can be modeled by
the 2-dimensional precubical set depicted in figure 1(a) (the definition of precubical
sets is recalled in 2.1). The vertices represent the states of the system, the horizon-
tal arrows represent the actions of process A, and the vertical arrows represent the
actions of process B. Moreover, if it does not matter in which order an action of A
and an action of B are executed and they may actually be performed concurrently,
then this is indicated by a square linking the two pairs of arrows corresponding to

This research has been supported by FEDER funds through “Programa Operacional Factores de
Competitividade - COMPETE” and by FCT - Fundação para a Ciência e a Tecnologia through
projects Est-C/MAT/UI0013/2011 and PTDC/MAT/0938317/2008.
Received Month Day, Year, revised Month Day, Year; published on Month Day, Year.
2000 Mathematics Subject Classification: 55P10, 55P99, 55U99, 68Q85
Key words and phrases: Cubical sets, d-spaces, fundamental bipartite graph, fundamental category,
trace spaces, directed homotopy theory, concurrency theory
c© , Thomas Kahl. Permission to copy for private use granted.



Journal of Homotopy and Related Structures, vol. (), 2

(a) (b)

Figure 1: A very simple concurrent system and its fundamental bipartite graph

a consecutive execution of the actions. The precubical set has a hole reflecting the
fact that only one process can write its name to the memory at a time.

Any precubical set can be realized geometrically as a topological space and in-
deed even as a d-space in the sense of M. Grandis [11]. A d-space is a topological
space with a distinguished set of paths, called d-paths, which equip the space with
a direction of time. The d-paths in the geometric realization of a precubical set are
obtained by pasting together increasing paths on cubes. In the interpretation of
a precubical set as a model of a concurrent system, the passage to the geometric
realization adds all possible intermediate states of the system to the model. The
d-paths represent complete or partial executions of the system.

Consider again our example concurrent system. There exists an infinite number
of d-paths leading from the initial state in the lower left corner to the final state in
the upper right corner. Computer scientifically, two such d-paths can be considered
equivalent if they represent executions which produce the same result, i.e., execu-
tions where the processes write to the memory in the same order. Geometrically,
this happens precisely when the d-paths turn around the hole on the same side.
This leads to the following notion of equivalence of d-paths: Two d-paths α and β
from a point x in a d-space to a point y are said to be dihomotopic relative to {0, 1}
if there exists a homotopy H from α to β such that each path H(−, t) is a d-path
from x to y. In the example, there are two relative dihomotopy classes of d-paths
leading from the initial to the final state of the system, corresponding to the two
possible orders in which the processes can write to the memory.

An important tool in the study of the directed structure of a d-space is its fun-
damental category (cf. [8], [11]). This is the directed analogue of the fundamental
groupoid of a topological space. The objects of the fundamental category of a d-space
are its points and the morphisms are the relative dihomotopy classes of d-paths.
The fundamental category of a d-space is, of course, a huge object, and a main line
of research in the area of directed algebraic topology is the development of methods
to extract the essential information of the fundamental category (cf. [1], [4], [5],
[10], [11, I.3], [12]). A basic construction in this context is P. Bubenik’s fundamen-
tal bipartite graph of a d-space, which is the full subcategory of the fundamental
category generated by the so-called extremal elements (cf. [1]). In the geometric re-
alization of a precubical set, the extremal elements are the points which correspond
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to the vertices in which no edge begins or no edge ends (cf. 3.5). The fundamental
bipartite graph of a d-space model of a concurrent system represents the essential
execution schedules of the system. In the case of our example system, the funda-
mental bipartite graph is indicated in figure 1(b).

In this paper, we are concerned with the problem of reducing a given precubical
set to an equivalent smaller one. This approach complements the strategy to re-
place the fundamental category by a smaller object containing the relevant directed
information. Ultimately, it would be very useful to have an efficient reduction algo-
rithm for precubical sets. Collapses of cubes are certainly potential steps of such an
algorithm. Unfortunately, the collapsing of cubes is a non-trivial matter in directed
topology since eliminating a cube with a free face from a precubical set may change
its directed structure. Perhaps surprisingly, it appears that collapsing operations
preserve significantly more structure in 2-dimensional precubical sets than in higher
dimensional ones. This paper is devoted to collapsing operations for 2-dimensional
precubical sets. Collapsing operations for higher dimensional precubical sets will be
discussed in a forthcoming paper. As the referee has pointed out, one may consider
the 2-dimensional case particularly interesting because the full subcategory of the
fundamental category generated by the vertices is in many important situations the
same for a precubical set and its 2-skeleton (cf. [3]).

The collapsing operations of this paper preserve the dihomotopy type relative
to the extremal elements of the geometric realization. The notion of dihomotopy
equivalence we use here is based on a straightforward extension of the notion of
dihomotopy of d-paths to d-maps, i.e., morphisms of d-spaces (cf. 3.1). The reader
should note that other concepts of directed homotopy equivalence have been defined
in the literature (cf. [6], [12]). The concept of dihomotopy equivalence used in this
paper is quite strong, and we show in 3.9 that dihomotopy equivalences relative to
the extremal elements between geometric realizations of precubical sets preserve the
fundamental bipartite graph and the homotopy type of any trace space (cf. [12],
[2], [13]) between extremal elements. Using the collapsing operations of this paper,
the precubical set represented in figure 1(a) can be reduced to a precubical set that
looks exactly like the fundamental bipartite graph in figure 1(b).

Our results may be seen as related to those of [6]. In that paper, the authors
define S- and T-homotopy equivalences and give some of the collapsing operations
we consider here as examples of such equivalences. Using these particular collapsing
operations only, it is possible to reduce the precubical set of figure 1(a) to one that
looks like the fundamental bipartite graph in figure 1(b) with one additional arrow
coming into the initial vertex and one additional arrow going out of the final vertex.

The main results are contained in sections 5 and 6. In section 2, we collect some
basic facts on precubical sets and d-spaces. Section 3 is devoted to dihomotopy. In
section 4, we present a method to construct d-maps and dihomotopies on geometric
realizations of precubical sets. The last two sections are devoted to examples and
some final remarks.
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2. Precubical sets and d-spaces

Definition 2.1. A precubical set is a graded set P = (Pn)n�0 with boundary
operators dki : Pn → Pn−1 (n > 0, k = 0, 1, i = 1, . . . , n) satisfying the relations
dki ◦ d

l
j = dlj−1 ◦ d

k
i (k, l = 0, 1, i < j). If there exists a largest n such that Pn �= ∅,

then this n is called the dimension of P . The degree of an element x of P will
be denoted by |x|. The elements of degree 0 are also called the vertices of P . A
morphism of precubical sets is a morphism of graded sets which is compatible with
the boundary operators. The category of precubical sets will be denoted by �Set.

The category �Set can be seen as the presheaf category of functors
�

op → Set where � is the small subcategory of Top whose objects are the standard
n-cubes In (n � 0) and whose non-identity morphisms are composites of the maps
δki : I

n → In+1 (n � 0, i ∈ {1, . . . , n + 1}, k ∈ {0, 1}) given by δki (u1, . . . , un) =
(u1, . . . , ui−1, k, ui . . . , un). Here, we consider the 0-cube as the one-point space
I0 = {()}. The precubical n-cube is the n-dimensional precubical set In = �(−, In).
By Yoneda’s Lemma, an element x of degree n of a precubical set P determines a
unique morphism of precubical sets x� : I

n → P such that x�(idIn) = x.

Definition 2.2. Let P be a precubical set and x ∈ Pn be an element. We say that
x is regular if the morphism x� is injective.

We remark that if x is regular, then so is each dki x.

Definition 2.3. A precubical subset of a precubical set P is a precubical set Q
such that Qn ⊆ Pn for all n � 0 and the boundary operators of Q and P coincide
on Q. The opposite precubical set of a precubical set P with boundary operators
dki is the precubical set P op with boundary operators ∂ki defined by P op

r = Pr

and ∂ki = d1−k
i . The transposed precubical set of a precubical set P with boundary

operators dki is the precubical set P t with boundary operators ∂ki defined by P t
r = Pr

and ∂ki = dkr+1−i : Pr → Pr−1 (i ∈ {1, . . . , r}). The maps P �→ P op and P �→ P t

extend to functors in the obvious way.

The terminology of opposite and transposed precubical sets is an adaptation of
the one used in [11] for cubical sets. Note that the opposite and transposed precu-
bical set functors are involutions and that they preserve precubical subsets. Note
also that a regular element of a precubical set P is also regular as an element of
P op and P t.

Precubical sets can be realized geometrically as d-spaces in the sense of M. Gran-
dis [11]. These spaces are defined as follows:

Definition 2.4. [11, I.1.4] A d-space is a topological space X together with a
subset dX ⊆ XI such that

(i) dX contains all constant paths,

(ii) dX is closed under composition with (not necessarily strictly) increasing maps
I → I,

(iii) dX is closed under concatenation.
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The elements of dX are called d-paths inX . A d-map is a continuous map f : X → Y
between d-spaces such that for any ω ∈ dX , f ◦ ω ∈ dY . The category of d-spaces
and d-maps is denoted by dTop.

Example 2.5. The directed interval is the d-space �I = (I, d�I) where d�I consists
of the (not necessarily strictly) increasing maps I → I. The d-paths in a d-space

X are precisely the d-maps �I → X . Taking the n-fold product of �I with itself we
obtain the directed n-cube �In. Note that the product of two d-spaces X and Y is
a d-space with respect to the set d(X × Y ) corresponding to dX × dY under the
bijection (X × Y )I ≈ XI × Y I .

Definition 2.6. (cp. [4], [6], [8], [11, I.1.6.7], [13]) The geometric realization of a
precubical set P is the quotient space |P | = (

∐
n�0 Pn × In)/ ∼ where the sets Pn

are considered as discrete spaces and the equivalence relation is given by

(dki x, u) ∼ (x, δki (u)), x ∈ Pn+1, u ∈ I
n, i ∈ {1, . . . , n+ 1}, k ∈ {0, 1}.

The geometric realization |P | is a d-space with respect to the set d|P | consisting
of increasing reparametrizations of finite concatenations of paths ω : I → |P | of
the form ω(t) = [x, α(t)] where x ∈ Pn and α is a continuous map I → In which
is order-preserving with respect to the natural order of I and the componentwise
natural order of In. The geometric realization of a morphism of precubical sets
f : P → Q is the d-map |f | : |P | → |Q| given by |f |([x, u]) = [f(x), u]. With these
definitions the geometric realization is a functor | | : �Set→ dTop.

Example 2.7. The map �In → |In|, u �→ [idIn , u] is an isomorphism of d-spaces.

We remark that the geometric realization of a precubical set P is a CW-complex
(cf. [6]). The n-skeleton of |P | is the geometric realization of the n-dimensional
precubical subset P�n of P defined by (P�n)m = Pm (m � n). The closed n-cells
of |P | are the d-spaces |x�(In)| where x ∈ Pn. The characteristic map of the cell

|x�(In)| is the d-map �In
∼=
→ |In|

|x�|
→ |P | and this map is an isomorphism onto its

image if and only if x is regular. Note also that a natural isomorphism of d-spaces
σP : |P | → |P t| is given by [z, (u1, . . . , ur)] �→ [z, (ur, . . . , u1)]. Note finally that the
geometric realization of a precubical subset Q of P is both a CW-subcomplex of
|P | and a d-subspace of |P | in the sense of the following definition:

Definition 2.8. [11, I.1.4.1] A d-subspace of a d-space X is a d-space A such that
the topological space A is a subspace of X and dA = {ω ∈ AI | (A ↪→ X)◦ω ∈ dX}.

Reversing the direction of the d-paths of a d-space one obtains the opposite
d-space:

Definition 2.9. [11, I.1.4.0] Given a path ω : I → X we denote the inverse path
I → X , t �→ ω(1 − t) by ω̄. The opposite d-space of a d-space X = (X, dX) is the
d-space Xop = (X, dXop) defined by dXop = {ω̄ |ω ∈ dX}. The map X �→ Xop

extends to a functor in the obvious way.

Note that the opposite d-space functor is an involution. Note also that if A
is a d-subspace of X , then Aop is a d-subspace of Xop. Note finally that for a
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precubical set P , a natural isomorphism of d-spaces φP : |P |op → |P op| is given by
[z, (u1, . . . , ur)] �→ [z, (1− u1, . . . , 1− ur)].

3. Dihomotopy, the fundamental bipartite graph, and d-path

spaces

We shall work with the following notion of directed homotopy:

Definition 3.1. Two d-maps f, g : X → Y are said to be dihomotopic if there
exists a homotopy H : X × I → Y from f to g such that each map H(−, t) is
a d-map. Such a homotopy is called a dihomotopy from f to g. If f and g coin-
cide on a d-subspace A ⊆ X , then f and g are said to be dihomotopic relative
to A if there exists a dihomotopy relative to A from f to g, i.e., a dihomotopy
H : X × I → Y from f to g such that each map H(−, t) coincides with f and g on
A. Let X and Y be d-spaces with a common d-subspace A. A d-map f : X → Y
satisfying f(a) = a for all a ∈ A is said to be a dihomotopy equivalence rela-
tive to A if there exists a dihomotopy inverse relative to A of f , i.e., a d-map
g : Y → X such that g(a) = a for all a ∈ A and such that g ◦ f and f ◦ g are
dihomotopic relative to A to the identities of X and Y , respectively. A dihomotopy
equivalence is a d-map which is a dihomotopy equivalence relative to the empty
d-space. Two d-spaces X and Y with a common d-subspace A are said to be di-
homotopy equivalent relative to A if there exists a dihomotopy equivalence relative
to A between them. Two d-spaces X and Y are dihomotopy equivalent if they are
dihomotopy equivalent relative to the empty d-space.

We remark that (relative) dihomotopy is an equivalence relation which is com-
patible with the composition of d-maps. Some authors, as for instance M. Grandis
[11], work with a stronger notion of directed homotopy, called d-homotopy, where

the homotopies are required to be d-maps X × �I → Y . The reader is referred to L.
Fajstrup [3] for a result concerning the equivalence of the two notions of directed
homotopy for directed paths.

The one-dimensional information of a d-space is contained in its fundamental
category, which is the directed analogue of the fundamental groupoid of a topological
space.

Definition 3.2. ([8], [11, I.3]) The fundamental category of a d-space X is the
category �π1(X) defined as follows: The objects are the elements of X and the set
of morphisms from an element x to an element y is the set of dihomotopy classes
relative to {0, 1} of d-paths from x to y. The map X �→ �π1(X) extends in the
obvious way to a functor from dTop to the category of small categories.

The fundamental category of a d-space is obviously a huge object. This led to
the development of several methods to extract the essential directed information of
the fundamental category (cf. [1], [4], [5], [10], [11, I.3], [12]). In [1], P. Bubenik
introduced the fundamental bipartite graph of a d-space:
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Definition 3.3. [1] An element a of a d-space X is said to be minimal (maximal)
if any morphism in �π1(X) with target (source) a has source (target) a. An element
of X is extremal if it is minimal or maximal. The d-subspace of X consisting of the
extremal elements is denoted by Extrl(X). The fundamental bipartite graph of a
d-space X , denoted by �π1(X,Extrl(X)), is the full subcategory of �π1(X) generated
by Extrl(X).

Note that the fundamental bipartite graph of a d-space is a bipartite graph if
one ignores the identity morphisms. In a d-space model of a concurrent system,
initial states of the system are modeled by minimal elements and final states and
deadlocks are modeled by maximal elements. The fundamental bipartite graph of
the d-space represents the essential execution schedules between these critical states
of the system. For precubical sets there is another definition of minimal, maximal,
and extremal elements:

Definition 3.4. Let P be a precubical set. An element v ∈ P0 is said to be minimal
(maximal) if there is no element x ∈ P1 such that d11x = v (d01x = v). An element
of P is extremal if it is minimal or maximal. The 0-dimensional precubical subset
of P consisting of the extremal elements is denoted by Extrl(P ).

We remark that Extrl(P op) = Extrl(P t) = Extrl(P ). The easy proof of the
following proposition is left to the reader.

Proposition 3.5. Let P be a precubical set. An element a ∈ |P | is minimal (max-
imal) if and only if there exists a minimal (maximal) element v ∈ P0 such that
a = [v, ()]. Consequently, |Extrl(P )| = Extrl(|P |).

In [2] and [12], U. Fahrenberg and M. Raußen introduce trace spaces, which are
quotient spaces of the d-path spaces we define next. In [13], it is shown that trace
and d-path spaces are actually homotopy equivalent for geometric realizations of
precubical sets.

Definition 3.6. Let X be a d-space and a, b ∈ X . The d-path space �P(X)(a, b) is
defined to be the subspace of XI consisting of the d-paths from a to b.

Remark 3.7. Note that the path components of �P(X)(a, b) are the morphisms
from a to b in �π1(X).

We have the following result on the dihomotopy invariance of the fundamental
bipartite graph and d-path spaces:

Theorem 3.8. Let X and Y be two d-spaces such that Extrl(X) = Extrl(Y )
and let f : X → Y be a dihomotopy equivalence relative to Extrl(X). Then the
functor �π1(f) : �π1(X)→ �π1(Y ) restricts to an isomorphism of fundamental bipartite
graphs �π1(X,Extrl(X))→ �π1(Y,Extrl(Y )). Moreover, for any two elements a, b ∈
Extrl(X) the map f I : XI → Y I , ω �→ f ◦ ω restricts to a homotopy equivalence
�P(X)(a, b)→ �P(Y )(a, b).

Proof. By 3.7, the statement on the fundamental bipartite graphs follows from the
statement on d-path spaces. In order to prove the latter, let a, b ∈ Extrl(X) =



Journal of Homotopy and Related Structures, vol. (), 8

Extrl(Y ) and g : Y → X be a dihomotopy inverse relative to Extrl(X) of f . Let

f∗ : �P(X)(a, b)→ �P(Y )(a, b) and g∗ : �P(Y )(a, b)→ �P(X)(a, b) be the restrictions of
f I and gI . Let H : X × I → X be a dihomotopy relative to Extrl(X) from idX to

g ◦ f . Then a homotopy h : �P(X)(a, b)× I → �P(X)(a, b) from id�P(X)(a,b) to g∗ ◦ f∗
is given by h(ω, t)(s) = H(ω(s), t). Similarly, id�P(Y )(a,b) � f∗ ◦ g∗. �

Corollary 3.9. Let P and Q be two precubical sets such that Extrl(P ) = Extrl(Q)
and let f : |P | → |Q| be a dihomotopy equivalence relative to |Extrl(P )|. Then
the functor �π1(f) : �π1(|P |) → �π1(|Q|) restricts to an isomorphism of fundamental
bipartite graphs �π1(|P |, Extrl(|P |)) → �π1(|Q|, Extrl(|Q|)). Moreover, for any two
elements v, w ∈ Extrl(P ) the map f I : |P |I → |Q|I, ω �→ f ◦ ω restricts to a

homotopy equivalence �P(|P |)([v, ()], [w, ()]) → �P(|Q|)([v, ()], [w, ()]).

The last proposition of this section permits us to dualize results on dihomotopy
equivalences for precubical sets. The straightforward proof is left to the reader.

Proposition 3.10. Let P and Q be two precubical sets with a common precubical
subset R.

(i) If f : |P op| → |Qop| is a dihomotopy equivalence relative to |Rop|, then
(φ−1

Q ◦ f ◦ φP )
op : |P | → |Q| is a dihomotopy equivalence relative to |R|.

(ii) If f : |P t| → |Qt| is a dihomotopy equivalence relative to |Rt|, then
σ−1
Q ◦ f ◦ σP : |P | → |Q| is a dihomotopy equivalence relative to |R|.

4. Construction of d-maps

The purpose of this section is to present a method to construct d-maps and di-
homotopies between geometric realizations of precubical sets. The maps and homo-
topies we consider in the next sections can be shown to be d-maps and dihomotopies
by checking the conditions we establish in this section.

Definition 4.1. A subset Z of a partially ordered set (J,�) is called order-convex
if for any two elements a, b ∈ Z, {z ∈ J |a � z � b} ⊆ Z.

Remark 4.2. If α : I → Im is an order-preserving map and s � t are elements of I
such that α(s) and α(t) belong to an order-convex set Z ⊆ Im, then [s, t] ⊆ α−1(Z).

Proposition 4.3. Let P and Q be precubical sets and f :
∐
r�0

Pr × Ir → |Q| be a

continuous map. Suppose that

(i) f(dki z, u) = f(z, δki u) for all r � 1, z ∈ Pr, u ∈ Ir−1, i ∈ {1, . . . r}, k ∈ {0, 1},

(ii) for all r � 1 and z ∈ Pr there exist a finite closed order-convex covering Az

of Ir, a function ζz : Az →
∐

m�0

Qm, and a family of order-preserving maps

{fz,Z : Z → I |ζz(Z)|}Z∈Az
such that for all Z ∈ Az and u ∈ Z, f(z, u) =

[ζz(Z), fz,Z(u)].

Then a d-map f̄ : |P | → |Q| is given by f̄([z, u]) = f(z, u).
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Proof. By condition (i), f̄ is well-defined and continuous. Let r � 0 and z ∈ Pr and
consider a path ω ∈ d|P | of the form ω(t) = [z, α(t)] where the map α : I → Ir

is order-preserving. We have to show that f̄ ◦ ω ∈ d|Q|. If r = 0, then f̄ ◦ ω is a
constant path and therefore f̄ ◦ ω ∈ d|Q|. Let r � 1. Let Bz be the subset of Az

consisting of the sets Z ∈ Az such that α−1(Z) has more than one element. Then
I =

⋃
Z∈Bz

α−1(Z). Indeed, else there would exist an element s ∈ I \
⋃

Z∈Bz

α−1(Z) and

one would have
⋃

Z∈Az

s∈α−1(Z)

α−1(Z) = {s} and hence I \ {s} =
⋃

Z∈Az

s/∈α−1(Z)

α−1(Z) which

is impossible since I \ {s} is not closed in I. Define a subset {Z1, . . . , Zl} ⊆ Bz such
that 0 < maxα−1(Z1) < · · · < maxα−1(Zl) = 1, [0,maxα−1(Z1)] = α−1(Z1),
and [maxα−1(Zi−1),maxα−1(Zi)] ⊆ α−1(Zi) for i ∈ {2, . . . , , l} inductively as
follows. Choose Z1 ∈ Bz such that 0 ∈ α−1(Z1). Then 0 < maxα−1(Z1) and,
by 4.2, [0,maxα−1(Z1)] = α−1(Z1). Suppose that Zi has been defined and that
maxα−1(Zi) < 1. Then

[0,maxα−1(Zi)] =
⋃

Z∈Bz

maxα−1(Z)�maxα−1(Zi)

α−1(Z)

and hence

]maxα−1(Zi), 1] ⊆
⋃

Z∈Bz

maxα−1(Z)>maxα−1(Zi)

α−1(Z).

Since this is a finite union of closed subsets of I, it even contains the closed in-
terval [maxα−1(Zi), 1] as a subset. Therefore we may choose Zi+1 ∈ Bz such that
maxα−1(Zi) < maxα−1(Zi+1) and maxα−1(Zi) ∈ α−1(Zi+1). By 4.2, we then
also have [maxα−1(Zi),maxα−1(Zi+1)] ⊆ α−1(Zi+1). Since Bz is finite, the pro-
cess terminates after a finite number of steps. Set bi = maxα−1(Zi) (i = 1, . . . , l)
and b0 = 0. It suffices to show that for each i ∈ {1, . . . , l}, the path γi : I → |Q|,
t �→ f̄ ◦ ω((1− t)bi−1 + tbi) belongs to d|Q|. Let βi be the composite

I
(1−t)bi−1+tbi

−→ [bi−1, bi]
α
→ Zi

fz,Zi→ I |ζz(Zi)|.

Then βi is order-preserving and γi(t) = [ζz(Zi), βi(t)] (t ∈ I). Thus, γi ∈ d|Q|. �

Proposition 4.4. Let P and Q be precubical sets and h :
∐
r�0

Pr × Ir × I → |Q| be

a continuous map. Suppose that

(i) h(dki z, u, t) = h(z, δki u, t) for all r � 1, z ∈ Pr, u ∈ Ir−1, i ∈ {1, . . . r},
k ∈ {0, 1}, t ∈ I,

(ii) for all t ∈ I, r � 1, and z ∈ Pr there exist a finite closed order-convex covering
Az,t of Ir, a function ζz,t : Az,t →

∐
m�0

Qm, and a family of order-preserving

maps {hz,t,Z : Z → I |ζz,t(Z)|}Z∈Az,t
such that for all Z ∈ Az,t and u ∈ Z,

h(z, u, t) = [ζz,t(Z), hz,t,Z(u)].

Then a dihomotopy H : |P | × I → |Q| is given by H([z, u], t) = h(z, u, t).
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Proof. By condition (i), H is well-defined and continuous. By 4.3, the map
H( , t) : |P | → |Q| is a d-map for each t ∈ I. �

5. One-dimensional reduction

In ordinary homotopy theory, a contractible subspace of a topological space can
be collapsed to a point, at least if the space and the subspace form an NDR-pair.
The resulting quotient space has the same homotopy type as the original space. In
directed homotopy theory, the situation is more complicated. Consider, for example,
the geometric realization of a precubical set P with two vertices and two edges that
looks like the graph in figure 1(b). If one collapses one of the edges to a point, one

obtains the directed circle �S1, which is the geometric realization of a precubical
set with one vertex and one edge. The d-spaces |P | and �S1 are not dihomotopy
equivalent. The following theorem gives a condition under which it is possible to
collapse an edge in the geometric realization of a precubical set to a point without
changing the directed homotopy type relative to the extremal elements:

Theorem 5.1. Let P be a precubical set, b ∈ {0, 1}, and x ∈ P1 be a regular element
such that

(i) there is no element y ∈ P1 \ {x} such that d1−b
1 y = d1−b

1 x,

(ii) no element in P1 having d1−b
1 x in its boundary belongs to the boundary of an

element in P2.

Consider the set Y = {y ∈ P1 | db1y = d1−b
1 x}. Then a precubical set Q such that

Y ⊆ Q1, Q \ Y is a common precubical subset of P and Q, and |P | and |Q| are
dihomotopy equivalent relative to |Q \ Y | is given by Q0 = P0 \ {d

1−b
1 x}, Q1 =

P1 \ {x}, Qr = Pr (r > 1), and the boundary operators Dk
i defined by

Dk
i z =

{
db1x, z ∈ Y, i = 1, k = b,
dki z, else.

Moreover, if Y �= ∅, then Extrl(P ) = Extrl(Q) ⊆ Q \ Y and |P | and |Q| have
isomorphic fundamental bipartite graphs and homotopy equivalent d-path spaces for
each pair of extremal elements.

Proof. We only consider the case b = 0. The case b = 1 is dual and can be deduced
from the case b = 0 using 3.10(i). Note first that the regularity of x and the two
conditions of the theorem ensure that Q is a precubical set, Y ⊆ Q1, and Q \ Y
is a common precubical subset of P and Q. The situation is illustrated in figure 2,
where Y = {y, y′} and Q \ Y is represented by the circles.

Consider the continuous maps f :
∐
r�0

Pr × Ir → |Q| and g :
∐
r�0

Qr × Ir → |P |

defined by

f(z, u) =

{
[d01x, ()], z ∈ {x, d11x},
[z, u], z /∈ {x, d11x}
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(a) P (b) Q

Figure 2: Precubical sets P and Q in theorem 5.1

and

g(z, u) =

⎧⎨
⎩

[x, 2u], z ∈ Y, u � 1/2
[z, 2u− 1], z ∈ Y, u � 1/2
[z, u], z /∈ Y.

It is straightforward to check that f and g satisfy the conditions of 4.3. It follows
that the maps f̄ : |P | → |Q|, f̄([z, u]) = f(z, u) and ḡ : |Q| → |P |, ḡ([z, u]) = g(z, u)
are d-maps. Note that both f̄ and ḡ restrict to the identity on |Q \ Y |.

We show that f̄ and ḡ are inverse dihomotopy equivalences relative to |Q \ Y |.
Consider the map φ :

∐
r�0

Pr × Ir × I → |P | defined by

φ(z, u, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[z, u], z ∈ {x, d11x}, t � 1/2
[x, (2− 2t)u], z = x, t � 1/2,
[x, 2− 2t], z = d11x, t � 1/2,
[z, (1− 2t)u], z ∈ Y, u � 1/2, t � 1/2,
[x, 2− 2t+ (2t− 1)2u], z ∈ Y, u � 1/2, t � 1/2,
[z, (1− 2t)u+ 2t(2u− 1)], z ∈ Y, u � 1/2, t � 1/2,
[z, 2u− 1], z ∈ Y, u � 1/2, t � 1/2,
[z, u], z /∈ Y ∪ {x, d11x}.

It is straightforward to check that φ is well-defined and continuous and that it
satisfies the conditions of 4.4. Therefore the map Φ: |P | × I → |P |, Φ([z, u], t) =
φ(z, u, t) is a dihomotopy. We have Φ([z, u], 0) = [z, u] and Φ([z, u], 1) = ḡ◦ f̄([z, u]).
Moreover, Φ([z, u], t) = [z, u] for all [z, u] ∈ |P \ (Y ∪{x, d11x})| = |Q \ Y | and t ∈ I.
It follows that Φ is a dihomotopy relative to |Q \ Y | from id|P | to ḡ ◦ f̄ .

Consider the continuous map ψ :
∐
r�0

Qr × Ir × I → |Q| defined by

ψ(z, u, t) =

⎧⎨
⎩

[z, (1− t)u], z ∈ Y, u � 1/2,
[z, (1− t)u+ t(2u− 1)], z ∈ Y, u � 1/2,
[z, u], z /∈ Y.

One easily verifies that ψ satisfies the conditions of 4.4. Therefore the map
Ψ: |Q| × I → |Q|, Ψ([z, u], t) = ψ(z, u, t) is a dihomotopy. We have Ψ([z, u], 0) =
[z, u] and Ψ([z, u], 1) = f̄ ◦ ḡ([z, u]). Moreover, Ψ([z, u], t) = [z, u] for all [z, u] ∈
|Q \ Y | and t ∈ I. It follows that Ψ is a dihomotopy relative to |Q \ Y | from id|Q|
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to f̄ ◦ ḡ.

One easily shows that Extrl(P ) = Extrl(Q) ⊆ Q \ Y if Y �= ∅. By 3.9, this im-
plies that |P | and |Q| have isomorphic fundamental bipartite graphs and homotopy
equivalent d-path spaces for each pair of extremal elements. �

Remark 5.2. Note that if the set Y has exactly one element, the equivalence
between |P | and |Q| can be seen as a T-homotopy equivalence in the sense of [6].

6. Two-dimensional reduction

In opposition to the situation in ordinary homotopy theory, the removal of a
cube and a free face from a precubical set changes in general the directed homotopy
type of the geometric realization. In this section we prove two theorems which give
conditions under which it is possible to eliminate a 2-dimensional cube and one
or two free faces in a precubical set without changing the directed homotopy type
relative to the extremal elements of the geometric realization.

Theorem 6.1. Let P be a precubical set, a ∈ {1, 2}, b ∈ {0, 1}, and x ∈ P2 be a
regular element such that

(i) no element of P2 \ {x} has d1−b
a x or db3−ax in its boundary,

(ii) there is no element y ∈ P1 \ {d1−b
a x} such that db1y = db1d

1−b
a x,

(iii) no element of the set Y = {y ∈ P1 \ {d
b
3−ax} | d

1−b
1 y = d1−b

1 db3−ax} is in the
boundary of some element in P2.

Then a precubical subset Q of P and a precubical subset R of Q such that the
inclusion ι : |Q| ↪→ |P | is a dihomotopy equivalence relative to |R| are given by Q0 =
P0, Q1 = P1 \ {db3−ax}, Q2 = P2 \ {x}, Qr = Pr (r > 2), R0 = Q0 \ {d

1−b
1 db3−ax},

R1 = Q1\({d1−b
a x}∪Y ), and Rr = Qr (r � 2). Moreover, if Y �= ∅, then Extrl(P ) =

Extrl(Q) ⊆ R and ι induces an isomorphism of fundamental bipartite graphs and
a homotopy equivalence of d-path spaces for each pair of extremal elements.

Proof. We only consider the case a = 1 and b = 0. The remaining cases are dual
and can be deduced from the case a = 1 and b = 0 using 3.10. Note first that the
regularity of x and the three conditions of the theorem ensure that Q is a precubical
subset of P and R is a precubical subset of Q. The situation is illustrated in figure
3, where Y = {y, y′} and R is represented by the circles and the area limited by the
curves.

We construct a dihomotopy H : |P | × I → |P | using 4.4. Consider the map
h :

∐
r�0

Pr × Ir × I → |P | defined by



Journal of Homotopy and Related Structures, vol. (), 13

(a) P (b) Q

Figure 3: Precubical sets P and Q in theorem 6.1

h(x, (u1, u2), t)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[x, (u1, u2)], t � 1
3 ,

[x, (u1, u2)],
1
3 � t � 2

3 , u1 � u2,

[x, (u1, (3t− 1)u1 + (2− 3t)u2)],
1
3 � t � 2

3 , u1 � u2,

[x, ((3 − 3t)u1, u2 + (3t− 2)u1)], t � 2
3 , u1 � u2,

u2 � 1− u1,
[x, (u1 + (3t− 2)(u2 − 1), (3− 3t)u2 + 3t− 2)], t � 2

3 , u1 � u2,

u2 � 1− u1,
[x, ((3 − 3t)u1, (3t− 1)u1)], t � 2

3 , u1 � u2, u1 �
1
2 ,

[x, ((3t− 1)(u1 − 1) + 1, (3− 3t)u1 + 3t− 2)], t � 2
3 , u1 � u2, u1 �

1
2 ,

h(d11x, u, t) = h(x, (1, u), t), h(d02x, u, t) = h(x, (u, 0), t), h(d11d
0
2x, (), t) =

h(x, (1, 0), t),

h(y, u, t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[y, (1 + 3t)u], t � 1
3 , u �

1
2 ,

[y, (1− 3t)u+ 3t], t � 1
3 , u �

1
2 ,

[y, 2u], t � 1
3 , u � 1

2 ,

[d11x, (3t− 1)(2u− 1)], 1
3 � t � 2

3 , u �
1
2 ,

[d11x, 2u− 1], t � 2
3 , u �

1
2

for y ∈ Y , and h(z, (u1, . . . , ur), t) = [z, (u1, . . . , ur)] for z ∈ R. It is straightfor-
ward to check that h is well-defined and continuous. A tedious but also straight-
forward verification shows that the conditions of 4.4 hold. Therefore a dihomotopy
H : |P | × I → |P | is given by H([z, (u1, . . . , ur)], t) = h(z, (u1, . . . , ur), t). A pic-
ture indicating what the dihomotopy H does is given in figure 4. By definition,
H([z, (u1, . . . , ur)], t) = [z, (u1, . . . , ur)] for all r � 0, z ∈ Rr, (u1, . . . , ur) ∈ Ir,
and t ∈ I. One easily checks that H([z, (u1, . . . , ur)], 0) = [z, (u1, . . . , ur)] and
H([z, (u1, . . . , ur)], 1) ∈ |Q| for all r � 0, z ∈ Pr, and (u1, . . . , ur) ∈ Ir. One also
checks easily that H([z, (u1, . . . , ur)], t) ∈ |Q| for all r � 0, z ∈ Qr, (u1, . . . , ur) ∈
Ir, and t ∈ I. This implies that the inclusion ι : |Q| ↪→ |P | is a dihomotopy
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Figure 4: The dihomotopy H moves the beginning points of the thick lines to the
endpoints of the arrows

equivalence relative to |R|. Indeed, consider the d-map f : |P | → |Q| given by
f([z, (u1, . . . , ur)]) = H([z, (u1, . . . , ur)], 1). A dihomotopy relative to |R| from id|Q|
to f ◦ ι is given by G : |Q| × I → |Q|, G([z, (u1, . . . , ur)], t) = H([z, (u1, . . . , ur)], t)
and H is a dihomotopy relative to |R| from id|P | to ι ◦ f .

Suppose now that Y �= ∅. One easily sees that Extrl(Q) = Extrl(P ). Clearly,
d11d

0
2x = d01d

1
1x /∈ Extrl(P ) and therefore Extrl(P ) ⊆ R. It follows now from 3.9

that ι induces an isomorphism of fundamental bipartite graphs and a homotopy
equivalence of d-path spaces for each pair of extremal elements. �

The statement of the following theorem is illustrated in figure 5.

Theorem 6.2. Let P be a precubical set, b ∈ {0, 1}, and x ∈ P2 be a regular
element such that no element of P2 \ {x} has d1−b

1 x or db2x in its boundary and the
only elements of P1 having d1−b

1 db2x = db1d
1−b
1 x in their boundary are d1−b

1 x and db2x.
Then a precubical subset Q of P such that the inclusion ι : |Q| ↪→ |P | is a dihomotopy
equivalence relative to |Q| is given by Q0 = P0 \ {d

1−b
1 db2x}, Q1 = P1 \ {d

1−b
1 x, db2x},

Q2 = P2\{x}, and Qr = Pr (r > 2). Moreover, Extrl(P ) = Extrl(Q) and ι induces
an isomorphism of fundamental bipartite graphs and a homotopy equivalence of d-
path spaces for each pair of extremal elements.

Proof. The precubical set P , the number b, and the element x satisfy the condi-
tions of 6.1 with a = 1. It follows that a precubical subset M of P such that Q
is a precubical subset of M and the inclusion |M | ↪→ |P | is a dihomotopy equiva-
lence relative to |Q| is given by M0 = P0, M1 = P1 \ {d

b
2x}, M2 = P2 \ {x}, and

Mr = Pr (r > 2). The precubical set M , the number 1− b, and the element d1−b
1 x

satisfy the conditions of 5.1. We have Y = {y ∈ M1 | d
1−b
1 y = db1d

1−b
1 x} = ∅. It fol-

lows that the inclusion |Q| ↪→ |M | is a dihomotopy equivalence relative to |Q| and
hence that the inclusion ι : |Q| ↪→ |P | is a dihomotopy equivalence relative to |Q|.
Note that d1−b

1 db2x = db1d
1−b
1 x /∈ Extrl(P ). Therefore Extrl(P ) ⊆ Q. This implies
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(a) P (b) Q

Figure 5: Precubical sets P and Q in theorem 6.2 with b = 0

that Extrl(P ) ⊆ Extrl(Q). Let v ∈ Q0 be a minimal element of Q. Then for all
z ∈ Q1, d

1
1z �= v. If b = 0, then d12x ∈ Q1 and therefore d11d

1−b
1 x = d11d

1
2x �= v. If

b = 1, then d11d
1−b
1 x = d1−b

1 db2x /∈ Q0 and therefore d11d
1−b
1 x �= v. If b = 0, then

d11d
b
2x = d1−b

1 db2x /∈ Q0 and therefore d11d
b
2x �= v. If b = 1, then d11x ∈ Q1 and

therefore d11d
b
2x = d11d

1
1x �= v. It follows that v is a minimal element of P . A similar

argument shows that any maximal element of Q is also a maximal element of P . It
follows that Extrl(P ) = Extrl(Q) and hence, by 3.9, that ι induces an isomorphism
of fundamental bipartite graphs and a homotopy equivalence of d-path spaces for
each pair of extremal elements. �

Remark 6.3. Note that the equivalence between |P | and |Q| in 6.2 can be seen as
a composition of a T- and a S-homotopy equivalence in the sense of [6].

7. Examples

In this section, we use our reduction techniques to compute small models of
three well-known example precubical sets. In each case, we know a priori that the
geometric realizations of the model and the given precubical set are dihomotopy
equivalent relative to the extremal elements and have isomorphic fundamental bi-
partite graphs and homotopy equivalent d-path spaces between extremal elements.
In order to construct the small models, we use basically the following straightfor-
ward procedure: We run through the 2-dimensional cubes as long as it is possible
to eliminate one and after that we proceed similarly with the 1-dimensional cubes.

Example 7.1. Consider the 2-dimensional precubical set depicted in figure 6(a)
below. The grey squares represent the elements of degree 2, the arrows represent
the elements of degree 1, and the end points of the arrows represent the elements
of degree 0. The arrow corresponding to an edge x points from d01x to d11x. The
left-hand edge of a square x is d01x, the right-hand edge is d11x, the lower edge is
d02x, and the upper edge is d12x. We use the following sequence of 2-dimensional
reductions to deform this precubical set into the 1-dimensional precubical subset
depicted in figure 6(b): We proceed linewise from the top left square to the bottom
right square using Theorem 6.2 with b = 1 to eliminate all squares except for the
four squares on the right of the holes where we use Theorem 6.1 with a = 2 and
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b = 0 and the four squares below the holes where we use Theorem 6.1 with a = 1
and b = 1. A sequence of 1-dimensional reductions using Theorem 5.1 with b = 0
permits us to simplify the model further to the 1-dimensional precubical set with
four vertices in figure 6(c). From this we obtain the final model in figure 6(d) using
Theorem 5.1 twice with b = 1.

(a) (b) (c) (d)

Figure 6: Reduction of a square with two unordered holes

Example 7.2. Consider the precubical set in figure 7(a). We use the following
sequence of 2-dimensional reductions to deform this precubical set into the 1-
dimensional precubical subset in figure 7(b): We proceed linewise from the top
left square to the square on the left of the lower hole using Theorem 6.2 with b = 1
to eliminate all squares except for the one on the right of the upper hole where we
use Theorem 6.1 with a = 2 and b = 0 and the one below the upper hole where we
use Theorem 6.1 with a = 1 and b = 1. We then eliminate the remaining squares
using Theorem 6.2 with b = 0 proceeding linewise upwards from the bottom right
square to the square to the right of the lower hole. We simplify the model further to
the precubical set in figure 7(c) by means of a sequence of 1-dimensional reductions
using Theorem 5.1 with b = 0. Using Theorem 5.1 with b = 1 we finally obtain the
model in figure 7(d).

(a) (b) (c) (d)

Figure 7: Reduction of a square with two ordered holes

Example 7.3. We deform the Swiss flag in figure 8(a) into the 1-dimensional
precubical subset in figure 8(b) successively as follows: We proceed linewise from
the top left square to the bottom right square using Theorem 6.2 with b = 1 to
eliminate all squares except for the three squares on the right of the upper and
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middle holes where we use Theorem 6.1 with a = 2 and b = 0 and the three squares
below the left and the middle holes where we use Theorem 6.1 with a = 1 and b = 1.
Using Theorem 5.1 several times with b = 0 we obtain the 1-dimensional precubical
set in figure 8(c). We finally obtain the model in figure 8(d) using Theorem 5.1
twice with b = 1. The reader might be interested to compare this model to the one
obtained in [6] using a sequence of S- and T-homotopy equivalences.

(a) (b) (c) (d)

Figure 8: Reduction of the Swiss flag

8. Final remarks

8.1. Further collapsing operations
In this paper, we have established some results which give local combinatorial

conditions for the collapsibility of cubes in a 2-dimensional precubical set. The
list of our collapsing operations is not exhaustive, and it is possible and for some
purposes necessary to establish further collapsibility criteria. Consider, for example,
the precubical set depicted in figure 9, which represents the surface of the 3-cube
without the bottom face.

Figure 9: Surface of the 3-cube without the bottom face

The geometric realization of this precubical set is dihomotopy equivalent relative to
the extremal elements to the directed interval �I. The results of this paper do not
permit us to establish this equivalence. Using the homotopy H defined in the proof
of theorem 6.1 and depicted in figure 4 simultaneously on two adjacent squares, it
is, however, easy to establish that the geometric realizations of two precubical sets
P and Q that look like the ones in figure 10 are dihomotopy equivalent relative to
|Q|. This result together with the results of this paper permits us to reduce the
precubical set of figure 9 to an edge.
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(a) P (b) Q

Figure 10: |P | and |Q| are dihomotopy equivalent relative to |Q|

8.2. Higher dimensions

It is natural to ask whether the results of this paper can easily be extended
to higher dimensions. Unfortunately, the situation in higher dimensions is more
complicated. Consider, for example, the precubical 3-cube I

3 and the precubical
subset Q depicted in figure 11. It is not difficult to see that |I3| and |Q| are not
dihomotopy equivalent relative to |Q|. Therefore the three-dimensional version of
theorem 6.2 is not true. Higher dimensional collapsibility results will have either
weaker conclusions or stronger and more complex conditions than the results of the
present paper. What can be done in higher dimensions is currently being worked
out and will be discussed in a forthcoming paper.

(a) Precubical 3-cube I
3 (b) Precubical subset Q

Figure 11: |I3| and |Q| are not dihomotopy equivalent relative to |Q|

8.3. Extremal models

In [1], P. Bubenik introduces extremal models of d-spaces and calculates such ex-
tremal models for the geometric realizations of the precubical set of the introduction
and the precubical sets of Examples 7.2 and 7.3. In all cases, the extremal model is
a full subcategory of the fundamental category of the geometric realization of our
small model, namely the full subcategory generated by the vertices of the model.
It would be interesting to know whether this link between the models constructed
using our approach and the extremal models of [1] can be established in general.
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